Manganese phytotoxicity new light on an old problem
Manganese (Mn) is an essential micronutrient that is phytotoxic under certain edaphic and climatic conditions. Multiple edaphic factors regulate Mn redox status and therefore its phytoavailability, and multiple environmental factors including light intensity and temperature interact with Mn phytotox...
Saved in:
Published in | Annals of botany Vol. 116; no. 3; pp. 313 - 319 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.09.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Manganese (Mn) is an essential micronutrient that is phytotoxic under certain edaphic and climatic conditions. Multiple edaphic factors regulate Mn redox status and therefore its phytoavailability, and multiple environmental factors including light intensity and temperature interact with Mn phytotoxicity. The complexity of these interactions coupled with substantial genetic variation in Mn tolerance have hampered the recognition of Mn toxicity as an important stress in many natural and agricultural systems.
Conflicting theories have been advanced regarding the mechanism of Mn phytotoxicity and tolerance. One line of evidence suggests that Mn toxicity ocurrs in the leaf apoplast, while another suggests that toxicity occurs by disruption of photosynthetic electron flow in chloroplasts. These conflicting results may at least in part be attributed to the light regimes employed, with studies conducted under light intensities approximating natural sunlight showing evidence of photo-oxidative stress as a mechanism of toxicity. Excessive Mn competes with the transport and metabolism of other cationic metals, causing a range of induced nutrient deficiencies. Compartmentation, exclusion and detoxification mechanisms may all be involved in tolerance to excess Mn. The strong effects of light, temperature, precipitation and other climate variables on Mn phytoavailability and phytotoxicity suggest that global climate change is likely to exacerbate Mn toxicity in the future, which has largely escaped scientific attention.
Given that Mn is terrestrially ubiquitous, it is imperative that the heightened risk of Mn toxicity to both managed and natural plant ecosystems be factored into evaluation of the potential impacts of global climate change on vegetation. Large inter- and intraspecific genetic variation in tolerance to Mn toxicity suggests that increased Mn toxicity in natural ecosystems may drive changes in community composition, but that in agroecosystems crops may be developed with greater Mn tolerance. These topics deserve greater research attention. |
---|---|
AbstractList | Background
Manganese (Mn) is an essential micronutrient that is phytotoxic under certain edaphic and climatic conditions. Multiple edaphic factors regulate Mn redox status and therefore its phytoavailability, and multiple environmental factors including light intensity and temperature interact with Mn phytotoxicity. The complexity of these interactions coupled with substantial genetic variation in Mn tolerance have hampered the recognition of Mn toxcity as an important stress in many natural and agricultural systems.
Scope
Conflicting theories have been advanced regarding the mechanism of Mn phytotoxicity and tolerance. One line of evidence suggests that Mn toxicity ocurs in the leaf apoplast, while another suggests that toxicity occurs by disruption of photosynthetic electron flow in chloroplasts. These conflicting results may at least in part be attributed to the light regimes employed, with studies conducted under light intensities approximating natural sunlight showing evidence of photo-oxidative stress as a mechanism of toxicity. Excessive Mn competes with the transport and metabolism of other cationic metals, causing a range of induced nutrient deficiencies. Compartmentation, exclusion and detoxification mechanisms may all be involved in tolerance to excess Mn. The strong effects of light, temperature, precipitation and other climate variables on Mn phytoavailability and phytotoxicity suggest that global climate change is likely to exacerbate Mn toxicity in the future, which has largely escaped scientific attention.
Conclusions
Given that Mn is terrestrially ubiquitous, it is imperative that the heightened risk of Mn toxicity to both managed and natural plant ecosystems be factored into evaluation of the potential impacts of global climate change on vegetation. Large inter- and intraspecific genetic variation in tolerance to Mn toxicity suggests that increased Mn toxicity in natural ecosystems may drive changes in community composition, but that in agroecosystems crops may be developed with greater Mn tolerance. These topics deserve greater research attention. Background Manganese (Mn) is an essential micronutrient that is phytotoxic under certain edaphic and climatic conditions. Multiple edaphic factors regulate Mn redox status and therefore its phytoavailability, and multiple environmental factors including light intensity and temperature interact with Mn phytotoxicity. The complexity of these interactions coupled with substantial genetic variation in Mn tolerance have hampered the recognition of Mn toxcity as an important stress in many natural and agricultural systems.Scope Conflicting theories have been advanced regarding the mechanism of Mn phytotoxicity and tolerance. One line of evidence suggests that Mn toxicity ocurs in the leaf apoplast, while another suggests that toxicity occurs by disruption of photosynthetic electron flow in chloroplasts. These conflicting results may at least in part be attributed to the light regimes employed, with studies conducted under light intensities approximating natural sunlight showing evidence of photo-oxidative stress as a mechanism of toxicity. Excessive Mn competes with the transport and metabolism of other cationic metals, causing a range of induced nutrient deficiencies. Compartmentation, exclusion and detoxification mechanisms may all be involved in tolerance to excess Mn. The strong effects of light, temperature, precipitation and other climate variables on Mn phytoavailability and phytotoxicity suggest that global climate change is likely to exacerbate Mn toxicity in the future, which has largely escaped scientific attention.Conclusions Given that Mn is terrestrially ubiquitous, it is imperative that the heightened risk of Mn toxicity to both managed and natural plant ecosystems be factored into evaluation of the potential impacts of global climate change on vegetation. Large inter- and intraspecific genetic variation in tolerance to Mn toxicity suggests that increased Mn toxicity in natural ecosystems may drive changes in community composition, but that in agroecosystems crops may be developed with greater Mn tolerance. These topics deserve greater research attention. Manganese (Mn) is an essential micronutrient that is phytotoxic under certain edaphic and climatic conditions. Multiple edaphic factors regulate Mn redox status and therefore its phytoavailability, and multiple environmental factors including light intensity and temperature interact with Mn phytotoxicity. The complexity of these interactions coupled with substantial genetic variation in Mn tolerance have hampered the recognition of Mn toxicity as an important stress in many natural and agricultural systems. Conflicting theories have been advanced regarding the mechanism of Mn phytotoxicity and tolerance. One line of evidence suggests that Mn toxicity ocurrs in the leaf apoplast, while another suggests that toxicity occurs by disruption of photosynthetic electron flow in chloroplasts. These conflicting results may at least in part be attributed to the light regimes employed, with studies conducted under light intensities approximating natural sunlight showing evidence of photo-oxidative stress as a mechanism of toxicity. Excessive Mn competes with the transport and metabolism of other cationic metals, causing a range of induced nutrient deficiencies. Compartmentation, exclusion and detoxification mechanisms may all be involved in tolerance to excess Mn. The strong effects of light, temperature, precipitation and other climate variables on Mn phytoavailability and phytotoxicity suggest that global climate change is likely to exacerbate Mn toxicity in the future, which has largely escaped scientific attention. Given that Mn is terrestrially ubiquitous, it is imperative that the heightened risk of Mn toxicity to both managed and natural plant ecosystems be factored into evaluation of the potential impacts of global climate change on vegetation. Large inter- and intraspecific genetic variation in tolerance to Mn toxicity suggests that increased Mn toxicity in natural ecosystems may drive changes in community composition, but that in agroecosystems crops may be developed with greater Mn tolerance. These topics deserve greater research attention. Manganese (Mn) is an essential micronutrient that is phytotoxic under certain edaphic and climatic conditions. Multiple edaphic factors regulate Mn redox status and therefore its phytoavailability, and multiple environmental factors including light intensity and temperature interact with Mn phytotoxicity. The complexity of these interactions coupled with substantial genetic variation in Mn tolerance have hampered the recognition of Mn toxicity as an important stress in many natural and agricultural systems.BACKGROUNDManganese (Mn) is an essential micronutrient that is phytotoxic under certain edaphic and climatic conditions. Multiple edaphic factors regulate Mn redox status and therefore its phytoavailability, and multiple environmental factors including light intensity and temperature interact with Mn phytotoxicity. The complexity of these interactions coupled with substantial genetic variation in Mn tolerance have hampered the recognition of Mn toxicity as an important stress in many natural and agricultural systems.Conflicting theories have been advanced regarding the mechanism of Mn phytotoxicity and tolerance. One line of evidence suggests that Mn toxicity ocurrs in the leaf apoplast, while another suggests that toxicity occurs by disruption of photosynthetic electron flow in chloroplasts. These conflicting results may at least in part be attributed to the light regimes employed, with studies conducted under light intensities approximating natural sunlight showing evidence of photo-oxidative stress as a mechanism of toxicity. Excessive Mn competes with the transport and metabolism of other cationic metals, causing a range of induced nutrient deficiencies. Compartmentation, exclusion and detoxification mechanisms may all be involved in tolerance to excess Mn. The strong effects of light, temperature, precipitation and other climate variables on Mn phytoavailability and phytotoxicity suggest that global climate change is likely to exacerbate Mn toxicity in the future, which has largely escaped scientific attention.SCOPEConflicting theories have been advanced regarding the mechanism of Mn phytotoxicity and tolerance. One line of evidence suggests that Mn toxicity ocurrs in the leaf apoplast, while another suggests that toxicity occurs by disruption of photosynthetic electron flow in chloroplasts. These conflicting results may at least in part be attributed to the light regimes employed, with studies conducted under light intensities approximating natural sunlight showing evidence of photo-oxidative stress as a mechanism of toxicity. Excessive Mn competes with the transport and metabolism of other cationic metals, causing a range of induced nutrient deficiencies. Compartmentation, exclusion and detoxification mechanisms may all be involved in tolerance to excess Mn. The strong effects of light, temperature, precipitation and other climate variables on Mn phytoavailability and phytotoxicity suggest that global climate change is likely to exacerbate Mn toxicity in the future, which has largely escaped scientific attention.Given that Mn is terrestrially ubiquitous, it is imperative that the heightened risk of Mn toxicity to both managed and natural plant ecosystems be factored into evaluation of the potential impacts of global climate change on vegetation. Large inter- and intraspecific genetic variation in tolerance to Mn toxicity suggests that increased Mn toxicity in natural ecosystems may drive changes in community composition, but that in agroecosystems crops may be developed with greater Mn tolerance. These topics deserve greater research attention.CONCLUSIONSGiven that Mn is terrestrially ubiquitous, it is imperative that the heightened risk of Mn toxicity to both managed and natural plant ecosystems be factored into evaluation of the potential impacts of global climate change on vegetation. Large inter- and intraspecific genetic variation in tolerance to Mn toxicity suggests that increased Mn toxicity in natural ecosystems may drive changes in community composition, but that in agroecosystems crops may be developed with greater Mn tolerance. These topics deserve greater research attention. |
Author | Fernando, Denise R. Lynch, Jonathan P. |
Author_xml | – sequence: 1 givenname: Denise R. surname: Fernando fullname: Fernando, Denise R. organization: Department of Ecology, Environment and Evolution, La Trobe University, VIC 3086, Australia – sequence: 2 givenname: Jonathan P. surname: Lynch fullname: Lynch, Jonathan P. organization: Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26311708$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1LAzEQxYNU7IdevHhSPIqwNpPsJtmLIMUvqHjRc8hms-2W7aZu0mL_e1O2lioePAUmv3nzZl4fdWpbG4ROAd8ATulQ2Ww41ysAOEC9UEkiQVLcQT1McRJxyuIu6js3wxgTlsIR6hJGATgWPXT2ouqJqo0zl4vp2ltvP0td-vUxOixU5czJ9h2g94f7t9FTNH59fB7djSMdp6mPICYZIyBETnVGNBGK5KBEyjKTcEbyWGhBsOEZFJibvFAihzTLgRLOlNY5HaDbVnexzOYm16b2jarkoinnqllLq0r586cup3JiVzJOggEWB4GrrUBjP5bGeTkvnTZVFZaySyeBh1EcMKP_QLGAhFOxQS_2be38fB8uANctoBvrXGOKHQJYblKRIRXZphJg_AsOJ1a-tJuVyurvlvO2Zea8bfbmJyThMaZfxvKZ3g |
CitedBy_id | crossref_primary_10_3390_ijms21228863 crossref_primary_10_1016_j_plaphy_2025_109687 crossref_primary_10_1007_s00344_022_10637_x crossref_primary_10_3390_crops3020010 crossref_primary_10_2139_ssrn_4830855 crossref_primary_10_1007_s11356_016_8312_7 crossref_primary_10_1016_j_envexpbot_2016_08_008 crossref_primary_10_26907_2542_064X_2024_1_66_81 crossref_primary_10_1007_s40415_023_00911_x crossref_primary_10_1029_2023JG007830 crossref_primary_10_1007_s11258_025_01492_3 crossref_primary_10_3390_app11188745 crossref_primary_10_3390_jof7100808 crossref_primary_10_1016_j_gexplo_2023_107323 crossref_primary_10_1111_ppl_13035 crossref_primary_10_3390_ijms20205096 crossref_primary_10_1111_nph_14878 crossref_primary_10_1007_s00344_020_10209_x crossref_primary_10_1007_s11356_021_14708_6 crossref_primary_10_1016_j_plaphy_2024_108641 crossref_primary_10_1021_acs_est_1c00299 crossref_primary_10_1007_s11104_023_06024_4 crossref_primary_10_1007_s11273_018_9623_x crossref_primary_10_1007_s11056_022_09930_0 crossref_primary_10_1080_00103624_2019_1667369 crossref_primary_10_1007_s00442_022_05131_w crossref_primary_10_1016_j_chemosphere_2022_136523 crossref_primary_10_1016_j_scienta_2018_11_051 crossref_primary_10_3390_stresses2010007 crossref_primary_10_1016_j_chemosphere_2022_136801 crossref_primary_10_3390_molecules28020759 crossref_primary_10_1007_s00344_022_10866_0 crossref_primary_10_1007_s10661_021_09656_0 crossref_primary_10_1016_j_jplph_2022_153808 crossref_primary_10_1007_s10533_022_01010_x crossref_primary_10_1111_aab_12660 crossref_primary_10_1016_j_plaphy_2019_09_034 crossref_primary_10_3390_molecules29163975 crossref_primary_10_1093_aob_mcaa068 crossref_primary_10_1016_j_plaphy_2024_109461 crossref_primary_10_1080_15320383_2024_2332960 crossref_primary_10_3390_plants9070910 crossref_primary_10_1007_s42729_019_00166_0 crossref_primary_10_1016_j_ecoenv_2018_05_031 crossref_primary_10_1007_s11104_019_04019_8 crossref_primary_10_1016_j_scitotenv_2016_10_210 crossref_primary_10_1186_s40068_023_00310_x crossref_primary_10_1007_s12298_019_00672_6 crossref_primary_10_1016_j_scitotenv_2018_12_388 crossref_primary_10_2166_wrd_2022_046 crossref_primary_10_3390_agronomy12092173 crossref_primary_10_1016_j_plaphy_2020_07_002 crossref_primary_10_12677_BR_2019_86056 crossref_primary_10_2139_ssrn_4159281 crossref_primary_10_3389_fpls_2020_00300 crossref_primary_10_3390_microorganisms10071290 crossref_primary_10_3390_bacteria2030010 crossref_primary_10_1016_j_jhazmat_2024_133515 crossref_primary_10_1007_s11356_018_1338_2 crossref_primary_10_1007_s10661_018_6604_8 crossref_primary_10_1007_s10661_021_09415_1 crossref_primary_10_1016_j_scitotenv_2024_176706 crossref_primary_10_3390_agronomy11020327 crossref_primary_10_1007_s11104_019_03937_x crossref_primary_10_1016_j_jplph_2023_154056 crossref_primary_10_1016_j_geoderma_2023_116686 crossref_primary_10_1016_j_plaphy_2023_107671 crossref_primary_10_3390_su131810385 crossref_primary_10_1111_pce_12910 crossref_primary_10_1007_s00468_018_1761_5 crossref_primary_10_1080_11263504_2023_2200981 crossref_primary_10_1016_j_stress_2022_100104 crossref_primary_10_1007_s12010_016_2224_3 crossref_primary_10_3389_fpls_2020_588065 crossref_primary_10_1093_jpe_rty040 crossref_primary_10_17660_ActaHortic_2021_1309_69 crossref_primary_10_1007_s11104_021_04833_z crossref_primary_10_1007_s10653_020_00625_z crossref_primary_10_1002_jsfa_9196 crossref_primary_10_1016_j_ecoenv_2020_111010 crossref_primary_10_3390_agronomy14030449 crossref_primary_10_1007_s11356_024_31837_w crossref_primary_10_3390_agronomy15010049 crossref_primary_10_1007_s13580_020_00303_0 crossref_primary_10_1002_ecs2_1717 crossref_primary_10_3390_f14030611 crossref_primary_10_1016_j_envexpbot_2021_104705 crossref_primary_10_1016_j_rhisph_2020_100188 crossref_primary_10_1186_s12864_020_07279_2 crossref_primary_10_1002_ece3_7544 crossref_primary_10_1007_s11284_017_1547_z crossref_primary_10_1080_15226514_2022_2109587 crossref_primary_10_3390_ijms25105341 crossref_primary_10_3390_plants12112091 crossref_primary_10_1007_s42729_024_02176_z crossref_primary_10_1515_opag_2018_0056 crossref_primary_10_1016_j_ecoenv_2020_110696 crossref_primary_10_1016_j_plaphy_2020_11_034 crossref_primary_10_1007_s13157_021_01419_4 crossref_primary_10_1016_j_jssas_2021_06_014 crossref_primary_10_1007_s00442_024_05638_4 crossref_primary_10_3390_nano11041016 crossref_primary_10_1038_s41598_021_00370_y crossref_primary_10_3390_cells12030441 crossref_primary_10_3390_ijms24031942 crossref_primary_10_1016_j_gexplo_2024_107472 crossref_primary_10_1016_j_plaphy_2017_01_022 crossref_primary_10_1186_s12870_019_1822_y crossref_primary_10_1093_mtomcs_mfac045 crossref_primary_10_1016_j_plaphy_2023_108269 crossref_primary_10_1093_plphys_kiaf005 crossref_primary_10_1016_j_envpol_2020_115594 crossref_primary_10_1038_s41467_022_33641_x crossref_primary_10_1007_s11056_020_09819_w crossref_primary_10_1016_j_gecco_2020_e01306 crossref_primary_10_1007_s11104_022_05658_0 crossref_primary_10_1016_j_plaphy_2025_109586 crossref_primary_10_1093_forsci_fxab030 crossref_primary_10_3390_agronomy10040510 crossref_primary_10_1007_s11104_024_06537_6 crossref_primary_10_1016_j_tplants_2016_12_005 crossref_primary_10_1016_j_rser_2021_111555 crossref_primary_10_3389_fpls_2016_01382 crossref_primary_10_1016_j_jhazmat_2023_133079 crossref_primary_10_58430_jib_v129i4_38 crossref_primary_10_1007_s00344_020_10240_y crossref_primary_10_1021_acs_est_9b05728 crossref_primary_10_1002_agg2_70035 crossref_primary_10_1016_j_ecoenv_2020_110355 crossref_primary_10_1007_s11270_019_4381_9 crossref_primary_10_1038_s41598_023_49699_6 crossref_primary_10_3389_fpls_2021_683813 crossref_primary_10_1016_j_chemosphere_2017_08_009 crossref_primary_10_1016_j_envexpbot_2016_08_011 crossref_primary_10_1093_jxb_erx465 crossref_primary_10_3389_fpls_2024_1465513 crossref_primary_10_3390_biology8040093 crossref_primary_10_1016_j_jenvman_2022_114751 crossref_primary_10_1016_j_pmpp_2024_102468 crossref_primary_10_1007_s00709_020_01575_0 crossref_primary_10_1016_j_cj_2022_04_008 crossref_primary_10_1093_mtomcs_mfab008 crossref_primary_10_1016_j_plaphy_2017_12_018 crossref_primary_10_1016_j_jprot_2018_06_016 crossref_primary_10_1016_j_jhazmat_2023_132555 crossref_primary_10_3389_fpls_2022_947882 crossref_primary_10_3390_app142210726 crossref_primary_10_1071_BT21002 crossref_primary_10_3390_pathogens13070544 crossref_primary_10_1111_nph_15738 |
Cites_doi | 10.1016/j.fcr.2004.07.008 10.1002/jpln.19781410202 10.1071/AR9900835 10.1111/j.1469-8137.2006.01783.x 10.1139/x88-195 10.1104/pp.103.029215 10.1007/978-94-009-2817-6 10.1105/tpc.112.096925 10.1007/BF02181785 10.1104/pp.114.251017 10.1111/j.1399-3054.1994.tb03042.x 10.1080/00380768.1987.10557608 10.1080/01904168809363799 10.1071/BT09077 10.1104/pp.105.070474 10.1093/aob/mcp128 10.3389/fpls.2014.00106 10.1073/pnas.97.9.4991 10.1105/tpc.009134 10.1105/tpc.109.073023 10.1111/j.1365-313X.2007.03138.x 10.1111/j.1365-3040.2005.01337.x 10.1093/aob/mci160 10.1104/pp.118.2.493 10.1071/SR13159 10.1007/s11104-010-0328-z 10.1007/BF00007886 10.1641/0006-3568(2001)051[0180:ADITNU]2.0.CO;2 10.1016/j.chemosphere.2012.05.030 10.1093/aob/mcp013 10.2134/agronmonogr12.2ed.c2 10.1074/jbc.M111.305649 10.1016/S0378-1127(01)00688-0 10.1023/A:1026069927380 10.1093/treephys/25.1.85 10.1071/FP04049 10.1080/01904169909365648 10.1071/EA9870303 10.1139/x00-057 10.1590/S1677-04202005000100009 10.1073/pnas.0609507104 10.1071/PP99030 10.2136/sssaj1985.03615995004900030028x 10.21273/JASHS.111.3.323 10.1080/01904169809365409 10.1007/BF00017950 10.1038/srep00286 10.2134/agronj1979.00021962007100040029x |
ContentType | Journal Article |
Copyright | The Author 2015 The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com. The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2015 |
Copyright_xml | – notice: The Author 2015 – notice: The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com. – notice: The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SN C1K 5PM |
DOI | 10.1093/aob/mcv111 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Ecology Abstracts Environmental Sciences and Pollution Management PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Ecology Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Ecology Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1095-8290 |
EndPage | 319 |
ExternalDocumentID | PMC4549964 26311708 10_1093_aob_mcv111 26525740 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- -DZ -E4 -~X .2P .I3 0R~ 1TH 1~5 23M 2WC 2~F 4.4 482 48X 4G. 5GY 5VS 5WA 5WD 6J9 7-5 70D 79B A8Z AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAXTN ABBHK ABDBF ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABLJU ABMNT ABNKS ABPPZ ABPQP ABPTD ABQLI ABVGC ABWST ABXSQ ABXVV ABXZS ABZBJ ACGFO ACGFS ACHIC ACIWK ACNCT ACPRK ACUFI ACUHS ACUTJ ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADULT ADVEK ADYVW ADZTZ ADZXQ AEEJZ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEUPB AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGORE AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP AKHUL AKRWK AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX AOIJS APIBT APWMN AQVQM ARIXL ATGXG AXUDD AYOIW BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC CDBKE COF CS3 CZ4 DAKXR DATOO DILTD D~K E3Z EBD EBS EDH EE~ EJD EMOBN ESX F5P F9B FDB FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HYE HZ~ IOX IPSME J21 JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN M-Z N9A NGC NLBLG NOMLY NU- NVLIB O-L O9- OAWHX OBOKY ODMLO OJQWA OJZSN OK1 OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX ROZ RPM RUSNO RW1 RXO SA0 SV3 TCN TEORI TLC TN5 TR2 UPT W8F WH7 WOQ X7H Y6R YAYTL YKOAZ YSK YXANX YZZ ZKX ~02 ~91 ~KM --K 1B1 53G 71M AAEDT AALCJ AALRI AAQFI AAQXK AAWDT AAXUO AAYWO AAYXX ABDPE ABEFU ABIME ABNGD ABPIB ABSMQ ABWVN ABZEO ACFRR ACPQN ACRPL ACUKT ACVCV ACZBC ADFGL ADMUD ADNMO ADXHL AEHUL AEKPW AETEA AFFNX AFSHK AFSWV AFYAG AGKRT AGMDO AGQPQ AHGBF AI. AJDVS ANFBD APJGH AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN C1A CAG CITATION CXTWN DFGAJ DM4 ELUNK FA8 FEDTE FGOYB FIRID HVGLF IHE LG5 MBTAY NEJ NTWIH O0~ OHT OZT O~Y PB- QBD R2- RIG RNI RPZ RZF RZO SSZ UHS VH1 XOL XPP ZCG ZMT CGR CUY CVF ECM EIF NPM 7X8 7SN C1K 5PM |
ID | FETCH-LOGICAL-c499t-142b62188d3cb2c28a2d1a896be5762d48c820e7b1f07edfa8d19bd13276accd3 |
ISSN | 0305-7364 1095-8290 |
IngestDate | Thu Aug 21 13:58:49 EDT 2025 Fri Jul 11 08:43:23 EDT 2025 Fri Jul 11 02:01:56 EDT 2025 Mon Jul 21 05:56:42 EDT 2025 Tue Jul 01 01:39:16 EDT 2025 Thu Apr 24 23:08:55 EDT 2025 Sun Aug 24 12:10:51 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Manganese phytotoxicity photo-oxidative stress Mn phytoavailability climate change |
Language | English |
License | The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c499t-142b62188d3cb2c28a2d1a896be5762d48c820e7b1f07edfa8d19bd13276accd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://academic.oup.com/aob/article-pdf/116/3/313/17637050/mcv111.pdf |
PMID | 26311708 |
PQID | 1708157383 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4549964 proquest_miscellaneous_1727671063 proquest_miscellaneous_1708157383 pubmed_primary_26311708 crossref_primary_10_1093_aob_mcv111 crossref_citationtrail_10_1093_aob_mcv111 jstor_primary_26525740 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-09-01 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Annals of botany |
PublicationTitleAlternate | Ann Bot |
PublicationYear | 2015 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | 2015090105474333000_116.3.313.33 2015090105474333000_116.3.313.32 Marschner (2015090105474333000_116.3.313.34) 2002 2015090105474333000_116.3.313.38 2015090105474333000_116.3.313.36 2015090105474333000_116.3.313.35 2015090105474333000_116.3.313.39 Dean (2015090105474333000_116.3.313.6) 2007 IPCC (2015090105474333000_116.3.313.30) 2014 2015090105474333000_116.3.313.40 2015090105474333000_116.3.313.45 2015090105474333000_116.3.313.44 2015090105474333000_116.3.313.43 2015090105474333000_116.3.313.42 2015090105474333000_116.3.313.1 2015090105474333000_116.3.313.49 2015090105474333000_116.3.313.47 2015090105474333000_116.3.313.46 2015090105474333000_116.3.313.5 StClair (2015090105474333000_116.3.313.48) 2005; 145 2015090105474333000_116.3.313.4 Socha (2015090105474333000_116.3.313.41) 2014; 5 2015090105474333000_116.3.313.3 2015090105474333000_116.3.313.2 2015090105474333000_116.3.313.9 2015090105474333000_116.3.313.8 2015090105474333000_116.3.313.7 Elamin (2015090105474333000_116.3.313.12) 1986; 111 2015090105474333000_116.3.313.52 2015090105474333000_116.3.313.51 2015090105474333000_116.3.313.50 2015090105474333000_116.3.313.11 2015090105474333000_116.3.313.10 Graham (2015090105474333000_116.3.313.24) 1988 2015090105474333000_116.3.313.16 2015090105474333000_116.3.313.15 2015090105474333000_116.3.313.14 2015090105474333000_116.3.313.13 2015090105474333000_116.3.313.18 2015090105474333000_116.3.313.17 Ishimaru (2015090105474333000_116.3.313.31) 2012; 2 Podar (2015090105474333000_116.3.313.37) 2012; 5 2015090105474333000_116.3.313.23 2015090105474333000_116.3.313.22 2015090105474333000_116.3.313.21 2015090105474333000_116.3.313.20 2015090105474333000_116.3.313.27 2015090105474333000_116.3.313.26 2015090105474333000_116.3.313.25 Foy (2015090105474333000_116.3.313.19) 1984 2015090105474333000_116.3.313.29 2015090105474333000_116.3.313.28 |
References_xml | – ident: 2015090105474333000_116.3.313.33 doi: 10.1016/j.fcr.2004.07.008 – ident: 2015090105474333000_116.3.313.29 doi: 10.1002/jpln.19781410202 – volume-title: Mineral nutrition of higher plants year: 2002 ident: 2015090105474333000_116.3.313.34 – ident: 2015090105474333000_116.3.313.25 doi: 10.1071/AR9900835 – ident: 2015090105474333000_116.3.313.16 doi: 10.1111/j.1469-8137.2006.01783.x – ident: 2015090105474333000_116.3.313.1 doi: 10.1139/x88-195 – ident: 2015090105474333000_116.3.313.14 doi: 10.1104/pp.103.029215 – volume-title: International Symposium on Manganese in Soils and Plants year: 1988 ident: 2015090105474333000_116.3.313.24 article-title: Manganese in soils and plants doi: 10.1007/978-94-009-2817-6 – ident: 2015090105474333000_116.3.313.39 doi: 10.1105/tpc.112.096925 – ident: 2015090105474333000_116.3.313.2 doi: 10.1007/BF02181785 – ident: 2015090105474333000_116.3.313.5 doi: 10.1104/pp.114.251017 – ident: 2015090105474333000_116.3.313.20 doi: 10.1111/j.1399-3054.1994.tb03042.x – ident: 2015090105474333000_116.3.313.26 doi: 10.1080/00380768.1987.10557608 – ident: 2015090105474333000_116.3.313.27 doi: 10.1080/01904168809363799 – ident: 2015090105474333000_116.3.313.17 doi: 10.1071/BT09077 – ident: 2015090105474333000_116.3.313.15 doi: 10.1104/pp.105.070474 – ident: 2015090105474333000_116.3.313.3 doi: 10.1093/aob/mcp128 – volume: 5 start-page: 1 year: 2014 ident: 2015090105474333000_116.3.313.41 article-title: M-neuvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2014.00106 – ident: 2015090105474333000_116.3.313.49 doi: 10.1073/pnas.97.9.4991 – ident: 2015090105474333000_116.3.313.7 doi: 10.1105/tpc.009134 – ident: 2015090105474333000_116.3.313.4 doi: 10.1105/tpc.109.073023 – ident: 2015090105474333000_116.3.313.8 doi: 10.1111/j.1365-313X.2007.03138.x – ident: 2015090105474333000_116.3.313.45 doi: 10.1111/j.1365-3040.2005.01337.x – ident: 2015090105474333000_116.3.313.32 doi: 10.1093/aob/mci160 – volume-title: Chemical ecology of plant–microbe interactions and effects on insect herbivores year: 2007 ident: 2015090105474333000_116.3.313.6 – ident: 2015090105474333000_116.3.313.23 doi: 10.1104/pp.118.2.493 – ident: 2015090105474333000_116.3.313.43 doi: 10.1071/SR13159 – ident: 2015090105474333000_116.3.313.47 doi: 10.1007/s11104-010-0328-z – volume-title: Climate Change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2014 ident: 2015090105474333000_116.3.313.30 article-title: IPCC, 2014: Summary for policymakers – ident: 2015090105474333000_116.3.313.51 doi: 10.1007/BF00007886 – ident: 2015090105474333000_116.3.313.9 doi: 10.1641/0006-3568(2001)051[0180:ADITNU]2.0.CO;2 – ident: 2015090105474333000_116.3.313.52 doi: 10.1016/j.chemosphere.2012.05.030 – ident: 2015090105474333000_116.3.313.18 doi: 10.1093/aob/mcp013 – volume-title: Soil acidity and liming year: 1984 ident: 2015090105474333000_116.3.313.19 article-title: Physiological effects of hydrogen, aluminum, and manganese toxicities in acid soil doi: 10.2134/agronmonogr12.2ed.c2 – volume: 5 start-page: 3185 year: 2012 ident: 2015090105474333000_116.3.313.37 article-title: Metal selectivity determinants in a family of transition metal transporters publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M111.305649 – ident: 2015090105474333000_116.3.313.10 doi: 10.1016/S0378-1127(01)00688-0 – ident: 2015090105474333000_116.3.313.50 doi: 10.1023/A:1026069927380 – ident: 2015090105474333000_116.3.313.46 doi: 10.1093/treephys/25.1.85 – ident: 2015090105474333000_116.3.313.44 doi: 10.1071/FP04049 – ident: 2015090105474333000_116.3.313.22 doi: 10.1080/01904169909365648 – volume: 145 start-page: 258 year: 2005 ident: 2015090105474333000_116.3.313.48 article-title: Evidence for oxidative stress in sugar maple stands growing on acidic, nutrient imbalanced forest soils publication-title: Oecologia – ident: 2015090105474333000_116.3.313.42 doi: 10.1071/EA9870303 – ident: 2015090105474333000_116.3.313.28 doi: 10.1139/x00-057 – ident: 2015090105474333000_116.3.313.11 doi: 10.1590/S1677-04202005000100009 – ident: 2015090105474333000_116.3.313.36 doi: 10.1073/pnas.0609507104 – ident: 2015090105474333000_116.3.313.21 doi: 10.1071/PP99030 – ident: 2015090105474333000_116.3.313.35 doi: 10.2136/sssaj1985.03615995004900030028x – volume: 111 start-page: 323 year: 1986 ident: 2015090105474333000_116.3.313.12 article-title: Manganese toxicity development in muskmelons as influenced by nitrogen form publication-title: Journal of the American Horticultural Society doi: 10.21273/JASHS.111.3.323 – ident: 2015090105474333000_116.3.313.13 doi: 10.1080/01904169809365409 – ident: 2015090105474333000_116.3.313.40 doi: 10.1007/BF00017950 – volume: 2 start-page: 286 year: 2012 ident: 2015090105474333000_116.3.313.31 article-title: Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport publication-title: Scientific Reports doi: 10.1038/srep00286 – ident: 2015090105474333000_116.3.313.38 doi: 10.2134/agronj1979.00021962007100040029x |
SSID | ssj0002691 |
Score | 2.5320065 |
SecondaryResourceType | review_article |
Snippet | Manganese (Mn) is an essential micronutrient that is phytotoxic under certain edaphic and climatic conditions. Multiple edaphic factors regulate Mn redox... Background Manganese (Mn) is an essential micronutrient that is phytotoxic under certain edaphic and climatic conditions. Multiple edaphic factors regulate Mn... Background Manganese (Mn) is an essential micronutrient that is phytotoxic under certain edaphic and climatic conditions. Multiple edaphic factors regulate Mn... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 313 |
SubjectTerms | Air Climate Change Manganese - toxicity Plant Physiological Phenomena - drug effects Plants - drug effects REVIEW Soil - chemistry |
Subtitle | new light on an old problem |
Title | Manganese phytotoxicity |
URI | https://www.jstor.org/stable/26525740 https://www.ncbi.nlm.nih.gov/pubmed/26311708 https://www.proquest.com/docview/1708157383 https://www.proquest.com/docview/1727671063 https://pubmed.ncbi.nlm.nih.gov/PMC4549964 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLag5cClYisdNgXBBY1CE9vjONwKAlWUckCt6C3yFhhpGleQIuiv7_OSDQYEXKxR8sbWvG_y8j37LQg9zVSmWVHqNOPGpLQkBp45Al4KE3Vds5pKH014-J7tH9O3J4uToTWizy5p5XN1sTav5H9QhWuAq8uS_Qdk-0nhAnwGfGEEhGH8K4wPRfNJuBaSboOita39vlSuyj94-cCW5yvneM99uPHcrlw9AN88ZsxHh_rJ0radXRi2l20wSc0SluiPhN79aEL_qG7nPeaIxb2DfNEHR4HpD_YOGFbqzlInBjFkP0bkyci8kZA3-ovZDSWphJUwnqpv0X6OEDg79RBgRlynGz68fPqQwO7WVbSJgfGDydrcO_jw8aB_rWJW5l192ZLswmK7YSlXzzl-eUIuQnzpOs_h5wDYEaM4uoG2oiuQ7AVcb6IrprmFrr30ONxGtAc3mYD7IgFoEw9tYptENAlAm0Ro76DjN6-PXu2nscVFqsDVbNOcYsmAZXFNlMQKc4F1LnjJpAFHEGvKFVA0U8i8zgqja8F1XkqdE1wwoZQm22ijsY3ZQYmGSbhmOCMGU6UyrgrgY8QACRPgtNIZetbpplKx_rtrQ7KqQhwCqUClVVDpDD3pZc9C1ZO1Uttexb0IZq62Ls1m6HGn8wqslTuCAn3Z86-VAylfFISTP8nAjwPiy0DmbsBptEIAeoaKCYK9gKuWPr3TLD_7qunU7YQweu-3c95H14dn5AHaaL-cm4fAOFv5KP4XLwForoJz |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manganese+phytotoxicity%3A+new+light+on+an+old+problem&rft.jtitle=Annals+of+botany&rft.au=Fernando%2C+Denise+R&rft.au=Lynch%2C+Jonathan+P&rft.date=2015-09-01&rft.eissn=1095-8290&rft.volume=116&rft.issue=3&rft.spage=313&rft_id=info:doi/10.1093%2Faob%2Fmcv111&rft_id=info%3Apmid%2F26311708&rft.externalDocID=26311708 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-7364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-7364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-7364&client=summon |