Phantom-Based Approach for Comparing Conventional and Optically Pumped Magnetometer Magnetoencephalography Systems

Magnetoencephalography (MEG) is a vital tool for understanding neural dynamics, offering a noninvasive technique for measuring subtle magnetic field variations around the scalp generated by synchronized neuronal activity. Two prominent sensor technologies exist: the well-established superconducting...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 7; p. 2063
Main Authors Oyama, Daisuke, Zaatiti, Hadi
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 26.03.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Magnetoencephalography (MEG) is a vital tool for understanding neural dynamics, offering a noninvasive technique for measuring subtle magnetic field variations around the scalp generated by synchronized neuronal activity. Two prominent sensor technologies exist: the well-established superconducting quantum interference device (SQUID) and the more recent optically pumped magnetometer (OPM). Although many studies have compared these technologies using human-subject data in neuroscience and clinical studies, a direct hardware-level comparison using dry phantoms remains unexplored. This study presents a framework for comparing SQUID- with OPM-MEG systems in a controlled environment using a dry phantom that emulates neuronal activity, allowing strict control over physiological artifacts. Data were obtained from SQUID and OPM systems within the same shielded room, ensuring consistent environmental noise control and shielding conditions. Positioning the OPM sensors closer to the signal source resulted in a signal amplitude approximately 3–4 times larger than that detected by the SQUID-MEG system. However, the source localization error of the OPM-MEG system was approximately three times larger than that obtained by the SQUID-MEG system. The cause of the large source localization error was discussed in terms of sensor-to-source distance, sensor count, signal–noise ratio, and the spatial coverage provided by the sensor array of the source signal.
AbstractList Magnetoencephalography (MEG) is a vital tool for understanding neural dynamics, offering a noninvasive technique for measuring subtle magnetic field variations around the scalp generated by synchronized neuronal activity. Two prominent sensor technologies exist: the well-established superconducting quantum interference device (SQUID) and the more recent optically pumped magnetometer (OPM). Although many studies have compared these technologies using human-subject data in neuroscience and clinical studies, a direct hardware-level comparison using dry phantoms remains unexplored. This study presents a framework for comparing SQUID- with OPM-MEG systems in a controlled environment using a dry phantom that emulates neuronal activity, allowing strict control over physiological artifacts. Data were obtained from SQUID and OPM systems within the same shielded room, ensuring consistent environmental noise control and shielding conditions. Positioning the OPM sensors closer to the signal source resulted in a signal amplitude approximately 3-4 times larger than that detected by the SQUID-MEG system. However, the source localization error of the OPM-MEG system was approximately three times larger than that obtained by the SQUID-MEG system. The cause of the large source localization error was discussed in terms of sensor-to-source distance, sensor count, signal-noise ratio, and the spatial coverage provided by the sensor array of the source signal.Magnetoencephalography (MEG) is a vital tool for understanding neural dynamics, offering a noninvasive technique for measuring subtle magnetic field variations around the scalp generated by synchronized neuronal activity. Two prominent sensor technologies exist: the well-established superconducting quantum interference device (SQUID) and the more recent optically pumped magnetometer (OPM). Although many studies have compared these technologies using human-subject data in neuroscience and clinical studies, a direct hardware-level comparison using dry phantoms remains unexplored. This study presents a framework for comparing SQUID- with OPM-MEG systems in a controlled environment using a dry phantom that emulates neuronal activity, allowing strict control over physiological artifacts. Data were obtained from SQUID and OPM systems within the same shielded room, ensuring consistent environmental noise control and shielding conditions. Positioning the OPM sensors closer to the signal source resulted in a signal amplitude approximately 3-4 times larger than that detected by the SQUID-MEG system. However, the source localization error of the OPM-MEG system was approximately three times larger than that obtained by the SQUID-MEG system. The cause of the large source localization error was discussed in terms of sensor-to-source distance, sensor count, signal-noise ratio, and the spatial coverage provided by the sensor array of the source signal.
