Phantom-Based Approach for Comparing Conventional and Optically Pumped Magnetometer Magnetoencephalography Systems
Magnetoencephalography (MEG) is a vital tool for understanding neural dynamics, offering a noninvasive technique for measuring subtle magnetic field variations around the scalp generated by synchronized neuronal activity. Two prominent sensor technologies exist: the well-established superconducting...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 7; p. 2063 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
26.03.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Magnetoencephalography (MEG) is a vital tool for understanding neural dynamics, offering a noninvasive technique for measuring subtle magnetic field variations around the scalp generated by synchronized neuronal activity. Two prominent sensor technologies exist: the well-established superconducting quantum interference device (SQUID) and the more recent optically pumped magnetometer (OPM). Although many studies have compared these technologies using human-subject data in neuroscience and clinical studies, a direct hardware-level comparison using dry phantoms remains unexplored. This study presents a framework for comparing SQUID- with OPM-MEG systems in a controlled environment using a dry phantom that emulates neuronal activity, allowing strict control over physiological artifacts. Data were obtained from SQUID and OPM systems within the same shielded room, ensuring consistent environmental noise control and shielding conditions. Positioning the OPM sensors closer to the signal source resulted in a signal amplitude approximately 3–4 times larger than that detected by the SQUID-MEG system. However, the source localization error of the OPM-MEG system was approximately three times larger than that obtained by the SQUID-MEG system. The cause of the large source localization error was discussed in terms of sensor-to-source distance, sensor count, signal–noise ratio, and the spatial coverage provided by the sensor array of the source signal. |
---|---|
AbstractList | Magnetoencephalography (MEG) is a vital tool for understanding neural dynamics, offering a noninvasive technique for measuring subtle magnetic field variations around the scalp generated by synchronized neuronal activity. Two prominent sensor technologies exist: the well-established superconducting quantum interference device (SQUID) and the more recent optically pumped magnetometer (OPM). Although many studies have compared these technologies using human-subject data in neuroscience and clinical studies, a direct hardware-level comparison using dry phantoms remains unexplored. This study presents a framework for comparing SQUID- with OPM-MEG systems in a controlled environment using a dry phantom that emulates neuronal activity, allowing strict control over physiological artifacts. Data were obtained from SQUID and OPM systems within the same shielded room, ensuring consistent environmental noise control and shielding conditions. Positioning the OPM sensors closer to the signal source resulted in a signal amplitude approximately 3-4 times larger than that detected by the SQUID-MEG system. However, the source localization error of the OPM-MEG system was approximately three times larger than that obtained by the SQUID-MEG system. The cause of the large source localization error was discussed in terms of sensor-to-source distance, sensor count, signal-noise ratio, and the spatial coverage provided by the sensor array of the source signal.Magnetoencephalography (MEG) is a vital tool for