Contraction of myofibroblasts in granulation tissue is dependent on Rho/Rho kinase/myosin light chain phosphatase activity
ABSTRACT During wound healing and fibrocontractive diseases fibroblasts acquire a smooth muscle cell‐like phenotype by differentiating into contractile force generating myofibroblasts. We examined whether regulation of myofibroblast contraction in granulation tissue is dominated by Ca2+‐induced phos...
Saved in:
Published in | Wound repair and regeneration Vol. 14; no. 3; pp. 313 - 320 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Malden, USA
Blackwell Publishing Inc
01.05.2006
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
During wound healing and fibrocontractive diseases fibroblasts acquire a smooth muscle cell‐like phenotype by differentiating into contractile force generating myofibroblasts. We examined whether regulation of myofibroblast contraction in granulation tissue is dominated by Ca2+‐induced phosphorylation of myosin light chain kinase or by Rho/Rho kinase (ROCK)‐mediated inhibition of myosin light chain phosphatase, similar to that of cultured myofibroblasts. Strips of granulation tissue obtained from rat granuloma pouches were stimulated with endothelin‐1 (ET‐1), serotonin, and angiotensin‐II and isometric force generation was measured. We here investigated ET‐1 in depth, because it was the only agonist that produced a long‐lasting and strong response. The ROCK inhibitor Y27632 completely inhibited ET‐1–promoted contraction and the phosphatase inhibitor calyculin elicited contraction in the absence of any other agonists, suggesting that activation of the Rho/ROCK/myosn light chain phosphatase pathway is critical in regulating in vivo myofibroblast contraction. Membrane depolarization with K+ also stimulated a long‐lasting contraction of granulation tissue; however, the amount of force generated was significantly less compared to ET‐1. Moreover, K+‐induced contraction was inhibited by Y27632. These results are consistent with inhibition of myosin light chain phosphatase by the Rho/ROCK signaling pathway, which would account for the long‐duration contraction of myofibroblasts necessary for wound closure. |
---|---|
AbstractList | ABSTRACT
During wound healing and fibrocontractive diseases fibroblasts acquire a smooth muscle cell‐like phenotype by differentiating into contractile force generating myofibroblasts. We examined whether regulation of myofibroblast contraction in granulation tissue is dominated by Ca2+‐induced phosphorylation of myosin light chain kinase or by Rho/Rho kinase (ROCK)‐mediated inhibition of myosin light chain phosphatase, similar to that of cultured myofibroblasts. Strips of granulation tissue obtained from rat granuloma pouches were stimulated with endothelin‐1 (ET‐1), serotonin, and angiotensin‐II and isometric force generation was measured. We here investigated ET‐1 in depth, because it was the only agonist that produced a long‐lasting and strong response. The ROCK inhibitor Y27632 completely inhibited ET‐1–promoted contraction and the phosphatase inhibitor calyculin elicited contraction in the absence of any other agonists, suggesting that activation of the Rho/ROCK/myosn light chain phosphatase pathway is critical in regulating in vivo myofibroblast contraction. Membrane depolarization with K+ also stimulated a long‐lasting contraction of granulation tissue; however, the amount of force generated was significantly less compared to ET‐1. Moreover, K+‐induced contraction was inhibited by Y27632. These results are consistent with inhibition of myosin light chain phosphatase by the Rho/ROCK signaling pathway, which would account for the long‐duration contraction of myofibroblasts necessary for wound closure. During wound healing and fibrocontractive diseases fibroblasts acquire a smooth muscle cell-like phenotype by differentiating into contractile force generating myofibroblasts. We examined whether regulation of myofibroblast contraction in granulation tissue is dominated by Ca2+-induced phosphorylation of myosin light chain kinase or by Rho/Rho kinase (ROCK)-mediated inhibition of myosin light chain phosphatase, similar to that of cultured myofibroblasts. Strips of granulation tissue obtained from rat granuloma pouches were stimulated with endothelin-1 (ET-1), serotonin, and angiotensin-II and isometric force generation was measured. We here investigated ET-1 in depth, because it was the only agonist that produced a long-lasting and strong response. The ROCK inhibitor Y27632 completely inhibited ET-1-promoted contraction and the phosphatase inhibitor calyculin elicited contraction in the absence of any other agonists, suggesting that activation of the Rho/ROCK/myosn light chain phosphatase pathway is critical in regulating in vivo myofibroblast contraction. Membrane depolarization with K+ also stimulated a long-lasting contraction of granulation tissue; however, the amount of force generated was significantly less compared to ET-1. Moreover, K+-induced