Magnetoencephalography (MEG) is a vital tool for understanding neural dynamics, offering a noninvasive technique for measuring subtle magnetic field variations around the scalp generated by synchronized neuronal activity. Two prominent sensor technologies exist: the well-established superconducting quantum interference device (SQUID) and the more recent optically pumped magnetometer (OPM). Although many studies have compared these technologies using human-subject data in neuroscience and clinical studies, a direct hardware-level comparison using dry phantoms remains unexplored. This study presents a framework for comparing SQUID- with OPM-MEG systems in a controlled environment using a dry phantom that emulates neuronal activity, allowing strict control over physiological artifacts. Data were obtained from SQUID and OPM systems within the same shielded room, ensuring consistent environmental noise control and shielding conditions. Positioning the OPM sensors closer to the signal source resulted in a signal amplitude approximately 3–4 times larger than that detected by the SQUID-MEG system. However, the source localization error of the OPM-MEG system was approximately three times larger than that obtained by the SQUID-MEG system. The cause of the large source localization error was discussed in terms of sensor-to-source distance, sensor count, signal–noise ratio, and the spatial coverage provided by the sensor array of the source signal.
Audience Academic
Author Oyama, Daisuke
Zaatiti, Hadi
AuthorAffiliation 2 Bio-Medical Imaging Core, Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; hadi.zaatiti@nyu.edu
1 Applied Electronics Laboratory, Kanazawa Institute of Technology, Kanazawa 920-1331, Japan
AuthorAffiliation_xml – name: 1 Applied Electronics Laboratory, Kanazawa Institute of Technology, Kanazawa 920-1331, Japan
– name: 2 Bio-Medical Imaging Core, Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; hadi.zaatiti@nyu.edu
Author_xml – sequence: 1
  givenname: Daisuke
  orcidid: 0000-0002-2664-2402
  surname: Oyama
  fullname: Oyama, Daisuke
– sequence: 2
  givenname: Hadi
  orcidid: 0000-0002-4488-7585
  surname: Zaatiti
  fullname: Zaatiti, Hadi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40218576$$D View this record in MEDLINE/PubMed
BookMark eNptkktv1DAQxyNURB9w4AugSFzgkOJnYp_QsuJRqaiVgLPl2JPHKrGDnVTab4-32y5dhHzwePyb__hvzXl24ryDLHuN0SWlEn2IhKOKoJI-y84wI6wQhKCTJ_Fpdh7jBiFCKRUvslOGCBa8Ks-ycNtpN_ux-KQj2Hw1TcFr0-WND_naj5MOvWtT5O7Azb13esi1s_nNNPdGD8M2v13GKRV-162DpAMzhMcDOANTpwffBj112_zHNs4wxpfZ80YPEV497BfZry-ff66_Fdc3X6_Wq-vCMCnngmJKakmZNBaQTC_XpqRWNxQjRskutIzw0jaSgJGEV5azmpZNxVGDReIvsqu9rvV6o6bQjzpslde9uk_40Codko0BFAeLCAdemxoYI0RUljYUEV0zwAKjpPVxrzUt9QjWpM8IejgSPb5xfadaf6cwlhJzQpLCuweF4H8vEGc19tHAMGgHfomKYiFZSSqxa_b2H3Tjl5C-_p4SQsqywn-pVicHvWt8amx2omolqKAlF5Qn6vI_VFoWxt6kMWr6lD8qePPU6cHi48gk4P0eMMHHGKA5IBip3TiqwzjSP3PM0Dc
Cites_doi 10.3390/bioengineering11090897
10.1109/JSEN.2023.3297109
10.1109/77.919433
10.1007/BF01132766
10.1088/0031-9155/32/1/004
10.1142/S0218126609005794
10.1016/j.tins.2022.05.008
10.1038/s41598-024-77089-z
10.1016/j.ics.2007.01.055
10.1101/2024.03.20.585911
10.1016/j.jneumeth.2007.06.003
10.1016/j.jneumeth.2015.05.004
10.1109/ITAB.2007.4407393
10.1109/TMAG.2019.2895355
10.1109/TMAG.1987.1064889
10.1109/TASC.2021.3133210
10.1371/journal.pone.0262669
10.1109/20.800726
10.1016/j.neuroimage.2022.119027
10.1007/978-1-4612-1260-7
10.1109/TIM.2023.3265750
10.2172/2004332
10.1038/nature26147
10.1109/77.783918
10.3390/s24186044
10.1016/j.neuroimage.2020.116995
10.1007/978-3-030-64610-3_30
10.1016/j.ynirp.2022.100093
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25072063
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

MEDLINE


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_5ed025e5bcbe442287d3f302ab4e1810
