Endothelium-derived hyperpolarizing factor contributes to hypoxia-induced skeletal muscle vasodilation in humans
Systemic hypoxia causes skeletal muscle vasodilation, thereby preserving O2 delivery to active tissues. Nitric oxide (NO), adenosine, and prostaglandins contribute to this vasodilation, but other factors may also play a role. We tested the hypothesis that regional inhibition of endothelium-derived h...
Saved in:
Published in | American journal of physiology. Heart and circulatory physiology Vol. 305; no. 11; pp. H1639 - H1645 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.12.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Systemic hypoxia causes skeletal muscle vasodilation, thereby preserving O2 delivery to active tissues. Nitric oxide (NO), adenosine, and prostaglandins contribute to this vasodilation, but other factors may also play a role. We tested the hypothesis that regional inhibition of endothelium-derived hyperpolarizing factor with the cytochrome P-450 2C9 antagonist fluconazole, alone or combined with the NO synthase antagonist N(G)-monomethyl-L-arginine (L-NMMA), attenuates hypoxia-induced vasodilation. We compared forearm blood flow (FBF) and skin blood flow before and during brachial artery infusion of fluconazole (0.3 mg/min; trial 1) or fluconazole + L-NMMA (50 mg over 10 min; trial 2) and during systemic hypoxia (10 min, arterial Po2 ~37 mmHg) in infused (experimental) and control forearms of 12 healthy humans. During normoxia, fluconazole and fluconazole + L-NMMA reduced (P < 0.05) forearm vascular conductance (FVC) by ~10% and ~18%, respectively. During hypoxia and fluconazole (trial 1), FVC increased by 1.76 ± 0.37 and 0.95 ± 0.35 units in control and experimental forearms, respectively (P < 0.05). During hypoxia and fluconazole + L-NMMA (trial 2), FVC increased by 2.32 ± 0.51 and 0.72 ± 0.22 units in control and experimental forearms, respectively (P < 0.05). Similarly, during hypoxia with L-NMMA alone (trial 3; n = 8) FVC increased by 1.51 ± 0.46 and 0.45 ± 0.32 units in control and experimental forearms, respectively (P < 0.05). These effects were not due to altered skin blood flow. We conclude that endothelium-derived hyperpolarizing factor contributes to basal vascular tone and to hypoxia-induced skeletal muscle vasodilation and could be particularly relevant when other vasodilator systems are impaired. |
---|---|
AbstractList | Systemic hypoxia causes skeletal muscle vasodilation, thereby preserving ... delivery to active tissues. Nitric oxide (NO), adenosine, and prostaglandins contribute to this vasodilation, but other factors may also play a role. We tested the hypothesis that regional inhibition of endothelium-derived hyperpolarizing factor with the cytochrome P-450 2C9 antagonist fluconazole, alone or combined with the NO synthase antagonist ...