Endothelium-derived hyperpolarizing factor contributes to hypoxia-induced skeletal muscle vasodilation in humans

Systemic hypoxia causes skeletal muscle vasodilation, thereby preserving O2 delivery to active tissues. Nitric oxide (NO), adenosine, and prostaglandins contribute to this vasodilation, but other factors may also play a role. We tested the hypothesis that regional inhibition of endothelium-derived h...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology. Heart and circulatory physiology Vol. 305; no. 11; pp. H1639 - H1645
Main Authors Spilk, Samson, Herr, Michael D, Sinoway, Lawrence I, Leuenberger, Urs A
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.12.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Systemic hypoxia causes skeletal muscle vasodilation, thereby preserving O2 delivery to active tissues. Nitric oxide (NO), adenosine, and prostaglandins contribute to this vasodilation, but other factors may also play a role. We tested the hypothesis that regional inhibition of endothelium-derived hyperpolarizing factor with the cytochrome P-450 2C9 antagonist fluconazole, alone or combined with the NO synthase antagonist N(G)-monomethyl-L-arginine (L-NMMA), attenuates hypoxia-induced vasodilation. We compared forearm blood flow (FBF) and skin blood flow before and during brachial artery infusion of fluconazole (0.3 mg/min; trial 1) or fluconazole + L-NMMA (50 mg over 10 min; trial 2) and during systemic hypoxia (10 min, arterial Po2 ~37 mmHg) in infused (experimental) and control forearms of 12 healthy humans. During normoxia, fluconazole and fluconazole + L-NMMA reduced (P < 0.05) forearm vascular conductance (FVC) by ~10% and ~18%, respectively. During hypoxia and fluconazole (trial 1), FVC increased by 1.76 ± 0.37 and 0.95 ± 0.35 units in control and experimental forearms, respectively (P < 0.05). During hypoxia and fluconazole + L-NMMA (trial 2), FVC increased by 2.32 ± 0.51 and 0.72 ± 0.22 units in control and experimental forearms, respectively (P < 0.05). Similarly, during hypoxia with L-NMMA alone (trial 3; n = 8) FVC increased by 1.51 ± 0.46 and 0.45 ± 0.32 units in control and experimental forearms, respectively (P < 0.05). These effects were not due to altered skin blood flow. We conclude that endothelium-derived hyperpolarizing factor contributes to basal vascular tone and to hypoxia-induced skeletal muscle vasodilation and could be particularly relevant when other vasodilator systems are impaired.
AbstractList Systemic hypoxia causes skeletal muscle vasodilation, thereby preserving ... delivery to active tissues. Nitric oxide (NO), adenosine, and prostaglandins contribute to this vasodilation, but other factors may also play a role. We tested the hypothesis that regional inhibition of endothelium-derived hyperpolarizing factor with the cytochrome P-450 2C9 antagonist fluconazole, alone or combined with the NO synthase antagonist ...-monomethyl-L-arginine (L-NMMA), attenuates hypoxia-induced vasodilation. We compared forearm blood flow (FBF) and skin blood flow before and during brachial artery infusion of fluconazole (0.3 mg/min; trial 1) or fluconazole + L-NMMA (50 mg over 10 min; trial 2) and during systemic hypoxia (10 min, arterial ... ~37 mmHg) in infused (experimental) and control forearms of 12 healthy humans. During normoxia, fluconazole and fluconazole + L-NMMA reduced (P < 0.05) forearm vascular conductance (FVC) by ~10% and ~18%, respectively. During hypoxia and fluconazole (trial 1), FVC increased by 1.76 ± 0.37 and 0.95 ± 0.35 units in control and experimental forearms, respectively (P < 0.05). During hypoxia and fluconazole + L-NMMA (trial 2), FVC increased by 2.32 ± 0.51 and 0.72 ± 0.22 units in control and experimental forearms, respectively (P < 0.05). Similarly, during hypoxia with L-NMMA alone (trial 3; n = 8) FVC increased by 1.51 ± 0.46 and 0.45 ± 0.32 units in control and experimental forearms, respectively (P < 0.05). These effects were not due to altered skin blood flow. We conclude that endothelium-derived hyperpolarizing factor contributes to basal vascular tone and to hypoxia-induced skeletal muscle vasodilation and could be particularly relevant when other vasodilator systems are impaired. (ProQuest: ... denotes formulae/symbols omitted.)