PMC11991522
A838365835
40218576
10_3390_s25072063
Genre Journal Article
Comparative Study
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c499t-3132b9349cde09233ac63daf31043263dad4256df92ec9257d54b36f750f18233
IEDL.DBID 7X7
ISSN 1424-8220
IngestDate Wed Aug 27 00:49:30 EDT 2025
Thu Aug 21 18:32:18 EDT 2025
Fri Jul 11 19:03:15 EDT 2025
Fri Jul 25 20:56:31 EDT 2025
Tue Jun 17 21:55:28 EDT 2025
Tue Jun 03 03:45:32 EDT 2025
Tue Apr 15 01:23:26 EDT 2025
Tue Jul 01 05:13:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords superconducting quantum interference device
dry phantom
magnetoencephalography
optically pumped magnetometers
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-3132b9349cde09233ac63daf31043263dad4256df92ec9257d54b36f750f18233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-2664-2402
0000-0002-4488-7585
OpenAccessLink https://www.proquest.com/docview/3188899671?pq-origsite=%requestingapplication%
PMID 40218576
PQID 3188899671
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_5ed025e5bcbe442287d3f302ab4e1810
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11991522
proquest_miscellaneous_3189462780
proquest_journals_3188899671
gale_infotracmisc_A838365835
gale_infotracacademiconefile_A838365835
pubmed_primary_40218576
crossref_primary_10_3390_s25072063
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-26
PublicationDateYYYYMMDD 2025-03-26
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-26
  day: 26
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Adachi (ref_24) 2001; 11
Kawai (ref_30) 1999; 35
Simon (ref_25) 2007; 165
Adachi (ref_29) 2023; 72
Jarm (ref_7) 2021; Volume 80
ref_13
ref_12
Papadelis (ref_17) 2007; 1300
ref_11
ref_32
Hill (ref_5) 2022; 219
Cohen (ref_1) 1991; 4
ref_19
ref_18
Kado (ref_23) 1999; 9
ref_15
Sarvas (ref_28) 1987; 32
Adachi (ref_31) 2019; 55
Ilmoniemi (ref_22) 2009; 22
Yang (ref_14) 2009; 18
Erne (ref_27) 1987; 23
Oyama (ref_9) 2015; 251
ref_21
Brookes (ref_2) 2022; 45
Nugent (ref_8) 2022; 2
Oyama (ref_10) 2022; 32
ref_26
Boto (ref_3) 2018; 555
Zhao (ref_4) 2023; 23
Boto (ref_20) 2022; 252
Papadelis (ref_16) 2007; 9
ref_6
References_xml – ident: ref_13
  doi: 10.3390/bioengineering11090897
– volume: 23
  start-page: 18949
  year: 2023
  ident: ref_4
  article-title: Optically Pumped Magnetometers Recent Advances and Applications in Biomagnetism: A Review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3297109
– volume: 11
  start-page: 669
  year: 2001
  ident: ref_24
  article-title: Reduction of non-periodic environmental magnetic noise in MEG measurement by continuously adjusted least squares method
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/77.919433
– ident: ref_26
– volume: 4
  start-page: 95
  year: 1991
  ident: ref_1
  article-title: EEG versus MEG localization accuracy: Theory and experiment
  publication-title: Brain Topogr.
  doi: 10.1007/BF01132766
– volume: 32
  start-page: 11
  year: 1987
  ident: ref_28
  article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/32/1/004
– volume: 18
  start-page: 1467
  year: 2009
  ident: ref_14
  article-title: Empirical mode decomposition method for MEG phantom data analysis
  publication-title: J. Circuits Syst. Comput.
  doi: 10.1142/S0218126609005794
– volume: 45
  start-page: 621
  year: 2022
  ident: ref_2
  article-title: Magnetoencephalography with optically pumped magnetometers (OPM-MEG): The next generation of functional neuroimaging
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2022.05.008
– ident: ref_19
  doi: 10.1038/s41598-024-77089-z
– volume: 1300
  start-page: 257
  year: 2007
  ident: ref_17
  article-title: Localization accuracy and temporal resolution of MEG: A phantom experiment
  publication-title: Int. Congr. Ser.