understanding neural dynamics, offering a noninvasive technique for measuring subtle magnetic field variations around the scalp generated by synchronized neuronal activity. Two prominent sensor technologies exist: the well-established superconducting quantum interference device (SQUID) and the more recent optically pumped magnetometer (OPM). Although many studies have compared these technologies using human-subject data in neuroscience and clinical studies, a direct hardware-level comparison using dry phantoms remains unexplored. This study presents a framework for comparing SQUID- with OPM-MEG systems in a controlled environment using a dry phantom that emulates neuronal activity, allowing strict control over physiological artifacts. Data were obtained from SQUID and OPM systems within the same shielded room, ensuring consistent environmental noise control and shielding conditions. Positioning the OPM sensors closer to the signal source resulted in a signal amplitude approximately 3-4 times larger than that detected by the SQUID-MEG system. However, the source localization error of the OPM-MEG system was approximately three times larger than that obtained by the SQUID-MEG system. The cause of the large source localization error was discussed in terms of sensor-to-source distance, sensor count, signal-noise ratio, and the spatial coverage provided by the sensor array of the source signal. Magnetoencephalography (MEG) is a vital tool for understanding neural dynamics, offering a noninvasive technique for measuring subtle magnetic field variations around the scalp generated by synchronized neuronal activity. Two prominent sensor technologies exist: the well-established superconducting quantum interference device (SQUID) and the more recent optically pumped magnetometer (OPM). Although many studies have compared these technologies using human-subject data in neuroscience and clinical studies, a direct hardware-level comparison using dry phantoms remains unexplored. This study presents a framework for comparing SQUID- with OPM-MEG systems in a controlled environment using a dry phantom that emulates neuronal activity, allowing strict control over physiological artifacts. Data were obtained from SQUID and OPM systems within the same shielded room, ensuring consistent environmental noise control and shielding conditions. Positioning the OPM sensors closer to the signal source resulted in a signal amplitude approximately 3–4 times larger than that detected by the SQUID-MEG system. However, the source localization error of the OPM-MEG system was approximately three times larger than that obtained by the SQUID-MEG system. The cause of the large source localization error was discussed in terms of sensor-to-source distance, sensor count, signal–noise ratio, and the spatial coverage provided by the sensor array of the source signal. |
Audience | Academic |
Author | Oyama, Daisuke Zaatiti, Hadi |
AuthorAffiliation | 2 Bio-Medical Imaging Core, Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; hadi.zaatiti@nyu.edu 1 Applied Electronics Laboratory, Kanazawa Institute of Technology, Kanazawa 920-1331, Japan |
AuthorAffiliation_xml | – name: 1 Applied Electronics Laboratory, Kanazawa Institute of Technology, Kanazawa 920-1331, Japan – name: 2 Bio-Medical Imaging Core, Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; hadi.zaatiti@nyu.edu |