Systemic hypoxia causes skeletal muscle vasodilation, thereby preserving O 2 delivery to active tissues. Nitric oxide (NO), adenosine, and prostaglandins contribute to this vasodilation, but other factors may also play a role. We tested the hypothesis that regional inhibition of endothelium-derived hyperpolarizing factor with the cytochrome P -450 2C9 antagonist fluconazole, alone or combined with the NO synthase antagonist N G -monomethyl- l -arginine ( l -NMMA), attenuates hypoxia-induced vasodilation. We compared forearm blood flow (FBF) and skin blood flow before and during brachial artery infusion of fluconazole (0.3 mg/min; trial 1 ) or fluconazole + l -NMMA (50 mg over 10 min; trial 2 ) and during systemic hypoxia (10 min, arterial P o 2 ∼37 mmHg) in infused (experimental) and control forearms of 12 healthy humans. During normoxia, fluconazole and fluconazole + l -NMMA reduced ( P < 0.05) forearm vascular conductance (FVC) by ∼10% and ∼18%, respectively. During hypoxia and fluconazole ( trial 1 ), FVC increased by 1.76 ± 0.37 and 0.95 ± 0.35 units in control and experimental forearms, respectively ( P < 0.05). During hypoxia and fluconazole + l -NMMA ( trial 2 ), FVC increased by 2.32 ± 0.51 and 0.72 ± 0.22 units in control and experimental forearms, respectively ( P < 0.05). Similarly, during hypoxia with l -NMMA alone ( trial 3 ; n = 8) FVC increased by 1.51 ± 0.46 and 0.45 ± 0.32 units in control and experimental forearms, respectively ( P < 0.05). These effects were not due to altered skin blood flow. We conclude that endothelium-derived hyperpolarizing factor contributes to basal vascular tone and to hypoxia-induced skeletal muscle vasodilation and could be particularly relevant when other vasodilator systems are impaired.
Systemic hypoxia causes skeletal muscle vasodilation, thereby preserving O2 delivery to active tissues. Nitric oxide (NO), adenosine, and prostaglandins contribute to this vasodilation, but other factors may also play a role. We tested the hypothesis that regional inhibition of endothelium-derived hyperpolarizing factor with the cytochrome P-450 2C9 antagonist fluconazole, alone or combined with the NO synthase antagonist N(G)-monomethyl-L-arginine (L-NMMA), attenuates hypoxia-induced vasodilation. We compared forearm blood flow (FBF) and skin blood flow before and during brachial artery infusion of fluconazole (0.3 mg/min; trial 1) or fluconazole + L-NMMA (50 mg over 10 min; trial 2) and during systemic hypoxia (10 min, arterial Po2 ~37 mmHg) in infused (experimental) and control forearms of 12 healthy humans. During normoxia, fluconazole and fluconazole + L-NMMA reduced (P < 0.05) forearm vascular conductance (FVC) by ~10% and ~18%, respectively. During hypoxia and fluconazole (trial 1), FVC increased by 1.76 ± 0.37 and 0.95 ± 0.35 units in control and experimental forearms, respectively (P < 0.05). During hypoxia and fluconazole + L-NMMA (trial 2), FVC increased by 2.32 ± 0.51 and 0.72 ± 0.22 units in control and experimental forearms, respectively (P < 0.05). Similarly, during hypoxia with L-NMMA alone (trial 3; n = 8) FVC increased by 1.51 ± 0.46 and 0.45 ± 0.32 units in control and experimental forearms, respectively (P < 0.05). These effects were not due to altered skin blood flow. We conclude that endothelium-derived hyperpolarizing factor contributes to basal vascular tone and to hypoxia-induced skeletal muscle vasodilation and could be particularly relevant when other vasodilator systems are impaired.
