Contraction of myofibroblasts in granulation tissue is dependent on Rho/Rho kinase/myosin light chain phosphatase activity

ABSTRACT During wound healing and fibrocontractive diseases fibroblasts acquire a smooth muscle cell‐like phenotype by differentiating into contractile force generating myofibroblasts. We examined whether regulation of myofibroblast contraction in granulation tissue is dominated by Ca2+‐induced phos...

Full description

Saved in:
Bibliographic Details
Published inWound repair and regeneration Vol. 14; no. 3; pp. 313 - 320
Main Authors Tomasek, James J., Vaughan, Melville B., Kropp, Bradley P., Gabbiani, Giulio, Martin, Michael D., Haaksma, Carol J., Hinz, Boris
Format Journal Article
LanguageEnglish
Published Malden, USA Blackwell Publishing Inc 01.05.2006
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT During wound healing and fibrocontractive diseases fibroblasts acquire a smooth muscle cell‐like phenotype by differentiating into contractile force generating myofibroblasts. We examined whether regulation of myofibroblast contraction in granulation tissue is dominated by Ca2+‐induced phosphorylation of myosin light chain kinase or by Rho/Rho kinase (ROCK)‐mediated inhibition of myosin light chain phosphatase, similar to that of cultured myofibroblasts. Strips of granulation tissue obtained from rat granuloma pouches were stimulated with endothelin‐1 (ET‐1), serotonin, and angiotensin‐II and isometric force generation was measured. We here investigated ET‐1 in depth, because it was the only agonist that produced a long‐lasting and strong response. The ROCK inhibitor Y27632 completely inhibited ET‐1–promoted contraction and the phosphatase inhibitor calyculin elicited contraction in the absence of any other agonists, suggesting that activation of the Rho/ROCK/myosn light chain phosphatase pathway is critical in regulating in vivo myofibroblast contraction. Membrane depolarization with K+ also stimulated a long‐lasting contraction of granulation tissue; however, the amount of force generated was significantly less compared to ET‐1. Moreover, K+‐induced contraction was inhibited by Y27632. These results are consistent with inhibition of myosin light chain phosphatase by the Rho/ROCK signaling pathway, which would account for the long‐duration contraction of myofibroblasts necessary for wound closure.
AbstractList ABSTRACT During wound healing and fibrocontractive diseases fibroblasts acquire a smooth muscle cell‐like phenotype by differentiating into contractile force generating myofibroblasts. We examined whether regulation of myofibroblast contraction in granulation tissue is dominated by Ca2+‐induced phosphorylation of myosin light chain kinase or by Rho/Rho kinase (ROCK)‐mediated inhibition of myosin light chain phosphatase, similar to that of cultured myofibroblasts. Strips of granulation tissue obtained from rat granuloma pouches were stimulated with endothelin‐1 (ET‐1), serotonin, and angiotensin‐II and isometric force generation was measured. We here investigated ET‐1 in depth, because it was the only agonist that produced a long‐lasting and strong response. The ROCK inhibitor Y27632 completely inhibited ET‐1–promoted contraction and the phosphatase inhibitor calyculin elicited contraction in the absence of any other agonists, suggesting that activation of the Rho/ROCK/myosn light chain phosphatase pathway is critical in regulating in vivo myofibroblast contraction. Membrane depolarization with K+ also stimulated a long‐lasting contraction of granulation tissue; however, the amount of force generated was significantly less compared to ET‐1. Moreover, K+‐induced contraction was inhibited by Y27632. These results are consistent with inhibition of myosin light chain phosphatase by the Rho/ROCK signaling pathway, which would account for the long‐duration contraction of myofibroblasts necessary for wound closure.
During wound healing and fibrocontractive diseases fibroblasts acquire a smooth muscle cell-like phenotype by differentiating into contractile force generating myofibroblasts. We examined whether regulation of myofibroblast contraction in granulation tissue is dominated by Ca2+-induced phosphorylation of myosin light chain kinase or by Rho/Rho kinase (ROCK)-mediated inhibition of myosin light chain phosphatase, similar to that of cultured myofibroblasts. Strips of granulation tissue obtained from rat granuloma pouches were stimulated with endothelin-1 (ET-1), serotonin, and angiotensin-II and isometric force generation was measured. We here investigated ET-1 in depth, because it was the only agonist that produced a long-lasting and strong response. The ROCK inhibitor Y27632 completely inhibited ET-1-promoted contraction and the phosphatase inhibitor calyculin elicited contraction in the absence of any other agonists, suggesting that activation of the Rho/ROCK/myosn light chain phosphatase pathway is critical in regulating in vivo myofibroblast contraction. Membrane depolarization with K+ also stimulated a long-lasting contraction of granulation tissue; however, the amount of force generated was significantly less compared to ET-1. Moreover, K+-induced contraction was inhibited by Y27632. These results are consistent with inhibition of myosin light chain phosphatase by the Rho/ROCK signaling pathway, which would account for the long-duration contraction of myofibroblasts necessary for wound closure.
During wound healing and fibrocontractive diseases fibroblasts acquire a smooth muscle cell‐like phenotype by differentiating into contractile force generating myofibroblasts. We examined whether regulation of myofibroblast contraction in granulation tissue is dominated by Ca 2+ ‐induced phosphorylation of myosin light chain kinase or by Rho/Rho kinase (ROCK)‐mediated inhibition of myosin light chain phosphatase, similar to that of cultured myofibroblasts. Strips of granulation tissue obtained from rat granuloma pouches were stimulated with endothelin‐1 (ET‐1), serotonin, and angiotensin‐II and isometric force generation was measured. We here investigated ET‐1 in depth, because it was the only agonist that produced a long‐lasting and strong response. The ROCK inhibitor Y27632 completely inhibited ET‐1–promoted contraction and the phosphatase inhibitor calyculin elicited contraction in the absence of any other agonists, suggesting that activation of the Rho/ROCK/myosn light chain phosphatase pathway is critical in regulating in vivo myofibroblast contraction. Membrane depolarization with K + also stimulated a long‐lasting contraction of granulation tissue; however, the amount of force generated was significantly less compared to ET‐1. Moreover, K + ‐induced contraction was inhibited by Y27632. These results are consistent with inhibition of myosin light chain phosphatase by the Rho/ROCK signaling pathway, which would account for the long‐duration contraction of myofibroblasts necessary for wound closure.
Author Tomasek, James J.
Hinz, Boris
Vaughan, Melville B.
Kropp, Bradley P.
Martin, Michael D.
Haaksma, Carol J.
Gabbiani, Giulio
Author_xml – sequence: 1
  givenname: James J.
  surname: Tomasek
  fullname: Tomasek, James J.
  organization: Department of Cell Biology
– sequence: 2
  givenname: Melville B.
  surname: Vaughan
  fullname: Vaughan, Melville B.
  organization: Department of Cell Biology
– sequence: 3
  givenname: Bradley P.
  surname: Kropp
  fullname: Kropp, Bradley P.
  organization: Department of Urology, University of Oklahoma-Health Sciences Center, Oklahoma City, Oklahoma
– sequence: 4
  givenname: Giulio
  surname: Gabbiani
  fullname: Gabbiani, Giulio
  organization: Department of Pathology, Centre Medical Universitaire, University of Geneva, Geneva, Switzerland, and
– sequence: 5
  givenname: Michael D.
  surname: Martin
  fullname: Martin, Michael D.
  organization: Department of Cell Biology
– sequence: 6
  givenname: Carol J.
  surname: Haaksma
  fullname: Haaksma, Carol J.
  organization: Department of Cell Biology
– sequence: 7
  givenname: Boris
  surname: Hinz
  fullname: Hinz, Boris
  organization: Laboratory of Cell Biophysics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16808810$$D View this record in MEDLINE/PubMed
BookMark eNqNkF2L1DAYhYOsuB_6FyRX3rXzph9pAt5IcceFQaEoK96ENJNuM9tJapPqjL9-051Bbw2EHN6c57xwrtGFdVYjhAmkJJ7VLiVVkSeUAE8zAJoCkIymhxfoipRZkRRV-f0iaqBVQnhWXaJr73cAUJacvUKXhDJgjMAV-lM7GyapgnEWuw7vj64z7eTaQfrgsbH4YZJ2HuSzIRjvZ42Nx1s9arvVNuA4bnq3ihc_Giu9XsUMH8HBPPQBq15GPfbOj70M8Rsvy36ZcHyNXnZy8PrN-b1B324_fq0_JZsv67v6wyZRBec0KagmSvOStkULnHK6jKVUXU5URlqiFGFAlaQdzbouy8pWV7oEkBJaRlmR36B3p9xxcj9n7YPYG6_0MEir3ewFZSWv8nwxspNRTc77SXdinMxeTkdBQCy9i51YehdL72LpXTz3Lg4RfXveMbd7vf0HnouOhvcnw28z6ON_B4v7poki4skJNz7ow19cTo-CVnlVivvPa7Fp1nUD61r8yJ8A9oGlCQ
CitedBy_id crossref_primary_10_1016_j_bbamcr_2015_09_013
crossref_primary_10_1016_j_jacc_2009_04_018
crossref_primary_10_1091_mbc_e11_04_0335
crossref_primary_10_1097_01_ASW_0000513149_43488_56
crossref_primary_10_1016_j_ajpath_2014_12_005
crossref_primary_10_3390_cancers13061466
crossref_primary_10_1074_jbc_M110_126227
crossref_primary_10_1242_jcs_066795
crossref_primary_10_1097_SAP_0000000000000150
crossref_primary_10_1089_ars_2013_5294
crossref_primary_10_1242_jcs_024521
crossref_primary_10_1016_j_jbiomech_2008_07_033
crossref_primary_10_1513_pats_201202_017AW
crossref_primary_10_1016_j_ejphar_2023_175991
crossref_primary_10_1016_j_pupt_2013_07_008
crossref_primary_10_1016_j_ddstr_2008_06_001
crossref_primary_10_3892_ijo_2013_2100
crossref_primary_10_1016_j_ajpath_2011_08_018
crossref_primary_10_1016_j_cryobiol_2007_05_001
crossref_primary_10_18632_oncotarget_21234
crossref_primary_10_3390_biom11071019
crossref_primary_10_1021_acsbiomaterials_6b00082
crossref_primary_10_3390_biology2020555
crossref_primary_10_1016_j_matbio_2024_02_009
crossref_primary_10_1002_jcp_25879
crossref_primary_10_1111_wrr_12321
crossref_primary_10_1016_j_ejphar_2021_174013
crossref_primary_10_1016_j_jbc_2021_101530
crossref_primary_10_1111_j_1365_2613_2011_00764_x
crossref_primary_10_1016_j_exer_2023_109745
crossref_primary_10_1097_MAT_0b013e3181b1840f
crossref_primary_10_1203_PDR_0b013e31816a7453
crossref_primary_10_3390_biom11081095
crossref_primary_10_1111_j_1742_4658_2008_06506_x
crossref_primary_10_1007_s00109_014_1211_9
crossref_primary_10_1016_j_jmbbm_2018_03_042
crossref_primary_10_3390_vetsci10010044
crossref_primary_10_1152_ajpcell_00173_2007
crossref_primary_10_1111_anae_12752
crossref_primary_10_3727_096368912X659899
crossref_primary_10_1091_mbc_E21_03_0096
crossref_primary_10_1016_j_yexcr_2010_04_033
crossref_primary_10_1371_journal_pone_0222683
crossref_primary_10_1186_1479_5876_10_171
crossref_primary_10_1002_jcb_24806
crossref_primary_10_1016_j_bbcan_2020_188356
crossref_primary_10_1091_mbc_e08_10_0994
crossref_primary_10_2353_ajpath_2007_070112
crossref_primary_10_4161_chan_24328
crossref_primary_10_1007_s12265_012_9397_0
crossref_primary_10_1038_jid_2012_192
crossref_primary_10_1186_s13578_019_0362_3
crossref_primary_10_1016_j_ijbiomac_2021_04_169
crossref_primary_10_1016_j_yjmcc_2015_12_016
crossref_primary_10_1007_s12668_023_01091_4
crossref_primary_10_12688_f1000research_8190_1
crossref_primary_10_4103_ijo_IJO_2417_21
crossref_primary_10_1016_j_biomaterials_2018_09_012
crossref_primary_10_1101_cshperspect_a041231
crossref_primary_10_1016_j_cophys_2022_100556
crossref_primary_10_1021_acs_jmedchem_8b01772
crossref_primary_10_3390_cancers14092261
crossref_primary_10_1016_j_biomaterials_2020_119853
crossref_primary_10_1165_rcmb_2012_0335OC
crossref_primary_10_11131_2017_101299
crossref_primary_10_1089_wound_2012_0393
crossref_primary_10_1016_j_burns_2021_01_004
crossref_primary_10_1097_IJG_0000000000001698
crossref_primary_10_1007_s11302_022_09900_3
crossref_primary_10_1016_j_ijcard_2018_02_096
crossref_primary_10_1111_prd_12030
crossref_primary_10_3389_fphar_2020_581455
Cites_doi 10.1016/S0014-5793(99)00550-5
10.1016/S0002-9440(10)61776-2
10.1016/S0021-9258(18)42092-3
10.1083/jcb.153.3.569
10.1091/mbc.8.11.2329
10.1074/jbc.M011634200
10.1074/jbc.272.40.25121
10.1083/jcb.124.4.401
10.1016/j.yexcr.2004.05.005
10.1038/nrm809
10.1042/bj20020522
10.1083/jcb.147.5.1023
10.1016/S0014-5793(01)02277-3
10.1001/jama.1953.63690130001006
10.1006/bbrc.2000.3225
10.1002/cm.970290405
10.1016/S0021-9258(18)43828-8
10.1126/science.273.5272.245
10.1540/jsmr.40.219
10.1006/excr.1999.4543
10.1016/S0014-5793(00)01654-9
10.1007/s001090050106
10.1016/S0167-4889(98)00105-0
10.1074/jbc.M102753200
10.1152/ajpcell.2001.280.6.C1669
10.1038/40187
10.1016/0092-8674(92)90163-7
10.1042/bj20020191
10.1084/jem.135.4.719
10.1007/BF02147594
10.1091/mbc.E02-07-0427
10.1146/annurev.cellbio.12.1.463
10.1046/j.1365-2443.1998.00181.x
10.1093/oxfordjournals.jbchem.a124993
10.1590/S0100-879X2002000900001
ContentType Journal Article
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1111/j.1743-6109.2006.00126.x
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1524-475X
EndPage 320
ExternalDocumentID 10_1111_j_1743_6109_2006_00126_x
16808810
WRR126
ark_67375_WNG_LRGCR0GC_Z
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM60651
GroupedDBID ---
.3N
.GA
.Y3
04C
05W
0R~
10A
123
1OB
1OC
29R
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACSCC
ACXBN
ACXQS
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOJX
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
CYRXZ
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EAS
EBC
EBD
EBS
ECF
ECT
ECV
EIHBH
EJD
EMB
EMK
EMOBN
ENC
EPT
ESX
EX3
F00
F01
F04
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQ9
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
ACRPL
ACYXJ
CITATION
7X8
ID FETCH-LOGICAL-c4996-46e1ce956b4b09696c499aacf31c21b1cc1806ca6f62ff225be7e500aa0b86843
IEDL.DBID DR2
ISSN 1067-1927
IngestDate Wed Dec 04 15:10:29 EST 2024
Fri Dec 06 01:10:55 EST 2024
Sat Sep 28 07:42:57 EDT 2024
Sat Aug 24 00:58:04 EDT 2024
Wed Oct 30 09:50:35 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4996-46e1ce956b4b09696c499aacf31c21b1cc1806ca6f62ff225be7e500aa0b86843
Notes ArticleID:WRR126
ark:/67375/WNG-LRGCR0GC-Z
istex:7F90CD593DB2ADB9EF00F53D1E1F5688C471F4C2

*
Current address: Department of Neurosurgery, University of Oklahoma‐Health Sciences Center, Oklahoma City, OK.
Current address: Department of Biology, University of Central Oklahoma, Edmond, OK.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 16808810
PQID 68597334
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_68597334
crossref_primary_10_1111_j_1743_6109_2006_00126_x
pubmed_primary_16808810
wiley_primary_10_1111_j_1743_6109_2006_00126_x_WRR126
istex_primary_ark_67375_WNG_LRGCR0GC_Z
PublicationCentury 2000
PublicationDate 2006-05
May–June 2006
2006 May-Jun
2006-05-00
20060501
PublicationDateYYYYMMDD 2006-05-01
PublicationDate_xml – month: 05
  year: 2006
  text: 2006-05
PublicationDecade 2000
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: United States
PublicationTitle Wound repair and regeneration
PublicationTitleAlternate Wound Repair Regen
PublicationYear 2006
Publisher Blackwell Publishing Inc
Publisher_xml – name: Blackwell Publishing Inc
References Burridge K, Chrzanowska-Wodnicka M. Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 1996; 12: 463-518.
Hirano K, Hirano M, Kanaide H. Regulation of myosin phosphorylation and myofilament Ca(2+) sensitivity in vascular smooth muscle. J Smooth Muscle Res 2004; 40: 219-36.
Serini G, Gabbiani G. Mechanisms of myofibroblast activity and phenotypic modulation. Exp Cell Res 1999; 250: 273-83.
Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 1996; 273: 245-8.
Kawano Y, Fukata Y, Oshiro N, Amano M, Nakamura T, Ito M, Matsumura F, Inagaki M, Kaibuchi K. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J Cell Biol 1999; 147: 1023-38.
Deng JT, Van Lierop JE, Sutherland C, Walsh MP. Ca2+-independent smooth muscle contraction. A novel function for integrin-linked kinase. J Biol Chem 2001; 276: 16365-73.
Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, Narumiya S. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 1997; 389: 990-4.
Appleton I, Tomlinson A, Chander CL, Willoughby DA. Effect of endothelin-1 on croton oil-induced granulation tissue in the rat. A pharmacologic and immunohistochemical study. Lab Invest 1992; 67: 703-10.
Majno G, Gabbiani G, Hirschel BJ, Ryan GB, Statkov PR. Contraction of granulation tissue in vitro: similarity to smooth muscle. Science 1971; 173: 548-50.
Selye H. On the mechanism through which hydrocortisone affects the resistance of tissue to injury. J Am Med Assoc 1953; 152: 1207-13.
Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 2002; 3: 349-63.
Watson S, Burnside T, Carver W. Angiotensin II-stimulated collagen gel contraction by heart fibroblasts: role of the AT1 receptor and tyrosine kinase activity. J Cell Physiol 1998; 177: 224-31.
Chihara K, Amano M, Nakamura N, Yano T, Shibata M, Tokui T, Ichikawa H, Ikebe R, Ikebe M, Kaibuchi K. Cytoskeletal rearrangements and transcriptional activation of c-fos serum response element by Rho-kinase. J Biol Chem 1997; 272: 25121-7.
Touyz RM, Berry C. Recent advances in angiotensin II signaling. Braz J Med Biol Res 2002; 35: 1001-15.
Grinnell F. Fibroblasts, myofibroblasts, and wound contraction. J Cell Biol 1994; 124: 401-4.
Volberg T, Geiger B, Citi S, Bershadsky AD. Effect of protein kinase inhibitor H-7 on the contractility, integrity, and membrane anchorage of the microfilament system. Cell Motil Cytoskeleton 1994; 29: 321-38.
Ishihara H, Martin BL, Brautigan DL, Karaki H, Ozaki H, Kato Y, Fusetani N, Watabe S, Hashimoto R, Uemura D. Calyculin A and okadaic acid: inhibitors of protein phosphatase activity. Biochem Biophys Res Commun 1989; 159: 871-7.
Hersch E, Huang J, Grider JR, Murthy KS. Gq/G13 signaling by ET-1 in smooth muscle: MYPT1 phosphorylation via ETA and CPI-17 dephosphorylation via ETB. Am J Physiol Cell Physiol 2004; 287: C1209-18.
Hartshorne DJ, Ito M, Erdodi F. Myosin light chain phosphatase: subunit composition, interactions and regulation. J Muscle Res Cell Motil 1998; 19: 325-41.
MacDonald JA, Eto M, Borman MA, Brautigan DL, Haystead TA. Dual Ser and Thr phosphorylation of CPI-17, an inhibitor of myosin phosphatase, by MYPT-associated kinase. FEBS Lett 2001; 493: 91-4.
Yamashiro S, Totsukawa G, Yamakita Y, Sasaki Y, Madaule P, Ishizaki T, Narumiya S, Matsumura F. Citron kinase, a Rho-dependent kinase, induces di-phosphorylation of regulatory light chain of myosin II. Mol Biol Cell 2003; 14: 1745-56.
Zhong C, Kinch MS, Burridge K. Rho-stimulated contractility contributes to the fibroblastic phenotype of Ras-transformed epithelial cells. Mol Biol Cell 1997; 8: 2329-44.
Hamaguchi T, Ito M, Feng J, Seko T, Koyama M, Machida H, Takase K, Amano M, Kaibuchi K, Hartshorne DJ, Nakano T. Phosphorylation of CPI-17, an inhibitor of myosin phosphatase, by protein kinase N. Biochem Biophys Res Commun 2000; 274: 825-30.
Hinz B, Mastrangelo D, Iselin CE, Chaponnier C, Gabbiani G. Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am J Pathol 2001; 159: 1009-20.
Parizi M, Howard EW, Tomasek JJ. Regulation of LPA-promoted myofibroblast contraction: role of Rho, myosin light chain kinase, and myosin light chain phosphatase. Exp Cell Res 2000; 254: 210-20.
Eto M, Ohmori T, Suzuki M, Furuya K, Morita F. A novel protein phosphatase-1 inhibitory protein potentiated by protein kinase C. Isolation from porcine aorta media and characterization. J Biochem (Tokyo) 1995; 118: 1104-7.
Murata-Hori M, Suizu F, Iwasaki T, Kikuchi A, Hosoya H. ZIP kinase identified as a novel myosin regulatory light chain kinase in HeLa cells. FEBS Lett 1999; 451: 81-4.
Gong MC, Cohen P, Kitazawa T, Ikebe M, Masuo M, Somlyo AP, Somlyo AV. Myosin light chain phosphatase activities and the effects of phosphatase inhibitors in tonic and phasic smooth muscle. J Biol Chem 1992; 267: 14662-8.
Niiro N, Ikebe M. Zipper-interacting protein kinase induces Ca(2+)-free smooth muscle contraction via myosin light chain phosphorylation. J Biol Chem 2001; 276: 29567-74.
Nickenig G, Geisen G, Vetter H, Sachinidis A. Characterization of angiotensin receptors on human skin fibroblasts. J Mol Med 1997; 75: 217-22.
Katoh K, Kano Y, Amano M, Kaibuchi K, Fujiwara K. Stress fiber organization regulated by MLCK and Rho-kinase in cultured human fibroblasts. Am J Physiol Cell Physiol 2001; 280: C1669-79.
Katoh K, Kano Y, Amano M, Onishi H, Kaibuchi K, Fujiwara K. Rho-kinase-mediated contraction of isolated stress fibers. J Cell Biol 2001; 153: 569-84.
Darby I, Skalli O, Gabbiani G. Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 1990; 63: 21-9.
Anderson S, DiCesare L, Tan I, Leung T, SundarRaj N. Rho-mediated assembly of stress fibers is differentially regulated in corneal fibroblasts and myofibroblasts. Exp Cell Res 2004; 298: 574-83.
Goto T, Yanaga F, Ohtsuki I. Studies on the endothelin-1-induced contraction of rat granulation tissue pouch mediated by myofibroblasts. Biochim Biophys Acta 1998; 1405: 55-66.
Mita M, Yanagihara H, Hishinuma S, Saito M, Walsh MP. Membrane depolarization-induced contraction of rat caudal arterial smooth muscle involves Rho-associated kinase. Biochem J 2002; 364: 431-40.
Gabbiani G, Hirschel BJ, Ryan GB, Statkov PR, Majno G. Granulation tissue as a contractile organ. A study of structure and function. J Exp Med 1972; 135: 719-34.
Amano M, Chihara K, Nakamura N, Fukata Y, Yano T, Shibata M, Ikebe R, Kaibuchi K. Myosin II activation promotes neurite retraction during the action of Rho and Rho-kinase. Genes Cells 1998; 3: 177-88.
Koyama M, Ito M, Feng J, Seko T, Shiraki K, Takase K, Hartshorne DJ, Nakano T. Phosphorylation of CPI-17, an inhibitory phosphoprotein of smooth muscle myosin phosphatase, by Rho-kinase. FEBS Lett 2000; 475: 197-200.
Shimizu H, Ito M, Miyahara M, Ichikawa K, Okubo S, Konishi T, Naka M, Tanaka T, Hirano K, Hartshorne DJ. Characterization of the myosin-binding subunit of smooth muscle myosin phosphatase. J Biol Chem 1994; 269: 30407-11.
Gabbiani G, Ryan GB, Majno G. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 1971; 27: 549-50.
Ridley AJ, Hall A. The small GTP-binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 1992; 70: 389-99.
Deng JT, Sutherland C, Brautigan DL, Eto M, Walsh MP. Phosphorylation of the myosin phosphatase inhibitors, CPI-17 and PHI-1, by integrin-linked kinase. Biochem J 2002; 367: 517-24.
2004; 287
2004; 40
1971; 27
1997; 272
2001; 280
1989; 159
1992; 267
2002; 35
2003; 14
1995; 118
2002; 3
2000; 274
1999; 147
2000; 254
1994; 29
2000; 475
1998; 177
1972; 135
1996; 12
1953; 152
1997; 8
2001; 276
1994; 124
1990; 63
2004; 298
1997; 389
1992; 70
1998; 19
2001; 153
1998; 1405
1994; 269
2001; 493
1997; 75
2002; 367
2002; 364
1987
1999; 451
1999; 250
1998; 3
1996; 273
1971; 173
1992; 67
2001; 159
e_1_2_7_4_2
Parizi M (e_1_2_7_16_2) 2000; 254
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
Hersch E (e_1_2_7_45_2) 2004; 287
Ishihara H (e_1_2_7_26_2) 1989; 159
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_44_2
e_1_2_7_27_2
e_1_2_7_29_2
Appleton I (e_1_2_7_6_2) 1992; 67
Watson S (e_1_2_7_9_2) 1998; 177
Hartshorne DJ (e_1_2_7_10_2) 1998; 19
Darby I (e_1_2_7_15_2) 1990; 63
Majno G (e_1_2_7_5_2) 1971; 173
Hartshorne DJ. (e_1_2_7_28_2) 1987
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_35_2
e_1_2_7_36_2
e_1_2_7_37_2
e_1_2_7_38_2
e_1_2_7_39_2
References_xml – volume: 451
  start-page: 81
  year: 1999
  end-page: 4
  article-title: ZIP kinase identified as a novel myosin regulatory light chain kinase in HeLa cells
  publication-title: FEBS Lett
– volume: 29
  start-page: 321
  year: 1994
  end-page: 38
  article-title: Effect of protein kinase inhibitor H‐7 on the contractility, integrity, and membrane anchorage of the microfilament system
  publication-title: Cell Motil Cytoskeleton
– volume: 14
  start-page: 1745
  year: 2003
  end-page: 56
  article-title: Citron kinase, a Rho‐dependent kinase, induces di‐phosphorylation of regulatory light chain of myosin II
  publication-title: Mol Biol Cell
– volume: 367
  start-page: 517
  year: 2002
  end-page: 24
  article-title: Phosphorylation of the myosin phosphatase inhibitors, CPI‐17 and PHI‐1, by integrin‐linked kinase
  publication-title: Biochem J
– volume: 274
  start-page: 825
  year: 2000
  end-page: 30
  article-title: Phosphorylation of CPI‐17, an inhibitor of myosin phosphatase, by protein kinase N
  publication-title: Biochem Biophys Res Commun
– volume: 27
  start-page: 549
  year: 1971
  end-page: 50
  article-title: Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction
  publication-title: Experientia
– volume: 298
  start-page: 574
  year: 2004
  end-page: 83
  article-title: Rho‐mediated assembly of stress fibers is differentially regulated in corneal fibroblasts and myofibroblasts
  publication-title: Exp Cell Res
– volume: 12
  start-page: 463
  year: 1996
  end-page: 518
  article-title: Focal adhesions, contractility, and signaling
  publication-title: Annu Rev Cell Dev Biol
– volume: 272
  start-page: 25121
  year: 1997
  end-page: 7
  article-title: Cytoskeletal rearrangements and transcriptional activation of c‐fos serum response element by Rho‐kinase
  publication-title: J Biol Chem
– volume: 40
  start-page: 219
  year: 2004
  end-page: 36
  article-title: Regulation of myosin phosphorylation and myofilament Ca(2+) sensitivity in vascular smooth muscle
  publication-title: J Smooth Muscle Res
– volume: 267
  start-page: 14662
  year: 1992
  end-page: 8
  article-title: Myosin light chain phosphatase activities and the effects of phosphatase inhibitors in tonic and phasic smooth muscle
  publication-title: J Biol Chem
– start-page: 423
  year: 1987
  end-page: 82
– volume: 280
  start-page: C1669
  year: 2001
  end-page: 79
  article-title: Stress fiber organization regulated by MLCK and Rho‐kinase in cultured human fibroblasts
  publication-title: Am J Physiol Cell Physiol
– volume: 3
  start-page: 177
  year: 1998
  end-page: 88
  article-title: Myosin II activation promotes neurite retraction during the action of Rho and Rho‐kinase
  publication-title: Genes Cells
– volume: 173
  start-page: 548
  year: 1971
  end-page: 50
  article-title: Contraction of granulation tissue in vitro
  publication-title: similarity to smooth muscle
– volume: 70
  start-page: 389
  year: 1992
  end-page: 99
  article-title: The small GTP‐binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors
  publication-title: Cell
– volume: 147
  start-page: 1023
  year: 1999
  end-page: 38
  article-title: Phosphorylation of myosin‐binding subunit (MBS) of myosin phosphatase by Rho‐kinase in vivo
  publication-title: J Cell Biol
– volume: 269
  start-page: 30407
  year: 1994
  end-page: 11
  article-title: Characterization of the myosin‐binding subunit of smooth muscle myosin phosphatase
  publication-title: J Biol Chem
– volume: 75
  start-page: 217
  year: 1997
  end-page: 22
  article-title: Characterization of angiotensin receptors on human skin fibroblasts
  publication-title: J Mol Med
– volume: 287
  start-page: C1209
  year: 2004
  end-page: 18
  article-title: Gq/G13 signaling by ET‐1 in smooth muscle
  publication-title: MYPT1 phosphorylation via ETA and CPI-17 dephosphorylation via ETB
– volume: 35
  start-page: 1001
  year: 2002
  end-page: 15
  article-title: Recent advances in angiotensin II signaling
  publication-title: Braz J Med Biol Res
– volume: 276
  start-page: 29567
  year: 2001
  end-page: 74
  article-title: Zipper‐interacting protein kinase induces Ca(2+)‐free smooth muscle contraction via myosin light chain phosphorylation
  publication-title: J Biol Chem
– volume: 8
  start-page: 2329
  year: 1997
  end-page: 44
  article-title: Rho‐stimulated contractility contributes to the fibroblastic phenotype of Ras‐transformed epithelial cells
  publication-title: Mol Biol Cell
– volume: 67
  start-page: 703
  year: 1992
  end-page: 10
  article-title: Effect of endothelin‐1 on croton oil‐induced granulation tissue in the rat. A pharmacologic and immunohistochemical study
  publication-title: Lab Invest
– volume: 1405
  start-page: 55
  year: 1998
  end-page: 66
  article-title: Studies on the endothelin‐1‐induced contraction of rat granulation tissue pouch mediated by myofibroblasts
  publication-title: Biochim Biophys Acta
– volume: 153
  start-page: 569
  year: 2001
  end-page: 84
  article-title: Rho‐kinase–mediated contraction of isolated stress fibers
  publication-title: J Cell Biol
– volume: 254
  start-page: 210
  year: 2000
  end-page: 20
  article-title: Regulation of LPA‐promoted myofibroblast contraction
  publication-title: role of Rho, myosin light chain kinase, and myosin light chain phosphatase
– volume: 276
  start-page: 16365
  year: 2001
  end-page: 73
  article-title: Ca2+‐independent smooth muscle contraction. A novel function for integrin‐linked kinase
  publication-title: J Biol Chem
– volume: 250
  start-page: 273
  year: 1999
  end-page: 83
  article-title: Mechanisms of myofibroblast activity and phenotypic modulation
  publication-title: Exp Cell Res
– volume: 273
  start-page: 245
  year: 1996
  end-page: 8
  article-title: Regulation of myosin phosphatase by Rho and Rho‐associated kinase (Rho‐kinase)
  publication-title: Science
– volume: 118
  start-page: 1104
  year: 1995
  end-page: 7
  article-title: A novel protein phosphatase‐1 inhibitory protein potentiated by protein kinase C. Isolation from porcine aorta media and characterization
  publication-title: J Biochem (Tokyo)
– volume: 493
  start-page: 91
  year: 2001
  end-page: 4
  article-title: Dual Ser and Thr phosphorylation of CPI‐17, an inhibitor of myosin phosphatase, by MYPT‐associated kinase
  publication-title: FEBS Lett
– volume: 124
  start-page: 401
  year: 1994
  end-page: 4
  article-title: Fibroblasts, myofibroblasts, and wound contraction
  publication-title: J Cell Biol
– volume: 475
  start-page: 197
  year: 2000
  end-page: 200
  article-title: Phosphorylation of CPI‐17, an inhibitory phosphoprotein of smooth muscle myosin phosphatase, by Rho‐kinase
  publication-title: FEBS Lett
– volume: 19
  start-page: 325
  year: 1998
  end-page: 41
  article-title: Myosin light chain phosphatase
  publication-title: subunit composition, interactions and regulation
– volume: 159
  start-page: 1009
  year: 2001
  end-page: 20
  article-title: Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation
  publication-title: Am J Pathol
– volume: 177
  start-page: 224
  year: 1998
  end-page: 31
  article-title: Angiotensin II‐stimulated collagen gel contraction by heart fibroblasts
  publication-title: role of the AT1 receptor and tyrosine kinase activity
– volume: 3
  start-page: 349
  year: 2002
  end-page: 63
  article-title: Myofibroblasts and mechano‐regulation of connective tissue remodelling
  publication-title: Nat Rev Mol Cell Biol
– volume: 63
  start-page: 21
  year: 1990
  end-page: 9
  article-title: Alpha‐smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing
  publication-title: Lab Invest
– volume: 135
  start-page: 719
  year: 1972
  end-page: 34
  article-title: Granulation tissue as a contractile organ. A study of structure and function
  publication-title: J Exp Med
– volume: 159
  start-page: 871
  year: 1989
  end-page: 7
  article-title: Calyculin A and okadaic acid
  publication-title: inhibitors of protein phosphatase activity
– volume: 152
  start-page: 1207
  year: 1953
  end-page: 13
  article-title: On the mechanism through which hydrocortisone affects the resistance of tissue to injury
  publication-title: J Am Med Assoc
– volume: 364
  start-page: 431
  year: 2002
  end-page: 40
  article-title: Membrane depolarization‐induced contraction of rat caudal arterial smooth muscle involves Rho‐associated kinase
  publication-title: Biochem J
– volume: 389
  start-page: 990
  year: 1997
  end-page: 4
  article-title: Calcium sensitization of smooth muscle mediated by a Rho‐associated protein kinase in hypertension
  publication-title: Nature
– ident: e_1_2_7_33_2
  doi: 10.1016/S0014-5793(99)00550-5
– volume: 67
  start-page: 703
  year: 1992
  ident: e_1_2_7_6_2
  article-title: Effect of endothelin‐1 on croton oil‐induced granulation tissue in the rat. A pharmacologic and immunohistochemical study
  publication-title: Lab Invest
  contributor:
    fullname: Appleton I
– ident: e_1_2_7_8_2
  doi: 10.1016/S0002-9440(10)61776-2
– ident: e_1_2_7_42_2
  doi: 10.1016/S0021-9258(18)42092-3
– ident: e_1_2_7_13_2
  doi: 10.1083/jcb.153.3.569
– ident: e_1_2_7_22_2
  doi: 10.1091/mbc.8.11.2329
– ident: e_1_2_7_32_2
  doi: 10.1074/jbc.M011634200
– volume: 177
  start-page: 224
  year: 1998
  ident: e_1_2_7_9_2
  article-title: Angiotensin II‐stimulated collagen gel contraction by heart fibroblasts
  publication-title: role of the AT1 receptor and tyrosine kinase activity
  contributor:
    fullname: Watson S
– ident: e_1_2_7_30_2
  doi: 10.1074/jbc.272.40.25121
– ident: e_1_2_7_2_2
  doi: 10.1083/jcb.124.4.401
– volume: 63
  start-page: 21
  year: 1990
  ident: e_1_2_7_15_2
  article-title: Alpha‐smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing
  publication-title: Lab Invest
  contributor:
    fullname: Darby I
– ident: e_1_2_7_17_2
  doi: 10.1016/j.yexcr.2004.05.005
– volume: 287
  start-page: C1209
  year: 2004
  ident: e_1_2_7_45_2
  article-title: Gq/G13 signaling by ET‐1 in smooth muscle
  publication-title: MYPT1 phosphorylation via ETA and CPI-17 dephosphorylation via ETB
  contributor:
    fullname: Hersch E
– volume: 173
  start-page: 548
  year: 1971
  ident: e_1_2_7_5_2
  article-title: Contraction of granulation tissue in vitro
  publication-title: similarity to smooth muscle
  contributor:
    fullname: Majno G
– ident: e_1_2_7_3_2
  doi: 10.1038/nrm809
– start-page: 423
  volume-title: Physiology of the gastrointestinal tract
  year: 1987
  ident: e_1_2_7_28_2
  contributor:
    fullname: Hartshorne DJ.
– ident: e_1_2_7_38_2
  doi: 10.1042/bj20020522
– ident: e_1_2_7_14_2
  doi: 10.1083/jcb.147.5.1023
– ident: e_1_2_7_40_2
  doi: 10.1016/S0014-5793(01)02277-3
– ident: e_1_2_7_18_2
  doi: 10.1001/jama.1953.63690130001006
– ident: e_1_2_7_39_2
  doi: 10.1006/bbrc.2000.3225
– ident: e_1_2_7_21_2
  doi: 10.1002/cm.970290405
– ident: e_1_2_7_27_2
  doi: 10.1016/S0021-9258(18)43828-8
– ident: e_1_2_7_25_2
  doi: 10.1126/science.273.5272.245
– ident: e_1_2_7_29_2
  doi: 10.1540/jsmr.40.219
– ident: e_1_2_7_4_2
  doi: 10.1006/excr.1999.4543
– ident: e_1_2_7_37_2
  doi: 10.1016/S0014-5793(00)01654-9
– ident: e_1_2_7_44_2
  doi: 10.1007/s001090050106
– ident: e_1_2_7_7_2
  doi: 10.1016/S0167-4889(98)00105-0
– ident: e_1_2_7_34_2
  doi: 10.1074/jbc.M102753200
– ident: e_1_2_7_11_2
  doi: 10.1152/ajpcell.2001.280.6.C1669
– volume: 254
  start-page: 210
  year: 2000
  ident: e_1_2_7_16_2
  article-title: Regulation of LPA‐promoted myofibroblast contraction
  publication-title: role of Rho, myosin light chain kinase, and myosin light chain phosphatase
  contributor:
    fullname: Parizi M
– ident: e_1_2_7_23_2
  doi: 10.1038/40187
– ident: e_1_2_7_24_2
  doi: 10.1016/0092-8674(92)90163-7
– ident: e_1_2_7_41_2
  doi: 10.1042/bj20020191
– volume: 19
  start-page: 325
  year: 1998
  ident: e_1_2_7_10_2
  article-title: Myosin light chain phosphatase
  publication-title: subunit composition, interactions and regulation
  contributor:
    fullname: Hartshorne DJ
– ident: e_1_2_7_19_2
  doi: 10.1084/jem.135.4.719
– ident: e_1_2_7_20_2
  doi: 10.1007/BF02147594
– ident: e_1_2_7_35_2
  doi: 10.1091/mbc.E02-07-0427
– ident: e_1_2_7_12_2
  doi: 10.1146/annurev.cellbio.12.1.463
– ident: e_1_2_7_31_2
  doi: 10.1046/j.1365-2443.1998.00181.x
– volume: 159
  start-page: 871
  year: 1989
  ident: e_1_2_7_26_2
  article-title: Calyculin A and okadaic acid
  publication-title: inhibitors of protein phosphatase activity
  contributor:
    fullname: Ishihara H
– ident: e_1_2_7_36_2
  doi: 10.1093/oxfordjournals.jbchem.a124993
– ident: e_1_2_7_43_2
  doi: 10.1590/S0100-879X2002000900001
SSID ssj0005598
Score 2.1522238
Snippet ABSTRACT During wound healing and fibrocontractive diseases fibroblasts acquire a smooth muscle cell‐like phenotype by differentiating into contractile force...
During wound healing and fibrocontractive diseases fibroblasts acquire a smooth muscle cell-like phenotype by differentiating into contractile force generating...
During wound healing and fibrocontractive diseases fibroblasts acquire a smooth muscle cell‐like phenotype by differentiating into contractile force generating...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 313
SubjectTerms Amides - pharmacology
Animals
Endothelin-1 - pharmacology
Enzyme Inhibitors - pharmacology
Fibroblasts - enzymology
Fibroblasts - physiology
Granulation Tissue - enzymology
Granulation Tissue - pathology
Granulation Tissue - physiopathology
Intracellular Signaling Peptides and Proteins - antagonists & inhibitors
Intracellular Signaling Peptides and Proteins - metabolism
Isometric Contraction - drug effects
Male
Muscle, Smooth - cytology
Myosin-Light-Chain Phosphatase - antagonists & inhibitors
Myosin-Light-Chain Phosphatase - metabolism
Protein Kinase Inhibitors - pharmacology
Protein-Serine-Threonine Kinases - antagonists & inhibitors
Protein-Serine-Threonine Kinases - metabolism
Pyridines - pharmacology
Rats
Rats, Sprague-Dawley
rho-Associated Kinases
Signal Transduction
Wound Healing - physiology
Title Contraction of myofibroblasts in granulation tissue is dependent on Rho/Rho kinase/myosin light chain phosphatase activity
URI https://api.istex.fr/ark:/67375/WNG-LRGCR0GC-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1743-6109.2006.00126.x
https://www.ncbi.nlm.nih.gov/pubmed/16808810
https://search.proquest.com/docview/68597334
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swELcmeNnLPrSvbIz5Ae0txY5jJzxCWYsQ4yEaAu3Fsl1nrcqSqkkl4K_fndMWiniYpj1EshLZjn139p3v_DtC9pgBtVOUKjYCTJRUMhEbN3LxgU18khh5YIL3_Pu5OrlIT6_k1TL-Ce_CdPgQ6wM3lIywXqOAG9tsCjnCayJc-NqnkKge6pNcZBjdd1zcI0khDnlwfMK6AEpN9jio54mGNnaqbZz0m6fU0E2tNmxLg5dkuhpQF40y7S1a23N3j7Ae_8-IX5EXS-2VHnbs9po889UbcocIV_PuggStS_r7FhjWYqIa07QNnVT0F2yIyzRhtA2UppOGrvLvthReF-N6Hx46nVSwr-5DGw1UvMajA-rGBsqzcd3MxqaFzxQ7w6QXb8nF4NuP_km8TOkQuxTDnVPlufNgk9nUMgTmwdfGuFJwl3DLneM5U86oUiVlCWuN9ZmXjBnDbK7yVLwjW1Vd-Q-EJqlJhMudlG6EKbRNyblnVmauzNkolxHhK_LpWYfcoR9YPDCTGmcS83CGyL5E6ZuIfA10Xlcw8ylGvmVSX54P9Vkx7Bds2Nc_I_JlxQga5BGdLKby9aLRKgcTTYg0Iu87_rjvHLOc5JxFRAYq__Vf6cuigMLHf6z3iTzvzo0wSnOHbLXzhf8MmlRrd8n24dHx0WA3yMofCmESOA
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLbQdoALMPErwJgPiFs624nd7Ig61gJdD9GmTVws23Vo1ZFUTSqN_fW857TdOu2AEIdIViLbsZ-f_ez3_H2EfGQGzM6kULFJYIuSSpbExo1dfGSFF8LIIxO856cjNThPv13KyxUdEN6FafEhNgduqBlhvkYFxwPpbS1HfE3EC984FYTqgEG5C9rPMb7rOL_FkkIk8uD6hJkBzJru_bCeB0raWqt2sduvHzJEt-3asDCdPCNX6ya18SizzrKxHXdzD-3xP7X5OXm6MmDp53bE7ZFHvnxBbhDkatHekaBVQX_9hjFrkavG1E1NpyX9CWviiimMNkHYdFrTNQVvQ-F1PqkO4aGzaQlL6yGUUUPGKzw9oG5iID2fVPV8Yhr4TLEy5L14Sc5Pvpz1BvGK1SF2KUY8p8pz52FbZlPLEJsHXxvjioQ7wS13jmdMOaMKJYoCphvru14yZgyzmcrS5BXZKavSvyFUpEYkLnNSujGyaJuCc8-s7LoiY-NMRoSv5afnLXiHvrPpgZ7U2JNIxRmC-4TS1xH5FAS9yWAWMwx-60p9MerrYd7v5azf0z8icrAeCRpUEv0spvTVstYqg11akqQRed0OkNvKkegk4ywiMoj5r_9KX-Q5JN7-Y74D8nhwdjrUw6-j7-_Ik_YYCYM235OdZrH0-2BYNfZDUJg_npsU5w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBejhbGXbWVf3kerh7E3p5IsKc7jSJd0XReGWWnZi5AUuQnZ7BA70PWv352dpEvpQxl7MAgbSZbuTrrTnX5HyHtmQe1Mch3bBEwUqVgSWz_2cc-JIIRVPdt4z7-O9PGZPLlQF6v4J7wL0-JDbA7cUDKa9RoFfD7Ot4Uc4TURLnzjUxC6A_rkrtSihzj6R9kNlBQCkTeeT1gYQKvp3o7quaOlra1qF2f96i49dFutbfalwRMyW4-oDUeZdZa16_jrW2CP_2fIT8njlfpKP7b8tkcehOIZuUaIq0V7Q4KWOf31GzjWYaYaW9UVnRb0EnbEVZ4wWjekptOKrhPw1hReZ5PyEB46mxawsR5CGxVU_IlnB9RPLJTnk7KaT2wNnyl2hlkvnpOzwafv_eN4ldMh9hLjnaUO3Acwypx0DJF58LW1Pk-4F9xx73nKtLc61yLPYbFxoRsUY9Yyl-pUJi_ITlEW4RWhQlqR-NQr5ceYQ9vmnAfmVNfnKRunKiJ8TT4zb6E7zF8mD8ykwZnERJxNaJ_Q5ioiHxo6byrYxQxD37rKnI-G5jQb9jM27JsfETlYM4IBgUQviy1CuayMTsFGSxIZkZctf9x0jmlOUs4iohoq3_uvzHmWQeH1P9Y7IA-_HQ3M6efRlzfkUXuGhBGbb8lOvViGd6BV1W6_EZc_RR4Tlg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contraction+of+myofibroblasts+in+granulation+tissue+is+dependent+on+Rho%2FRho+kinase%2Fmyosin+light+chain+phosphatase+activity&rft.jtitle=Wound+repair+and+regeneration&rft.au=Tomasek%2C+James+J&rft.au=Vaughan%2C+Melville+B&rft.au=Kropp%2C+Bradley+P&rft.au=Gabbiani%2C+Giulio&rft.date=2006-05-01&rft.issn=1067-1927&rft.volume=14&rft.issue=3&rft.spage=313&rft.epage=320&rft_id=info:doi/10.1111%2Fj.1743-6109.2006.00126.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1067-1927&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1067-1927&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1067-1927&client=summon