Author_xml | – sequence: 1 givenname: Daisuke orcidid: 0000-0002-2664-2402 surname: Oyama fullname: Oyama, Daisuke – sequence: 2 givenname: Hadi orcidid: 0000-0002-4488-7585 surname: Zaatiti fullname: Zaatiti, Hadi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40218576$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktv1DAQxyNURB9w4AugSFzgkOJnYp_QsuJRqaiVgLPl2JPHKrGDnVTab4-32y5dhHzwePyb__hvzXl24ryDLHuN0SWlEn2IhKOKoJI-y84wI6wQhKCTJ_Fpdh7jBiFCKRUvslOGCBa8Ks-ycNtpN_ux-KQj2Hw1TcFr0-WND_naj5MOvWtT5O7Azb13esi1s_nNNPdGD8M2v13GKRV-162DpAMzhMcDOANTpwffBj112_zHNs4wxpfZ80YPEV497BfZry-ff66_Fdc3X6_Wq-vCMCnngmJKakmZNBaQTC_XpqRWNxQjRskutIzw0jaSgJGEV5azmpZNxVGDReIvsqu9rvV6o6bQjzpslde9uk_40Codko0BFAeLCAdemxoYI0RUljYUEV0zwAKjpPVxrzUt9QjWpM8IejgSPb5xfadaf6cwlhJzQpLCuweF4H8vEGc19tHAMGgHfomKYiFZSSqxa_b2H3Tjl5C-_p4SQsqywn-pVicHvWt8amx2omolqKAlF5Qn6vI_VFoWxt6kMWr6lD8qePPU6cHi48gk4P0eMMHHGKA5IBip3TiqwzjSP3PM0Dc |
Cites_doi | 10.3390/bioengineering11090897 10.1109/JSEN.2023.3297109 10.1109/77.919433 10.1007/BF01132766 10.1088/0031-9155/32/1/004 10.1142/S0218126609005794 10.1016/j.tins.2022.05.008 10.1038/s41598-024-77089-z 10.1016/j.ics.2007.01.055 10.1101/2024.03.20.585911 10.1016/j.jneumeth.2007.06.003 10.1016/j.jneumeth.2015.05.004 10.1109/ITAB.2007.4407393 10.1109/TMAG.2019.2895355 10.1109/TMAG.1987.1064889 10.1109/TASC.2021.3133210 10.1371/journal.pone.0262669 10.1109/20.800726 10.1016/j.neuroimage.2022.119027 10.1007/978-1-4612-1260-7 10.1109/TIM.2023.3265750 10.2172/2004332 10.1038/nature26147 10.1109/77.783918 10.3390/s24186044 10.1016/j.neuroimage.2020.116995 10.1007/978-3-030-64610-3_30 10.1016/j.ynirp.2022.100093 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s25072063 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_5ed025e5bcbe442287d3f302ab4e1810 PMC11991522 A838365835 40218576 10_3390_s25072063 |
Genre | Journal Article Comparative Study |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c499t-3132b9349cde09233ac63daf31043263dad4256df92ec9257d54b36f750f18233 |
IEDL.DBID | 7X7 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 00:49:30 EDT 2025 Thu Aug 21 18:32:18 EDT 2025 Fri Jul 11 19:03:15 EDT 2025 Fri Jul 25 20:56:31 EDT 2025 Tue Jun 17 21:55:28 EDT 2025 Tue Jun 03 03:45:32 EDT 2025 Tue Apr 15 01:23:26 EDT 2025 Tue Jul 01 05:13:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | superconducting quantum interference device dry phantom magnetoencephalography optically pumped magnetometers |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c499t-3132b9349cde09233ac63daf31043263dad4256df92ec9257d54b36f750f18233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0002-2664-2402 0000-0002-4488-7585 |
OpenAccessLink | https://www.proquest.com/docview/3188899671?pq-origsite=%requestingapplication% |
PMID | 40218576 |
PQID | 3188899671 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5ed025e5bcbe442287d3f302ab4e1810 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11991522 proquest_miscellaneous_3189462780 proquest_journals_3188899671 gale_infotracmisc_A838365835 gale_infotracacademiconefile_A838365835 pubmed_primary_40218576 crossref_primary_10_3390_s25072063 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-26 |
PublicationDateYYYYMMDD | 2025-03-26 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Adachi (ref_24) 2001; 11 Kawai (ref_30) 1999; 35 Simon (ref_25) 2007; 165 Adachi (ref_29) 2023; 72 Jarm (ref_7) 2021; Volume 80 ref_13 ref_12 Papadelis (ref_17) 2007; 1300 ref_11 ref_32 Hill (ref_5) 2022; 219 Cohen (ref_1) 1991; 4 ref_19 ref_18 Kado (ref_23) 1999; 9 ref_15 Sarvas (ref_28) 1987; 32 Adachi (ref_31) 2019; 55 Ilmoniemi (ref_22) 2009; 22 Yang (ref_14) 2009; 18 Erne (ref_27) 1987; 23 Oyama (ref_9) 2015; 251 ref_21 Brookes (ref_2) 2022; 45 Nugent (ref_8) 2022; 2 Oyama (ref_10) 2022; 32 ref_26 Boto (ref_3) 2018; 555 Zhao (ref_4) 2023; 23 Boto (ref_20) 2022; 252 Papadelis (ref_16) 2007; 9 ref_6 |