-monomethyl-L-arginine (L-NMMA), attenuates hypoxia-induced vasodilation. We compared forearm blood flow (FBF) and skin blood flow before and during brachial artery infusion of fluconazole (0.3 mg/min; trial 1) or fluconazole + L-NMMA (50 mg over 10 min; trial 2) and during systemic hypoxia (10 min, arterial ... ~37 mmHg) in infused (experimental) and control forearms of 12 healthy humans. During normoxia, fluconazole and fluconazole + L-NMMA reduced (P < 0.05) forearm vascular conductance (FVC) by ~10% and ~18%, respectively. During hypoxia and fluconazole (trial 1), FVC increased by 1.76 ± 0.37 and 0.95 ± 0.35 units in control and experimental forearms, respectively (P < 0.05). During hypoxia and fluconazole + L-NMMA (trial 2), FVC increased by 2.32 ± 0.51 and 0.72 ± 0.22 units in control and experimental forearms, respectively (P < 0.05). Similarly, during hypoxia with L-NMMA alone (trial 3; n = 8) FVC increased by 1.51 ± 0.46 and 0.45 ± 0.32 units in control and experimental forearms, respectively (P < 0.05). These effects were not due to altered skin blood flow. We conclude that endothelium-derived hyperpolarizing factor contributes to basal vascular tone and to hypoxia-induced skeletal muscle vasodilation and could be particularly relevant when other vasodilator systems are impaired. (ProQuest: ... denotes formulae/symbols omitted.) Systemic hypoxia causes skeletal muscle vasodilation, thereby preserving O 2 delivery to active tissues. Nitric oxide (NO), adenosine, and prostaglandins contribute to this vasodilation, but other factors may also play a role. We tested the hypothesis that regional inhibition of endothelium-derived hyperpolarizing factor with the cytochrome P -450 2C9 antagonist fluconazole, alone or combined with the NO synthase antagonist N G -monomethyl- l -arginine ( l -NMMA), attenuates hypoxia-induced vasodilation. We compared forearm blood flow (FBF) and skin blood flow before and during brachial artery infusion of fluconazole (0.3 mg/min; trial 1 ) or fluconazole + l -NMMA (50 mg over 10 min; trial 2 ) and during systemic hypoxia (10 min, arterial P o 2 ∼37 mmHg) in infused (experimental) and control forearms of 12 healthy humans. During normoxia, fluconazole and fluconazole + l -NMMA reduced ( P < 0.05) forearm vascular conductance (FVC) by ∼10% and ∼18%, respectively. During hypoxia and fluconazole ( trial 1 ), FVC increased by 1.76 ± 0.37 and 0.95 ± 0.35 units in control and experimental forearms, respectively ( P < 0.05). During hypoxia and fluconazole + l -NMMA ( trial 2 ), FVC increased by 2.32 ± 0.51 and 0.72 ± 0.22 units in control and experimental forearms, respectively ( P < 0.05). Similarly, during hypoxia with l -NMMA alone ( trial 3 ; n = 8) FVC increased by 1.51 ± 0.46 and 0.45 ± 0.32 units in control and experimental forearms, respectively ( P < 0.05). These effects were not due to altered skin blood flow. We conclude that endothelium-derived hyperpolarizing factor contributes to basal vascular tone and to hypoxia-induced skeletal muscle vasodilation and could be particularly relevant when other vasodilator systems are impaired. Systemic hypoxia causes skeletal muscle vasodilation, thereby preserving O2 delivery to active tissues. Nitric oxide (NO), adenosine, and prostaglandins contribute to this vasodilation, but other factors may also play a role. We tested the hypothesis that regional inhibition of endothelium-derived hyperpolarizing factor with the cytochrome P-450 2C9 antagonist fluconazole, alone