contraction was inhibited by Y27632. These results are consistent with inhibition of myosin light chain phosphatase by the Rho/ROCK signaling pathway, which would account for the long-duration contraction of myofibroblasts necessary for wound closure. During wound healing and fibrocontractive diseases fibroblasts acquire a smooth muscle cell‐like phenotype by differentiating into contractile force generating myofibroblasts. We examined whether regulation of myofibroblast contraction in granulation tissue is dominated by Ca 2+ ‐induced phosphorylation of myosin light chain kinase or by Rho/Rho kinase (ROCK)‐mediated inhibition of myosin light chain phosphatase, similar to that of cultured myofibroblasts. Strips of granulation tissue obtained from rat granuloma pouches were stimulated with endothelin‐1 (ET‐1), serotonin, and angiotensin‐II and isometric force generation was measured. We here investigated ET‐1 in depth, because it was the only agonist that produced a long‐lasting and strong response. The ROCK inhibitor Y27632 completely inhibited ET‐1–promoted contraction and the phosphatase inhibitor calyculin elicited contraction in the absence of any other agonists, suggesting that activation of the Rho/ROCK/myosn light chain phosphatase pathway is critical in regulating in vivo myofibroblast contraction. Membrane depolarization with K + also stimulated a long‐lasting contraction of granulation tissue; however, the amount of force generated was significantly less compared to ET‐1. Moreover, K + ‐induced contraction was inhibited by Y27632. These results are consistent with inhibition of myosin light chain phosphatase by the Rho/ROCK signaling pathway, which would account for the long‐duration contraction of myofibroblasts necessary for wound closure. |
Author | Tomasek, James J. Hinz, Boris Vaughan, Melville B. Kropp, Bradley P. Martin, Michael D. Haaksma, Carol J. Gabbiani, Giulio |
Author_xml | – sequence: 1 givenname: James J. surname: Tomasek fullname: Tomasek, James J. organization: Department of Cell Biology – sequence: 2 givenname: Melville B. surname: Vaughan fullname: Vaughan, Melville B. organization: Department of Cell Biology – sequence: 3 givenname: Bradley P. surname: Kropp fullname: Kropp, Bradley P. organization: Department of Urology, University of Oklahoma-Health Sciences Center, Oklahoma City, Oklahoma – sequence: 4 givenname: Giulio surname: Gabbiani fullname: Gabbiani, Giulio organization: Department of Pathology, Centre Medical Universitaire, University of Geneva, Geneva, Switzerland, and – sequence: 5 givenname: Michael D. surname: Martin fullname: Martin, Michael D. organization: Department of Cell Biology – sequence: 6 givenname: Carol J. surname: Haaksma fullname: Haaksma, Carol J. organization: Department of Cell Biology – sequence: 7 givenname: Boris surname: Hinz fullname: Hinz, Boris organization: Laboratory of Cell Biophysics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16808810$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkF2L1DAYhYOsuB_6FyRX3rXzph9pAt5IcceFQaEoK96ENJNuM9tJapPqjL9-051Bbw2EHN6c57xwrtGFdVYjhAmkJJ7VLiVVkSeUAE8zAJoCkIymhxfoipRZkRRV-f0iaqBVQnhWXaJr73cAUJacvUKXhDJgjMAV-lM7GyapgnEWuw7vj64z7eTaQfrgsbH4YZJ2HuSzIRjvZ42Nx1s9arvVNuA4bnq3ihc_Giu9XsUMH8HBPPQBq15GPfbOj70M8Rsvy36ZcHyNXnZy8PrN-b1B324_fq0_JZsv67v6wyZRBec0KagmSvOStkULnHK6jKVUXU5URlqiFGFAlaQdzbouy8pWV7oEkBJaRlmR36B3p9xxcj9n7YPYG6_0MEir3ewFZSWv8nwxspNRTc77SXdinMxeTkdBQCy9i51YehdL72LpXTz3Lg4RfXveMbd7vf0HnouOhvcnw28z6ON_B4v7poki4skJNz7ow19cTo-CVnlVivvPa7Fp1nUD61r8yJ8A9oGlCQ |
CitedBy_id | crossref_primary_10_1016_j_bbamcr_2015_09_013 crossref_primary_10_1016_j_jacc_2009_04_018 crossref_primary_10_1091_mbc_e11_04_0335 crossref_primary_10_1097_01_ASW_0000513149_43488_56 crossref_primary_10_1016_j_ajpath_2014_12_005 crossref_primary_10_3390_cancers13061466 crossref_primary_10_1074_jbc_M110_126227 crossref_primary_10_1242_jcs_066795 crossref_primary_10_1097_SAP_0000000000000150 crossref_primary_10_1089_ars_2013_5294 crossref_primary_10_1242_jcs_024521 crossref_primary_10_1016_j_jbiomech_2008_07_033 crossref_primary_10_1513_pats_201202_017AW crossref_primary_10_1016_j_ejphar_2023_175991 crossref_primary_10_1016_j_pupt_2013_07_008 crossref_primary_10_1016_j_ddstr_2008_06_001 crossref_primary_10_3892_ijo_2013_2100 crossref_primary_10_1016_j_ajpath_2011_08_018 crossref_primary_10_1016_j_cryobiol_2007_05_001 crossref_primary_10_18632_oncotarget_21234 crossref_primary_10_3390_biom11071019 crossref_primary_10_1021_acsbiomaterials_6b00082 crossref_primary_10_3390_biology2020555 crossref_primary_10_1016_j_matbio_2024_02_009 crossref_primary_10_1002_jcp_25879 crossref_primary_10_1111_wrr_12321 crossref_primary_10_1016_j_ejphar_2021_174013 crossref_primary_10_1016_j_jbc_2021_101530 crossref_primary_10_1111_j_1365_2613_2011_00764_x crossref_primary_10_1016_j_exer_2023_109745 crossref_primary_10_1097_MAT_0b013e3181b1840f crossref_primary_10_1203_PDR_0b013e31816a7453 crossref_primary_10_3390_biom11081095 crossref_primary_10_1111_j_1742_4658_2008_06506_x crossref_primary_10_1007_s00109_014_1211_9 crossref_primary_10_1016_j_jmbbm_2018_03_042 crossref_primary_10_3390_vetsci10010044 crossref_primary_10_1152_ajpcell_00173_2007 crossref_primary_10_1111_anae_12752 crossref_primary_10_3727_096368912X659899 crossref_primary_10_1091_mbc_E21_03_0096 crossref_primary_10_1016_j_yexcr_2010_04_033 crossref_primary_10_1371_journal_pone_0222683 crossref_primary_10_1186_1479_5876_10_171 crossref_primary_10_1002_jcb_24806 crossref_primary_10_1016_j_bbcan_2020_188356 crossref_primary_10_1091_mbc_e08_10_0994 crossref_primary_10_2353_ajpath_2007_070112 crossref_primary_10_4161_chan_24328 crossref_primary_10_1007_s12265_012_9397_0 crossref_primary_10_1038_jid_2012_192 crossref_primary_10_1186_s13578_019_0362_3 crossref_primary_10_1016_j_ijbiomac_2021_04_169 crossref_primary_10_1016_j_yjmcc_2015_12_016 crossref_primary_10_1007_s12668_023_01091_4 crossref_primary_10_12688_f1000research_8190_1 crossref_primary_10_4103_ijo_IJO_2417_21 crossref_primary_10_1016_j_biomaterials_2018_09_012 crossref_primary_10_1101_cshperspect_a041231 crossref_primary_10_1016_j_cophys_2022_100556 crossref_primary_10_1021_acs_jmedchem_8b01772 crossref_primary_10_3390_cancers14092261 crossref_primary_10_1016_j_biomaterials_2020_119853 crossref_primary_10_1165_rcmb_2012_0335OC crossref_primary_10_11131_2017_101299 crossref_primary_10_1089_wound_2012_0393 crossref_primary_10_1016_j_burns_2021_01_004 crossref_primary_10_1097_IJG_0000000000001698 crossref_primary_10_1007_s11302_022_09900_3 crossref_primary_10_1016_j_ijcard_2018_02_096 crossref_primary_10_1111_prd_12030 crossref_primary_10_3389_fphar_2020_581455 |
Cites_doi | 10.1016/S0014-5793(99)00550-5 10.1016/S0002-9440(10)61776-2 10.1016/S0021-9258(18)42092-3 10.1083/jcb.153.3.569 10.1091/mbc.8.11.2329 10.1074/jbc.M011634200 10.1074/jbc.272.40.25121 10.1083/jcb.124.4.401 10.1016/j.yexcr.2004.05.005 10.1038/nrm809 10.1042/bj20020522 10.1083/jcb.147.5.1023 10.1016/S0014-5793(01)02277-3 10.1001/jama.1953.63690130001006 10.1006/bbrc.2000.3225 10.1002/cm.970290405 10.1016/S0021-9258(18)43828-8 10.1126/science.273.5272.245 10.1540/jsmr.40.219 10.1006/excr.1999.4543 10.1016/S0014-5793(00)01654-9 10.1007/s001090050106 10.1016/S0167-4889(98)00105-0 10.1074/jbc.M102753200 10.1152/ajpcell.2001.280.6.C1669 10.1038/40187 10.1016/0092-8674(92)90163-7 10.1042/bj20020191 10.1084/jem.135.4.719 10.1007/BF02147594 10.1091/mbc.E02-07-0427 10.1146/annurev.cellbio.12.1.463 10.1046/j.1365-2443.1998.00181.x 10.1093/oxfordjournals.jbchem.a124993 10.1590/S0100-879X2002000900001 |
ContentType | Journal Article |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1111/j.1743-6109.2006.00126.x |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1524-475X |
EndPage | 320 |
ExternalDocumentID | 10_1111_j_1743_6109_2006_00126_x 16808810 WRR126 ark_67375_WNG_LRGCR0GC_Z |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM60651 |
GroupedDBID | --- .3N .GA .Y3 04C 05W 0R~ 10A 123 1OB 1OC 29R 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACSCC ACXBN ACXQS ADBTR ADEOM ADIZJ ADKYN ADMGS ADOJX ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 CYRXZ D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EAD EAP EAS EBC EBD EBS ECF ECT ECV EIHBH EJD EMB EMK EMOBN ENC EPT ESX EX3 F00 F01 F04 FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 Q~Q R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WH7 WHWMO WIH WIJ WIK WOHZO WOW WQ9 WQJ WRC WUP WVDHM WXI WXSBR XG1 YFH ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX ACRPL ACYXJ CITATION 7X8 |
ID | FETCH-LOGICAL-c4996-46e1ce956b4b09696c499aacf31c21b1cc1806ca6f62ff225be7e500aa0b86843 |
IEDL.DBID | DR2 |
ISSN | 1067-1927 |
IngestDate | Wed Dec 04 15:10:29 EST 2024 Fri Dec 06 01:10:55 EST 2024 Sat Sep 28 07:42:57 EDT 2024 Sat Aug 24 00:58:04 EDT 2024 Wed Oct 30 09:50:35 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4996-46e1ce956b4b09696c499aacf31c21b1cc1806ca6f62ff225be7e500aa0b86843 |
Notes | ArticleID:WRR126 ark:/67375/WNG-LRGCR0GC-Z istex:7F90CD593DB2ADB9EF00F53D1E1F5688C471F4C2 † * Current address: Department of Neurosurgery, University of Oklahoma‐Health Sciences Center, Oklahoma City, OK. Current address: Department of Biology, University of Central Oklahoma, Edmond, OK. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 16808810 |
PQID | 68597334 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_68597334 crossref_primary_10_1111_j_1743_6109_2006_00126_x pubmed_primary_16808810 wiley_primary_10_1111_j_1743_6109_2006_00126_x_WRR126 istex_primary_ark_67375_WNG_LRGCR0GC_Z |
PublicationCentury | 2000 |
PublicationDate | 2006-05 May–June 2006 2006 May-Jun 2006-05-00 20060501 |
PublicationDateYYYYMMDD | 2006-05-01 |
PublicationDate_xml | – month: 05 year: 2006 text: 2006-05 |
PublicationDecade | 2000 |
PublicationPlace | Malden, USA |
PublicationPlace_xml | – name: Malden, USA – name: United States |
PublicationTitle | Wound repair and regeneration |
PublicationTitleAlternate | Wound Repair Regen |
PublicationYear | 2006 |
Publisher | Blackwell Publishing Inc |
Publisher_xml | – name: Blackwell Publishing Inc |
References | Burridge K, Chrzanowska-Wodnicka M. Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 1996; 12: 463-518. Hirano K, Hirano M, Kanaide H. Regulation of myosin phosphorylation and myofilament Ca(2+) sensitivity in vascular smooth muscle. J Smooth Muscle Res 2004; 40: 219-36. Serini G, Gabbiani G. Mechanisms of myofibroblast activity and phenotypic modulation. Exp Cell Res 1999; 250: 273-83. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 1996; 273: 245-8. Kawano Y, Fukata Y, Oshiro N, Amano M, Nakamura T, Ito M, Matsumura F, Inagaki M, Kaibuchi K. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J Cell Biol 1999; 147: 1023-38. Deng JT, Van Lierop JE, Sutherland C, Walsh MP. Ca2+-independent smooth muscle contraction. A novel function for integrin-linked kinase. J Biol Chem 2001; 276: 16365-73. Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, Narumiya S. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 1997; 389: 990-4. Appleton I, Tomlinson A, Chander CL, Willoughby DA. Effect of endothelin-1 on croton oil-induced granulation tissue in the rat. A pharmacologic and immunohistochemical study. Lab Invest 1992; 67: 703-10. Majno G, Gabbiani G, Hirschel BJ, Ryan GB, Statkov PR. Contraction of granulation tissue in vitro: similarity to smooth muscle. Science 1971; 173: 548-50. Selye H. On the mechanism through which hydrocortisone affects the resistance of tissue to injury. J Am Med Assoc 1953; 152: 1207-13. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 2002; 3: 349-63. Watson S, Burnside T, Carver W. Angiotensin II-stimulated collagen gel contraction by heart fibroblasts: role of the AT1 receptor and tyrosine kinase activity. J Cell Physiol 1998; 177: 224-31. Chihara K, Amano M, Nakamura N, Yano T, Shibata M, Tokui T, Ichikawa H, Ikebe R, Ikebe M, Kaibuchi K. Cytoskeletal rearrangements and transcriptional activation of c-fos serum response element by Rho-kinase. J Biol Chem 1997; 272: 25121-7. Touyz RM, Berry C. Recent advances in angiotensin II signaling. Braz J Med Biol Res 2002; 35: 1001-15. Grinnell F. Fibroblasts, myofibroblasts, and wound contraction. J Cell Biol 1994; 124: 401-4. Volberg T, Geiger B, Citi S, Bershadsky AD. Effect of protein kinase inhibitor H-7 on the contractility, integrity, and membrane anchorage of the microfilament system. Cell Motil Cytoskeleton 1994; 29: 321-38. Ishihara H, Martin BL, Brautigan DL, Karaki H, Ozaki H, Kato Y, Fusetani N, Watabe S, Hashimoto R, Uemura D. Calyculin A and okadaic acid: inhibitors of protein phosphatase activity. Biochem Biophys Res Commun 1989; 159: 871-7. Hersch E, Huang J, Grider JR, Murthy KS. Gq/G13 signaling by ET-1 in smooth muscle: MYPT1 phosphorylation via ETA and CPI-17 dephosphorylation via ETB. Am J Physiol Cell Physiol 2004; 287: C1209-18. Hartshorne DJ, Ito M, Erdodi F. Myosin light chain phosphatase: subunit composition, interactions and regulation. J Muscle Res Cell Motil 1998; 19: 325-41. MacDonald JA, Eto M, Borman MA, Brautigan DL, Haystead TA. Dual Ser and Thr phosphorylation of CPI-17, an inhibitor of myosin phosphatase, by MYPT-associated kinase. FEBS Lett 2001; 493: 91-4. Yamashiro S, Totsukawa G, Yamakita Y, Sasaki Y, Madaule P, Ishizaki T, Narumiya S, Matsumura F. Citron kinase, a Rho-dependent kinase, induces di-phosphorylation of regulatory light chain of myosin II. Mol Biol Cell 2003; 14: 1745-56. Zhong C, Kinch MS, Burridge K. Rho-stimulated contractility contributes to the fibroblastic phenotype of Ras-transformed epithelial cells. Mol Biol Cell 1997; 8: 2329-44. Hamaguchi T, Ito M, Feng J, Seko T, Koyama M, Machida H, Takase K, Amano M, Kaibuchi K, Hartshorne DJ, Nakano T. Phosphorylation of CPI-17, an inhibitor of myosin phosphatase, by protein kinase N. Biochem Biophys Res Commun 2000; 274: 825-30. Hinz B, Mastrangelo D, Iselin CE, Chaponnier C, Gabbiani G. Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am J Pathol 2001; 159: 1009-20. Parizi M, Howard EW, Tomasek JJ. Regulation of LPA-promoted myofibroblast contraction: role of Rho, myosin light chain kinase, and myosin light chain phosphatase. Exp Cell Res 2000; 254: 210-20. Eto M, Ohmori T, Suzuki M, Furuya K, Morita F. A novel protein phosphatase-1 inhibitory protein potentiated by protein kinase C. Isolation from porcine aorta media and characterization. J Biochem (Tokyo) 1995; 118: 1104-7. Murata-Hori M, Suizu F, Iwasaki T, Kikuchi A, Hosoya H. ZIP kinase identified as a novel myosin regulatory light chain kinase in HeLa cells. FEBS Lett 1999; 451: 81-4. Gong MC, Cohen P, Kitazawa T, Ikebe M, Masuo M, Somlyo AP, Somlyo AV. Myosin light chain phosphatase activities and the effects of phosphatase inhibitors in tonic and phasic smooth muscle. J Biol Chem 1992; 267: 14662-8. Niiro N, Ikebe M. Zipper-interacting protein kinase induces Ca(2+)-free smooth muscle contraction via myosin light chain phosphorylation. J Biol Chem 2001; 276: 29567-74. Nickenig G, Geisen G, Vetter H, Sachinidis A. Characterization of angiotensin receptors on human skin fibroblasts. J Mol Med 1997; 75: 217-22. Katoh K, Kano Y, Amano M, Kaibuchi K, Fujiwara K. Stress fiber organization regulated by MLCK and Rho-kinase in cultured human fibroblasts. Am J Physiol Cell Physiol 2001; 280: C1669-79. Katoh K, Kano Y, Amano M, Onishi H, Kaibuchi K, Fujiwara K. Rho-kinase-mediated contraction of isolated stress fibers. J Cell Biol 2001; 153: 569-84. Darby I, Skalli O, Gabbiani G. Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 1990; 63: 21-9. Anderson S, DiCesare L, Tan I, Leung T, SundarRaj N. Rho-mediated assembly of stress fibers is differentially regulated in corneal fibroblasts and myofibroblasts. Exp Cell Res 2004; 298: 574-83. Goto T, Yanaga F, Ohtsuki I. Studies on the endothelin-1-induced contraction of rat granulation tissue pouch mediated by myofibroblasts. Biochim Biophys Acta 1998; 1405: 55-66. Mita M, Yanagihara H, Hishinuma S, Saito M, Walsh MP. Membrane depolarization-induced contraction of rat caudal arterial smooth muscle involves Rho-associated kinase. Biochem J 2002; 364: 431-40. Gabbiani G, Hirschel BJ, Ryan GB, Statkov PR, Majno G. Granulation tissue as a contractile organ. A study of structure and function. J Exp Med 1972; 135: 719-34. Amano M, Chihara K, Nakamura N, Fukata Y, Yano T, Shibata M, Ikebe R, Kaibuchi K. Myosin II activation promotes neurite retraction during the action of Rho and Rho-kinase. Genes Cells 1998; 3: 177-88. Koyama M, Ito M, Feng J, Seko T, Shiraki K, Takase K, Hartshorne DJ, Nakano T. Phosphorylation of CPI-17, an inhibitory phosphoprotein of smooth muscle myosin phosphatase, by Rho-kinase. FEBS Lett 2000; 475: 197-200. Shimizu H, Ito M, Miyahara M, Ichikawa K, Okubo S, Konishi T, Naka M, Tanaka T, Hirano K, Hartshorne DJ. Characterization of the myosin-binding subunit of smooth muscle myosin phosphatase. J Biol Chem 1994; 269: 30407-11. Gabbiani G, Ryan GB, Majno G. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 1971; 27: 549-50. Ridley AJ, Hall A. The small GTP-binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 1992; 70: 389-99. Deng JT, Sutherland C, Brautigan DL, Eto M, Walsh MP. Phosphorylation of the myosin phosphatase inhibitors, CPI-17 and PHI-1, by integrin-linked kinase. Biochem J 2002; 367: 517-24. 2004; 287 2004; 40 1971; 27 1997; 272 2001; 280 1989; 159 1992; 267 2002; 35 2003; 14 1995; 118 2002; 3 2000; 274 1999; 147 2000; 254 1994; 29 2000; 475 1998; 177 1972; 135 1996; 12 1953; 152 1997; 8 2001; 276 1994; 124 1990; 63 2004; 298 1997; 389 1992; 70 1998; 19 2001; 153 1998; 1405 1994; 269 2001; 493 1997; 75 2002; 367 2002; 364 1987 1999; 451 1999; 250 1998; 3 1996; 273 1971; 173 1992; 67 2001; 159 e_1_2_7_4_2 Parizi M (e_1_2_7_16_2) 2000; 254 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 Hersch E (e_1_2_7_45_2) 2004; 287 Ishihara H (e_1_2_7_26_2) 1989; 159 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_44_2 e_1_2_7_27_2 e_1_2_7_29_2 Appleton I (e_1_2_7_6_2) 1992; 67 Watson S (e_1_2_7_9_2) 1998; 177 Hartshorne DJ (e_1_2_7_10_2) 1998; 19 Darby I (e_1_2_7_15_2) 1990; 63 Majno G (e_1_2_7_5_2) 1971; 173 Hartshorne DJ. (e_1_2_7_28_2) 1987 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_35_2 e_1_2_7_36_2 e_1_2_7_37_2 e_1_2_7_38_2 e_1_2_7_39_2 |
References_xml | – volume: 451 start-page: 81 year: 1999 end-page: 4 article-title: ZIP kinase identified as a novel myosin regulatory light chain kinase in HeLa cells publication-title: FEBS Lett – volume: 29 start-page: 321 year: 1994 end-page: 38 article-title: Effect of protein kinase inhibitor H‐7 on the contractility, integrity, and membrane anchorage of the microfilament system publication-title: Cell Motil Cytoskeleton – volume: 14 start-page: 1745 year: 2003 end-page: 56 article-title: Citron kinase, a Rho‐dependent kinase, induces di‐phosphorylation of regulatory light chain of myosin II publication-title: Mol Biol Cell – volume: 367 start-page: 517 year: 2002 end-page: 24 article-title: Phosphorylation of the myosin phosphatase inhibitors, CPI‐17 and PHI‐1, by integrin‐linked kinase publication-title: Biochem J – volume: 274 start-page: 825 year: 2000 end-page: 30 article-title: Phosphorylation of CPI‐17, an inhibitor of myosin phosphatase, by protein kinase N publication-title: Biochem Biophys Res Commun – volume: 27 start-page: 549 year: 1971 end-page: 50 article-title: Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction publication-title: Experientia – volume: 298 start-page: 574 year: 2004 end-page: 83 article-title: Rho‐mediated assembly of stress fibers is differentially regulated in corneal fibroblasts and myofibroblasts publication-title: Exp Cell Res – volume: 12 start-page: 463 year: 1996 end-page: 518 article-title: Focal adhesions, contractility, and signaling publication-title: Annu Rev Cell Dev Biol – volume: 272 start-page: 25121 year: 1997 end-page: 7 article-title: Cytoskeletal rearrangements and transcriptional activation of c‐fos serum response element by Rho‐kinase publication-title: J Biol Chem – volume: 40 start-page: 219 year: 2004 end-page: 36 article-title: Regulation of myosin phosphorylation and myofilament Ca(2+) sensitivity in vascular smooth muscle publication-title: J Smooth Muscle Res – volume: 267 start-page: 14662 year: 1992 end-page: 8 article-title: Myosin light chain phosphatase activities and the effects of phosphatase inhibitors in tonic and phasic smooth muscle publication-title: J Biol Chem – start-page: 423 year: 1987 end-page: 82 – volume: 280 start-page: C1669 year: 2001 end-page: 79 article-title: Stress fiber organization regulated by MLCK and Rho‐kinase in cultured human fibroblasts publication-title: Am J Physiol Cell Physiol – volume: 3 start-page: 177 year: 1998 end-page: 88 article-title: Myosin II activation promotes neurite retraction during the action of Rho and Rho‐kinase publication-title: Genes Cells – volume: 173 start-page: 548 year: 1971 end-page: 50 article-title: Contraction of granulation tissue in vitro publication-title: similarity to smooth muscle – volume: 70 start-page: 389 year: 1992 end-page: 99 article-title: The small GTP‐binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors publication-title: Cell – volume: 147 start-page: 1023 year: 1999 end-page: 38 article-title: Phosphorylation of myosin‐binding subunit (MBS) of myosin phosphatase by Rho‐kinase in vivo publication-title: J Cell Biol – volume: 269 start-page: 30407 year: 1994 end-page: 11 article-title: Characterization of the myosin‐binding subunit of smooth muscle myosin phosphatase publication-title: J Biol Chem – volume: 75 start-page: 217 year: 1997 end-page: 22 article-title: Characterization of angiotensin receptors on human skin fibroblasts publication-title: J Mol Med – volume: 287 start-page: C1209 year: 2004 end-page: 18 article-title: Gq/G13 signaling by ET‐1 in smooth muscle publication-title: MYPT1 phosphorylation via ETA and CPI-17 dephosphorylation via ETB – volume: 35 start-page: 1001 year: 2002 end-page: 15 article-title: Recent advances in angiotensin II signaling publication-title: Braz J Med Biol Res – volume: 276 start-page: 29567 year: 2001 end-page: 74 article-title: Zipper‐interacting protein kinase induces Ca(2+)‐free smooth muscle contraction via myosin light chain phosphorylation publication-title: J Biol Chem – volume: 8 start-page: 2329 year: 1997 end-page: 44 article-title: Rho‐stimulated contractility contributes to the fibroblastic phenotype of Ras‐transformed epithelial cells publication-title: Mol Biol Cell – volume: 67 start-page: 703 year: 1992 end-page: 10 article-title: Effect of endothelin‐1 on croton oil‐induced granulation tissue in the rat. A pharmacologic and immunohistochemical study publication-title: Lab Invest – volume: 1405 start-page: 55 year: 1998 end-page: 66 article-title: Studies on the endothelin‐1‐induced contraction of rat granulation tissue pouch mediated by myofibroblasts publication-title: Biochim Biophys Acta – volume: 153 start-page: 569 year: 2001 end-page: 84 article-title: Rho‐kinase–mediated contraction of isolated stress fibers publication-title: J Cell Biol – volume: 254 start-page: 210 year: 2000 end-page: 20 article-title: Regulation of LPA‐promoted myofibroblast contraction publication-title: role of Rho, myosin light chain kinase, and myosin light chain phosphatase – volume: 276 start-page: 16365 year: 2001 end-page: 73 article-title: Ca2+‐independent smooth muscle contraction. A novel function for integrin‐linked kinase publication-title: J Biol Chem – volume: 250 start-page: 273 year: 1999 end-page: 83 article-title: Mechanisms of myofibroblast activity and phenotypic modulation publication-title: Exp Cell Res – volume: 273 start-page: 245 year: 1996 end-page: 8 article-title: Regulation of myosin phosphatase by Rho and Rho‐associated kinase (Rho‐kinase) publication-title: Science – volume: 118 start-page: 1104 year: 1995 end-page: 7 article-title: A novel protein phosphatase‐1 inhibitory protein potentiated by protein kinase C. Isolation from porcine aorta media and characterization publication-title: J Biochem (Tokyo) – volume: 493 start-page: 91 year: 2001 end-page: 4 article-title: Dual Ser and Thr phosphorylation of CPI‐17, an inhibitor of myosin phosphatase, by MYPT‐associated kinase publication-title: FEBS Lett – volume: 124 start-page: 401 year: 1994 end-page: 4 article-title: Fibroblasts, myofibroblasts, and wound contraction publication-title: J Cell Biol – volume: 475 start-page: 197 year: 2000 end-page: 200 article-title: Phosphorylation of CPI‐17, an inhibitory phosphoprotein of smooth muscle myosin phosphatase, by Rho‐kinase publication-title: FEBS Lett – volume: 19 start-page: 325 year: 1998 end-page: 41 article-title: Myosin light chain phosphatase publication-title: subunit composition, interactions and regulation – volume: 159 start-page: 1009 year: 2001 end-page: 20 article-title: Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation publication-title: Am J Pathol – volume: 177 start-page: 224 year: 1998 end-page: 31 article-title: Angiotensin II‐stimulated collagen gel contraction by heart fibroblasts publication-title: role of the AT1 receptor and tyrosine kinase activity – volume: 3 start-page: 349 year: 2002 end-page: 63 article-title: Myofibroblasts and mechano‐regulation of connective tissue remodelling publication-title: Nat Rev Mol Cell Biol – volume: 63 start-page: 21 year: 1990 end-page: 9 article-title: Alpha‐smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing publication-title: Lab Invest – volume: 135 start-page: 719 year: 1972 end-page: 34 article-title: Granulation tissue as a contractile organ. A study of structure and function publication-title: J Exp Med – volume: 159 start-page: 871 year: 1989 end-page: 7 article-title: Calyculin A and okadaic acid publication-title: inhibitors of protein phosphatase activity – volume: 152 start-page: 1207 year: 1953 end-page: 13 article-title: On the mechanism through which hydrocortisone affects the resistance of tissue to injury publication-title: J Am Med Assoc – volume: 364 start-page: 431 year: 2002 end-page: 40 article-title: Membrane depolarization‐induced contraction of rat caudal arterial smooth muscle involves Rho‐associated kinase publication-title: Biochem J – volume: 389 start-page: 990 year: 1997 end-page: 4 article-title: Calcium sensitization of smooth muscle mediated by a Rho‐associated protein kinase in hypertension publication-title: Nature – ident: e_1_2_7_33_2 doi: 10.1016/S0014-5793(99)00550-5 – volume: 67 start-page: 703 year: 1992 ident: e_1_2_7_6_2 article-title: Effect of endothelin‐1 on croton oil‐induced granulation tissue in the rat. A pharmacologic and immunohistochemical study publication-title: Lab Invest contributor: fullname: Appleton I – ident: e_1_2_7_8_2 doi: 10.1016/S0002-9440(10)61776-2 – ident: e_1_2_7_42_2 doi: 10.1016/S0021-9258(18)42092-3 – ident: e_1_2_7_13_2 doi: 10.1083/jcb.153.3.569 – ident: e_1_2_7_22_2 doi: 10.1091/mbc.8.11.2329 – ident: e_1_2_7_32_2 doi: 10.1074/jbc.M011634200 – volume: 177 start-page: 224 year: 1998 ident: e_1_2_7_9_2 article-title: Angiotensin II‐stimulated collagen gel contraction by heart fibroblasts publication-title: role of the AT1 receptor and tyrosine kinase activity contributor: fullname: Watson S – ident: e_1_2_7_30_2 doi: 10.1074/jbc.272.40.25121 – ident: e_1_2_7_2_2 doi: 10.1083/jcb.124.4.401 – volume: 63 start-page: 21 year: 1990 ident: e_1_2_7_15_2 article-title: Alpha‐smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing publication-title: Lab Invest contributor: fullname: Darby I – ident: e_1_2_7_17_2 doi: 10.1016/j.yexcr.2004.05.005 – volume: 287 start-page: C1209 year: 2004 ident: e_1_2_7_45_2 article-title: Gq/G13 signaling by ET‐1 in smooth muscle publication-title: MYPT1 phosphorylation via ETA and CPI-17 dephosphorylation via ETB contributor: fullname: Hersch E – volume: 173 start-page: 548 year: 1971 ident: e_1_2_7_5_2 article-title: Contraction of granulation tissue in vitro publication-title: similarity to smooth muscle contributor: fullname: Majno G – ident: e_1_2_7_3_2 doi: 10.1038/nrm809 – start-page: 423 volume-title: Physiology of the gastrointestinal tract year: 1987 ident: e_1_2_7_28_2 contributor: fullname: Hartshorne DJ. – ident: e_1_2_7_38_2 doi: 10.1042/bj20020522 – ident: e_1_2_7_14_2 doi: 10.1083/jcb.147.5.1023 – ident: e_1_2_7_40_2 doi: 10.1016/S0014-5793(01)02277-3 – ident: e_1_2_7_18_2 doi: 10.1001/jama.1953.63690130001006 – ident: e_1_2_7_39_2 doi: 10.1006/bbrc.2000.3225 – ident: e_1_2_7_21_2 doi: 10.1002/cm.970290405 – ident: e_1_2_7_27_2 doi: 10.1016/S0021-9258(18)43828-8 – ident: e_1_2_7_25_2 doi: 10.1126/science.273.5272.245 – ident: e_1_2_7_29_2 doi: 10.1540/jsmr.40.219 – ident: e_1_2_7_4_2 doi: 10.1006/excr.1999.4543 – ident: e_1_2_7_37_2 doi: 10.1016/S0014-5793(00)01654-9 – ident: e_1_2_7_44_2 doi: 10.1007/s001090050106 – ident: e_1_2_7_7_2 doi: 10.1016/S0167-4889(98)00105-0 – ident: e_1_2_7_34_2 doi: 10.1074/jbc.M102753200 – ident: e_1_2_7_11_2 doi: 10.1152/ajpcell.2001.280.6.C1669 – volume: 254 start-page: 210 year: 2000 ident: e_1_2_7_16_2 article-title: Regulation of LPA‐promoted myofibroblast contraction publication-title: role of Rho, myosin light chain kinase, and myosin light chain phosphatase contributor: fullname: Parizi M – ident: e_1_2_7_23_2 doi: 10.1038/40187 – ident: e_1_2_7_24_2 doi: 10.1016/0092-8674(92)90163-7 – ident: e_1_2_7_41_2 doi: 10.1042/bj20020191 – volume: 19 start-page: 325 year: 1998 ident: e_1_2_7_10_2 article-title: Myosin light chain phosphatase publication-title: subunit composition, interactions and regulation contributor: fullname: Hartshorne DJ – ident: e_1_2_7_19_2 doi: 10.1084/jem.135.4.719 – ident: e_1_2_7_20_2 doi: 10.1007/BF02147594 – ident: e_1_2_7_35_2 doi: 10.1091/mbc.E02-07-0427 – ident: e_1_2_7_12_2 doi: 10.1146/annurev.cellbio.12.1.463 – ident: e_1_2_7_31_2 doi: 10.1046/j.1365-2443.1998.00181.x – volume: 159 start-page: 871 year: 1989 ident: e_1_2_7_26_2 article-title: Calyculin A and okadaic acid publication-title: inhibitors of protein phosphatase activity contributor: fullname: Ishihara H – ident: e_1_2_7_36_2 doi: 10.1093/oxfordjournals.jbchem.a124993 – ident: e_1_2_7_43_2 doi: 10.1590/S0100-879X2002000900001 |
SSID | ssj0005598 |
Score | 2.1522238 |
Snippet | ABSTRACT
During wound healing and fibrocontractive diseases fibroblasts acquire a smooth muscle cell‐like phenotype by differentiating into contractile force... During wound healing and fibrocontractive diseases fibroblasts acquire a smooth muscle cell-like phenotype by differentiating into contractile force generating... During wound healing and fibrocontractive diseases fibroblasts acquire a smooth muscle cell‐like phenotype by differentiating into contractile force generating... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 313 |
SubjectTerms | Amides - pharmacology Animals Endothelin-1 - pharmacology Enzyme Inhibitors - pharmacology Fibroblasts - enzymology Fibroblasts - physiology Granulation Tissue - enzymology Granulation Tissue - pathology Granulation Tissue - physiopathology Intracellular Signaling Peptides and Proteins - antagonists & inhibitors Intracellular Signaling Peptides and Proteins - metabolism Isometric Contraction - drug effects Male Muscle, Smooth - cytology Myosin-Light-Chain Phosphatase - antagonists & inhibitors Myosin-Light-Chain Phosphatase - metabolism Protein Kinase Inhibitors - pharmacology Protein-Serine-Threonine Kinases - antagonists & inhibitors Protein-Serine-Threonine Kinases - metabolism Pyridines - pharmacology Rats Rats, Sprague-Dawley rho-Associated Kinases Signal Transduction Wound Healing - physiology |
Title | Contraction of myofibroblasts in granulation tissue is dependent on Rho/Rho kinase/myosin light chain phosphatase activity |
URI | https://api.istex.fr/ark:/67375/WNG-LRGCR0GC-Z/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1743-6109.2006.00126.x https://www.ncbi.nlm.nih.gov/pubmed/16808810 https://search.proquest.com/docview/68597334 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swELcmeNnLPrSvbIz5Ae0txY5jJzxCWYsQ4yEaAu3Fsl1nrcqSqkkl4K_fndMWiniYpj1EshLZjn139p3v_DtC9pgBtVOUKjYCTJRUMhEbN3LxgU18khh5YIL3_Pu5OrlIT6_k1TL-Ce_CdPgQ6wM3lIywXqOAG9tsCjnCayJc-NqnkKge6pNcZBjdd1zcI0khDnlwfMK6AEpN9jio54mGNnaqbZz0m6fU0E2tNmxLg5dkuhpQF40y7S1a23N3j7Ae_8-IX5EXS-2VHnbs9po889UbcocIV_PuggStS_r7FhjWYqIa07QNnVT0F2yIyzRhtA2UppOGrvLvthReF-N6Hx46nVSwr-5DGw1UvMajA-rGBsqzcd3MxqaFzxQ7w6QXb8nF4NuP_km8TOkQuxTDnVPlufNgk9nUMgTmwdfGuFJwl3DLneM5U86oUiVlCWuN9ZmXjBnDbK7yVLwjW1Vd-Q-EJqlJhMudlG6EKbRNyblnVmauzNkolxHhK_LpWYfcoR9YPDCTGmcS83CGyL5E6ZuIfA10Xlcw8ylGvmVSX54P9Vkx7Bds2Nc_I_JlxQga5BGdLKby9aLRKgcTTYg0Iu87_rjvHLOc5JxFRAYq__Vf6cuigMLHf6z3iTzvzo0wSnOHbLXzhf8MmlRrd8n24dHx0WA3yMofCmESOA |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLbQdoALMPErwJgPiFs624nd7Ig61gJdD9GmTVws23Vo1ZFUTSqN_fW857TdOu2AEIdIViLbsZ-f_ez3_H2EfGQGzM6kULFJYIuSSpbExo1dfGSFF8LIIxO856cjNThPv13KyxUdEN6FafEhNgduqBlhvkYFxwPpbS1HfE3EC984FYTqgEG5C9rPMb7rOL_FkkIk8uD6hJkBzJru_bCeB0raWqt2sduvHzJEt-3asDCdPCNX6ya18SizzrKxHXdzD-3xP7X5OXm6MmDp53bE7ZFHvnxBbhDkatHekaBVQX_9hjFrkavG1E1NpyX9CWviiimMNkHYdFrTNQVvQ-F1PqkO4aGzaQlL6yGUUUPGKzw9oG5iID2fVPV8Yhr4TLEy5L14Sc5Pvpz1BvGK1SF2KUY8p8pz52FbZlPLEJsHXxvjioQ7wS13jmdMOaMKJYoCphvru14yZgyzmcrS5BXZKavSvyFUpEYkLnNSujGyaJuCc8-s7LoiY-NMRoSv5afnLXiHvrPpgZ7U2JNIxRmC-4TS1xH5FAS9yWAWMwx-60p9MerrYd7v5azf0z8icrAeCRpUEv0spvTVstYqg11akqQRed0OkNvKkegk4ywiMoj5r_9KX-Q5JN7-Y74D8nhwdjrUw6-j7-_Ik_YYCYM235OdZrH0-2BYNfZDUJg_npsU5w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBejhbGXbWVf3kerh7E3p5IsKc7jSJd0XReGWWnZi5AUuQnZ7BA70PWv352dpEvpQxl7MAgbSZbuTrrTnX5HyHtmQe1Mch3bBEwUqVgSWz_2cc-JIIRVPdt4z7-O9PGZPLlQF6v4J7wL0-JDbA7cUDKa9RoFfD7Ot4Uc4TURLnzjUxC6A_rkrtSihzj6R9kNlBQCkTeeT1gYQKvp3o7quaOlra1qF2f96i49dFutbfalwRMyW4-oDUeZdZa16_jrW2CP_2fIT8njlfpKP7b8tkcehOIZuUaIq0V7Q4KWOf31GzjWYaYaW9UVnRb0EnbEVZ4wWjekptOKrhPw1hReZ5PyEB46mxawsR5CGxVU_IlnB9RPLJTnk7KaT2wNnyl2hlkvnpOzwafv_eN4ldMh9hLjnaUO3Acwypx0DJF58LW1Pk-4F9xx73nKtLc61yLPYbFxoRsUY9Yyl-pUJi_ITlEW4RWhQlqR-NQr5ceYQ9vmnAfmVNfnKRunKiJ8TT4zb6E7zF8mD8ykwZnERJxNaJ_Q5ioiHxo6byrYxQxD37rKnI-G5jQb9jM27JsfETlYM4IBgUQviy1CuayMTsFGSxIZkZctf9x0jmlOUs4iohoq3_uvzHmWQeH1P9Y7IA-_HQ3M6efRlzfkUXuGhBGbb8lOvViGd6BV1W6_EZc_RR4Tlg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contraction+of+myofibroblasts+in+granulation+tissue+is+dependent+on+Rho%2FRho+kinase%2Fmyosin+light+chain+phosphatase+activity&rft.jtitle=Wound+repair+and+regeneration&rft.au=Tomasek%2C+James+J&rft.au=Vaughan%2C+Melville+B&rft.au=Kropp%2C+Bradley+P&rft.au=Gabbiani%2C+Giulio&rft.date=2006-05-01&rft.issn=1067-1927&rft.volume=14&rft.issue=3&rft.spage=313&rft.epage=320&rft_id=info:doi/10.1111%2Fj.1743-6109.2006.00126.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1067-1927&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1067-1927&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1067-1927&client=summon |