Systemic hypoxia causes skeletal muscle vasodilation, thereby preserving O 2 delivery to active tissues. Nitric oxide (NO), adenosine, and prostaglandins contribute to this vasodilation, but other factors may also play a role. We tested the hypothesis that regional inhibition of endothelium-derived hyperpolarizing factor with the cytochrome P-450 2C9 antagonist fluconazole, alone or combined with the NO synthase antagonist N G -monomethyl-l-arginine (l-NMMA), attenuates hypoxia-induced vasodilation. We compared forearm blood flow (FBF) and skin blood flow before and during brachial artery infusion of fluconazole (0.3 mg/min; trial 1) or fluconazole + l-NMMA (50 mg over 10 min; trial 2) and during systemic hypoxia (10 min, arterial Po 2 ∼37 mmHg) in infused (experimental) and control forearms of 12 healthy humans. During normoxia, fluconazole and fluconazole + l-NMMA reduced ( P < 0.05) forearm vascular conductance (FVC) by ∼10% and ∼18%, respectively. During hypoxia and fluconazole ( trial 1), FVC increased by 1.76 ± 0.37 and 0.95 ± 0.35 units in control and experimental forearms, respectively ( P < 0.05). During hypoxia and fluconazole + l-NMMA ( trial 2), FVC increased by 2.32 ± 0.51 and 0.72 ± 0.22 units in control and experimental forearms, respectively ( P < 0.05). Similarly, during hypoxia with l-NMMA alone ( trial 3; n = 8) FVC increased by 1.51 ± 0.46 and 0.45 ± 0.32 units in control and experimental forearms, respectively ( P < 0.05). These effects were not due to altered skin blood flow. We conclude that endothelium-derived hyperpolarizing factor contributes to basal vascular tone and to hypoxia-induced skeletal muscle vasodilation and could be particularly relevant when other vasodilator systems are impaired.
Author Sinoway, Lawrence I
Spilk, Samson
Herr, Michael D
Leuenberger, Urs A
Author_xml – sequence: 1
  givenname: Samson
  surname: Spilk
  fullname: Spilk, Samson
  organization: Penn State Hershey Heart and Vascular Institute, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, Pennsylvania
– sequence: 2
  givenname: Michael D
  surname: Herr
  fullname: Herr, Michael D
– sequence: 3
  givenname: Lawrence I
  surname: Sinoway
  fullname: Sinoway, Lawrence I
– sequence: 4
  givenname: Urs A
  surname: Leuenberger
  fullname: Leuenberger, Urs A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24043253$$D View this record in MEDLINE/PubMed
BookMark eNpdkU1v1DAQhi1URLcLvwAJReLCJYvtcbzxBQlV5UOqxAXOluNMGi-OHWxnRfn1ZOmHgNMc5nlfzei5IGchBiTkJaM7xhr-1hzmEU0qO0rpHnacMnhCNuuG16wBdUY2FCTUkkFzTi5yPqxcs5fwjJxzQQXwBjZkvgp9LCN6t0x1j8kdsa_G2xnTHL1J7pcLN9VgbImpsjGU5LqlYK5KPFHxpzO1C_1i11T-jh6L8dW0ZOuxOpoce-dNcTFULlTjMpmQn5Ong_EZX9zPLfn24err5af6-svHz5fvr2srlCo1Y5JR2inVUuwH3tp-AME72cl9S1XDke33A5NStJZ1Bo0BBdJC1_UAlCkKW_Lurndeugl7i-vtxus5ucmkWx2N0_9ughv1TTxqaFsuZLsWvLkvSPHHgrnoyWWL3puAccmaCSmEEq3iK_r6P_QQlxTW906UlA2D1dCWwB1lU8w54fB4DKP6ZFQ_GNV_jOqT0TX16u8_HjMPCuE3uTijkw
CODEN AJPPDI
CitedBy_id crossref_primary_10_3389_fphys_2015_00387
crossref_primary_10_1113_EP085139
crossref_primary_10_1016_j_jmhi_2015_01_002
crossref_primary_10_1152_ajpheart_00784_2020
crossref_primary_10_1530_JOE_16_0666
crossref_primary_10_1371_journal_pone_0099309
crossref_primary_10_1113_JP275913
crossref_primary_10_1152_japplphysiol_00698_2020
crossref_primary_10_1097_FJC_0000000000000275
Cites_doi 10.1161/01.CIR.0000047278.28407.C2
10.1073/pnas.97.17.9747
10.1152/ajpheart.01422.2006
10.1172/JCI105513
10.1113/jphysiol.2002.030833
10.1111/j.1748-1716.2010.02217.x
10.1152/ajpheart.01079.2005
10.1016/j.phrs.2003.11.016
10.1007/s00421-007-0601-x
10.1113/jphysiol.2009.180489
10.1161/01.RES.71.4.790
10.1113/jphysiol.1991.sp018723
10.1016/j.atherosclerosis.2008.06.008
10.1111/j.1365-2125.1979.tb00940.x
10.1161/01.HYP.0000208597.87957.89
10.1161/CIRCULATIONAHA.110.990317
10.1111/j.1469-445X.1999.01884.x
10.1038/nm954
10.1152/jappl.1988.65.4.1548
10.1016/j.jacc.2006.04.074
10.1111/j.1469-7793.2001.00613.x
10.1161/01.HYP.0000246672.72188.bd
10.1152/jappl.1989.66.4.1736
10.1161/01.CIR.98.19.1990
10.1161/01.CIR.0000155238.70797.4E
10.1113/jphysiol.2011.205013
10.1152/ajpheart.1991.261.5.H1659
10.1016/j.pharmthera.2012.12.007
10.1152/japplphysiol.01443.2006
10.1161/01.HYP.0000165685.83620.31
10.1113/jphysiol.2002.023440
10.1152/ajpheart.1996.271.3.H1182
10.1152/jappl.1999.87.6.2218
10.1113/jphysiol.2007.136416
ContentType Journal Article
Copyright Copyright American Physiological Society Dec 1, 2013
Copyright © 2013 the American Physiological Society 2013 American Physiological Society
Copyright_xml – notice: Copyright American Physiological Society Dec 1, 2013
– notice: Copyright © 2013 the American Physiological Society 2013 American Physiological Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TS
7U7
8FD
C1K
FR3
P64
7X8
5PM
DOI 10.1152/ajpheart.00073.2013
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Physical Education Index
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Technology Research Database

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1539
EndPage H1645
ExternalDocumentID 3152726131
10_1152_ajpheart_00073_2013
24043253
Genre Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: C06 RR016499
– fundername: NHLBI NIH HHS
  grantid: P01 HL-09670
– fundername: NHLBI NIH HHS
  grantid: P01 HL096570
– fundername: NCATS NIH HHS
  grantid: UL1 TR000127
– fundername: NCATS NIH HHS
  grantid: UL1 TR-000127
GroupedDBID ---
23M
2WC
39C
4.4
53G
5GY
5VS
6J9
AAFWJ
ABJNI
ACBEA
ACIWK
ACPRK
ADBBV
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
BTFSW
CGR
CUY
CVF
DIK
E3Z
EBS
ECM
EIF
EJD
EMOBN
F5P
GX1
H13
ITBOX
KQ8
NPM
OK1
P2P
PQQKQ
RAP
RHF
RHI
RPL
RPRKH
TR2
UKR
W8F
WH7
WOQ
XSW
YSK
~02
AAYXX
CITATION
7QP
7QR
7TS
7U7
8FD
C1K
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c499t-116100b9980edf28cdf342b6b6780952e177f16648c1baeaa3936c3bbd3301903
ISSN 0363-6135
IngestDate Tue Sep 17 21:24:36 EDT 2024
Fri Oct 25 01:28:10 EDT 2024
Thu Oct 10 22:15:57 EDT 2024
Thu Sep 12 16:20:48 EDT 2024
Sat Sep 28 07:53:30 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords hypoxia
fluconazole
nitric oxide
vasodilation
endothelium-derived hyperpolarizing factor
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c499t-116100b9980edf28cdf342b6b6780952e177f16648c1baeaa3936c3bbd3301903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://europepmc.org/articles/pmc3882468
PMID 24043253
PQID 1466651307
PQPubID 48261
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3882468
proquest_miscellaneous_1464494892
proquest_journals_1466651307
crossref_primary_10_1152_ajpheart_00073_2013
pubmed_primary_24043253
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
– name: Bethesda, MD
PublicationTitle American journal of physiology. Heart and circulatory physiology
PublicationTitleAlternate Am J Physiol Heart Circ Physiol
PublicationYear 2013
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References 12509498 - J Physiol. 2003 Jan 1;546(Pt 1):307-14
17075035 - Hypertension. 2006 Dec;48(6):1088-94
18656197 - Atherosclerosis. 2009 Feb;202(2):330-44
17985154 - Eur J Appl Physiol. 2008 Mar;102(4):457-61
16490839 - Hypertension. 2006 Apr;47(4):629-33
10601170 - J Appl Physiol (1985). 1999 Dec;87(6):2218-24
14595407 - Nat Med. 2003 Dec;9(12):1498-505
8703649 - Br J Clin Pharmacol. 1995 Nov;40(5):453-8
4381183 - J Clin Invest. 1967 Jan;46(1):77-85
1804975 - J Physiol. 1991;440:529-45
10362845 - Exp Physiol. 1999 May;84(3):449-70
19948661 - J Physiol. 2010 Jan 15;588(Pt 2):373-85
10944233 - Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9747-52
3182518 - J Appl Physiol (1985). 1988 Oct;65(4):1548-52
1516156 - Circ Res. 1992 Oct;71(4):790-6
17615100 - J Physiol. 2007 Sep 15;583(Pt 3):835-45
21486803 - J Physiol. 2011 Apr 15;589(Pt 8):1979-90
15867133 - Hypertension. 2005 Jul;46(1):210-6
9808594 - Circulation. 1998 Nov 10;98(19):1990-2
11731591 - J Physiol. 2001 Dec 1;537(Pt 2):613-21
15699263 - Circulation. 2005 Feb 15;111(6):796-803
2732164 - J Appl Physiol (1985). 1989 Apr;66(4):1736-43
17675565 - Am J Physiol Heart Circ Physiol. 2007 Oct;293(4):H2289-95
21555712 - Circulation. 2011 May 24;123(20):2244-53
8853358 - Am J Physiol. 1996 Sep;271(3 Pt 2):H1182-5
375956 - Br J Clin Pharmacol. 1979 Apr;7(4):317-23
23333322 - Pharmacol Ther. 2013 Apr;138(1):103-41
21062421 - Acta Physiol (Oxf). 2011 Sep;203(1):99-116
12578883 - Circulation. 2003 Feb 11;107(5):769-76
12356892 - J Physiol. 2002 Oct 1;544(Pt 1):195-209
1951753 - Am J Physiol. 1991 Nov;261(5 Pt 2):H1659-64
17510298 - J Appl Physiol (1985). 2007 Aug;103(2):608-15
16339823 - Am J Physiol Heart Circ Physiol. 2006 Apr;290(4):H1347-52
15026030 - Pharmacol Res. 2004 Jun;49(6):525-33
16875977 - J Am Coll Cardiol. 2006 Aug 1;48(3):508-15
B20
B21
B22
B23
B24
B25
B26
Rowell LB (B29) 1986
B27
B28
B30
B31
B10
B32
B11
B33
B12
B34
B13
B35
B14
B36
B15
B16
B17
B18
B19
B1
B2
B3
B4
B5
B7
Blauw GJ (B6) 1995; 40
B8
B9
References_xml – ident: B1
  doi: 10.1161/01.CIR.0000047278.28407.C2
– ident: B8
  doi: 10.1073/pnas.97.17.9747
– ident: B23
  doi: 10.1152/ajpheart.01422.2006
– ident: B27
  doi: 10.1172/JCI105513
– ident: B13
  doi: 10.1113/jphysiol.2002.030833
– ident: B2
  doi: 10.1111/j.1748-1716.2010.02217.x
– ident: B5
  doi: 10.1152/ajpheart.01079.2005
– ident: B11
  doi: 10.1016/j.phrs.2003.11.016
– ident: B16
  doi: 10.1007/s00421-007-0601-x
– ident: B9
  doi: 10.1113/jphysiol.2009.180489
– ident: B22
  doi: 10.1161/01.RES.71.4.790
– start-page: 220
  volume-title: Human Circulation Regulation During Physical Stress
  year: 1986
  ident: B29
  contributor:
    fullname: Rowell LB
– volume: 40
  start-page: 453
  year: 1995
  ident: B6
  publication-title: Br J Clin Pharmacol
  contributor:
    fullname: Blauw GJ
– ident: B24
  doi: 10.1113/jphysiol.1991.sp018723
– ident: B17
  doi: 10.1016/j.atherosclerosis.2008.06.008
– ident: B28
  doi: 10.1111/j.1365-2125.1979.tb00940.x
– ident: B12
  doi: 10.1161/01.HYP.0000208597.87957.89
– ident: B25
  doi: 10.1161/CIRCULATIONAHA.110.990317
– ident: B20
  doi: 10.1111/j.1469-445X.1999.01884.x
– ident: B10
  doi: 10.1038/nm954
– ident: B31
  doi: 10.1152/jappl.1988.65.4.1548
– ident: B34
  doi: 10.1016/j.jacc.2006.04.074
– ident: B35
  doi: 10.1111/j.1469-7793.2001.00613.x
– ident: B3
  doi: 10.1161/01.HYP.0000246672.72188.bd
– ident: B30
  doi: 10.1152/jappl.1989.66.4.1736
– ident: B18
  doi: 10.1161/01.CIR.98.19.1990
– ident: B32
  doi: 10.1161/01.CIR.0000155238.70797.4E
– ident: B19
  doi: 10.1113/jphysiol.2011.205013
– ident: B14
  doi: 10.1152/ajpheart.1991.261.5.H1659
– ident: B36
  doi: 10.1016/j.pharmthera.2012.12.007
– ident: B33
  doi: 10.1152/japplphysiol.01443.2006
– ident: B4
  doi: 10.1161/01.HYP.0000165685.83620.31
– ident: B26
  doi: 10.1113/jphysiol.2002.023440
– ident: B7
  doi: 10.1152/ajpheart.1996.271.3.H1182
– ident: B15
  doi: 10.1152/jappl.1999.87.6.2218
– ident: B21
  doi: 10.1113/jphysiol.2007.136416
SSID ssj0005763
Score 2.2211947
Snippet Systemic hypoxia causes skeletal muscle vasodilation, thereby preserving O2 delivery to active tissues. Nitric oxide (NO), adenosine, and prostaglandins...
Systemic hypoxia causes skeletal muscle vasodilation, thereby preserving O 2 delivery to active tissues. Nitric oxide (NO), adenosine, and prostaglandins...
Systemic hypoxia causes skeletal muscle vasodilation, thereby preserving ... delivery to active tissues. Nitric oxide (NO), adenosine, and prostaglandins...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage H1639
SubjectTerms Adult
Aryl Hydrocarbon Hydroxylases - antagonists & inhibitors
Aryl Hydrocarbon Hydroxylases - metabolism
Biological Factors - metabolism
Blood Flow Velocity
Blood Pressure
Cardiovascular Neurohormonal Regulation
Clinical trials
Cytochrome P-450 CYP2C9
Endothelium, Vascular - metabolism
Endothelium, Vascular - physiopathology
Enzyme Inhibitors - administration & dosage
Female
Fluconazole - administration & dosage
Forearm
Heart
Heart Rate
Humans
Hypoxia
Hypoxia - metabolism
Hypoxia - physiopathology
Infusions, Intra-Arterial
Male
Muscle, Skeletal - blood supply
Musculoskeletal system
Nitric oxide
Nitric Oxide Synthase - antagonists & inhibitors
Nitric Oxide Synthase - metabolism
omega-N-Methylarginine - administration & dosage
Pulmonary Ventilation
Regional Blood Flow
Tissues
Vasodilation - drug effects
Title Endothelium-derived hyperpolarizing factor contributes to hypoxia-induced skeletal muscle vasodilation in humans
URI https://www.ncbi.nlm.nih.gov/pubmed/24043253
https://www.proquest.com/docview/1466651307
https://search.proquest.com/docview/1464494892
https://pubmed.ncbi.nlm.nih.gov/PMC3882468
Volume 305
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiEuCFoegYIWCXEJDrHXz2NUisIjqEit1Ju1tteqaWNHfrS0_x2JmV3b2aQ5QC9WEq-9tufzZL6d2W8JeRdEvp16IjFSiGUNG3gP-EEbiCtjXhrESeo6OFF4_sOdndhfT53TweCPVrXU1NE4vtk6r-QuVoXfwK44S_Y_LNufFH6Az2Bf2IKFYftPNj7ME5xAdZE1CyOBDi8hejwDYlkukbBmN7JKUi6oo0rScW0rJekArYrfGTeAkTdYAVCdw98PzotcNBV0MrrkVZFkqk4Oh0TkUn6VHsn2qR5Ne0IOk8hx-jHObypV9XqclVjsKrP5qxZa2v7iXI1NL6pVTcBMlKVW1j_6NO4PyPLiiquBdn6lRHK_9Hu_i0bVrCkonpTVaDrWhzZMtlkm0t3IUXdtErdtOavmKDEXDWGJyo6L1pEDyQZvHuienk0cHdKm5rhnEJcGWhQA35XM5e2_GAcla_mvJa44Xo9lrhNLBJneGnCyXEjUWShfZClB5HW576P5AQN-Y7v-PXLfAj-JDvrbz5XYPVBB1qXa8fZa0Sy4gI9bukdZ67av9RjrFnHarP_VAqrjx-RRy4ToVMH6CRmIfJfsTXMAyuKavqe9Oa53yYN5WwKyR5ZbQE83QE8V6KkGeloXdAP0tAM9VaCnOuhpllMF-qfk5PPh8cHMaJcNMWKg77VhAomZTKIg8CciSS0fHA6zrciNIC4DQmEJ0_NS03VtPzYjLjhn8OhjFkUJY6iswJ6RnbzIxQtCufDS1EpcsACcwkr8GNWvghhOFic8iofkQ_egw6VShwklq3assDNRKE0UoomGZL8zRti-nBVyb9d1IJT0huRtvxucPGbueC6KRraxUccpsIbkubJd319n9CHx1qzaN0AB-fU9eXYmheRb-L2885GvyMPVe7tPduqyEa8hSK-jNxLKfwGcovMc
link.rule.ids 230,315,783,787,888,27936,27937
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Endothelium-derived+hyperpolarizing+factor+contributes+to+hypoxia-induced+skeletal+muscle+vasodilation+in+humans&rft.jtitle=American+journal+of+physiology.+Heart+and+circulatory+physiology&rft.au=Spilk%2C+Samson&rft.au=Herr%2C+Michael+D.&rft.au=Sinoway%2C+Lawrence+I.&rft.au=Leuenberger%2C+Urs+A.&rft.date=2013-12-01&rft.pub=American+Physiological+Society&rft.issn=0363-6135&rft.eissn=1522-1539&rft.volume=305&rft.issue=11&rft.spage=H1639&rft.epage=H1645&rft_id=info:doi/10.1152%2Fajpheart.00073.2013&rft_id=info%3Apmid%2F24043253&rft.externalDBID=PMC3882468
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6135&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6135&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6135&client=summon