or combined with the NO synthase antagonist N(G)-monomethyl-L-arginine (L-NMMA), attenuates hypoxia-induced vasodilation. We compared forearm blood flow (FBF) and skin blood flow before and during brachial artery infusion of fluconazole (0.3 mg/min; trial 1) or fluconazole + L-NMMA (50 mg over 10 min; trial 2) and during systemic hypoxia (10 min, arterial Po2 ~37 mmHg) in infused (experimental) and control forearms of 12 healthy humans. During normoxia, fluconazole and fluconazole + L-NMMA reduced (P < 0.05) forearm vascular conductance (FVC) by ~10% and ~18%, respectively. During hypoxia and fluconazole (trial 1), FVC increased by 1.76 ± 0.37 and 0.95 ± 0.35 units in control and experimental forearms, respectively (P < 0.05). During hypoxia and fluconazole + L-NMMA (trial 2), FVC increased by 2.32 ± 0.51 and 0.72 ± 0.22 units in control and experimental forearms, respectively (P < 0.05). Similarly, during hypoxia with L-NMMA alone (trial 3; n = 8) FVC increased by 1.51 ± 0.46 and 0.45 ± 0.32 units in control and experimental forearms, respectively (P < 0.05). These effects were not due to altered skin blood flow. We conclude that endothelium-derived hyperpolarizing factor contributes to basal vascular tone and to hypoxia-induced skeletal muscle vasodilation and could be particularly relevant when other vasodilator systems are impaired. Systemic hypoxia causes skeletal muscle vasodilation, thereby preserving O 2 delivery to active tissues. Nitric oxide (NO), adenosine, and prostaglandins contribute to this vasodilation, but other factors may also play a role. We tested the hypothesis that regional inhibition of endothelium-derived hyperpolarizing factor with the cytochrome P-450 2C9 antagonist fluconazole, alone or combined with the NO synthase antagonist N G -monomethyl-l-arginine (l-NMMA), attenuates hypoxia-induced vasodilation. We compared forearm blood flow (FBF) and skin blood flow before and during brachial artery infusion of fluconazole (0.3 mg/min; trial 1) or fluconazole + l-NMMA (50 mg over 10 min; trial 2) and during systemic hypoxia (10 min, arterial Po 2 ∼37 mmHg) in infused (experimental) and control forearms of 12 healthy humans. During normoxia, fluconazole and fluconazole + l-NMMA reduced ( P < 0.05) forearm vascular conductance (FVC) by ∼10% and ∼18%, respectively. During hypoxia and fluconazole ( trial 1), FVC increased by 1.76 ± 0.37 and 0.95 ± 0.35 units in control and experimental forearms, respectively ( P < 0.05). During hypoxia and fluconazole + l-NMMA ( trial 2), FVC increased by 2.32 ± 0.51 and 0.72 ± 0.22 units in control and experimental forearms, respectively ( P < 0.05). Similarly, during hypoxia with l-NMMA alone ( trial 3; n = 8) FVC increased by 1.51 ± 0.46 and 0.45 ± 0.32 units in control and experimental forearms, respectively ( P < 0.05). These effects were not due to altered skin blood flow. We conclude that endothelium-derived hyperpolarizing factor contributes to basal vascular tone and to hypoxia-induced skeletal muscle vasodilation and could be particularly relevant when other vasodilator systems are impaired. |
Author | Sinoway, Lawrence I Spilk, Samson Herr, Michael D Leuenberger, Urs A |