References_xml | – ident: ref_13 doi: 10.3390/bioengineering11090897 – volume: 23 start-page: 18949 year: 2023 ident: ref_4 article-title: Optically Pumped Magnetometers Recent Advances and Applications in Biomagnetism: A Review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3297109 – volume: 11 start-page: 669 year: 2001 ident: ref_24 article-title: Reduction of non-periodic environmental magnetic noise in MEG measurement by continuously adjusted least squares method publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/77.919433 – ident: ref_26 – volume: 4 start-page: 95 year: 1991 ident: ref_1 article-title: EEG versus MEG localization accuracy: Theory and experiment publication-title: Brain Topogr. doi: 10.1007/BF01132766 – volume: 32 start-page: 11 year: 1987 ident: ref_28 article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/32/1/004 – volume: 18 start-page: 1467 year: 2009 ident: ref_14 article-title: Empirical mode decomposition method for MEG phantom data analysis publication-title: J. Circuits Syst. Comput. doi: 10.1142/S0218126609005794 – volume: 45 start-page: 621 year: 2022 ident: ref_2 article-title: Magnetoencephalography with optically pumped magnetometers (OPM-MEG): The next generation of functional neuroimaging publication-title: Trends Neurosci. doi: 10.1016/j.tins.2022.05.008 – ident: ref_19 doi: 10.1038/s41598-024-77089-z – volume: 1300 start-page: 257 year: 2007 ident: ref_17 article-title: Localization accuracy and temporal resolution of MEG: A phantom experiment publication-title: Int. Congr. Ser. doi: 10.1016/j.ics.2007.01.055 – ident: ref_21 doi: 10.1101/2024.03.20.585911 – volume: 165 start-page: 297 year: 2007 ident: ref_25 article-title: Denoising based on time-shift PCA publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2007.06.003 – volume: 251 start-page: 24 year: 2015 ident: ref_9 article-title: Dry phantom for magnetoencephalography—Configuration, calibration, and contribution publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.05.004 – ident: ref_18 doi: 10.1109/ITAB.2007.4407393 – volume: 55 start-page: 1 year: 2019 ident: ref_31 article-title: Calibration of Room Temperature Magnetic Sensor Array for Biomagnetic Measurement publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2019.2895355 – volume: 23 start-page: 1319 year: 1987 ident: ref_27 article-title: The positioning problem in biomagnetic measurements: A solution for arrays of superconducting sensors publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.1987.1064889 – volume: 32 start-page: 1 year: 2022 ident: ref_10 article-title: Reduction of Magnetic Noise Originating from a Cryocooler of a Magnetoencephalography System Using Mobile Reference Sensors publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/TASC.2021.3133210 – ident: ref_6 doi: 10.1371/journal.pone.0262669 – volume: 35 start-page: 3974 year: 1999 ident: ref_30 article-title: Three Axis SQUID Magnetometer for Low-Frequency Geophysical Applications publication-title: IEEE Trans. Magn. doi: 10.1109/20.800726 – volume: 252 start-page: 119027 year: 2022 ident: ref_20 article-title: Triaxial detection of the neuromagnetic field using optically-pumped magnetometry: Feasibility and application in children publication-title: NeuroImage doi: 10.1016/j.neuroimage.2022.119027 – ident: ref_15 – ident: ref_12 doi: 10.1007/978-1-4612-1260-7 – volume: 72 start-page: 1 year: 2023 ident: ref_29 article-title: A Spherical Coil Array for the Calibration of Whole-Head Magnetoencephalograph Systems publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2023.3265750 – ident: ref_32 doi: 10.2172/2004332 – volume: 555 start-page: 657 year: 2018 ident: ref_3 article-title: Moving magnetoencephalography towards real-world applications with a wearable system publication-title: Nature doi: 10.1038/nature26147 – volume: 9 start-page: 4057 year: 1999 ident: ref_23 article-title: Magnetoencephalogram systems developed ad KIT publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/77.783918 – volume: 22 start-page: 44 year: 2009 ident: ref_22 article-title: The triangle phantom in magnetoencephalography publication-title: J. Jpn. Biomagn. Bioelectromagn. Soc. – ident: ref_11 doi: 10.3390/s24186044 – volume: 219 start-page: 116995 year: 2022 ident: ref_5 article-title: Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.116995 – volume: Volume 80 start-page: 254 year: 2021 ident: ref_7 article-title: Comparison Between Conventional SQUID Based and Novel OPM Based Measuring Systems in MEG publication-title: 8th European Medical and Biological Engineering Conference, Proceedings of the EMBEC 2020, Portorož, Slovenia, 29 November–3 December 2020 doi: 10.1007/978-3-030-64610-3_30 – volume: 9 start-page: 163 year: 2007 ident: ref_16 article-title: Phantom study supports claim of accurate localization from MEG data publication-title: Int. J. Bioelectromagn. – volume: 2 start-page: 100093 year: 2022 ident: ref_8 article-title: On-scalp magnetocorticography with optically pumped magnetometers: Simulated performance in resolving simultaneous sources publication-title: Neuroimage Rep. doi: 10.1016/j.ynirp.2022.100093 |
SSID | ssj0023338 |
Score | 2.4433272 |
Snippet | Magnetoencephalography (MEG) is a vital tool for understanding neural dynamics, offering a noninvasive technique for measuring subtle magnetic field variations... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 2063 |
SubjectTerms | Accuracy Algorithms Brain Design and construction dry phantom Experiments Helmets Humans Localization Magnetic fields Magnetoencephalography Magnetoencephalography - instrumentation Magnetoencephalography - methods Magnetometer Magnetometry - instrumentation Magnetometry - methods Methods Neuroimaging optically pumped magnetometers Phantoms, Imaging Physiology Sensors Signal-To-Noise Ratio superconducting quantum interference device |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED4hJhgQbwIFGYTEFNHGzmtsEQgh8RhAYrOc2KFIECooA_-e7_IojRhY2NLajmxfzvd90eU7omNTGBsYTquQcDcVg7BmA6d8K8PEKRXgBORXA9c30eWDunoMH-dKfXFOWC0PXG_caegswrILszyrxiaxlQXuazLlEJ0qto6Y15KphmpJMK9aR0iC1J9-INDHQT-SnehTifT_PornYlE3T3Iu8Fys0kqDGMWwnukaLbhynZbndAQ36P1uzLWAX_0RYpIVw0YnXACQirO60GD5hKufBHNhSituJ9WL7JcvcQejYuC1eSod7sMpMu0P9vzJ2LTS1qKRON-kh4vz-7NLvymm4OcgNVOfJRqzVKo0t64PVCdNHklrCsA7BQiHSwv3jWyRBi5P4cg2VJmMCiCKAhxEyi1aLN9Kt0NChsAthXJZ2HfAM4A4iHiRSwdFDLggY4-O2k3Wk1ozQ4NrsCX0zBIejXj7Zx1Y5rr6A8bXjfH1X8b36ISNp9kZYaHcNN8UYJ4sa6WHCQg4MJYMPep1esKJ8m5za37dOPGHxnGXJLy4gUeHs2YeyYlppXv7rPqkKgriBHPZrp-W2ZIU4yfwOY-SznPUWXO3pXweVxLfA85IAzTe_Y9d2qOlgKsW96UfRD1anL5_un1AqWl2UHnNN-onHCQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5RemkPqJQ-QqFyK6Se0u7GzutQoQWBUKUtHFiJm-XEzi4SzS7LIsG_7zd5sVErbknsRLZnxvNNMvmG6MAUxgaG0yokzE3FCFizoVO-lWHilAqwA_KrgfHv6Gyifl2FVxvU1thsFvDuv6Ed15OaLG--P9w-HsLgf3LEiZD9xx3ceBzA176gl3BIMdvnWHUfEwKJMKwmFep377miirH_3315zTH1kybXvNDpG9pq4KMY1fLepg1XvqXXa6SCO7S8mHFh4D_-ERyUFaOGNFwAnYrjuupgOcXRU7a5MKUV54vqrfbNo7iAhHHj2ExLh-dwvkx7wtvAYmZanmvR8J2_o8npyeXxmd9UVvBzRDgrn_kas1SqNLduAIgnTR5JawpgPQU8h0MLW45skQYuT2HVNlSZjArAiwIBiZTvabOcl-4jCRkCxBTKZeHAAdwA78D9RS4dFjGwg4w9-tousl7UBBoagQdLQneS8OiIl7_rwJzX1YX5cqobE9KhswBoLszyrNKiJLaygIaZTDnglIFH31h4mnUFEspN84MBxskcV3qUIBoH4JKhR3u9nrCovN_cil-3Cqmx9yUJT27o0Zeume_kLLXSze-rPqmKgjjBWD7U2tJNSTGYQnDnUdLTo96c-y3l9azi-x5yehpw8u7z4_pErwIuTjyQfhDt0eZqee_2gZhW2efKHv4CpkYVKw priority: 102 providerName: Scholars Portal |
Title | Phantom-Based Approach for Comparing Conventional and Optically Pumped Magnetometer Magnetoencephalography Systems |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40218576 https://www.proquest.com/docview/3188899671 https://www.proquest.com/docview/3189462780 https://pubmed.ncbi.nlm.nih.gov/PMC11991522 https://doaj.org/article/5ed025e5bcbe442287d3f302ab4e1810 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEB1Be4ED4huXEhmExMmq411_nVBSNVRIKRGiUm7W2rtOkMAJSXrov-fNep3EQuJiOdm1tfbM7LyZTN4QfVS10pHisgoBc5MpAtZyaGSgRZwZKSPsgJwamN4k17fy6zyeu4Tb1pVVdnui3aj1quIc-QV0L0NskKTDz-s_AXeN4l9XXQuNh3TK1GVc0pXODwGXQPzVsgkJhPYXW7j7NAoT0fNBlqr_3w35yCP1qyWP3M_kKT1xuNEftYJ-Rg9M85weH7EJvqDNbMkdgX8HY3gm7Y8cW7gPWOpftu0GmwXODmXmvmq0_21t09m_7v0ZRIsLp2rRGNyHC2W6D2z_66XqCK59R3T-km4nVz8urwPXUiGoENrsAiZqLHMh80qbENhOqCoRWtUAeRJADqcaRpzoOo9MlcOcdSxLkdTAFTUiESFe0Umzaswb8kUM9FJLU8ahAaoRLJssMfmwTgEaROrRh-4lF-uWOaNAxMGSKPaS8GjMr38_gcmu7RerzaJwtlPERgOZmbisSqs-WapFDdVSpTQAKKFHn1h4BZskJFQp988CrJPJrYpRhjAcSEvEHp33ZsKUqv5wJ_7CmfK2OCieR-_3w3wll6c1ZnVn5-QyidIMa3ndasv-kSSjKER1HmU9Peo9c3-k-bm0RN9DrksDQD77_7re0qOIuxKHIoiSczrZbe7MO0ClXTmw9oBjNvkyoNPx1c3s-8CmHXCcyuwvf6wYKg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V5QAcEO8aChgE4mTV8a5fB4TSQpXSpvTQSrkta-86QWqdkKRC_VP8Rr7xI4mFxK03J7uO1jvfzHyzGc8QvdeFNoHmtAoBdZMxAtasZ6VnRJhYKQNYQD4aGJ5Ggwv5bRSOtuhP-y4Mp1W2NrEy1Gaa8xn5HrCXIDaI4t7n2S-Pu0bxv6ttC40aFsf25jdCtsWnoy-Q74cgOPx6fjDwmq4CXg52v_S4VmGWCpnmxvqgN0LnkTC6AM-R4DK4NMBxZIo0sHkKRJtQZiIq4FoLkHE-AIXJvwPH67NGxaN1gCcQ79XVi4RI_b0F6EUc-JHo-LyqNcC_DmDDA3azMzfc3eFDetDwVLdfA-sRbdnyMd3fqF74hOZnE-5AfOXtwxMat99UJ3dBg92Dur1hOcbVOq3d1aVxv8-q4_PLG_cMUMKNQz0uLX6HE3PaD2xvZhPdFtR2m8LqT-niVjb7GW2X09LukCtCsKVC2iz0LViUYCwkkU17RQySImKH3rWbrGZ1pQ6FCIcloVaScGift381gYtrV19M52PV6KoKrQETtGGWZxVck9iIAlDWmbQgRL5DH1l4ik0AJJTr5k0GrJOLaal-grAfzE6EDu12ZkJ18-5wK37VmI6FWgPdoberYb6T0-FKO72u5qQyCuIEa3leo2X1SJJZG6JIh5IOjjrP3B0pf06qwuI9zoMDIX_x_3W9obuD8-GJOjk6PX5J9wLuiOwLL4h2aXs5v7avQNOW2etKN1z6cdvK-BcqDk76 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VRUJwQLxxKbAgECcrjnf9OiCUtkQtpSUHKuVm1t51gkSdkKRC_Wv8Or7xI4mFxK03J7uO1jvfzHyzGc8QvdWFNr7mtAoJdVMRAtasb5VrZBBbpXxYQD4aODsPjy_U53Ew3qE_7bswnFbZ2sTKUJtZzmfkPWAvRmwQRv1e0aRFjI6GH-e_XO4gxf-0tu00aoic2uvfCN-WH06OIOt3vj_89O3w2G06DLg5mP7K5bqFWSJVkhvrgepInYfS6AKcR4HX4NIA06EpEt_mCdBtApXJsICbLUDM-TAU5v9WJIM-61g03gR7ErFfXclIysTrLUE1It8LZcf_VW0C_nUGW96wm6m55fqG9-lew1nFoAbZA9qx5UO6u1XJ8BEtRlPuRnzpHsArGjFoKpULUGJxWLc6LCe42qS4C10a8XVeHaX_vBYjwAo3nulJafE7nKTTfmDbM5_qtri2aIqsP6aLG9nsJ7Rbzkr7jIQMwJwKZbPAs2BUknERhzbpFxEIi4wcetNucjqvq3akiHZYEulaEg4d8PavJ3Ch7eqL2WKSNnqbBtaAFdogy7MKunFkZAFY60xZkCPPofcsvJTNASSU6-atBqyTC2ulg1jGEixPBg7td2ZCjfPucCv-tDEjy3QDeoder4f5Tk6NK-3sqpqTqNCPYqzlaY2W9SMpZnCIKB2KOzjqPHN3pPwxrYqM9zknDuR87__rekW3oYbpl5Pz0-d0x-fmyJ50_XCfdleLK_sCjG2VvaxUQ9D3m9bFv72wUzA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phantom-Based+Approach+for+Comparing+Conventional+and+Optically+Pumped+Magnetometer+Magnetoencephalography+Systems&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Oyama%2C+Daisuke&rft.au=Zaatiti%2C+Hadi&rft.date=2025-03-26&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=25&rft.issue=7&rft.spage=2063&rft_id=info:doi/10.3390%2Fs25072063&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |