Manganese phytotoxicity new light on an old problem

Manganese (Mn) is an essential micronutrient that is phytotoxic under certain edaphic and climatic conditions. Multiple edaphic factors regulate Mn redox status and therefore its phytoavailability, and multiple environmental factors including light intensity and temperature interact with Mn phytotox...

Full description

Saved in:
Bibliographic Details
Published inAnnals of botany Vol. 116; no. 3; pp. 313 - 319
Main Authors Fernando, Denise R., Lynch, Jonathan P.
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.09.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Manganese (Mn) is an essential micronutrient that is phytotoxic under certain edaphic and climatic conditions. Multiple edaphic factors regulate Mn redox status and therefore its phytoavailability, and multiple environmental factors including light intensity and temperature interact with Mn phytotoxicity. The complexity of these interactions coupled with substantial genetic variation in Mn tolerance have hampered the recognition of Mn toxicity as an important stress in many natural and agricultural systems. Conflicting theories have been advanced regarding the mechanism of Mn phytotoxicity and tolerance. One line of evidence suggests that Mn toxicity ocurrs in the leaf apoplast, while another suggests that toxicity occurs by disruption of photosynthetic electron flow in chloroplasts. These conflicting results may at least in part be attributed to the light regimes employed, with studies conducted under light intensities approximating natural sunlight showing evidence of photo-oxidative stress as a mechanism of toxicity. Excessive Mn competes with the transport and metabolism of other cationic metals, causing a range of induced nutrient deficiencies. Compartmentation, exclusion and detoxification mechanisms may all be involved in tolerance to excess Mn. The strong effects of light, temperature, precipitation and other climate variables on Mn phytoavailability and phytotoxicity suggest that global climate change is likely to exacerbate Mn toxicity in the future, which has largely escaped scientific attention. Given that Mn is terrestrially ubiquitous, it is imperative that the heightened risk of Mn toxicity to both managed and natural plant ecosystems be factored into evaluation of the potential impacts of global climate change on vegetation. Large inter- and intraspecific genetic variation in tolerance to Mn toxicity suggests that increased Mn toxicity in natural ecosystems may drive changes in community composition, but that in agroecosystems crops may be developed with greater Mn tolerance. These topics deserve greater research attention.
AbstractList Background Manganese (Mn) is an essential micronutrient that is phytotoxic under certain edaphic and climatic conditions. Multiple edaphic factors regulate Mn redox status and therefore its phytoavailability, and multiple environmental factors including light intensity and temperature interact with Mn phytotoxicity. The complexity of these interactions coupled with substantial genetic variation in Mn tolerance have hampered the recognition of Mn toxcity as an important stress in many natural and agricultural systems. Scope Conflicting theories have been advanced regarding the mechanism of Mn phytotoxicity and tolerance. One line of evidence suggests that Mn toxicity ocurs in the leaf apoplast, while another suggests that toxicity occurs by disruption of photosynthetic electron flow in chloroplasts. These conflicting results may at least in part be attributed to the light regimes employed, with studies conducted under light intensities approximating natural sunlight showing evidence of photo-oxidative stress as a mechanism of toxicity. Excessive Mn competes with the transport and metabolism of other cationic metals, causing a range of induced nutrient deficiencies. Compartmentation, exclusion and detoxification mechanisms may all be involved in tolerance to excess Mn. The strong effects of light, temperature, precipitation and other climate variables on Mn phytoavailability and phytotoxicity suggest that global climate change is likely to exacerbate Mn toxicity in the future, which has largely escaped scientific attention. Conclusions Given that Mn is terrestrially ubiquitous, it is imperative that the heightened risk of Mn toxicity to both managed and natural plant ecosystems be factored into evaluation of the potential impacts of global climate change on vegetation. Large inter- and intraspecific genetic variation in tolerance to Mn toxicity suggests that increased Mn toxicity in natural ecosystems may drive changes in community composition, but that in agroecosystems crops may be developed with greater Mn tolerance. These topics deserve greater research attention.
Background Manganese (Mn) is an essential micronutrient that is phytotoxic under certain edaphic and climatic conditions. Multiple edaphic factors regulate Mn redox status and therefore its phytoavailability, and multiple environmental factors including light intensity and temperature interact with Mn phytotoxicity. The complexity of these interactions coupled with substantial genetic variation in Mn tolerance have hampered the recognition of Mn toxcity as an important stress in many natural and agricultural systems.Scope Conflicting theories have been advanced regarding the mechanism of Mn phytotoxicity and tolerance. One line of evidence suggests that Mn toxicity ocurs in the leaf apoplast, while another suggests that toxicity occurs by disruption of photosynthetic electron flow in chloroplasts. These conflicting results may at least in part be attributed to the light regimes employed, with studies conducted under light intensities approximating natural sunlight showing evidence of photo-oxidative stress as a mechanism of toxicity. Excessive Mn competes with the transport and metabolism of other cationic metals, causing a range of induced nutrient deficiencies. Compartmentation, exclusion and detoxification mechanisms may all be involved in tolerance to excess Mn. The strong effects of light, temperature, precipitation and other climate variables on Mn phytoavailability and phytotoxicity suggest that global climate change is likely to exacerbate Mn toxicity in the future, which has largely escaped scientific attention.Conclusions Given that Mn is terrestrially ubiquitous, it is imperative that the heightened risk of Mn toxicity to both managed and natural plant ecosystems be factored into evaluation of the potential impacts of global climate change on vegetation. Large inter- and intraspecific genetic variation in tolerance to Mn toxicity suggests that increased Mn toxicity in natural ecosystems may drive changes in community composition, but that in agroecosystems crops may be developed with greater Mn tolerance. These topics deserve greater research attention.
Manganese (Mn) is an essential micronutrient that is phytotoxic under certain edaphic and climatic conditions. Multiple edaphic factors regulate Mn redox status and therefore its phytoavailability, and multiple environmental factors including light intensity and temperature interact with Mn phytotoxicity. The complexity of these interactions coupled with substantial genetic variation in Mn tolerance have hampered the recognition of Mn toxicity as an important stress in many natural and agricultural systems. Conflicting theories have been advanced regarding the mechanism of Mn phytotoxicity and tolerance. One line of evidence suggests that Mn toxicity ocurrs in the leaf apoplast, while another suggests that toxicity occurs by disruption of photosynthetic electron flow in chloroplasts. These conflicting results may at least in part be attributed to the light regimes employed, with studies conducted under light intensities approximating natural sunlight showing evidence of photo-oxidative stress as a mechanism of toxicity. Excessive Mn competes with the transport and metabolism of other cationic metals, causing a range of induced nutrient deficiencies. Compartmentation, exclusion and detoxification mechanisms may all be involved in tolerance to excess Mn. The strong effects of light, temperature, precipitation and other climate variables on Mn phytoavailability and phytotoxicity suggest that global climate change is likely to exacerbate Mn toxicity in the future, which has largely escaped scientific attention. Given that Mn is terrestrially ubiquitous, it is imperative that the heightened risk of Mn toxicity to both managed and natural plant ecosystems be factored into evaluation of the potential impacts of global climate change on vegetation. Large inter- and intraspecific genetic variation in tolerance to Mn toxicity suggests that increased Mn toxicity in natural ecosystems may drive changes in community composition, but that in agroecosystems crops may be developed with greater Mn tolerance. These topics deserve greater research attention.
Manganese (Mn) is an essential micronutrient that is phytotoxic under certain edaphic and climatic conditions. Multiple edaphic factors regulate Mn redox status and therefore its phytoavailability, and multiple environmental factors including light intensity and temperature interact with Mn phytotoxicity. The complexity of these interactions coupled with substantial genetic variation in Mn tolerance have hampered the recognition of Mn toxicity as an important stress in many natural and agricultural systems.BACKGROUNDManganese (Mn) is an essential micronutrient that is phytotoxic under certain edaphic and climatic conditions. Multiple edaphic factors regulate Mn redox status and therefore its phytoavailability, and multiple environmental factors including light intensity and temperature interact with Mn phytotoxicity. The complexity of these interactions coupled with substantial genetic variation in Mn tolerance have hampered the recognition of Mn toxicity as an important stress in many natural and agricultural systems.Conflicting theories have been advanced regarding the mechanism of Mn phytotoxicity and tolerance. One line of evidence suggests that Mn toxicity ocurrs in the leaf apoplast, while another suggests that toxicity occurs by disruption of photosynthetic electron flow in chloroplasts. These conflicting results may at least in part be attributed to the light regimes employed, with studies conducted under light intensities approximating natural sunlight showing evidence of photo-oxidative stress as a mechanism of toxicity. Excessive Mn competes with the transport and metabolism of other cationic metals, causing a range of induced nutrient deficiencies. Compartmentation, exclusion and detoxification mechanisms may all be involved in tolerance to excess Mn. The strong effects of light, temperature, precipitation and other climate variables on Mn phytoavailability and phytotoxicity suggest that global climate change is likely to exacerbate Mn toxicity in the future, which has largely escaped scientific attention.SCOPEConflicting theories have been advanced regarding the mechanism of Mn phytotoxicity and tolerance. One line of evidence suggests that Mn toxicity ocurrs in the leaf apoplast, while another suggests that toxicity occurs by disruption of photosynthetic electron flow in chloroplasts. These conflicting results may at least in part be attributed to the light regimes employed, with studies conducted under light intensities approximating natural sunlight showing evidence of photo-oxidative stress as a mechanism of toxicity. Excessive Mn competes with the transport and metabolism of other cationic metals, causing a range of induced nutrient deficiencies. Compartmentation, exclusion and detoxification mechanisms may all be involved in tolerance to excess Mn. The strong effects of light, temperature, precipitation and other climate variables on Mn phytoavailability and phytotoxicity suggest that global climate change is likely to exacerbate Mn toxicity in the future, which has largely escaped scientific attention.Given that Mn is terrestrially ubiquitous, it is imperative that the heightened risk of Mn toxicity to both managed and natural plant ecosystems be factored into evaluation of the potential impacts of global climate change on vegetation. Large inter- and intraspecific genetic variation in tolerance to Mn toxicity suggests that increased Mn toxicity in natural ecosystems may drive changes in community composition, but that in agroecosystems crops may be developed with greater Mn tolerance. These topics deserve greater research attention.CONCLUSIONSGiven that Mn is terrestrially ubiquitous, it is imperative that the heightened risk of Mn toxicity to both managed and natural plant ecosystems be factored into evaluation of the potential impacts of global climate change on vegetation. Large inter- and intraspecific genetic variation in tolerance to Mn toxicity suggests that increased Mn toxicity in natural ecosystems may drive changes in community composition, but that in agroecosystems crops may be developed with greater Mn tolerance. These topics deserve greater research attention.
Author Fernando, Denise R.
Lynch, Jonathan P.
Author_xml – sequence: 1
  givenname: Denise R.
  surname: Fernando
  fullname: Fernando, Denise R.
  organization: Department of Ecology, Environment and Evolution, La Trobe University, VIC 3086, Australia
– sequence: 2
  givenname: Jonathan P.
  surname: Lynch
  fullname: Lynch, Jonathan P.
  organization: Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26311708$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1LAzEQxYNU7IdevHhSPIqwNpPsJtmLIMUvqHjRc8hms-2W7aZu0mL_e1O2lioePAUmv3nzZl4fdWpbG4ROAd8ATulQ2Ww41ysAOEC9UEkiQVLcQT1McRJxyuIu6js3wxgTlsIR6hJGATgWPXT2ouqJqo0zl4vp2ltvP0td-vUxOixU5czJ9h2g94f7t9FTNH59fB7djSMdp6mPICYZIyBETnVGNBGK5KBEyjKTcEbyWGhBsOEZFJibvFAihzTLgRLOlNY5HaDbVnexzOYm16b2jarkoinnqllLq0r586cup3JiVzJOggEWB4GrrUBjP5bGeTkvnTZVFZaySyeBh1EcMKP_QLGAhFOxQS_2be38fB8uANctoBvrXGOKHQJYblKRIRXZphJg_AsOJ1a-tJuVyurvlvO2Zea8bfbmJyThMaZfxvKZ3g
CitedBy_id crossref_primary_10_3390_ijms21228863
crossref_primary_10_1016_j_plaphy_2025_109687
crossref_primary_10_1007_s00344_022_10637_x
crossref_primary_10_3390_crops3020010
crossref_primary_10_2139_ssrn_4830855
crossref_primary_10_1007_s11356_016_8312_7
crossref_primary_10_1016_j_envexpbot_2016_08_008
crossref_primary_10_26907_2542_064X_2024_1_66_81
crossref_primary_10_1007_s40415_023_00911_x
crossref_primary_10_1029_2023JG007830
crossref_primary_10_1007_s11258_025_01492_3
crossref_primary_10_3390_app11188745
crossref_primary_10_3390_jof7100808
crossref_primary_10_1016_j_gexplo_2023_107323
crossref_primary_10_1111_ppl_13035
crossref_primary_10_3390_ijms20205096
crossref_primary_10_1111_nph_14878
crossref_primary_10_1007_s00344_020_10209_x
crossref_primary_10_1007_s11356_021_14708_6
crossref_primary_10_1016_j_plaphy_2024_108641
crossref_primary_10_1021_acs_est_1c00299
crossref_primary_10_1007_s11104_023_06024_4
crossref_primary_10_1007_s11273_018_9623_x
crossref_primary_10_1007_s11056_022_09930_0
crossref_primary_10_1080_00103624_2019_1667369
crossref_primary_10_1007_s00442_022_05131_w
crossref_primary_10_1016_j_chemosphere_2022_136523
crossref_primary_10_1016_j_scienta_2018_11_051
crossref_primary_10_3390_stresses2010007
crossref_primary_10_1016_j_chemosphere_2022_136801
crossref_primary_10_3390_molecules28020759
crossref_primary_10_1007_s00344_022_10866_0
crossref_primary_10_1007_s10661_021_09656_0
crossref_primary_10_1016_j_jplph_2022_153808
crossref_primary_10_1007_s10533_022_01010_x
crossref_primary_10_1111_aab_12660
crossref_primary_10_1016_j_plaphy_2019_09_034
crossref_primary_10_3390_molecules29163975
crossref_primary_10_1093_aob_mcaa068
crossref_primary_10_1016_j_plaphy_2024_109461
crossref_primary_10_1080_15320383_2024_2332960
crossref_primary_10_3390_plants9070910
crossref_primary_10_1007_s42729_019_00166_0
crossref_primary_10_1016_j_ecoenv_2018_05_031
crossref_primary_10_1007_s11104_019_04019_8
crossref_primary_10_1016_j_scitotenv_2016_10_210
crossref_primary_10_1186_s40068_023_00310_x
crossref_primary_10_1007_s12298_019_00672_6
crossref_primary_10_1016_j_scitotenv_2018_12_388
crossref_primary_10_2166_wrd_2022_046
crossref_primary_10_3390_agronomy12092173
crossref_primary_10_1016_j_plaphy_2020_07_002
crossref_primary_10_12677_BR_2019_86056
crossref_primary_10_2139_ssrn_4159281
crossref_primary_10_3389_fpls_2020_00300
crossref_primary_10_3390_microorganisms10071290
crossref_primary_10_3390_bacteria2030010
crossref_primary_10_1016_j_jhazmat_2024_133515
crossref_primary_10_1007_s11356_018_1338_2
crossref_primary_10_1007_s10661_018_6604_8
crossref_primary_10_1007_s10661_021_09415_1
crossref_primary_10_1016_j_scitotenv_2024_176706
crossref_primary_10_3390_agronomy11020327
crossref_primary_10_1007_s11104_019_03937_x
crossref_primary_10_1016_j_jplph_2023_154056
crossref_primary_10_1016_j_geoderma_2023_116686
crossref_primary_10_1016_j_plaphy_2023_107671
crossref_primary_10_3390_su131810385
crossref_primary_10_1111_pce_12910
crossref_primary_10_1007_s00468_018_1761_5
crossref_primary_10_1080_11263504_2023_2200981
crossref_primary_10_1016_j_stress_2022_100104
crossref_primary_10_1007_s12010_016_2224_3
crossref_primary_10_3389_fpls_2020_588065
crossref_primary_10_1093_jpe_rty040
crossref_primary_10_17660_ActaHortic_2021_1309_69
crossref_primary_10_1007_s11104_021_04833_z
crossref_primary_10_1007_s10653_020_00625_z
crossref_primary_10_1002_jsfa_9196
crossref_primary_10_1016_j_ecoenv_2020_111010
crossref_primary_10_3390_agronomy14030449
crossref_primary_10_1007_s11356_024_31837_w
crossref_primary_10_3390_agronomy15010049
crossref_primary_10_1007_s13580_020_00303_0
crossref_primary_10_1002_ecs2_1717
crossref_primary_10_3390_f14030611
crossref_primary_10_1016_j_envexpbot_2021_104705
crossref_primary_10_1016_j_rhisph_2020_100188
crossref_primary_10_1186_s12864_020_07279_2
crossref_primary_10_1002_ece3_7544
crossref_primary_10_1007_s11284_017_1547_z
crossref_primary_10_1080_15226514_2022_2109587
crossref_primary_10_3390_ijms25105341
crossref_primary_10_3390_plants12112091
crossref_primary_10_1007_s42729_024_02176_z
crossref_primary_10_1515_opag_2018_0056
crossref_primary_10_1016_j_ecoenv_2020_110696
crossref_primary_10_1016_j_plaphy_2020_11_034
crossref_primary_10_1007_s13157_021_01419_4
crossref_primary_10_1016_j_jssas_2021_06_014
crossref_primary_10_1007_s00442_024_05638_4
crossref_primary_10_3390_nano11041016
crossref_primary_10_1038_s41598_021_00370_y
crossref_primary_10_3390_cells12030441
crossref_primary_10_3390_ijms24031942
crossref_primary_10_1016_j_gexplo_2024_107472
crossref_primary_10_1016_j_plaphy_2017_01_022
crossref_primary_10_1186_s12870_019_1822_y
crossref_primary_10_1093_mtomcs_mfac045
crossref_primary_10_1016_j_plaphy_2023_108269
crossref_primary_10_1093_plphys_kiaf005
crossref_primary_10_1016_j_envpol_2020_115594
crossref_primary_10_1038_s41467_022_33641_x
crossref_primary_10_1007_s11056_020_09819_w
crossref_primary_10_1016_j_gecco_2020_e01306
crossref_primary_10_1007_s11104_022_05658_0
crossref_primary_10_1016_j_plaphy_2025_109586
crossref_primary_10_1093_forsci_fxab030
crossref_primary_10_3390_agronomy10040510
crossref_primary_10_1007_s11104_024_06537_6
crossref_primary_10_1016_j_tplants_2016_12_005
crossref_primary_10_1016_j_rser_2021_111555
crossref_primary_10_3389_fpls_2016_01382
crossref_primary_10_1016_j_jhazmat_2023_133079
crossref_primary_10_58430_jib_v129i4_38
crossref_primary_10_1007_s00344_020_10240_y
crossref_primary_10_1021_acs_est_9b05728
crossref_primary_10_1002_agg2_70035
crossref_primary_10_1016_j_ecoenv_2020_110355
crossref_primary_10_1007_s11270_019_4381_9
crossref_primary_10_1038_s41598_023_49699_6
crossref_primary_10_3389_fpls_2021_683813
crossref_primary_10_1016_j_chemosphere_2017_08_009
crossref_primary_10_1016_j_envexpbot_2016_08_011
crossref_primary_10_1093_jxb_erx465
crossref_primary_10_3389_fpls_2024_1465513
crossref_primary_10_3390_biology8040093
crossref_primary_10_1016_j_jenvman_2022_114751
crossref_primary_10_1016_j_pmpp_2024_102468
crossref_primary_10_1007_s00709_020_01575_0
crossref_primary_10_1016_j_cj_2022_04_008
crossref_primary_10_1093_mtomcs_mfab008
crossref_primary_10_1016_j_plaphy_2017_12_018
crossref_primary_10_1016_j_jprot_2018_06_016
crossref_primary_10_1016_j_jhazmat_2023_132555
crossref_primary_10_3389_fpls_2022_947882
crossref_primary_10_3390_app142210726
crossref_primary_10_1071_BT21002
crossref_primary_10_3390_pathogens13070544
crossref_primary_10_1111_nph_15738
Cites_doi 10.1016/j.fcr.2004.07.008
10.1002/jpln.19781410202
10.1071/AR9900835
10.1111/j.1469-8137.2006.01783.x
10.1139/x88-195
10.1104/pp.103.029215
10.1007/978-94-009-2817-6
10.1105/tpc.112.096925
10.1007/BF02181785
10.1104/pp.114.251017
10.1111/j.1399-3054.1994.tb03042.x
10.1080/00380768.1987.10557608
10.1080/01904168809363799
10.1071/BT09077
10.1104/pp.105.070474
10.1093/aob/mcp128
10.3389/fpls.2014.00106
10.1073/pnas.97.9.4991
10.1105/tpc.009134
10.1105/tpc.109.073023
10.1111/j.1365-313X.2007.03138.x
10.1111/j.1365-3040.2005.01337.x
10.1093/aob/mci160
10.1104/pp.118.2.493
10.1071/SR13159
10.1007/s11104-010-0328-z
10.1007/BF00007886
10.1641/0006-3568(2001)051[0180:ADITNU]2.0.CO;2
10.1016/j.chemosphere.2012.05.030
10.1093/aob/mcp013
10.2134/agronmonogr12.2ed.c2
10.1074/jbc.M111.305649
10.1016/S0378-1127(01)00688-0
10.1023/A:1026069927380
10.1093/treephys/25.1.85
10.1071/FP04049
10.1080/01904169909365648
10.1071/EA9870303
10.1139/x00-057
10.1590/S1677-04202005000100009
10.1073/pnas.0609507104
10.1071/PP99030
10.2136/sssaj1985.03615995004900030028x
10.21273/JASHS.111.3.323
10.1080/01904169809365409
10.1007/BF00017950
10.1038/srep00286
10.2134/agronj1979.00021962007100040029x
ContentType Journal Article
Copyright The Author 2015
The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2015
Copyright_xml – notice: The Author 2015
– notice: The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SN
C1K
5PM
DOI 10.1093/aob/mcv111
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Ecology Abstracts
Environmental Sciences and Pollution Management
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Ecology Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Ecology Abstracts
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1095-8290
EndPage 319
ExternalDocumentID PMC4549964
26311708
10_1093_aob_mcv111
26525740
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-DZ
-E4
-~X
.2P
.I3
0R~
1TH
1~5
23M
2WC
2~F
4.4
482
48X
4G.
5GY
5VS
5WA
5WD
6J9
7-5
70D
79B
A8Z
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAXTN
ABBHK
ABDBF
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABLJU
ABMNT
ABNKS
ABPPZ
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXSQ
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACHIC
ACIWK
ACNCT
ACPRK
ACUFI
ACUHS
ACUTJ
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADULT
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJNCP
AKHUL
AKRWK
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
AOIJS
APIBT
APWMN
AQVQM
ARIXL
ATGXG
AXUDD
AYOIW
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
CDBKE
COF
CS3
CZ4
DAKXR
DATOO
DILTD
D~K
E3Z
EBD
EBS
EDH
EE~
EJD
EMOBN
ESX
F5P
F9B
FDB
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HYE
HZ~
IOX
IPSME
J21
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
N9A
NGC
NLBLG
NOMLY
NU-
NVLIB
O-L
O9-
OAWHX
OBOKY
ODMLO
OJQWA
OJZSN
OK1
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
ROZ
RPM
RUSNO
RW1
RXO
SA0
SV3
TCN
TEORI
TLC
TN5
TR2
UPT
W8F
WH7
WOQ
X7H
Y6R
YAYTL
YKOAZ
YSK
YXANX
YZZ
ZKX
~02
~91
~KM
--K
1B1
53G
71M
AAEDT
AALCJ
AALRI
AAQFI
AAQXK
AAWDT
AAXUO
AAYWO
AAYXX
ABDPE
ABEFU
ABIME
ABNGD
ABPIB
ABSMQ
ABWVN
ABZEO
ACFRR
ACPQN
ACRPL
ACUKT
ACVCV
ACZBC
ADFGL
ADMUD
ADNMO
ADXHL
AEHUL
AEKPW
AETEA
AFFNX
AFSHK
AFSWV
AFYAG
AGKRT
AGMDO
AGQPQ
AHGBF
AI.
AJDVS
ANFBD
APJGH
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
C1A
CAG
CITATION
CXTWN
DFGAJ
DM4
ELUNK
FA8
FEDTE
FGOYB
FIRID
HVGLF
IHE
LG5
MBTAY
NEJ
NTWIH
O0~
OHT
OZT
O~Y
PB-
QBD
R2-
RIG
RNI
RPZ
RZF
RZO
SSZ
UHS
VH1
XOL
XPP
ZCG
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SN
C1K
5PM
ID FETCH-LOGICAL-c499t-142b62188d3cb2c28a2d1a896be5762d48c820e7b1f07edfa8d19bd13276accd3
ISSN 0305-7364
1095-8290
IngestDate Thu Aug 21 13:58:49 EDT 2025
Fri Jul 11 08:43:23 EDT 2025
Fri Jul 11 02:01:56 EDT 2025
Mon Jul 21 05:56:42 EDT 2025
Tue Jul 01 01:39:16 EDT 2025
Thu Apr 24 23:08:55 EDT 2025
Sun Aug 24 12:10:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Manganese phytotoxicity
photo-oxidative stress
Mn phytoavailability
climate change
Language English
License The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c499t-142b62188d3cb2c28a2d1a896be5762d48c820e7b1f07edfa8d19bd13276accd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://academic.oup.com/aob/article-pdf/116/3/313/17637050/mcv111.pdf
PMID 26311708
PQID 1708157383
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4549964
proquest_miscellaneous_1727671063
proquest_miscellaneous_1708157383
pubmed_primary_26311708
crossref_primary_10_1093_aob_mcv111
crossref_citationtrail_10_1093_aob_mcv111
jstor_primary_26525740
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Annals of botany
PublicationTitleAlternate Ann Bot
PublicationYear 2015
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 2015090105474333000_116.3.313.33
2015090105474333000_116.3.313.32
Marschner (2015090105474333000_116.3.313.34) 2002
2015090105474333000_116.3.313.38
2015090105474333000_116.3.313.36
2015090105474333000_116.3.313.35
2015090105474333000_116.3.313.39
Dean (2015090105474333000_116.3.313.6) 2007
IPCC (2015090105474333000_116.3.313.30) 2014
2015090105474333000_116.3.313.40
2015090105474333000_116.3.313.45
2015090105474333000_116.3.313.44
2015090105474333000_116.3.313.43
2015090105474333000_116.3.313.42
2015090105474333000_116.3.313.1
2015090105474333000_116.3.313.49
2015090105474333000_116.3.313.47
2015090105474333000_116.3.313.46
2015090105474333000_116.3.313.5
StClair (2015090105474333000_116.3.313.48) 2005; 145
2015090105474333000_116.3.313.4
Socha (2015090105474333000_116.3.313.41) 2014; 5
2015090105474333000_116.3.313.3
2015090105474333000_116.3.313.2
2015090105474333000_116.3.313.9
2015090105474333000_116.3.313.8
2015090105474333000_116.3.313.7
Elamin (2015090105474333000_116.3.313.12) 1986; 111
2015090105474333000_116.3.313.52
2015090105474333000_116.3.313.51
2015090105474333000_116.3.313.50
2015090105474333000_116.3.313.11
2015090105474333000_116.3.313.10
Graham (2015090105474333000_116.3.313.24) 1988
2015090105474333000_116.3.313.16
2015090105474333000_116.3.313.15
2015090105474333000_116.3.313.14
2015090105474333000_116.3.313.13
2015090105474333000_116.3.313.18
2015090105474333000_116.3.313.17
Ishimaru (2015090105474333000_116.3.313.31) 2012; 2
Podar (2015090105474333000_116.3.313.37) 2012; 5
2015090105474333000_116.3.313.23
2015090105474333000_116.3.313.22
2015090105474333000_116.3.313.21
2015090105474333000_116.3.313.20
2015090105474333000_116.3.313.27
2015090105474333000_116.3.313.26
2015090105474333000_116.3.313.25
Foy (2015090105474333000_116.3.313.19) 1984
2015090105474333000_116.3.313.29
2015090105474333000_116.3.313.28
References_xml – ident: 2015090105474333000_116.3.313.33
  doi: 10.1016/j.fcr.2004.07.008
– ident: 2015090105474333000_116.3.313.29
  doi: 10.1002/jpln.19781410202
– volume-title: Mineral nutrition of higher plants
  year: 2002
  ident: 2015090105474333000_116.3.313.34
– ident: 2015090105474333000_116.3.313.25
  doi: 10.1071/AR9900835
– ident: 2015090105474333000_116.3.313.16
  doi: 10.1111/j.1469-8137.2006.01783.x
– ident: 2015090105474333000_116.3.313.1
  doi: 10.1139/x88-195
– ident: 2015090105474333000_116.3.313.14
  doi: 10.1104/pp.103.029215
– volume-title: International Symposium on Manganese in Soils and Plants
  year: 1988
  ident: 2015090105474333000_116.3.313.24
  article-title: Manganese in soils and plants
  doi: 10.1007/978-94-009-2817-6
– ident: 2015090105474333000_116.3.313.39
  doi: 10.1105/tpc.112.096925
– ident: 2015090105474333000_116.3.313.2
  doi: 10.1007/BF02181785
– ident: 2015090105474333000_116.3.313.5
  doi: 10.1104/pp.114.251017
– ident: 2015090105474333000_116.3.313.20
  doi: 10.1111/j.1399-3054.1994.tb03042.x
– ident: 2015090105474333000_116.3.313.26
  doi: 10.1080/00380768.1987.10557608
– ident: 2015090105474333000_116.3.313.27
  doi: 10.1080/01904168809363799
– ident: 2015090105474333000_116.3.313.17
  doi: 10.1071/BT09077
– ident: 2015090105474333000_116.3.313.15
  doi: 10.1104/pp.105.070474
– ident: 2015090105474333000_116.3.313.3
  doi: 10.1093/aob/mcp128
– volume: 5
  start-page: 1
  year: 2014
  ident: 2015090105474333000_116.3.313.41
  article-title: M-neuvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2014.00106
– ident: 2015090105474333000_116.3.313.49
  doi: 10.1073/pnas.97.9.4991
– ident: 2015090105474333000_116.3.313.7
  doi: 10.1105/tpc.009134
– ident: 2015090105474333000_116.3.313.4
  doi: 10.1105/tpc.109.073023
– ident: 2015090105474333000_116.3.313.8
  doi: 10.1111/j.1365-313X.2007.03138.x
– ident: 2015090105474333000_116.3.313.45
  doi: 10.1111/j.1365-3040.2005.01337.x
– ident: 2015090105474333000_116.3.313.32
  doi: 10.1093/aob/mci160
– volume-title: Chemical ecology of plant–microbe interactions and effects on insect herbivores
  year: 2007
  ident: 2015090105474333000_116.3.313.6
– ident: 2015090105474333000_116.3.313.23
  doi: 10.1104/pp.118.2.493
– ident: 2015090105474333000_116.3.313.43
  doi: 10.1071/SR13159
– ident: 2015090105474333000_116.3.313.47
  doi: 10.1007/s11104-010-0328-z
– volume-title: Climate Change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2014
  ident: 2015090105474333000_116.3.313.30
  article-title: IPCC, 2014: Summary for policymakers
– ident: 2015090105474333000_116.3.313.51
  doi: 10.1007/BF00007886
– ident: 2015090105474333000_116.3.313.9
  doi: 10.1641/0006-3568(2001)051[0180:ADITNU]2.0.CO;2
– ident: 2015090105474333000_116.3.313.52
  doi: 10.1016/j.chemosphere.2012.05.030
– ident: 2015090105474333000_116.3.313.18
  doi: 10.1093/aob/mcp013
– volume-title: Soil acidity and liming
  year: 1984
  ident: 2015090105474333000_116.3.313.19
  article-title: Physiological effects of hydrogen, aluminum, and manganese toxicities in acid soil
  doi: 10.2134/agronmonogr12.2ed.c2
– volume: 5
  start-page: 3185
  year: 2012
  ident: 2015090105474333000_116.3.313.37
  article-title: Metal selectivity determinants in a family of transition metal transporters
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M111.305649
– ident: 2015090105474333000_116.3.313.10
  doi: 10.1016/S0378-1127(01)00688-0
– ident: 2015090105474333000_116.3.313.50
  doi: 10.1023/A:1026069927380
– ident: 2015090105474333000_116.3.313.46
  doi: 10.1093/treephys/25.1.85
– ident: 2015090105474333000_116.3.313.44
  doi: 10.1071/FP04049
– ident: 2015090105474333000_116.3.313.22
  doi: 10.1080/01904169909365648
– volume: 145
  start-page: 258
  year: 2005
  ident: 2015090105474333000_116.3.313.48
  article-title: Evidence for oxidative stress in sugar maple stands growing on acidic, nutrient imbalanced forest soils
  publication-title: Oecologia
– ident: 2015090105474333000_116.3.313.42
  doi: 10.1071/EA9870303
– ident: 2015090105474333000_116.3.313.28
  doi: 10.1139/x00-057
– ident: 2015090105474333000_116.3.313.11
  doi: 10.1590/S1677-04202005000100009
– ident: 2015090105474333000_116.3.313.36
  doi: 10.1073/pnas.0609507104
– ident: 2015090105474333000_116.3.313.21
  doi: 10.1071/PP99030
– ident: 2015090105474333000_116.3.313.35
  doi: 10.2136/sssaj1985.03615995004900030028x
– volume: 111
  start-page: 323
  year: 1986
  ident: 2015090105474333000_116.3.313.12
  article-title: Manganese toxicity development in muskmelons as influenced by nitrogen form
  publication-title: Journal of the American Horticultural Society
  doi: 10.21273/JASHS.111.3.323
– ident: 2015090105474333000_116.3.313.13
  doi: 10.1080/01904169809365409
– ident: 2015090105474333000_116.3.313.40
  doi: 10.1007/BF00017950
– volume: 2
  start-page: 286
  year: 2012
  ident: 2015090105474333000_116.3.313.31
  article-title: Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport
  publication-title: Scientific Reports
  doi: 10.1038/srep00286
– ident: 2015090105474333000_116.3.313.38
  doi: 10.2134/agronj1979.00021962007100040029x
SSID ssj0002691
Score 2.5320065
SecondaryResourceType review_article
Snippet Manganese (Mn) is an essential micronutrient that is phytotoxic under certain edaphic and climatic conditions. Multiple edaphic factors regulate Mn redox...
Background Manganese (Mn) is an essential micronutrient that is phytotoxic under certain edaphic and climatic conditions. Multiple edaphic factors regulate Mn...
Background Manganese (Mn) is an essential micronutrient that is phytotoxic under certain edaphic and climatic conditions. Multiple edaphic factors regulate Mn...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 313
SubjectTerms Air
Climate Change
Manganese - toxicity
Plant Physiological Phenomena - drug effects
Plants - drug effects
REVIEW
Soil - chemistry
Subtitle new light on an old problem
Title Manganese phytotoxicity
URI https://www.jstor.org/stable/26525740
https://www.ncbi.nlm.nih.gov/pubmed/26311708
https://www.proquest.com/docview/1708157383
https://www.proquest.com/docview/1727671063
https://pubmed.ncbi.nlm.nih.gov/PMC4549964
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLag5cClYisdNgXBBY1CE9vjONwKAlWUckCt6C3yFhhpGleQIuiv7_OSDQYEXKxR8sbWvG_y8j37LQg9zVSmWVHqNOPGpLQkBp45Al4KE3Vds5pKH014-J7tH9O3J4uToTWizy5p5XN1sTav5H9QhWuAq8uS_Qdk-0nhAnwGfGEEhGH8K4wPRfNJuBaSboOita39vlSuyj94-cCW5yvneM99uPHcrlw9AN88ZsxHh_rJ0radXRi2l20wSc0SluiPhN79aEL_qG7nPeaIxb2DfNEHR4HpD_YOGFbqzlInBjFkP0bkyci8kZA3-ovZDSWphJUwnqpv0X6OEDg79RBgRlynGz68fPqQwO7WVbSJgfGDydrcO_jw8aB_rWJW5l192ZLswmK7YSlXzzl-eUIuQnzpOs_h5wDYEaM4uoG2oiuQ7AVcb6IrprmFrr30ONxGtAc3mYD7IgFoEw9tYptENAlAm0Ro76DjN6-PXu2nscVFqsDVbNOcYsmAZXFNlMQKc4F1LnjJpAFHEGvKFVA0U8i8zgqja8F1XkqdE1wwoZQm22ijsY3ZQYmGSbhmOCMGU6UyrgrgY8QACRPgtNIZetbpplKx_rtrQ7KqQhwCqUClVVDpDD3pZc9C1ZO1Uttexb0IZq62Ls1m6HGn8wqslTuCAn3Z86-VAylfFISTP8nAjwPiy0DmbsBptEIAeoaKCYK9gKuWPr3TLD_7qunU7YQweu-3c95H14dn5AHaaL-cm4fAOFv5KP4XLwForoJz
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manganese+phytotoxicity%3A+new+light+on+an+old+problem&rft.jtitle=Annals+of+botany&rft.au=Fernando%2C+Denise+R&rft.au=Lynch%2C+Jonathan+P&rft.date=2015-09-01&rft.eissn=1095-8290&rft.volume=116&rft.issue=3&rft.spage=313&rft_id=info:doi/10.1093%2Faob%2Fmcv111&rft_id=info%3Apmid%2F26311708&rft.externalDocID=26311708
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-7364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-7364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-7364&client=summon