Author_xml | – sequence: 1 givenname: Samson surname: Spilk fullname: Spilk, Samson organization: Penn State Hershey Heart and Vascular Institute, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, Pennsylvania – sequence: 2 givenname: Michael D surname: Herr fullname: Herr, Michael D – sequence: 3 givenname: Lawrence I surname: Sinoway fullname: Sinoway, Lawrence I – sequence: 4 givenname: Urs A surname: Leuenberger fullname: Leuenberger, Urs A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24043253$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkU1v1DAQhi1URLcLvwAJReLCJYvtcbzxBQlV5UOqxAXOluNMGi-OHWxnRfn1ZOmHgNMc5nlfzei5IGchBiTkJaM7xhr-1hzmEU0qO0rpHnacMnhCNuuG16wBdUY2FCTUkkFzTi5yPqxcs5fwjJxzQQXwBjZkvgp9LCN6t0x1j8kdsa_G2xnTHL1J7pcLN9VgbImpsjGU5LqlYK5KPFHxpzO1C_1i11T-jh6L8dW0ZOuxOpoce-dNcTFULlTjMpmQn5Ong_EZX9zPLfn24err5af6-svHz5fvr2srlCo1Y5JR2inVUuwH3tp-AME72cl9S1XDke33A5NStJZ1Bo0BBdJC1_UAlCkKW_Lurndeugl7i-vtxus5ucmkWx2N0_9ughv1TTxqaFsuZLsWvLkvSPHHgrnoyWWL3puAccmaCSmEEq3iK_r6P_QQlxTW906UlA2D1dCWwB1lU8w54fB4DKP6ZFQ_GNV_jOqT0TX16u8_HjMPCuE3uTijkw |
CODEN | AJPPDI |
CitedBy_id | crossref_primary_10_3389_fphys_2015_00387 crossref_primary_10_1113_EP085139 crossref_primary_10_1016_j_jmhi_2015_01_002 crossref_primary_10_1152_ajpheart_00784_2020 crossref_primary_10_1530_JOE_16_0666 crossref_primary_10_1371_journal_pone_0099309 crossref_primary_10_1113_JP275913 crossref_primary_10_1152_japplphysiol_00698_2020 crossref_primary_10_1097_FJC_0000000000000275 |
Cites_doi | 10.1161/01.CIR.0000047278.28407.C2 10.1073/pnas.97.17.9747 10.1152/ajpheart.01422.2006 10.1172/JCI105513 10.1113/jphysiol.2002.030833 10.1111/j.1748-1716.2010.02217.x 10.1152/ajpheart.01079.2005 10.1016/j.phrs.2003.11.016 10.1007/s00421-007-0601-x 10.1113/jphysiol.2009.180489 10.1161/01.RES.71.4.790 10.1113/jphysiol.1991.sp018723 10.1016/j.atherosclerosis.2008.06.008 10.1111/j.1365-2125.1979.tb00940.x 10.1161/01.HYP.0000208597.87957.89 10.1161/CIRCULATIONAHA.110.990317 10.1111/j.1469-445X.1999.01884.x 10.1038/nm954 10.1152/jappl.1988.65.4.1548 10.1016/j.jacc.2006.04.074 10.1111/j.1469-7793.2001.00613.x 10.1161/01.HYP.0000246672.72188.bd 10.1152/jappl.1989.66.4.1736 10.1161/01.CIR.98.19.1990 10.1161/01.CIR.0000155238.70797.4E 10.1113/jphysiol.2011.205013 10.1152/ajpheart.1991.261.5.H1659 10.1016/j.pharmthera.2012.12.007 10.1152/japplphysiol.01443.2006 10.1161/01.HYP.0000165685.83620.31 10.1113/jphysiol.2002.023440 10.1152/ajpheart.1996.271.3.H1182 10.1152/jappl.1999.87.6.2218 10.1113/jphysiol.2007.136416 |
ContentType | Journal Article |
Copyright | Copyright American Physiological Society Dec 1, 2013 Copyright © 2013 the American Physiological Society 2013 American Physiological Society |
Copyright_xml | – notice: Copyright American Physiological Society Dec 1, 2013 – notice: Copyright © 2013 the American Physiological Society 2013 American Physiological Society |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7QR 7TS 7U7 8FD C1K FR3 P64 7X8 5PM |
DOI | 10.1152/ajpheart.00073.2013 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Physical Education Index Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Technology Research Database Toxicology Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1539 |
EndPage | H1645 |
ExternalDocumentID | 3152726131 10_1152_ajpheart_00073_2013 24043253 |
Genre | Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: C06 RR016499 – fundername: NHLBI NIH HHS grantid: P01 HL-09670 – fundername: NHLBI NIH HHS grantid: P01 HL096570 – fundername: NCATS NIH HHS grantid: UL1 TR000127 – fundername: NCATS NIH HHS grantid: UL1 TR-000127 |
GroupedDBID | --- 23M 2WC 39C 4.4 53G 5GY 5VS 6J9 AAFWJ ABJNI ACBEA ACIWK ACPRK ADBBV AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BKOMP BTFSW CGR CUY CVF DIK E3Z EBS ECM EIF EJD EMOBN F5P GX1 H13 ITBOX KQ8 NPM OK1 P2P PQQKQ RAP RHF RHI RPL RPRKH TR2 UKR W8F WH7 WOQ XSW YSK ~02 AAYXX CITATION 7QP 7QR 7TS 7U7 8FD C1K FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c499t-116100b9980edf28cdf342b6b6780952e177f16648c1baeaa3936c3bbd3301903 |
ISSN | 0363-6135 |
IngestDate | Tue Sep 17 21:24:36 EDT 2024 Fri Oct 25 01:28:10 EDT 2024 Thu Oct 10 22:15:57 EDT 2024 Thu Sep 12 16:20:48 EDT 2024 Sat Sep 28 07:53:30 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | hypoxia fluconazole nitric oxide vasodilation endothelium-derived hyperpolarizing factor |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c499t-116100b9980edf28cdf342b6b6780952e177f16648c1baeaa3936c3bbd3301903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://europepmc.org/articles/pmc3882468 |
PMID | 24043253 |
PQID | 1466651307 |
PQPubID | 48261 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3882468 proquest_miscellaneous_1464494892 proquest_journals_1466651307 crossref_primary_10_1152_ajpheart_00073_2013 pubmed_primary_24043253 |
PublicationCentury | 2000 |
PublicationDate | 2013-12-01 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda – name: Bethesda, MD |
PublicationTitle | American journal of physiology. Heart and circulatory physiology |
PublicationTitleAlternate | Am J Physiol Heart Circ Physiol |
PublicationYear | 2013 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | 12509498 - J Physiol. 2003 Jan 1;546(Pt 1):307-14 17075035 - Hypertension. 2006 Dec;48(6):1088-94 18656197 - Atherosclerosis. 2009 Feb;202(2):330-44 17985154 - Eur J Appl Physiol. 2008 Mar;102(4):457-61 16490839 - Hypertension. 2006 Apr;47(4):629-33 10601170 - J Appl Physiol (1985). 1999 Dec;87(6):2218-24 14595407 - Nat Med. 2003 Dec;9(12):1498-505 8703649 - Br J Clin Pharmacol. 1995 Nov;40(5):453-8 4381183 - J Clin Invest. 1967 Jan;46(1):77-85 1804975 - J Physiol. 1991;440:529-45 10362845 - Exp Physiol. 1999 May;84(3):449-70 19948661 - J Physiol. 2010 Jan 15;588(Pt 2):373-85 10944233 - Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9747-52 3182518 - J Appl Physiol (1985). 1988 Oct;65(4):1548-52 1516156 - Circ Res. 1992 Oct;71(4):790-6 17615100 - J Physiol. 2007 Sep 15;583(Pt 3):835-45 21486803 - J Physiol. 2011 Apr 15;589(Pt 8):1979-90 15867133 - Hypertension. 2005 Jul;46(1):210-6 9808594 - Circulation. 1998 Nov 10;98(19):1990-2 11731591 - J Physiol. 2001 Dec 1;537(Pt 2):613-21 15699263 - Circulation. 2005 Feb 15;111(6):796-803 2732164 - J Appl Physiol (1985). 1989 Apr;66(4):1736-43 17675565 - Am J Physiol Heart Circ Physiol. 2007 Oct;293(4):H2289-95 21555712 - Circulation. 2011 May 24;123(20):2244-53 8853358 - Am J Physiol. 1996 Sep;271(3 Pt 2):H1182-5 375956 - Br J Clin Pharmacol. 1979 Apr;7(4):317-23 23333322 - Pharmacol Ther. 2013 Apr;138(1):103-41 21062421 - Acta Physiol (Oxf). 2011 Sep;203(1):99-116 12578883 - Circulation. 2003 Feb 11;107(5):769-76 12356892 - J Physiol. 2002 Oct 1;544(Pt 1):195-209 1951753 - Am J Physiol. 1991 Nov;261(5 Pt 2):H1659-64 17510298 - J Appl Physiol (1985). 2007 Aug;103(2):608-15 16339823 - Am J Physiol Heart Circ Physiol. 2006 Apr;290(4):H1347-52 15026030 - Pharmacol Res. 2004 Jun;49(6):525-33 16875977 - J Am Coll Cardiol. 2006 Aug 1;48(3):508-15 B20 B21 B22 B23 B24 B25 B26 Rowell LB (B29) 1986 B27 B28 B30 B31 B10 B32 B11 B33 B12 B34 B13 B35 B14 B36 B15 B16 B17 B18 B19 B1 B2 B3 B4 B5 B7 Blauw GJ (B6) 1995; 40 B8 B9 |
References_xml | – ident: B1 doi: 10.1161/01.CIR.0000047278.28407.C2 – ident: B8 doi: 10.1073/pnas.97.17.9747 – ident: B23 doi: 10.1152/ajpheart.01422.2006 – ident: B27 doi: 10.1172/JCI105513 – ident: B13 doi: 10.1113/jphysiol.2002.030833 – ident: B2 doi: 10.1111/j.1748-1716.2010.02217.x – ident: B5 doi: 10.1152/ajpheart.01079.2005 – ident: B11 doi: 10.1016/j.phrs.2003.11.016 – ident: B16 doi: 10.1007/s00421-007-0601-x – ident: B9 doi: 10.1113/jphysiol.2009.180489 – ident: B22 doi: 10.1161/01.RES.71.4.790 – start-page: 220 volume-title: Human Circulation Regulation During Physical Stress year: 1986 ident: B29 contributor: fullname: Rowell LB – volume: 40 start-page: 453 year: 1995 ident: B6 publication-title: Br J Clin Pharmacol contributor: fullname: Blauw GJ – ident: B24 doi: 10.1113/jphysiol.1991.sp018723 – ident: B17 doi: 10.1016/j.atherosclerosis.2008.06.008 – ident: B28 doi: 10.1111/j.1365-2125.1979.tb00940.x – ident: B12 doi: 10.1161/01.HYP.0000208597.87957.89 – ident: B25 doi: 10.1161/CIRCULATIONAHA.110.990317 – ident: B20 doi: 10.1111/j.1469-445X.1999.01884.x – ident: B10 doi: 10.1038/nm954 – ident: B31 doi: 10.1152/jappl.1988.65.4.1548 – ident: B34 doi: 10.1016/j.jacc.2006.04.074 – ident: B35 doi: 10.1111/j.1469-7793.2001.00613.x – ident: B3 doi: 10.1161/01.HYP.0000246672.72188.bd – ident: B30 doi: 10.1152/jappl.1989.66.4.1736 – ident: B18 doi: 10.1161/01.CIR.98.19.1990 – ident: B32 doi: 10.1161/01.CIR.0000155238.70797.4E – ident: B19 doi: 10.1113/jphysiol.2011.205013 – ident: B14 doi: 10.1152/ajpheart.1991.261.5.H1659 – ident: B36 doi: 10.1016/j.pharmthera.2012.12.007 – ident: B33 doi: 10.1152/japplphysiol.01443.2006 – ident: B4 doi: 10.1161/01.HYP.0000165685.83620.31 – ident: B26 doi: 10.1113/jphysiol.2002.023440 – ident: B7 doi: 10.1152/ajpheart.1996.271.3.H1182 – ident: B15 doi: 10.1152/jappl.1999.87.6.2218 – ident: B21 doi: 10.1113/jphysiol.2007.136416 |
SSID | ssj0005763 |
Score | 2.2211947 |
Snippet | Systemic hypoxia causes skeletal muscle vasodilation, thereby preserving O2 delivery to active tissues. Nitric oxide (NO), adenosine, and prostaglandins... Systemic hypoxia causes skeletal muscle vasodilation, thereby preserving O 2 delivery to active tissues. Nitric oxide (NO), adenosine, and prostaglandins... Systemic hypoxia causes skeletal muscle vasodilation, thereby preserving ... delivery to active tissues. Nitric oxide (NO), adenosine, and prostaglandins... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | H1639 |
SubjectTerms | Adult Aryl Hydrocarbon Hydroxylases - antagonists & inhibitors Aryl Hydrocarbon Hydroxylases - metabolism Biological Factors - metabolism Blood Flow Velocity Blood Pressure Cardiovascular Neurohormonal Regulation Clinical trials Cytochrome P-450 CYP2C9 Endothelium, Vascular - metabolism Endothelium, Vascular - physiopathology Enzyme Inhibitors - administration & dosage Female Fluconazole - administration & dosage Forearm Heart Heart Rate Humans Hypoxia Hypoxia - metabolism Hypoxia - physiopathology Infusions, Intra-Arterial Male Muscle, Skeletal - blood supply Musculoskeletal system Nitric oxide Nitric Oxide Synthase - antagonists & inhibitors Nitric Oxide Synthase - metabolism omega-N-Methylarginine - administration & dosage Pulmonary Ventilation Regional Blood Flow Tissues Vasodilation - drug effects |
Title | Endothelium-derived hyperpolarizing factor contributes to hypoxia-induced skeletal muscle vasodilation in humans |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24043253 https://www.proquest.com/docview/1466651307 https://search.proquest.com/docview/1464494892 https://pubmed.ncbi.nlm.nih.gov/PMC3882468 |
Volume | 305 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiEuCFoegYIWCXEJDrHXz2NUisIjqEit1Ju1tteqaWNHfrS0_x2JmV3b2aQ5QC9WEq-9tufzZL6d2W8JeRdEvp16IjFSiGUNG3gP-EEbiCtjXhrESeo6OFF4_sOdndhfT53TweCPVrXU1NE4vtk6r-QuVoXfwK44S_Y_LNufFH6Az2Bf2IKFYftPNj7ME5xAdZE1CyOBDi8hejwDYlkukbBmN7JKUi6oo0rScW0rJekArYrfGTeAkTdYAVCdw98PzotcNBV0MrrkVZFkqk4Oh0TkUn6VHsn2qR5Ne0IOk8hx-jHObypV9XqclVjsKrP5qxZa2v7iXI1NL6pVTcBMlKVW1j_6NO4PyPLiiquBdn6lRHK_9Hu_i0bVrCkonpTVaDrWhzZMtlkm0t3IUXdtErdtOavmKDEXDWGJyo6L1pEDyQZvHuienk0cHdKm5rhnEJcGWhQA35XM5e2_GAcla_mvJa44Xo9lrhNLBJneGnCyXEjUWShfZClB5HW576P5AQN-Y7v-PXLfAj-JDvrbz5XYPVBB1qXa8fZa0Sy4gI9bukdZ67av9RjrFnHarP_VAqrjx-RRy4ToVMH6CRmIfJfsTXMAyuKavqe9Oa53yYN5WwKyR5ZbQE83QE8V6KkGeloXdAP0tAM9VaCnOuhpllMF-qfk5PPh8cHMaJcNMWKg77VhAomZTKIg8CciSS0fHA6zrciNIC4DQmEJ0_NS03VtPzYjLjhn8OhjFkUJY6iswJ6RnbzIxQtCufDS1EpcsACcwkr8GNWvghhOFic8iofkQ_egw6VShwklq3assDNRKE0UoomGZL8zRti-nBVyb9d1IJT0huRtvxucPGbueC6KRraxUccpsIbkubJd319n9CHx1qzaN0AB-fU9eXYmheRb-L2885GvyMPVe7tPduqyEa8hSK-jNxLKfwGcovMc |
link.rule.ids | 230,315,783,787,888,27936,27937 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Endothelium-derived+hyperpolarizing+factor+contributes+to+hypoxia-induced+skeletal+muscle+vasodilation+in+humans&rft.jtitle=American+journal+of+physiology.+Heart+and+circulatory+physiology&rft.au=Spilk%2C+Samson&rft.au=Herr%2C+Michael+D.&rft.au=Sinoway%2C+Lawrence+I.&rft.au=Leuenberger%2C+Urs+A.&rft.date=2013-12-01&rft.pub=American+Physiological+Society&rft.issn=0363-6135&rft.eissn=1522-1539&rft.volume=305&rft.issue=11&rft.spage=H1639&rft.epage=H1645&rft_id=info:doi/10.1152%2Fajpheart.00073.2013&rft_id=info%3Apmid%2F24043253&rft.externalDBID=PMC3882468 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6135&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6135&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6135&client=summon |