  doi: 10.1016/j.ics.2007.01.055
– ident: ref_21
  doi: 10.1101/2024.03.20.585911
– volume: 165
  start-page: 297
  year: 2007
  ident: ref_25
  article-title: Denoising based on time-shift PCA
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.06.003
– volume: 251
  start-page: 24
  year: 2015
  ident: ref_9
  article-title: Dry phantom for magnetoencephalography—Configuration, calibration, and contribution
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.05.004
– ident: ref_18
  doi: 10.1109/ITAB.2007.4407393
– volume: 55
  start-page: 1
  year: 2019
  ident: ref_31
  article-title: Calibration of Room Temperature Magnetic Sensor Array for Biomagnetic Measurement
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2019.2895355
– volume: 23
  start-page: 1319
  year: 1987
  ident: ref_27
  article-title: The positioning problem in biomagnetic measurements: A solution for arrays of superconducting sensors
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.1987.1064889
– volume: 32
  start-page: 1
  year: 2022
  ident: ref_10
  article-title: Reduction of Magnetic Noise Originating from a Cryocooler of a Magnetoencephalography System Using Mobile Reference Sensors
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/TASC.2021.3133210
– ident: ref_6
  doi: 10.1371/journal.pone.0262669
– volume: 35
  start-page: 3974
  year: 1999
  ident: ref_30
  article-title: Three Axis SQUID Magnetometer for Low-Frequency Geophysical Applications
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/20.800726
– volume: 252
  start-page: 119027
  year: 2022
  ident: ref_20
  article-title: Triaxial detection of the neuromagnetic field using optically-pumped magnetometry: Feasibility and application in children
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.119027
– ident: ref_15
– ident: ref_12
  doi: 10.1007/978-1-4612-1260-7
– volume: 72
  start-page: 1
  year: 2023
  ident: ref_29
  article-title: A Spherical Coil Array for the Calibration of Whole-Head Magnetoencephalograph Systems
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2023.3265750
– ident: ref_32
  doi: 10.2172/2004332
– volume: 555
  start-page: 657
  year: 2018
  ident: ref_3
  article-title: Moving magnetoencephalography towards real-world applications with a wearable system
  publication-title: Nature
  doi: 10.1038/nature26147
– volume: 9
  start-page: 4057
  year: 1999
  ident: ref_23
  article-title: Magnetoencephalogram systems developed ad KIT
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/77.783918
– volume: 22
  start-page: 44
  year: 2009
  ident: ref_22
  article-title: The triangle phantom in magnetoencephalography
  publication-title: J. Jpn. Biomagn. Bioelectromagn. Soc.
– ident: ref_11
  doi: 10.3390/s24186044
– volume: 219
  start-page: 116995
  year: 2022
  ident: ref_5
  article-title: Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.116995
– volume: Volume 80
  start-page: 254
  year: 2021
  ident: ref_7
  article-title: Comparison Between Conventional SQUID Based and Novel OPM Based Measuring Systems in MEG
  publication-title: 8th European Medical and Biological Engineering Conference, Proceedings of the EMBEC 2020, Portorož, Slovenia, 29 November–3 December 2020
  doi: 10.1007/978-3-030-64610-3_30
– volume: 9
  start-page: 163
  year: 2007
  ident: ref_16
  article-title: Phantom study supports claim of accurate localization from MEG data
  publication-title: Int. J. Bioelectromagn.
– volume: 2
  start-page: 100093
  year: 2022
  ident: ref_8
  article-title: On-scalp magnetocorticography with optically pumped magnetometers: Simulated performance in resolving simultaneous sources
  publication-title: Neuroimage Rep.
  doi: 10.1016/j.ynirp.2022.100093
SSID ssj0023338
Score 2.4433272
Snippet Magnetoencephalography (MEG) is a vital tool for understanding neural dynamics, offering a noninvasive technique for measuring subtle magnetic field variations...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 2063
SubjectTerms Accuracy
Algorithms
Brain
Design and construction
dry phantom
Experiments
Helmets
Humans
Localization
Magnetic fields
Magnetoencephalography
Magnetoencephalography - instrumentation
Magnetoencephalography - methods
Magnetometer
Magnetometry - instrumentation
Magnetometry - methods
Methods
Neuroimaging
optically pumped magnetometers
Phantoms, Imaging
Physiology
Sensors
Signal-To-Noise Ratio
superconducting quantum interference device
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED4hJhgQbwIFGYTEFNHGzmtsEQgh8RhAYrOc2KFIECooA_-e7_IojRhY2NLajmxfzvd90eU7omNTGBsYTquQcDcVg7BmA6d8K8PEKRXgBORXA9c30eWDunoMH-dKfXFOWC0PXG_caegswrILszyrxiaxlQXuazLlEJ0qto6Y15KphmpJMK9aR0iC1J9-INDHQT-SnehTifT_PornYlE3T3Iu8Fys0kqDGMWwnukaLbhynZbndAQ36P1uzLWAX_0RYpIVw0YnXACQirO60GD5hKufBHNhSituJ9WL7JcvcQejYuC1eSod7sMpMu0P9vzJ2LTS1qKRON-kh4vz-7NLvymm4OcgNVOfJRqzVKo0t64PVCdNHklrCsA7BQiHSwv3jWyRBi5P4cg2VJmMCiCKAhxEyi1aLN9Kt0NChsAthXJZ2HfAM4A4iHiRSwdFDLggY4-O2k3Wk1ozQ4NrsCX0zBIejXj7Zx1Y5rr6A8bXjfH1X8b36ISNp9kZYaHcNN8UYJ4sa6WHCQg4MJYMPep1esKJ8m5za37dOPGHxnGXJLy4gUeHs2YeyYlppXv7rPqkKgriBHPZrp-W2ZIU4yfwOY-SznPUWXO3pXweVxLfA85IAzTe_Y9d2qOlgKsW96UfRD1anL5_un1AqWl2UHnNN-onHCQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5RemkPqJQ-QqFyK6Se0u7GzutQoQWBUKUtHFiJm-XEzi4SzS7LIsG_7zd5sVErbknsRLZnxvNNMvmG6MAUxgaG0yokzE3FCFizoVO-lWHilAqwA_KrgfHv6Gyifl2FVxvU1thsFvDuv6Ed15OaLG--P9w-HsLgf3LEiZD9xx3ceBzA176gl3BIMdvnWHUfEwKJMKwmFep377miirH_3315zTH1kybXvNDpG9pq4KMY1fLepg1XvqXXa6SCO7S8mHFh4D_-ERyUFaOGNFwAnYrjuupgOcXRU7a5MKUV54vqrfbNo7iAhHHj2ExLh-dwvkx7wtvAYmZanmvR8J2_o8npyeXxmd9UVvBzRDgrn_kas1SqNLduAIgnTR5JawpgPQU8h0MLW45skQYuT2HVNlSZjArAiwIBiZTvabOcl-4jCRkCxBTKZeHAAdwA78D9RS4dFjGwg4w9-tousl7UBBoagQdLQneS8OiIl7_rwJzX1YX5cqobE9KhswBoLszyrNKiJLaygIaZTDnglIFH31h4mnUFEspN84MBxskcV3qUIBoH4JKhR3u9nrCovN_cil-3Cqmx9yUJT27o0Zeume_kLLXSze-rPqmKgjjBWD7U2tJNSTGYQnDnUdLTo96c-y3l9azi-x5yehpw8u7z4_pErwIuTjyQfhDt0eZqee_2gZhW2efKHv4CpkYVKw
  priority: 102
  providerName: Scholars Portal
Title Phantom-Based Approach for Comparing Conventional and Optically Pumped Magnetometer Magnetoencephalography Systems
URI https://www.ncbi.nlm.nih.gov/pubmed/40218576
https://www.proquest.com/docview/3188899671
https://www.proquest.com/docview/3189462780
https://pubmed.ncbi.nlm.nih.gov/PMC11991522
https://doaj.org/article/5ed025e5bcbe442287d3f302ab4e1810
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEB1Be4ED4huXEhmExMmq411_nVBSNVRIKRGiUm7W2rtOkMAJSXrov-fNep3EQuJiOdm1tfbM7LyZTN4QfVS10pHisgoBc5MpAtZyaGSgRZwZKSPsgJwamN4k17fy6zyeu4Tb1pVVdnui3aj1quIc-QV0L0NskKTDz-s_AXeN4l9XXQuNh3TK1GVc0pXODwGXQPzVsgkJhPYXW7j7NAoT0fNBlqr_3w35yCP1qyWP3M_kKT1xuNEftYJ-Rg9M85weH7EJvqDNbMkdgX8HY3gm7Y8cW7gPWOpftu0GmwXODmXmvmq0_21t09m_7v0ZRIsLp2rRGNyHC2W6D2z_66XqCK59R3T-km4nVz8urwPXUiGoENrsAiZqLHMh80qbENhOqCoRWtUAeRJADqcaRpzoOo9MlcOcdSxLkdTAFTUiESFe0Umzaswb8kUM9FJLU8ahAaoRLJssMfmwTgEaROrRh-4lF-uWOaNAxMGSKPaS8GjMr38_gcmu7RerzaJwtlPERgOZmbisSqs-WapFDdVSpTQAKKFHn1h4BZskJFQp988CrJPJrYpRhjAcSEvEHp33ZsKUqv5wJ_7CmfK2OCieR-_3w3wll6c1ZnVn5-QyidIMa3ndasv-kSSjKER1HmU9Peo9c3-k-bm0RN9DrksDQD77_7re0qOIuxKHIoiSczrZbe7MO0ClXTmw9oBjNvkyoNPx1c3s-8CmHXCcyuwvf6wYKg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V5QAcEO8aChgE4mTV8a5fB4TSQpXSpvTQSrkta-86QWqdkKRC_VP8Rr7xI4mFxK03J7uO1jvfzHyzGc8QvdeFNoHmtAoBdZMxAtasZ6VnRJhYKQNYQD4aGJ5Ggwv5bRSOtuhP-y4Mp1W2NrEy1Gaa8xn5HrCXIDaI4t7n2S-Pu0bxv6ttC40aFsf25jdCtsWnoy-Q74cgOPx6fjDwmq4CXg52v_S4VmGWCpnmxvqgN0LnkTC6AM-R4DK4NMBxZIo0sHkKRJtQZiIq4FoLkHE-AIXJvwPH67NGxaN1gCcQ79XVi4RI_b0F6EUc-JHo-LyqNcC_DmDDA3azMzfc3eFDetDwVLdfA-sRbdnyMd3fqF74hOZnE-5AfOXtwxMat99UJ3dBg92Dur1hOcbVOq3d1aVxv8-q4_PLG_cMUMKNQz0uLX6HE3PaD2xvZhPdFtR2m8LqT-niVjb7GW2X09LukCtCsKVC2iz0LViUYCwkkU17RQySImKH3rWbrGZ1pQ6FCIcloVaScGift381gYtrV19M52PV6KoKrQETtGGWZxVck9iIAlDWmbQgRL5DH1l4ik0AJJTr5k0GrJOLaal-grAfzE6EDu12ZkJ18-5wK37VmI6FWgPdoberYb6T0-FKO72u5qQyCuIEa3leo2X1SJJZG6JIh5IOjjrP3B0pf06qwuI9zoMDIX_x_3W9obuD8-GJOjk6PX5J9wLuiOwLL4h2aXs5v7avQNOW2etKN1z6cdvK-BcqDk76
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VRUJwQLxxKbAgECcrjnf9OiCUtkQtpSUHKuVm1t51gkSdkKRC_Wv8Or7xI4mFxK03J7uO1jvfzHyzGc8QvdWFNr7mtAoJdVMRAtasb5VrZBBbpXxYQD4aODsPjy_U53Ew3qE_7bswnFbZ2sTKUJtZzmfkPWAvRmwQRv1e0aRFjI6GH-e_XO4gxf-0tu00aoic2uvfCN-WH06OIOt3vj_89O3w2G06DLg5mP7K5bqFWSJVkhvrgepInYfS6AKcR4HX4NIA06EpEt_mCdBtApXJsICbLUDM-TAU5v9WJIM-61g03gR7ErFfXclIysTrLUE1It8LZcf_VW0C_nUGW96wm6m55fqG9-lew1nFoAbZA9qx5UO6u1XJ8BEtRlPuRnzpHsArGjFoKpULUGJxWLc6LCe42qS4C10a8XVeHaX_vBYjwAo3nulJafE7nKTTfmDbM5_qtri2aIqsP6aLG9nsJ7Rbzkr7jIQMwJwKZbPAs2BUknERhzbpFxEIi4wcetNucjqvq3akiHZYEulaEg4d8PavJ3Ch7eqL2WKSNnqbBtaAFdogy7MKunFkZAFY60xZkCPPofcsvJTNASSU6-atBqyTC2ulg1jGEixPBg7td2ZCjfPucCv-tDEjy3QDeoder4f5Tk6NK-3sqpqTqNCPYqzlaY2W9SMpZnCIKB2KOzjqPHN3pPwxrYqM9zknDuR87__rekW3oYbpl5Pz0-d0x-fmyJ50_XCfdleLK_sCjG2VvaxUQ9D3m9bFv72wUzA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phantom-Based+Approach+for+Comparing+Conventional+and+Optically+Pumped+Magnetometer+Magnetoencephalography+Systems&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Oyama%2C+Daisuke&rft.au=Zaatiti%2C+Hadi&rft.date=2025-03-26&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=25&rft.issue=7&rft.spage=2063&rft_id=info:doi/10.3390%2Fs25072063&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon