Anti-microbial peptides: from invertebrates to vertebrates

Gene‐encoded anti‐microbial peptides (AMPs) are widespread in nature, as they are synthesized by microorganisms as well as by multicellular organisms from both the vegetal and the animal kingdoms. These naturally occurring AMPs form a first line of host defense against pathogens and are involved in...

Full description

Saved in:
Bibliographic Details
Published inImmunological reviews Vol. 198; no. 1; pp. 169 - 184
Main Authors Bulet, Philippe, Stöcklin, Reto, Menin, Laure
Format Journal Article
LanguageEnglish
Published Oxford, UK; Malden , USA Munksgaard International Publishers 01.04.2004
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gene‐encoded anti‐microbial peptides (AMPs) are widespread in nature, as they are synthesized by microorganisms as well as by multicellular organisms from both the vegetal and the animal kingdoms. These naturally occurring AMPs form a first line of host defense against pathogens and are involved in innate immunity. Depending on their tissue distribution, AMPs ensure either a systemic or a local protection of the organism against environmental pathogens. They are classified into three major groups: (i) peptides with an α‐helical conformation (insect cecropins, magainins, etc.), (ii) cyclic and open‐ended cyclic peptides with pairs of cysteine residues (defensins, protegrin, etc.), and (iii) peptides with an over‐representation of some amino acids (proline rich, histidine rich, etc.). Most AMPs display hydrophobic and cationic properties, have a molecular mass below 25–30 kDa, and adopt an amphipathic structure (α‐helix, β‐hairpin‐like β‐sheet, β‐sheet, or α‐helix/β‐sheet mixed structures) that is believed to be essential to their anti‐microbial action. Interestingly, in recent years, a series of novel AMPs have been discovered as processed forms of large proteins. Despite the extreme diversity in their primary and secondary structures, all natural AMPs have the in vitro particularity to affect a large number of microorganisms (bacteria, fungi, yeast, virus, etc.) with identical or complementary activity spectra. This review focuses on AMPs forming α‐helices, β‐hairpin‐like β‐sheets, β‐sheets, or α‐helix/β‐sheet mixed structures from invertebrate and vertebrate origins. These molecules show some promise for therapeutic use.
AbstractList Gene-encoded anti-microbial peptides (AMPs) are widespread in nature, as they are synthesized by microorganisms as well as by multicellular organisms from both the vegetal and the animal kingdoms. These naturally occurring AMPs form a first line of host defense against pathogens and are involved in innate immunity. Depending on their tissue distribution, AMPs ensure either a systemic or a local protection of the organism against environmental pathogens. They are classified into three major groups: (i) peptides with an alpha-helical conformation (insect cecropins, magainins, etc.), (ii) cyclic and open-ended cyclic peptides with pairs of cysteine residues (defensins, protegrin, etc.), and (iii) peptides with an over-representation of some amino acids (proline rich, histidine rich, etc.). Most AMPs display hydrophobic and cationic properties, have a molecular mass below 25-30 kDa, and adopt an amphipathic structure (alpha-helix, beta-hairpin-like beta-sheet, beta-sheet, or alpha-helix/beta-sheet mixed structures) that is believed to be essential to their anti-microbial action. Interestingly, in recent years, a series of novel AMPs have been discovered as processed forms of large proteins. Despite the extreme diversity in their primary and secondary structures, all natural AMPs have the in vitro particularity to affect a large number of microorganisms (bacteria, fungi, yeast, virus, etc.) with identical or complementary activity spectra. This review focuses on AMPs forming alpha-helices, beta-hairpin-like beta-sheets, beta-sheets, or alpha-helix/beta-sheet mixed structures from invertebrate and vertebrate origins. These molecules show some promise for therapeutic use.
Gene-encoded anti-microbial peptides (AMPs) are widespread in nature, as they are synthesized by microorganisms as well as by multicellular organisms from both the vegetal and the animal kingdoms. These naturally occurring AMPs form a first line of host defense against pathogens and are involved in innate immunity. Depending on their tissue distribution, AMPs ensure either a systemic or a local protection of the organism against environmental pathogens. They are classified into three major groups: (i) peptides with an alpha-helical conformation (insect cecropins, magainins, etc.), (ii) cyclic and open-ended cyclic peptides with pairs of cysteine residues (defensins, protegrin, etc.), and (iii) peptides with an over-representation of some amino acids (proline rich, histidine rich, etc.). Most AMPs display hydrophobic and cationic properties, have a molecular mass below 25-30 kDa, and adopt an amphipathic structure (alpha-helix, beta-hairpin-like beta-sheet, beta-sheet, or alpha-helix/beta-sheet mixed structures) that is believed to be essential to their anti-microbial action. Interestingly, in recent years, a series of novel AMPs have been discovered as processed forms of large proteins. Despite the extreme diversity in their primary and secondary structures, all natural AMPs have the in vitro particularity to affect a large number of microorganisms (bacteria, fungi, yeast, virus, etc.) with identical or complementary activity spectra. This review focuses on AMPs forming alpha-helices, beta-hairpin-like beta-sheets, beta-sheets, or alpha-helix/beta-sheet mixed structures from invertebrate and vertebrate origins. These molecules show some promise for therapeutic use.Gene-encoded anti-microbial peptides (AMPs) are widespread in nature, as they are synthesized by microorganisms as well as by multicellular organisms from both the vegetal and the animal kingdoms. These naturally occurring AMPs form a first line of host defense against pathogens and are involved in innate immunity. Depending on their tissue distribution, AMPs ensure either a systemic or a local protection of the organism against environmental pathogens. They are classified into three major groups: (i) peptides with an alpha-helical conformation (insect cecropins, magainins, etc.), (ii) cyclic and open-ended cyclic peptides with pairs of cysteine residues (defensins, protegrin, etc.), and (iii) peptides with an over-representation of some amino acids (proline rich, histidine rich, etc.). Most AMPs display hydrophobic and cationic properties, have a molecular mass below 25-30 kDa, and adopt an amphipathic structure (alpha-helix, beta-hairpin-like beta-sheet, beta-sheet, or alpha-helix/beta-sheet mixed structures) that is believed to be essential to their anti-microbial action. Interestingly, in recent years, a series of novel AMPs have been discovered as processed forms of large proteins. Despite the extreme diversity in their primary and secondary structures, all natural AMPs have the in vitro particularity to affect a large number of microorganisms (bacteria, fungi, yeast, virus, etc.) with identical or complementary activity spectra. This review focuses on AMPs forming alpha-helices, beta-hairpin-like beta-sheets, beta-sheets, or alpha-helix/beta-sheet mixed structures from invertebrate and vertebrate origins. These molecules show some promise for therapeutic use.
Gene‐encoded anti‐microbial peptides (AMPs) are widespread in nature, as they are synthesized by microorganisms as well as by multicellular organisms from both the vegetal and the animal kingdoms. These naturally occurring AMPs form a first line of host defense against pathogens and are involved in innate immunity. Depending on their tissue distribution, AMPs ensure either a systemic or a local protection of the organism against environmental pathogens. They are classified into three major groups: (i) peptides with an α‐helical conformation (insect cecropins, magainins, etc.), (ii) cyclic and open‐ended cyclic peptides with pairs of cysteine residues (defensins, protegrin, etc.), and (iii) peptides with an over‐representation of some amino acids (proline rich, histidine rich, etc.). Most AMPs display hydrophobic and cationic properties, have a molecular mass below 25–30 kDa, and adopt an amphipathic structure (α‐helix, β‐hairpin‐like β‐sheet, β‐sheet, or α‐helix/β‐sheet mixed structures) that is believed to be essential to their anti‐microbial action. Interestingly, in recent years, a series of novel AMPs have been discovered as processed forms of large proteins. Despite the extreme diversity in their primary and secondary structures, all natural AMPs have the in vitro particularity to affect a large number of microorganisms (bacteria, fungi, yeast, virus, etc.) with identical or complementary activity spectra. This review focuses on AMPs forming α‐helices, β‐hairpin‐like β‐sheets, β‐sheets, or α‐helix/β‐sheet mixed structures from invertebrate and vertebrate origins. These molecules show some promise for therapeutic use.
Gene‐encoded anti‐microbial peptides (AMPs) are widespread in nature, as they are synthesized by microorganisms as well as by multicellular organisms from both the vegetal and the animal kingdoms. These naturally occurring AMPs form a first line of host defense against pathogens and are involved in innate immunity. Depending on their tissue distribution, AMPs ensure either a systemic or a local protection of the organism against environmental pathogens. They are classified into three major groups: (i) peptides with an α‐helical conformation (insect cecropins, magainins, etc.), (ii) cyclic and open‐ended cyclic peptides with pairs of cysteine residues (defensins, protegrin, etc.), and (iii) peptides with an over‐representation of some amino acids (proline rich, histidine rich, etc.). Most AMPs display hydrophobic and cationic properties, have a molecular mass below 25–30 kDa, and adopt an amphipathic structure (α‐helix, β‐hairpin‐like β‐sheet, β‐sheet, or α‐helix/β‐sheet mixed structures) that is believed to be essential to their anti‐microbial action. Interestingly, in recent years, a series of novel AMPs have been discovered as processed forms of large proteins. Despite the extreme diversity in their primary and secondary structures, all natural AMPs have the in vitro particularity to affect a large number of microorganisms (bacteria, fungi, yeast, virus, etc.) with identical or complementary activity spectra. This review focuses on AMPs forming α‐helices, β‐hairpin‐like β‐sheets, β‐sheets, or α‐helix/β‐sheet mixed structures from invertebrate and vertebrate origins. These molecules show some promise for therapeutic use.
Author Stöcklin, Reto
Menin, Laure
Bulet, Philippe
Author_xml – sequence: 1
  givenname: Philippe
  surname: Bulet
  fullname: Bulet, Philippe
  email: philippe.bulet@atheris.ch
  organization: Atheris Laboratories, Geneva, Switzerland
– sequence: 2
  givenname: Reto
  surname: Stöcklin
  fullname: Stöcklin, Reto
  organization: Atheris Laboratories, Geneva, Switzerland
– sequence: 3
  givenname: Laure
  surname: Menin
  fullname: Menin, Laure
  organization: Atheris Laboratories, Geneva, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15199962$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03828656$$DView record in HAL
BookMark eNqNkU1vEzEQhi1URNOWvwB7QuKwwR9re13UQxRBUylQtaoE4jKyd73CYT-C7ZT03-PVloA41Rd7rOeZkd45QUf90FuEXhM8J-m828wxwTynpRJzinGRSlrM98_QjAiMcyz41yM0OzDH6CSEDcZEMlq8QMeEE6WUoDN0vuijyztX-cE43WZbu42utuE8a_zQZa6_tz5a43W0IYtD9k95hp43ug325eN9iu4-frhbrvL19eXVcrHOq0KpIpeV4UwSqoViltbUSlYKTJTB2vBKUqM0FkrTWpd1oythyqapSmq4VbUmjJ2it1Pb77qFrXed9g8waAerxRrGP8xKWgou7kli30zs1g8_dzZE6FyobNvq3g67AJJixksiEvjqEdyZztaHvn-CSYCcgBRMCN42fxEM4wpgA2O8MMYL4wpgXAHsk3nxn1m5qKMb-ui1a5_gv5_8X661D08dC1efbtMj2flkuxDt_mBr_wOEZJLDl8-X8E3SpbzhK1ix3-nwrPA
CitedBy_id crossref_primary_10_3390_toxins11010039
crossref_primary_10_1016_j_bcp_2016_09_018
crossref_primary_10_1074_jbc_M110_214007
crossref_primary_10_1016_j_csbj_2023_03_031
crossref_primary_10_1016_j_fsi_2015_03_013
crossref_primary_10_1371_journal_ppat_1009479
crossref_primary_10_1007_s10989_022_10478_y
crossref_primary_10_1111_oik_03900
crossref_primary_10_1016_j_wndm_2020_100179
crossref_primary_10_2174_0115748936274103231114105340
crossref_primary_10_3390_microorganisms13010156
crossref_primary_10_1016_j_ijid_2011_02_003
crossref_primary_10_3389_fbioe_2020_00454
crossref_primary_10_1002_bip_22871
crossref_primary_10_1007_s12562_008_0027_3
crossref_primary_10_1016_j_pep_2005_04_010
crossref_primary_10_1016_j_toxicon_2008_12_011
crossref_primary_10_3390_pharmaceutics15020406
crossref_primary_10_1038_s41598_018_31681_2
crossref_primary_10_1111_febs_14194
crossref_primary_10_1016_j_micinf_2010_05_001
crossref_primary_10_1016_j_peptides_2011_01_026
crossref_primary_10_1016_j_dci_2017_05_003
crossref_primary_10_1016_j_jddst_2020_102016
crossref_primary_10_1021_bi900272r
crossref_primary_10_1016_j_ejphar_2013_03_028
crossref_primary_10_1111_j_1570_7458_2011_01187_x
crossref_primary_10_1016_j_bcp_2005_10_010
crossref_primary_10_1111_j_1365_2583_2007_00745_x
crossref_primary_10_1002_ece3_2460
crossref_primary_10_1016_j_bpj_2008_11_053
crossref_primary_10_1038_s41598_018_35749_x
crossref_primary_10_1016_j_foodchem_2021_130874
crossref_primary_10_1016_j_fsi_2019_03_007
crossref_primary_10_1016_j_jgar_2020_07_019
crossref_primary_10_1007_s10989_024_10656_0
crossref_primary_10_1016_j_peptides_2013_04_004
crossref_primary_10_1016_j_toxicon_2009_06_014
crossref_primary_10_3390_jof6040333
crossref_primary_10_1016_j_bbapap_2005_07_013
crossref_primary_10_1016_j_ibmb_2012_04_003
crossref_primary_10_1038_jid_2011_387
crossref_primary_10_1242_jeb_154310
crossref_primary_10_1021_jm701604t
crossref_primary_10_1016_j_biopha_2019_109152
crossref_primary_10_1007_s43630_024_00542_5
crossref_primary_10_1016_j_fsi_2020_07_069
crossref_primary_10_1016_j_fsi_2014_09_019
crossref_primary_10_1128_JB_01406_07
crossref_primary_10_1007_s10989_022_10477_z
crossref_primary_10_1016_j_dci_2015_08_001
crossref_primary_10_1016_j_peptides_2013_04_012
crossref_primary_10_1016_j_jinsphys_2013_08_011
crossref_primary_10_1021_ja076300z
crossref_primary_10_1111_pbi_12119
crossref_primary_10_1186_s12859_015_0633_x
crossref_primary_10_3390_pr10122470
crossref_primary_10_1002_adfm_201202850
crossref_primary_10_1007_s10499_017_0139_9
crossref_primary_10_1016_j_fsi_2015_11_039
crossref_primary_10_1016_j_cclet_2016_04_024
crossref_primary_10_1111_1744_7917_12453
crossref_primary_10_1016_j_peptides_2012_09_001
crossref_primary_10_3390_microorganisms12020412
crossref_primary_10_3390_md20080501
crossref_primary_10_1074_jbc_M111_269225
crossref_primary_10_3390_ijms242115607
crossref_primary_10_1016_j_cbpb_2010_02_003
crossref_primary_10_1586_14787210_2013_841450
crossref_primary_10_1016_j_yexmp_2013_07_006
crossref_primary_10_1371_journal_pone_0178785
crossref_primary_10_1007_s12526_017_0815_z
crossref_primary_10_1016_j_jinsphys_2006_08_007
crossref_primary_10_1515_CCLM_2010_098
crossref_primary_10_1002_bip_20660
crossref_primary_10_1016_j_micpath_2021_104749
crossref_primary_10_1016_j_bpj_2009_04_039
crossref_primary_10_1080_17425255_2020_1803278
crossref_primary_10_1016_j_fsi_2023_109286
crossref_primary_10_1371_journal_pone_0101742
crossref_primary_10_1016_j_virol_2017_11_009
crossref_primary_10_3390_antibiotics13080783
crossref_primary_10_1021_ci2002186
crossref_primary_10_1016_j_dci_2016_03_006
crossref_primary_10_1080_10495398_2012_745417
crossref_primary_10_1111_bjd_20750
crossref_primary_10_1186_s12864_015_1849_x
crossref_primary_10_1161_01_RES_0000153188_68898_ac
crossref_primary_10_1016_j_ejmech_2023_115377
crossref_primary_10_1016_j_fsi_2013_07_001
crossref_primary_10_1016_j_genrep_2020_100867
crossref_primary_10_1007_s13659_012_0016_1
crossref_primary_10_1016_j_bbagen_2015_12_010
crossref_primary_10_1016_j_peptides_2011_07_007
crossref_primary_10_1016_S0123_9392_10_70093_X
crossref_primary_10_1111_j_1462_5822_2011_01589_x
crossref_primary_10_1111_j_1742_4658_2009_07497_x
crossref_primary_10_1016_j_bmcl_2013_07_063
crossref_primary_10_1016_j_fsi_2013_06_026
crossref_primary_10_1016_j_ibmb_2007_07_010
crossref_primary_10_1016_j_bbamem_2007_08_022
crossref_primary_10_1016_j_fsi_2006_08_013
crossref_primary_10_1128_AEM_00711_09
crossref_primary_10_1007_s13205_020_2151_4
crossref_primary_10_1098_rspb_2007_1211
crossref_primary_10_3923_ajbkr_2020_75_86
crossref_primary_10_1016_j_peptides_2006_04_019
crossref_primary_10_1021_cb400591d
crossref_primary_10_1016_j_peptides_2006_04_013
crossref_primary_10_1021_bi800991e
crossref_primary_10_1039_C6MB00810K
crossref_primary_10_1021_jp1052248
crossref_primary_10_1007_s00018_009_0241_x
crossref_primary_10_1016_j_fsi_2018_10_081
crossref_primary_10_1016_j_virol_2010_07_033
crossref_primary_10_3390_ijms20225743
crossref_primary_10_1186_s12864_015_1748_1
crossref_primary_10_1371_journal_pone_0016441
crossref_primary_10_3389_fmed_2022_835843
crossref_primary_10_1002_ejoc_201200291
crossref_primary_10_1016_j_dci_2018_06_008
crossref_primary_10_1016_j_dci_2018_06_005
crossref_primary_10_1080_10408398_2015_1031726
crossref_primary_10_1002_bip_20404
crossref_primary_10_1016_j_cbpb_2019_05_004
crossref_primary_10_1016_j_dci_2007_06_009
crossref_primary_10_1021_jf200486t
crossref_primary_10_1016_j_dci_2019_02_012
crossref_primary_10_1080_15569543_2024_2331250
crossref_primary_10_1016_j_biotechadv_2010_08_012
crossref_primary_10_1016_j_bmcl_2012_04_018
crossref_primary_10_1021_bi900724x
crossref_primary_10_29252_ijaah_4_1_1
crossref_primary_10_1074_jbc_M112_382028
crossref_primary_10_1603_EN10137
crossref_primary_10_1051_e3sconf_202560202004
crossref_primary_10_1096_fj_08_122317
crossref_primary_10_3389_fchem_2021_626059
crossref_primary_10_1016_j_dci_2008_03_008
crossref_primary_10_3390_md22040172
crossref_primary_10_1007_s12602_023_10061_x
crossref_primary_10_1051_apido_2008057
crossref_primary_10_1016_j_jphotobiol_2010_02_005
crossref_primary_10_1016_j_peptides_2011_10_005
crossref_primary_10_1016_j_antiviral_2019_04_012
crossref_primary_10_1007_s11030_006_9032_6
crossref_primary_10_1074_jbc_M109_016410
crossref_primary_10_1016_j_jinsphys_2008_04_013
crossref_primary_10_1186_s12898_019_0259_3
crossref_primary_10_2217_fmb_11_73
crossref_primary_10_3390_ijms232213844
crossref_primary_10_1007_s10126_024_10367_z
crossref_primary_10_3389_fimmu_2020_01511
crossref_primary_10_3389_fmicb_2021_555022
crossref_primary_10_3390_md20030157
crossref_primary_10_1016_j_dci_2010_01_008
crossref_primary_10_3390_fermentation10110540
crossref_primary_10_1371_journal_pone_0164597
crossref_primary_10_1016_j_bioflm_2023_100164
crossref_primary_10_1002_cbdv_202200494
crossref_primary_10_3389_fphys_2019_00529
crossref_primary_10_1016_j_cbpb_2017_01_004
crossref_primary_10_1016_j_fsi_2019_03_027
crossref_primary_10_1002_bip_20865
crossref_primary_10_1002_chem_200700845
crossref_primary_10_1016_j_gene_2016_05_030
crossref_primary_10_1016_j_jff_2010_01_003
crossref_primary_10_1021_acs_biochem_6b01071
crossref_primary_10_1074_jbc_M110_216358
crossref_primary_10_3389_fimmu_2020_01629
crossref_primary_10_1016_j_bpc_2006_12_009
crossref_primary_10_1016_j_mrl_2022_08_001
crossref_primary_10_1007_s13355_024_00888_3
crossref_primary_10_1128_spectrum_00826_21
crossref_primary_10_1016_j_imbio_2010_05_030
crossref_primary_10_1016_j_fsi_2024_109785
crossref_primary_10_1051_jbio_2015018
crossref_primary_10_3390_molecules23123202
crossref_primary_10_1111_j_1472_765X_2009_02763_x
crossref_primary_10_1016_j_dci_2015_11_006
crossref_primary_10_1016_j_micpath_2017_11_039
crossref_primary_10_1016_j_jip_2018_07_005
crossref_primary_10_1186_1471_2164_11_452
crossref_primary_10_3958_059_042_0104
crossref_primary_10_1016_j_dci_2010_01_012
crossref_primary_10_1096_fj_202301218R
crossref_primary_10_1177_1534734608326916
crossref_primary_10_1016_j_fsi_2015_11_005
crossref_primary_10_1128_IAI_01265_12
crossref_primary_10_1016_j_jinorgbio_2021_111386
crossref_primary_10_1186_1471_2164_11_450
crossref_primary_10_2141_jpsa_010065
crossref_primary_10_1002_bip_21700
crossref_primary_10_1007_s10989_012_9328_6
crossref_primary_10_1002_psc_1195
crossref_primary_10_1371_journal_pone_0167953
crossref_primary_10_1007_s10142_014_0366_3
crossref_primary_10_1016_j_ibmb_2012_10_012
crossref_primary_10_1016_j_micpath_2018_08_056
crossref_primary_10_1111_raq_12306
crossref_primary_10_1002_psc_967
crossref_primary_10_1371_journal_pone_0016400
crossref_primary_10_1007_s00894_017_3479_5
crossref_primary_10_1016_j_clim_2009_12_004
crossref_primary_10_3390_ijms26051885
crossref_primary_10_1016_j_bbrc_2011_09_021
crossref_primary_10_3892_ijo_2016_3651
crossref_primary_10_1016_j_bbamem_2015_03_030
crossref_primary_10_1016_j_dci_2018_05_002
crossref_primary_10_1016_j_aspen_2021_01_013
crossref_primary_10_1590_0103_8478cr20160668
crossref_primary_10_1007_s10393_016_1102_3
crossref_primary_10_1071_AN21124
crossref_primary_10_1002_pep2_24325
crossref_primary_10_3390_insects9030117
crossref_primary_10_1016_j_peptides_2010_12_004
crossref_primary_10_1080_87559129_2016_1210632
crossref_primary_10_1002_pep2_24329
crossref_primary_10_1002_prot_23233
crossref_primary_10_1007_s00018_010_0354_2
crossref_primary_10_1002_psc_853
crossref_primary_10_1017_S0043933907001559
crossref_primary_10_52547_pgr_8_2_7
crossref_primary_10_1016_j_fsi_2020_05_025
crossref_primary_10_1007_s10719_011_9353_2
crossref_primary_10_3389_fimmu_2021_628054
crossref_primary_10_1016_j_cbpb_2010_05_010
crossref_primary_10_3390_microorganisms9112307
crossref_primary_10_1007_s12010_015_1631_1
crossref_primary_10_3390_ijms131217048
crossref_primary_10_1021_acsami_0c17550
crossref_primary_10_5012_bkcs_2008_29_6_1190
crossref_primary_10_1021_jm050882i
crossref_primary_10_5352_JLS_2016_26_3_296
crossref_primary_10_1016_j_fsi_2009_11_005
crossref_primary_10_1016_j_plantsci_2019_110398
crossref_primary_10_3389_fmicb_2018_01522
crossref_primary_10_1007_s42247_023_00601_0
crossref_primary_10_1016_j_bbrc_2011_09_018
crossref_primary_10_1016_j_peptides_2009_05_019
crossref_primary_10_1021_ja0588510
crossref_primary_10_1186_s13071_014_0554_y
crossref_primary_10_1002_bkcs_10213
crossref_primary_10_1002_cbdv_200890111
crossref_primary_10_1002_psc_701
crossref_primary_10_1016_j_molimm_2008_07_021
crossref_primary_10_3390_ijms222111691
crossref_primary_10_1074_jbc_M110_143388
crossref_primary_10_1093_femspd_fty004
crossref_primary_10_1002_ajoc_201402242
crossref_primary_10_1016_j_peptides_2011_11_013
crossref_primary_10_1007_s10126_025_10426_z
crossref_primary_10_1096_fj_08_114579
crossref_primary_10_12714_egejfas_40_1_05
crossref_primary_10_1016_j_procbio_2008_08_012
crossref_primary_10_1039_D0RA04299D
crossref_primary_10_1016_j_bbamem_2019_183055
crossref_primary_10_1016_j_dci_2014_05_020
crossref_primary_10_1007_s11033_012_2152_4
crossref_primary_10_1371_journal_pone_0220344
crossref_primary_10_1016_j_pharmthera_2017_10_010
crossref_primary_10_1016_j_molimm_2010_09_018
crossref_primary_10_1007_s11033_011_1311_3
crossref_primary_10_1590_S0100_879X2010005000010
crossref_primary_10_1002_bip_20700
crossref_primary_10_1016_j_molimm_2009_09_042
crossref_primary_10_1111_j_1365_2109_2009_02266_x
crossref_primary_10_1371_journal_pone_0016968
crossref_primary_10_1586_ehm_10_40
crossref_primary_10_1007_s11756_024_01703_8
crossref_primary_10_1007_s10529_007_9351_4
crossref_primary_10_1016_j_ijbiomac_2025_142158
crossref_primary_10_1016_j_peptides_2018_01_017
crossref_primary_10_1016_j_peptides_2006_06_010
crossref_primary_10_7852_jses_2012_50_2_145
crossref_primary_10_1146_annurev_animal_022516_022914
crossref_primary_10_1016_j_peptides_2014_01_012
crossref_primary_10_1016_j_peptides_2010_10_029
crossref_primary_10_1007_s00018_023_04795_8
crossref_primary_10_1128_MCB_00223_10
crossref_primary_10_3390_pharmaceutics16050582
crossref_primary_10_1021_bi101687t
crossref_primary_10_1016_j_peptides_2008_02_019
crossref_primary_10_1080_87559129_2015_1137311
crossref_primary_10_1186_1756_3305_7_388
crossref_primary_10_1002_ps_6529
crossref_primary_10_1016_j_biochi_2012_09_019
crossref_primary_10_1016_j_ibmb_2015_01_015
crossref_primary_10_1097_MRM_0000000000000032
crossref_primary_10_1128_AAC_00023_08
crossref_primary_10_1016_j_cirep_2024_200150
crossref_primary_10_1038_s41598_021_86155_9
crossref_primary_10_3390_molecules180810056
crossref_primary_10_4137_EBO_S25580
crossref_primary_10_3390_biom12040527
crossref_primary_10_1098_rstb_2015_0290
crossref_primary_10_5657_FAS_2014_0377
crossref_primary_10_1016_j_dci_2018_04_014
crossref_primary_10_1016_j_fsi_2008_04_005
crossref_primary_10_1016_j_ibmb_2007_11_001
crossref_primary_10_1042_BJ20050218
crossref_primary_10_1016_j_vetpar_2007_12_027
crossref_primary_10_1038_s41598_022_15812_4
crossref_primary_10_3390_ani11071937
crossref_primary_10_1007_s00360_024_01549_1
crossref_primary_10_1016_j_fsi_2009_12_001
crossref_primary_10_1016_j_cnsns_2015_04_013
crossref_primary_10_1016_j_peptides_2011_07_027
crossref_primary_10_1016_j_cellsig_2014_02_024
crossref_primary_10_1016_j_bbamem_2020_183261
crossref_primary_10_1128_AAC_01231_09
crossref_primary_10_1016_j_fsi_2020_06_029
crossref_primary_10_1016_S1875_5364_18_30005_0
crossref_primary_10_1002_bip_20917
crossref_primary_10_1155_2012_101989
crossref_primary_10_1016_j_bbrc_2012_10_092
crossref_primary_10_1097_01_CCM_0000148091_84857_E1
crossref_primary_10_1016_j_foodchem_2017_06_084
crossref_primary_10_1007_s13258_017_0532_9
crossref_primary_10_1016_j_peptides_2010_10_008
crossref_primary_10_22358_jafs_69998_2017
crossref_primary_10_1111_1365_2435_12013
crossref_primary_10_1089_jop_2014_0089
crossref_primary_10_1016_j_procbio_2008_06_009
crossref_primary_10_1016_j_procbio_2009_08_017
crossref_primary_10_1016_j_wasman_2022_04_017
crossref_primary_10_1016_j_bmc_2005_01_009
crossref_primary_10_1016_j_addr_2021_114008
crossref_primary_10_1074_jbc_M800495200
crossref_primary_10_1186_s12866_017_0957_y
crossref_primary_10_1515_BC_2007_030
crossref_primary_10_1007_s00436_015_4694_6
crossref_primary_10_1016_j_dci_2012_02_011
crossref_primary_10_1016_j_fsi_2013_10_025
crossref_primary_10_3389_fimmu_2019_01785
crossref_primary_10_1042_BSR20171282
crossref_primary_10_1248_yakushi_126_1213
crossref_primary_10_1016_j_peptides_2005_05_004
crossref_primary_10_1016_j_micinf_2015_01_005
crossref_primary_10_1074_jbc_M110_189662
crossref_primary_10_1016_j_aquaculture_2008_07_046
crossref_primary_10_1016_j_dci_2011_09_007
crossref_primary_10_1016_j_dci_2016_09_002
crossref_primary_10_1155_2015_212715
crossref_primary_10_1007_s00018_019_03138_w
crossref_primary_10_1134_S1068162016030055
crossref_primary_10_1007_s10989_015_9456_x
crossref_primary_10_1016_j_peptides_2013_09_007
crossref_primary_10_1016_j_jconrel_2023_01_084
crossref_primary_10_3390_molecules23112943
crossref_primary_10_1111_j_1420_9101_2005_00907_x
crossref_primary_10_1371_journal_pone_0161585
crossref_primary_10_1016_j_dci_2013_04_019
crossref_primary_10_1007_s10989_020_10068_w
crossref_primary_10_1021_jm100483y
crossref_primary_10_1038_nature05267
crossref_primary_10_1556_ABiol_59_2008_3_3
crossref_primary_10_1074_jbc_M510850200
crossref_primary_10_5352_JLS_2014_24_8_860
crossref_primary_10_1016_j_peptides_2007_09_010
crossref_primary_10_3390_ijms25073835
crossref_primary_10_1016_j_bpj_2012_08_055
crossref_primary_10_1016_j_fsi_2015_07_003
crossref_primary_10_1016_j_peptides_2007_09_017
crossref_primary_10_1016_j_bbamem_2015_10_011
crossref_primary_10_1002_mds_28925
crossref_primary_10_1016_j_molimm_2006_02_025
crossref_primary_10_1016_j_dci_2008_11_007
crossref_primary_10_1111_j_1600_0625_2012_01538_x
crossref_primary_10_1038_nrurol_2012_109
crossref_primary_10_2174_1389203721666200116091911
crossref_primary_10_1016_j_fsi_2011_01_031
crossref_primary_10_1002_prot_22494
crossref_primary_10_3897_jhr_91_82381
crossref_primary_10_3389_fimmu_2017_01320
crossref_primary_10_1016_j_bbamem_2018_09_011
crossref_primary_10_1097_00062752_200701000_00005
crossref_primary_10_1099_jmm_0_46929_0
crossref_primary_10_3389_fmicb_2017_00984
crossref_primary_10_1038_s41598_024_64691_4
crossref_primary_10_1002_cbdv_202403202
crossref_primary_10_1007_s12602_018_9483_y
crossref_primary_10_1016_j_gene_2012_08_013
crossref_primary_10_3390_md20120745
crossref_primary_10_1007_s00726_020_02900_w
crossref_primary_10_3390_v13050912
crossref_primary_10_1002_arch_20280
crossref_primary_10_3389_fmicb_2022_1053078
crossref_primary_10_1111_j_1365_313X_2009_04121_x
crossref_primary_10_1016_j_japr_2023_100346
crossref_primary_10_3390_ijms25021072
crossref_primary_10_3390_molecules28010050
crossref_primary_10_1074_jbc_M705480200
crossref_primary_10_1007_s00249_006_0047_9
crossref_primary_10_1155_2013_390230
crossref_primary_10_1016_j_dci_2016_07_015
crossref_primary_10_1016_j_jembe_2014_09_005
crossref_primary_10_7717_peerj_5369
crossref_primary_10_1016_j_fsi_2013_04_048
crossref_primary_10_1002_psc_1343
crossref_primary_10_1016_j_bbamem_2012_06_008
crossref_primary_10_1093_jisesa_ieab054
crossref_primary_10_1371_journal_ppat_1008935
crossref_primary_10_1002_psc_2679
crossref_primary_10_1016_j_molbiopara_2004_09_009
crossref_primary_10_1104_pp_105_060079
crossref_primary_10_1002_psc_2439
crossref_primary_10_1016_j_bbagen_2017_04_009
crossref_primary_10_1134_S0006350924700787
crossref_primary_10_1007_s00265_006_0226_9
crossref_primary_10_1016_j_tig_2007_05_003
crossref_primary_10_1128_AAC_01436_08
crossref_primary_10_1007_s10126_005_5006_4
crossref_primary_10_1007_s11103_008_9372_y
crossref_primary_10_1038_sj_onc_1209599
crossref_primary_10_1186_gb_2007_8_8_r177
crossref_primary_10_1186_s12858_015_0052_7
crossref_primary_10_3389_fmars_2021_690879
crossref_primary_10_1515_bmc_2011_006
crossref_primary_10_1016_j_fsi_2011_07_020
crossref_primary_10_1016_j_cbpa_2010_07_013
crossref_primary_10_1111_j_1574_6968_2010_01950_x
crossref_primary_10_1021_la100662a
crossref_primary_10_1111_j_1462_5822_2005_00549_x
crossref_primary_10_1042_BJ20082330
crossref_primary_10_1016_j_soilbio_2021_108435
crossref_primary_10_1016_j_dci_2007_04_004
crossref_primary_10_1016_j_fsi_2012_08_010
crossref_primary_10_3390_biom10040652
crossref_primary_10_1007_s00114_020_01700_2
crossref_primary_10_1016_j_ibmb_2005_01_014
crossref_primary_10_1016_j_micpath_2024_107161
crossref_primary_10_1016_j_peptides_2005_07_013
crossref_primary_10_3389_fmicb_2015_00339
crossref_primary_10_3390_molecules23040815
crossref_primary_10_1016_j_peptides_2014_03_013
crossref_primary_10_2478_aoas_2025_0004
crossref_primary_10_1111_1748_5967_12214
crossref_primary_10_1038_nature08698
crossref_primary_10_1098_rspb_2015_0293
crossref_primary_10_1016_j_coemr_2024_100557
crossref_primary_10_1021_jp411886u
crossref_primary_10_1158_0008_5472_CAN_05_4569
crossref_primary_10_1016_j_chemphyslip_2012_01_009
crossref_primary_10_1653_024_097_0350
crossref_primary_10_1016_j_biochi_2023_07_016
crossref_primary_10_1016_j_bbrc_2007_06_029
crossref_primary_10_1186_s12866_017_0959_9
crossref_primary_10_1007_s10989_020_10072_0
crossref_primary_10_1016_j_cbpc_2021_109243
crossref_primary_10_1002_bip_21071
crossref_primary_10_1002_pmic_200800569
crossref_primary_10_4001_003_024_0197
crossref_primary_10_1016_j_fsi_2014_05_032
crossref_primary_10_1111_j_1462_2920_2009_02138_x
crossref_primary_10_1016_j_fsi_2016_09_054
crossref_primary_10_1593_neo_07885
crossref_primary_10_1016_j_fsi_2018_06_026
crossref_primary_10_1128_EC_00133_10
crossref_primary_10_1016_j_femsle_2005_06_055
crossref_primary_10_1016_j_biotechadv_2014_12_003
crossref_primary_10_1007_s00018_010_0364_0
crossref_primary_10_3389_fimmu_2019_01365
crossref_primary_10_1016_j_ibmb_2016_08_002
crossref_primary_10_3390_insects14030215
crossref_primary_10_1016_j_micpath_2015_11_023
crossref_primary_10_1080_10826068_2024_2365357
crossref_primary_10_1016_j_bbamem_2013_10_022
crossref_primary_10_1016_j_ibmb_2022_103816
crossref_primary_10_1016_j_aquaculture_2009_03_047
crossref_primary_10_1021_bi200746t
crossref_primary_10_1038_srep12048
crossref_primary_10_1007_s13205_019_1725_5
crossref_primary_10_1128_AAC_05338_11
crossref_primary_10_3390_ph6121543
crossref_primary_10_4049_jimmunol_2300871
crossref_primary_10_3390_md19110600
crossref_primary_10_3390_toxins11100559
crossref_primary_10_1016_j_imbio_2011_01_004
crossref_primary_10_1017_S000748531200048X
crossref_primary_10_1016_j_peptides_2007_12_012
crossref_primary_10_1016_j_toxicon_2009_03_011
crossref_primary_10_1038_s41598_020_69485_y
crossref_primary_10_1016_j_fsi_2014_04_027
crossref_primary_10_3390_antibiotics9020066
crossref_primary_10_3389_fimmu_2016_00664
crossref_primary_10_3389_fmicb_2017_00775
crossref_primary_10_1128_JB_00892_09
crossref_primary_10_1016_j_meegid_2019_02_015
crossref_primary_10_1039_b617527a
crossref_primary_10_3390_ijms10062860
crossref_primary_10_1080_08977190701344120
crossref_primary_10_1039_C6MD00376A
crossref_primary_10_1007_s10096_011_1430_8
crossref_primary_10_1080_07391102_2022_2105957
crossref_primary_10_3389_fmicb_2016_02006
crossref_primary_10_1016_j_fsi_2009_08_007
crossref_primary_10_1016_S1359_6446_05_03432_X
crossref_primary_10_1016_j_ibmb_2007_03_012
crossref_primary_10_1038_s41598_023_50832_8
crossref_primary_10_1016_j_dci_2010_12_009
crossref_primary_10_1021_mp8001914
crossref_primary_10_1155_2014_675985
crossref_primary_10_1016_j_febslet_2006_01_041
crossref_primary_10_3390_molecules20046941
crossref_primary_10_1016_j_fsi_2025_110243
crossref_primary_10_1016_j_pep_2012_08_006
crossref_primary_10_1016_j_molimm_2010_01_025
crossref_primary_10_1007_s12539_011_0088_3
crossref_primary_10_1016_j_peptides_2012_05_014
crossref_primary_10_3390_antibiotics9120921
crossref_primary_10_1111_j_1365_2583_2009_00897_x
crossref_primary_10_1016_j_ibmb_2007_03_013
crossref_primary_10_1021_jm1012853
crossref_primary_10_1186_1756_3305_4_63
crossref_primary_10_1002_psc_1372
crossref_primary_10_1016_j_fsi_2012_09_018
crossref_primary_10_1016_j_fsi_2016_08_058
crossref_primary_10_1016_j_ibmb_2011_05_005
crossref_primary_10_1111_j_1600_0854_2006_00531_x
crossref_primary_10_1016_j_molimm_2012_09_006
crossref_primary_10_1016_j_fsi_2010_12_031
crossref_primary_10_1016_j_molimm_2011_03_022
crossref_primary_10_1074_jbc_M110_127019
crossref_primary_10_1016_j_scitotenv_2018_01_056
crossref_primary_10_1134_S0026261719020103
crossref_primary_10_3389_fimmu_2020_01198
crossref_primary_10_1002_psc_1016
crossref_primary_10_1002_psc_1019
crossref_primary_10_1039_c1np00022e
crossref_primary_10_1104_pp_114_255505
crossref_primary_10_1016_j_peptides_2010_02_001
crossref_primary_10_1080_21505594_2018_1441589
crossref_primary_10_1016_j_str_2005_02_013
crossref_primary_10_1021_jm1010463
crossref_primary_10_1902_jop_2013_120679
crossref_primary_10_1016_j_exppara_2007_09_009
crossref_primary_10_1155_2017_9390803
crossref_primary_10_1016_S1671_2927_09_60245_5
crossref_primary_10_1021_bi800957n
crossref_primary_10_1186_gb_2010_11_2_r21
crossref_primary_10_1016_j_actbio_2021_02_002
crossref_primary_10_1016_j_fsi_2012_11_030
crossref_primary_10_1016_j_jinsphys_2009_05_015
crossref_primary_10_1186_1471_2164_11_51
crossref_primary_10_3390_molecules180911311
crossref_primary_10_1016_j_dci_2007_05_008
crossref_primary_10_1016_j_fsi_2021_12_020
crossref_primary_10_1186_1471_2105_11_S1_S19
crossref_primary_10_1111_j_1742_4658_2006_05407_x
crossref_primary_10_1016_j_fsi_2012_09_005
crossref_primary_10_1016_j_rinim_2011_09_001
crossref_primary_10_1186_s43141_022_00330_7
crossref_primary_10_1016_j_mehy_2016_05_025
crossref_primary_10_1128_CMR_00056_05
crossref_primary_10_1002_bip_22360
crossref_primary_10_3390_ijms23116345
crossref_primary_10_1590_S0074_02762007005000028
crossref_primary_10_3390_biom14101332
crossref_primary_10_1111_j_1365_2583_2009_00907_x
crossref_primary_10_1111_j_1744_7917_2006_00092_x
crossref_primary_10_1016_j_fsi_2016_02_004
crossref_primary_10_1016_j_heliyon_2024_e28484
crossref_primary_10_1016_j_dci_2008_07_009
crossref_primary_10_1016_j_fsi_2019_07_002
crossref_primary_10_3390_ijms23052789
crossref_primary_10_1002_cphc_201000472
crossref_primary_10_1016_j_aspen_2010_10_002
crossref_primary_10_4103_jmedsci_jmedsci_194_18
crossref_primary_10_1128_AEM_72_5_3302_3308_2006
crossref_primary_10_1186_s12866_016_0828_y
crossref_primary_10_1098_rstb_2015_0302
crossref_primary_10_1016_j_dci_2007_09_004
crossref_primary_10_1002_slct_202000851
crossref_primary_10_1038_srep09877
crossref_primary_10_1016_j_aquaculture_2021_736783
crossref_primary_10_3390_antibiotics11101318
crossref_primary_10_1002_chem_201001279
crossref_primary_10_1002_jps_20188
crossref_primary_10_3390_cells13242042
crossref_primary_10_1007_s00726_010_0625_0
crossref_primary_10_1128_AEM_02759_10
crossref_primary_10_3390_ph7030265
crossref_primary_10_1016_j_ijbiomac_2018_03_139
crossref_primary_10_1016_j_jmbbm_2015_02_003
crossref_primary_10_1016_j_tim_2008_05_007
crossref_primary_10_1016_j_dci_2012_05_003
crossref_primary_10_1016_j_fsi_2016_07_030
crossref_primary_10_1111_j_1742_4658_2006_05246_x
crossref_primary_10_1111_imb_12321
crossref_primary_10_3389_fmicb_2021_720381
crossref_primary_10_3390_md17090512
crossref_primary_10_1371_journal_pone_0159423
crossref_primary_10_1016_j_bbrc_2006_07_078
crossref_primary_10_1016_j_dci_2009_10_006
crossref_primary_10_1016_j_dci_2022_104554
crossref_primary_10_1093_icb_icw023
crossref_primary_10_1146_annurev_pathol_4_110807_092205
crossref_primary_10_1016_j_micron_2014_10_006
crossref_primary_10_1016_j_carbpol_2015_03_089
crossref_primary_10_1002_bit_22970
crossref_primary_10_1007_s10753_020_01371_1
crossref_primary_10_1016_j_ibmb_2011_12_005
crossref_primary_10_1002_bip_20286
crossref_primary_10_1134_S0022093011060032
crossref_primary_10_5483_BMBRep_2010_43_5_362
crossref_primary_10_1007_s12602_012_9098_7
crossref_primary_10_1021_bi902166d
crossref_primary_10_1016_j_fsi_2015_02_040
crossref_primary_10_1016_j_jfluchem_2020_109685
crossref_primary_10_31857_S0006302924040136
crossref_primary_10_1016_j_aquaculture_2009_03_013
crossref_primary_10_1080_07388551_2020_1828810
crossref_primary_10_1016_j_dci_2015_03_007
crossref_primary_10_1016_j_fsi_2024_110063
crossref_primary_10_1007_s10126_013_9550_z
crossref_primary_10_1128_spectrum_03089_22
crossref_primary_10_1021_bc800280u
crossref_primary_10_1038_icb_2009_19
crossref_primary_10_1021_bi900756y
crossref_primary_10_3109_10428194_2013_770847
crossref_primary_10_1016_j_imbio_2005_10_017
crossref_primary_10_1007_s12010_016_2365_4
crossref_primary_10_1007_s00210_024_03056_0
crossref_primary_10_1007_s10989_022_10472_4
crossref_primary_10_1038_s41598_017_11396_6
crossref_primary_10_1096_fj_13_234575
crossref_primary_10_1017_S0031182009006283
crossref_primary_10_1371_journal_pone_0085515
crossref_primary_10_1016_j_fsi_2016_12_034
crossref_primary_10_1042_BSR20180988
crossref_primary_10_1002_bip_20396
crossref_primary_10_1016_j_dci_2018_09_001
crossref_primary_10_1016_j_peptides_2011_03_019
crossref_primary_10_1016_j_micinf_2013_01_003
crossref_primary_10_1371_journal_pone_0124210
crossref_primary_10_1128_AAC_01553_05
crossref_primary_10_1080_00218839_2015_1109919
crossref_primary_10_1186_1471_2180_12_132
crossref_primary_10_1021_np4009317
crossref_primary_10_1007_s00109_006_0143_4
crossref_primary_10_1371_journal_pntd_0003754
crossref_primary_10_1016_j_toxicon_2013_05_020
crossref_primary_10_1371_journal_pone_0073563
crossref_primary_10_1016_j_dci_2015_04_018
crossref_primary_10_1016_j_peptides_2008_11_001
crossref_primary_10_6564_JKMRS_2015_19_2_054
crossref_primary_10_1016_j_ibmb_2014_02_002
crossref_primary_10_5483_BMBRep_2014_47_11_262
crossref_primary_10_5604_01_3001_0053_8703
crossref_primary_10_1016_j_acthis_2013_08_014
crossref_primary_10_1371_journal_pone_0007358
crossref_primary_10_1351_pac200779040717
crossref_primary_10_1007_s10658_021_02257_0
crossref_primary_10_1007_s10989_024_10636_4
crossref_primary_10_3390_toxins8020032
crossref_primary_10_1007_s11033_022_07483_1
crossref_primary_10_1016_j_gene_2008_02_016
crossref_primary_10_1038_s41598_017_01626_2
crossref_primary_10_1111_j_1742_4658_2007_06109_x
crossref_primary_10_1007_s00344_023_11069_x
crossref_primary_10_1021_pr400519d
crossref_primary_10_3390_biologics2010008
crossref_primary_10_1016_j_isci_2022_104478
crossref_primary_10_1016_j_peptides_2008_07_005
crossref_primary_10_1016_j_dci_2006_07_006
crossref_primary_10_1016_j_aqrep_2022_101162
crossref_primary_10_1016_j_jconrel_2017_10_011
crossref_primary_10_1098_rstb_2008_0151
crossref_primary_10_1186_2051_5960_1_55
crossref_primary_10_1021_jp064580j
crossref_primary_10_1002_bip_20370
crossref_primary_10_1016_j_dci_2010_04_003
crossref_primary_10_1016_j_dci_2012_06_012
crossref_primary_10_1016_j_peptides_2021_170626
crossref_primary_10_1007_s10528_024_10695_8
crossref_primary_10_1021_acs_jafc_3c07217
crossref_primary_10_1016_j_dci_2012_12_009
crossref_primary_10_1002_psc_1439
crossref_primary_10_1016_j_fsi_2017_12_016
crossref_primary_10_1016_j_peptides_2007_04_019
crossref_primary_10_3390_s90906967
crossref_primary_10_1016_j_bmcl_2013_03_053
crossref_primary_10_1016_j_fsi_2015_02_013
crossref_primary_10_1016_j_matpr_2019_11_138
crossref_primary_10_1530_REP_09_0181
crossref_primary_10_1007_s12257_008_0044_1
crossref_primary_10_1021_am5045604
crossref_primary_10_1021_bi700978h
crossref_primary_10_3184_175815514X13902927945697
crossref_primary_10_1016_j_tree_2014_09_002
crossref_primary_10_1016_j_fsi_2017_12_029
crossref_primary_10_1016_j_dci_2021_104012
crossref_primary_10_7554_eLife_04111
crossref_primary_10_3390_polym4010539
crossref_primary_10_1002_psc_2990
crossref_primary_10_1016_j_dci_2015_02_009
crossref_primary_10_1534_g3_115_021782
crossref_primary_10_1371_journal_pone_0086436
crossref_primary_10_1111_j_1365_313X_2007_03136_x
crossref_primary_10_1134_S0006297910090117
crossref_primary_10_1042_BA20060207
crossref_primary_10_1002_psc_1309
crossref_primary_10_1016_j_biotechadv_2016_02_009
crossref_primary_10_1016_j_fsirep_2021_100034
crossref_primary_10_1371_journal_pone_0074309
crossref_primary_10_1099_mic_0_046755_0
crossref_primary_10_1529_biophysj_104_056077
crossref_primary_10_1039_C3OB42422G
crossref_primary_10_1371_journal_pntd_0002594
crossref_primary_10_1007_s00253_018_9561_9
crossref_primary_10_1016_j_aspen_2022_101892
crossref_primary_10_1021_acs_chemrev_7b00522
crossref_primary_10_1371_journal_pone_0133240
crossref_primary_10_1007_s00018_011_0715_5
crossref_primary_10_1016_j_aquaculture_2016_06_023
crossref_primary_10_1016_j_jmb_2024_168853
crossref_primary_10_1016_j_actbio_2018_12_041
crossref_primary_10_6564_JKMRS_2016_20_4_138
crossref_primary_10_1007_s00251_007_0259_x
crossref_primary_10_1021_bi0514515
crossref_primary_10_1007_s00005_010_0089_7
crossref_primary_10_1007_s10989_021_10343_4
crossref_primary_10_1371_journal_pone_0016387
crossref_primary_10_1002_ejoc_201300215
crossref_primary_10_1016_j_micpath_2018_11_047
crossref_primary_10_1371_journal_pone_0147855
crossref_primary_10_1016_j_jip_2019_107215
crossref_primary_10_1016_j_dci_2016_11_013
crossref_primary_10_1186_s13071_016_1360_5
crossref_primary_10_1016_j_femsim_2004_11_003
crossref_primary_10_1016_j_fsi_2012_07_013
crossref_primary_10_1016_j_dci_2021_104143
crossref_primary_10_1016_j_gene_2014_03_002
crossref_primary_10_1159_000434752
crossref_primary_10_1007_s12041_008_0017_3
crossref_primary_10_1038_s41598_020_75341_w
crossref_primary_10_3390_insects11060387
crossref_primary_10_1128_AEM_02537_14
crossref_primary_10_1186_1471_2180_12_28
crossref_primary_10_1016_j_fsi_2018_08_028
crossref_primary_10_1111_j_1365_2591_2008_01404_x
crossref_primary_10_1016_j_dci_2009_02_009
crossref_primary_10_1016_j_aquaculture_2019_734263
crossref_primary_10_1007_s10989_020_10127_2
crossref_primary_10_1139_o2012_013
crossref_primary_10_1016_j_exppara_2007_07_011
crossref_primary_10_3389_fphys_2018_01478
crossref_primary_10_1016_j_bbamem_2014_07_028
crossref_primary_10_1186_s12866_018_1190_z
crossref_primary_10_2174_1381612826666201102105827
crossref_primary_10_3390_antibiotics10020212
crossref_primary_10_1186_s13567_025_01465_4
crossref_primary_10_1016_j_jip_2019_107227
crossref_primary_10_1021_jm400884w
crossref_primary_10_1016_S2221_1691_11_60132_9
crossref_primary_10_22159_ijap_2022_v14s4_PP08
crossref_primary_10_1016_j_peptides_2016_01_016
crossref_primary_10_1186_1471_2105_8_263
crossref_primary_10_4049_jimmunol_179_10_6943
crossref_primary_10_1016_j_bbamem_2005_01_011
Cites_doi 10.1126/science.284.5418.1313
10.1073/pnas.84.15.5449
10.1074/jbc.272.18.12008
10.1074/jbc.M006762200
10.1016/S0005-2736(99)00200-X
10.1016/S0145-305X(99)00015-4
10.1074/jbc.271.36.21808
10.1006/bbrc.1994.2757
10.1002/1097-0282(2000)55:1<4::AID-BIP30>3.0.CO;2-M
10.1074/jbc.M111099200
10.1002/arch.10091
10.1074/jbc.M109173200
10.1074/jbc.M206296200
10.1021/bi0103563
10.4049/jimmunol.165.6.3268
10.1074/jbc.M306839200
10.1016/S0014-5793(02)02827-2
10.1016/S0145-305X(03)00120-4
10.1074/jbc.M008922200
10.1046/j.1432-1327.2000.01556.x
10.1111/j.1432-1033.1996.0303n.x
10.1172/JCI0215686
10.1016/S1074-7613(00)00072-8
10.1016/S0167-7799(97)01156-6
10.1073/pnas.052706399
10.1016/S0965-1748(00)00141-7
10.1074/jbc.M100216200
10.1074/jbc.M006615200
10.1002/(SICI)1097-0282(1998)47:6<479::AID-BIP6>3.0.CO;2-K
10.1042/bj20030259
10.1046/j.1432-1033.2002.02881.x
10.1073/pnas.93.3.1221
10.1002/(SICI)1097-0282(1998)47:6<435::AID-BIP3>3.0.CO;2-8
10.1074/jbc.274.46.32555
10.1016/S0145-305X(99)00010-5
10.1074/jbc.M200511200
10.1002/1097-0282(2000)55:1<31::AID-BIP40>3.0.CO;2-9
10.1128/IAI.65.3.978-985.1997
10.1016/S0014-5793(97)00684-4
10.1016/S0014-5793(02)03651-7
10.1128/iai.65.7.2898-2903.1997
10.1016/0167-4838(92)90346-F
10.1016/S0021-9258(18)54182-X
10.1016/S0021-9258(19)81553-3
10.1111/j.1432-1033.1996.0143h.x
10.1074/jbc.M001491200
10.1074/jbc.271.48.30493
10.1046/j.1432-1033.2003.03419.x
10.1110/ps.9.4.742
10.1074/jbc.271.47.29537
10.1038/292246a0
10.1016/S0145-305X(00)00052-5
10.1074/jbc.M109117200
10.1021/bi00100a014
10.1007/978-3-642-59674-2_2
10.1021/bi002656a
10.1016/S0014-5793(98)01238-1
10.1002/bip.360370206
10.1073/pnas.072073199
10.1046/j.1432-1327.2000.01074.x
10.1016/S0021-9258(18)66622-0
10.1016/S0014-5793(00)02192-X
10.1016/S0952-7915(98)80029-0
10.1016/S0014-5793(96)01374-9
10.1074/jbc.272.45.28398
10.1046/j.1432-1327.2000.01012.x
10.1074/jbc.M002998200
10.1046/j.0014-2956.2002.02760.x
10.1016/S0167-4838(01)00272-2
10.1074/jbc.M205305200
10.1046/j.1432-1327.1998.2560404.x
10.1002/(SICI)1097-0282(1998)47:6<451::AID-BIP4>3.0.CO;2-F
10.1074/jbc.M209239200
10.1074/jbc.272.24.15258
10.1126/science.286.5439.498
10.1006/fsim.1999.0254
10.1006/bbrc.1996.1814
10.1128/IAI.68.7.4297-4302.2000
10.1073/pnas.95.16.9541
10.1016/S0014-5793(97)00769-2
10.1111/j.1399-3011.1998.tb00629.x
10.1016/S0966-842X(00)01823-0
10.1046/j.1432-1033.2002.03177.x
10.1002/j.1460-2075.1993.tb06172.x
10.1016/S0965-1748(02)00029-2
10.1128/AAC.44.8.2039-2045.2000
10.1111/j.1399-3011.1997.tb01173.x
10.1111/j.1432-1033.1995.0941m.x
10.1002/(SICI)1097-0282(1998)47:6<465::AID-BIP5>3.0.CO;2-#
10.1203/00006450-199906000-00001
10.1021/bi0028136
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
DOI 10.1111/j.0105-2896.2004.0124.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1600-065X
EndPage 184
ExternalDocumentID oai_HAL_hal_03828656v1
15199962
10_1111_j_0105_2896_2004_0124_x
IMR124
ark_67375_WNG_Z72C7Q5H_H
Genre article
Journal Article
Review
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8F7
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOETA
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EAD
EAP
EAS
EBB
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IH2
IHE
IX1
J0M
K48
KBYEO
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OEB
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V8K
VH1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7N
XG1
XV2
YFH
YOC
YUY
YYP
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
1XC
ID FETCH-LOGICAL-c4994-7cb53712a693e2d2e7386019b0ab5c72b9a069a2da8dfac6b8ffc82b5e9da133
IEDL.DBID DR2
ISSN 0105-2896
IngestDate Fri May 09 12:25:30 EDT 2025
Fri Jul 11 10:50:09 EDT 2025
Wed Feb 19 01:42:01 EST 2025
Tue Jul 01 03:22:53 EDT 2025
Thu Apr 24 23:10:33 EDT 2025
Wed Jan 22 17:08:59 EST 2025
Wed Oct 30 09:55:50 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4994-7cb53712a693e2d2e7386019b0ab5c72b9a069a2da8dfac6b8ffc82b5e9da133
Notes istex:D177984F3D6A7D537852844FFA9ABF938700305A
ark:/67375/WNG-Z72C7Q5H-H
ArticleID:IMR124
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 15199962
PQID 72035816
PQPubID 23479
PageCount 16
ParticipantIDs hal_primary_oai_HAL_hal_03828656v1
proquest_miscellaneous_72035816
pubmed_primary_15199962
crossref_primary_10_1111_j_0105_2896_2004_0124_x
crossref_citationtrail_10_1111_j_0105_2896_2004_0124_x
wiley_primary_10_1111_j_0105_2896_2004_0124_x_IMR124
istex_primary_ark_67375_WNG_Z72C7Q5H_H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2004
PublicationDateYYYYMMDD 2004-04-01
PublicationDate_xml – month: 04
  year: 2004
  text: April 2004
PublicationDecade 2000
PublicationPlace Oxford, UK; Malden , USA
PublicationPlace_xml – name: Oxford, UK; Malden , USA
– name: England
PublicationTitle Immunological reviews
PublicationTitleAlternate Immunol Rev
PublicationYear 2004
Publisher Munksgaard International Publishers
Wiley
Publisher_xml – name: Munksgaard International Publishers
– name: Wiley
References Zhao C, Liaw L, Lee IH, Lehrer RI. cDNA cloning of three cecropin-like antimicrobial peptides (Styelins) from the tunicate, Styela clava. FEBS Lett 1997;412: 144-148.
Tossi A, Sandri L, Giangaspero A. Amphipathic, alpha-helical antimicrobial peptides. In: Biopolymers, Peptide Science 2000;55: 4-30.
Ali MF, Soto A, Knoop FC, Conlon JM. Antimicrobial peptides isolated from skin secretions of the diploid frog, Xenopus tropicalis (Pipidae). Biochem Biophys Acta 2001;1550: 81-89.
Gennaro R, Zanetti M. Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Biopolymers 2000;55: 31-49.
Schuhmann B, Seitz V, Vilcinskas A, Podsiadlowski L. Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella. Arch Insect Biochem Physiol 2003;53: 125-133.
Mitta G, Vandenbulcke F, Roch P. Original involvement of antimicrobial peptides in mussel innate immunity. FEBS Lett 2000;486: 185-190.
Maloy WL, Kari UP. Structure-activity studies on magainins and other host defense peptides. Biopolymers 1995;37: 105-122.
Lamberty M, et al. Solution structures of the antifungal heliomicin and a selected variant with both antibacterial and antifungal activities. Biochemistry 2001;40: 11995-12003.
Huttner KM, Bevins CL. Antimicrobial peptides as mediators of epithelial host defense. Pediatric Res 1999;45: 785-794.
Park CB, Lee JH, Park IY, Kim MS, Kim SC. A novel antimicrobial peptide from the loach, Misgurnus anguillicaudatus. FEBS Lett 1997;411: 173-178.
Oren Z, Shai Y. Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers 1998;47: 451-463.
Iijima N, et al. Purification and characterization of three isoforms of chrysophsin, a novel antimicrobial peptide in the gills of the red sea bream, Chrysophrys major. Eur J Biochem 2003;270: 675-686.
Tang YQ, et al. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science 1999;286: 498-502.
Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 1987;84: 5449-5453.
Castle M, Nazarian A, Yi SS, Tempst P. Lethal effects of apidaecin on Escherichia coli involve sequential molecular interactions with diverse targets. J Biol Chem 1999;274: 32555-32564.
Boulanger N, et al. Epithelial innate immunity. A novel antimicrobial peptide with antiparasitic activity in the blood-sucking insect Stomoxys calcitrans. J Biol Chem 2002;277: 49921-49926.
Lemaitre C, Orange N, Saglio P, Saint N, Gagnon J, Molle G. Characterization and ion channel activities of novel antibacterial proteins from the skin mucosa of carp (Cyprinus carpio). Eur J Biochem 1996;240: 143-149.
Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 2001;276: 7806-7810.
Charlet M, Chernysh S, Philippe H, Hetru C, Hoffmann JA, Bulet P. Innate immunity. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. J Biol Chem 1996;271: 21808-21813.
Shike H, et al. Bass hepcidin is a novel antimicrobial peptide induced by bacterial challenge. Eur J Biochem 2002;269: 2232-2237.
Mandard N, et al. Solution structure of thanatin, a potent bactericidal and fungicidal insect peptide, determined from proton two-dimensional nuclear magnetic resonance data. Eur J Biochem 1998;256: 404-410.
Jang WS, Kim KN, Lee YS, Nam MH, Lee IH. Halocidin: a new antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium. FEBS Lett 2002; 521: 81-86.
Krishnakumari V, Nagaraj R. Antimicrobial and hemolytic activities of crabrolin, a 13-residue peptide from the venom of the European hornet, Vespa crabro, and its analogs. J Pept Res 1997;50: 88-93.
Steinborner ST, Currie GJ, Bowie JH, Wallace JC, Tyler MJ. New antibiotic caerin 1 peptides from the skin secretion of the Australian tree frog Litoria chloris. Comparison of the activities of the caerin 1 peptides from the genus Litoria. J Pept Res 1998; 51: 121-126.
Orivel J, et al. Ponericins, new antibacterial and insecticidal peptides from the venom of the ant Pachycondyla goeldii. J Biol Chem 2001;276: 17823-17829.
Kim HS, et al. Pepsin-mediated processing of the cytoplasmic histone H2A to strong antimicrobial peptide buforin I. J Immunol 2000;165: 3268-3274.
Zanetti M, Del Sal G, Storici P, Schneider C, Romeo D. The cDNA of the neutrophil antibiotic Bac5 predicts a pro-sequence homologous to a cysteine proteinase inhibitor that is common to other neutrophil antibiotics. J Biol Chem 1993;268: 522-526.
Lee IH, Cho Y, Lehrer RI. Effects of pH and salinity on the antimicrobial properties of clavanins. Infect Immun 1997; 65: 2898-2903.
Ganz T, Lehrer RI. Antimicrobial peptides of vertebrates. Curr Opin Immunol 1998; 10: 41-44.
Van Kan EJ, Van Der Bent A, Demel RA, De Kruijff B. Membrane activity of the peptide antibiotic clavanin and the importance of its glycine residues. Biochemistry 2001;40: 6398-6405.
Hancock RE, Lehrer R. Cationic peptides: a new source of antibiotics. Trends Biotechnol 1998;16: 82-88.
Silva PI Jr, Daffre S, Bulet P. Isolation and characterization of gomesin, an 18-residue cysteine-rich defense peptide from the spider Acanthoscurria gomesiana hemocytes with sequence similarities to horseshoe crab antimicrobial peptides of the tachyplesin family. J Biol Chem 2000;275: 33464-33470.
Lowenberger C. Innate immune response of Aedes aegypti. Insect Biochem Mol Biol 2001;31: 219-229.
Moerman L, et al. Antibacterial and antifungal properties of alpha-helical, cationic peptides in the venom of scorpions from southern Africa. Eur J Biochem 2002;269: 4799-4810.
Mignogna G, Simmaco M, Kreil G, Barra D. Antibacterial and haemolytic peptides containing d-alloisoleucine from the skin of Bombina variegata. EMBO J 1993; 12: 4829-4832.
Simmaco M, Mignogna G, Barra D. Antimicrobial peptides from amphibian skin: what do they tell us? In: Biopolymers, Peptide Science 1998;47: 435-450.
Cole AM, Darouiche RO, Legarda D, Connell N, Diamond G. Characterization of a fish antimicrobial peptide. gene expression, subcellular localization, and spectrum of activity. Antimicrob Agents Chemother 2000;44: 2039-2045.
Destoumieux D, Bulet P, Loew D, Van Dorsselaer A, Rodriguez J, Bachere E. Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). J Biol Chem 1997;272: 28398-28406.
Ganz T. Epithelia: not just physical barriers. Proc Natl Acad Sci USA 2002;99: 3357-3358.
Ehret-Sabatier L, et al. Characterization of novel cysteine-rich antimicrobial peptides from scorpion blood. J Biol Chem 1996;271: 29537-29544.
Fernandes JM, Saint N, Kemp GD, Smith VJ. Oncorhyncin III: a potent antimicrobial peptide derived from the non-histone chromosomal protein H6 of rainbow trout, Oncorhynchus mykiss. Biochem J 2003; 373: 621-628.
Lee IH, Zhao C, Cho Y, Harwig SS, Cooper EL, Lehrer RI. Clavanins, α-helical antimicrobial peptides from tunicate hemocytes. FEBS Lett 1997;400: 158-162.
Park IY, Park CB, Kim MS, Kim SC. Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus. FEBS Lett 1998;437: 258-262.
Frohm M, et al. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 1997;272: 15258-15263.
Romeo D, Skerlavaj B, Bolognesi M, Gennaro R. Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. J Biol Chem 1988;263: 9573-9575.
Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RAB. Phylogenetic perspectives in innate immunity. Science 1999;284: 1313-1318.
Park JM, Jung JE, Lee BJ. Antimicrobial peptides from the skin of a Korean frog, Rana rugosa. Biochem Biophys Res Commun 1994;205: 948-954.
Fernandes JM, Molle G, Kemp GD, Smith VJ. Isolation and characterization of Oncorhyncin II, a histone H1-derived antimicrobial peptide from skin secretions of rainbow trout, Oncorhynchus mykiss. Dev Comp Immunol 2004;28: 127-138.
Malm J, et al. The human cationic antimicrobial protein (hCAP-18) is expressed in the epithelium of human epididymis, is present in seminal plasma at high concentrations, and is attached to spermatozoa. Infect Immun 2000; 68: 4297-4302.
Torres-Larios A, Gurrola GB, Zamudio FZ, Possani LD. Hadrurin, a new antimicrobial peptide from the venom of the scorpion Hadrurus aztecus. Eur J Biochem 2000;267: 5023-5031.
Fernandes JM, Molle G, Kemp GD, Smith VJ. Isolation and characterisation of oncorhyncin II, a histone H1-derived antimicrobial peptide from skin secretions of rainbow trout, Oncorhynchus mykiss. Dev Comp Immunol 2004;28: 127-138.
Kim HS, Park CB, Kim MS, Kim SC. cDNA cloning and characterization of buforin I, an antimicrobial peptide: a cleavage product of histone H2A. Biochem Biophys Res Commun 1996;229: 381-387.
Hunter HN, Fulton DB, Ganz T, Vogel HJ. The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis. J Biol Chem 2002;277: 37597-37603.
Goraya J, et al. Peptides with antimicrobial activity from four different families isolated from the skins of the North American frogs Rana luteiventris, Rana berlandieri and Rana pipiens. Eur J Biochem 2000;267: 894-900.
Lazarovici P, Primor N, Loew LM. Purification and pore-forming activity of two hydrophobic polypeptides from the secretion of the Red Sea Moses sole (Pardachirus marmoratus). J Biol Chem 1986; 261: 16704-16713.
Leippe M. Antimicrobial and cytolytic polypeptides of amoeboid protozoa-effector molecules of primitive phagocytes. Dev Comp Immunol 1999;23: 267-279.
Panyutich A, Shi J, Boutz PL, Zhao C, Ganz T. Porcine polymorphonuclear leukocytes generate extracellular microbicidal activity by elastase-mediated activation of secreted proprotegrins. Infect Immun 1997; 65: 978-
2002; 110
1997; 272
1995; 37
2004; 28
2000; 9
2000; 44
2000; 8
2002; 99
2002; 277
1998; 437
1999; 45
1999; 286
2003; 270
1999; 284
1999; 1462
1988; 263
2003; 278
2001; 40
1996; 229
2003; 53
1998; 47
1998; 16
1997; 50
1987; 84
2000; 248
2000; 13
2000; 10
2000; 55
1986; 261
2002; 269
2000; 165
2000; 486
1998; 51
1998; 95
1998; 10
1997; 411
1997; 412
1992; 1121
1997; 65
2000; 68
1991; 30
2002; 532
2002; 32
1999; 23
1996; 93
1996
2000; 275
2003
2002
1996; 240
1993; 268
1998; 256
2001; 25
2003; 373
1981; 292
2001; 276
1997; 400
1993; 12
1994; 205
2000; 267
2002; 521
1999; 274
1995; 228
1996; 271
1996; 48
2001; 1550
2001; 31
1996; 237
e_1_2_5_27_2
e_1_2_5_46_2
e_1_2_5_101_2
e_1_2_5_23_2
e_1_2_5_42_2
e_1_2_5_65_2
e_1_2_5_88_2
e_1_2_5_69_2
e_1_2_5_80_2
e_1_2_5_61_2
e_1_2_5_84_2
e_1_2_5_38_2
e_1_2_5_15_2
e_1_2_5_57_2
e_1_2_5_7_2
e_1_2_5_34_2
e_1_2_5_11_2
e_1_2_5_53_2
Zasloff M. (e_1_2_5_25_2) 2002
e_1_2_5_76_2
e_1_2_5_99_2
e_1_2_5_19_2
Kawabata S (e_1_2_5_85_2) 2003
e_1_2_5_91_2
e_1_2_5_72_2
e_1_2_5_95_2
e_1_2_5_30_2
e_1_2_5_26_2
e_1_2_5_49_2
e_1_2_5_22_2
e_1_2_5_100_2
e_1_2_5_64_2
e_1_2_5_87_2
e_1_2_5_60_2
e_1_2_5_83_2
e_1_2_5_41_2
e_1_2_5_14_2
e_1_2_5_37_2
e_1_2_5_8_2
e_1_2_5_10_2
e_1_2_5_33_2
e_1_2_5_56_2
e_1_2_5_75_2
e_1_2_5_98_2
e_1_2_5_18_2
e_1_2_5_79_2
e_1_2_5_90_2
e_1_2_5_71_2
e_1_2_5_94_2
e_1_2_5_52_2
e_1_2_5_48_2
Shinnar AE (e_1_2_5_47_2) 1996
e_1_2_5_44_2
e_1_2_5_21_2
e_1_2_5_86_2
e_1_2_5_67_2
Bulet P (e_1_2_5_28_2) 2003
Nes IF (e_1_2_5_4_2) 2002
e_1_2_5_29_2
e_1_2_5_82_2
e_1_2_5_63_2
e_1_2_5_40_2
e_1_2_5_13_2
e_1_2_5_59_2
e_1_2_5_9_2
e_1_2_5_36_2
e_1_2_5_55_2
e_1_2_5_5_2
e_1_2_5_32_2
e_1_2_5_97_2
e_1_2_5_78_2
e_1_2_5_17_2
Mandard N (e_1_2_5_77_2) 2002
e_1_2_5_70_2
e_1_2_5_93_2
e_1_2_5_74_2
e_1_2_5_51_2
Lazarovici P (e_1_2_5_45_2) 1986; 261
e_1_2_5_24_2
e_1_2_5_20_2
e_1_2_5_43_2
e_1_2_5_66_2
e_1_2_5_89_2
e_1_2_5_81_2
e_1_2_5_62_2
Ganz T (e_1_2_5_68_2) 2003
e_1_2_5_16_2
e_1_2_5_35_2
e_1_2_5_58_2
e_1_2_5_6_2
e_1_2_5_12_2
e_1_2_5_31_2
e_1_2_5_54_2
e_1_2_5_2_2
e_1_2_5_39_2
e_1_2_5_92_2
e_1_2_5_73_2
e_1_2_5_96_2
Pag U (e_1_2_5_3_2) 2002
e_1_2_5_50_2
References_xml – reference: Lemaitre C, Orange N, Saglio P, Saint N, Gagnon J, Molle G. Characterization and ion channel activities of novel antibacterial proteins from the skin mucosa of carp (Cyprinus carpio). Eur J Biochem 1996;240: 143-149.
– reference: Sai KP, et al. Tigerinins: novel antimicrobial peptides from the Indian frog Rana tigerina. J Biol Chem 2001;276: 2701-2707.
– reference: Fernandes JM, Molle G, Kemp GD, Smith VJ. Isolation and characterization of Oncorhyncin II, a histone H1-derived antimicrobial peptide from skin secretions of rainbow trout, Oncorhynchus mykiss. Dev Comp Immunol 2004;28: 127-138.
– reference: Boulanger N, et al. Epithelial innate immunity. A novel antimicrobial peptide with antiparasitic activity in the blood-sucking insect Stomoxys calcitrans. J Biol Chem 2002;277: 49921-49926.
– reference: Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 2001;276: 7806-7810.
– reference: Kim HS, Park CB, Kim MS, Kim SC. cDNA cloning and characterization of buforin I, an antimicrobial peptide: a cleavage product of histone H2A. Biochem Biophys Res Commun 1996;229: 381-387.
– reference: Shinnar AE, et al. In: Kaumaya PTP, Hodges RS, eds. Peptide Chemistry, Structure and Biology. Proceedings of the 12th American Peptide Symposium. London: Mayflower Scientific 1996, 189-191.
– reference: Malm J, et al. The human cationic antimicrobial protein (hCAP-18) is expressed in the epithelium of human epididymis, is present in seminal plasma at high concentrations, and is attached to spermatozoa. Infect Immun 2000; 68: 4297-4302.
– reference: Shike H, et al. Bass hepcidin is a novel antimicrobial peptide induced by bacterial challenge. Eur J Biochem 2002;269: 2232-2237.
– reference: Krishnakumari V, Nagaraj R. Antimicrobial and hemolytic activities of crabrolin, a 13-residue peptide from the venom of the European hornet, Vespa crabro, and its analogs. J Pept Res 1997;50: 88-93.
– reference: Bals R, Wang X, Zasloff M, Wilson JM. The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci USA 1998;95: 9541-9546.
– reference: Castle M, Nazarian A, Yi SS, Tempst P. Lethal effects of apidaecin on Escherichia coli involve sequential molecular interactions with diverse targets. J Biol Chem 1999;274: 32555-32564.
– reference: Ehret-Sabatier L, et al. Characterization of novel cysteine-rich antimicrobial peptides from scorpion blood. J Biol Chem 1996;271: 29537-29544.
– reference: Kim HS, et al. Pepsin-mediated processing of the cytoplasmic histone H2A to strong antimicrobial peptide buforin I. J Immunol 2000;165: 3268-3274.
– reference: Zhao C, Liaw L, Lee IH, Lehrer RI. cDNA cloning of three cecropin-like antimicrobial peptides (Styelins) from the tunicate, Styela clava. FEBS Lett 1997;412: 144-148.
– reference: Leippe M. Antimicrobial and cytolytic polypeptides of amoeboid protozoa-effector molecules of primitive phagocytes. Dev Comp Immunol 1999;23: 267-279.
– reference: Fernandes JM, Molle G, Kemp GD, Smith VJ. Isolation and characterisation of oncorhyncin II, a histone H1-derived antimicrobial peptide from skin secretions of rainbow trout, Oncorhynchus mykiss. Dev Comp Immunol 2004;28: 127-138.
– reference: Tossi A, Scocchi M, Zanetti M, Storici P, Gennaro R. PMAP-37, a novel antibacterial peptide from pig myeloid cells. cDNA cloning, chemical synthesis and activity. Eur J Biochem 1995;228: 941-946.
– reference: Charlet M, Chernysh S, Philippe H, Hetru C, Hoffmann JA, Bulet P. Innate immunity. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. J Biol Chem 1996;271: 21808-21813.
– reference: Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RAB. Phylogenetic perspectives in innate immunity. Science 1999;284: 1313-1318.
– reference: Lowenberger C. Innate immune response of Aedes aegypti. Insect Biochem Mol Biol 2001;31: 219-229.
– reference: Lamberty M, et al. Solution structures of the antifungal heliomicin and a selected variant with both antibacterial and antifungal activities. Biochemistry 2001;40: 11995-12003.
– reference: Van Kan EJ, Van Der Bent A, Demel RA, De Kruijff B. Membrane activity of the peptide antibiotic clavanin and the importance of its glycine residues. Biochemistry 2001;40: 6398-6405.
– reference: Corzo G, Villegas E, Gomez-Lagunas F, Possani LD, Belokoneva OS, Nakajima T. Oxyopinins, large amphipathic peptides isolated from the venom of the wolf spider Oxyopes kitabensis with cytolytic properties and positive insecticidal cooperativity with spider neurotoxins. J Biol Chem 2002; 277: 23627-23637.
– reference: Tang YQ, et al. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science 1999;286: 498-502.
– reference: Park IY, Park CB, Kim MS, Kim SC. Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus. FEBS Lett 1998;437: 258-262.
– reference: Gennaro R, Zanetti M. Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Biopolymers 2000;55: 31-49.
– reference: Mitta G, Vandenbulcke F, Roch P. Original involvement of antimicrobial peptides in mussel innate immunity. FEBS Lett 2000;486: 185-190.
– reference: Tzou P, et al. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 2000;13: 737-748.
– reference: Cole AM, et al. Retrocyclin: a primate peptide that protects cells from infection by T- and M-tropic strains of HIV-1. Proc Natl Acad Sci USA 2002;99: 1813-1818.
– reference: Moerman L, et al. Antibacterial and antifungal properties of alpha-helical, cationic peptides in the venom of scorpions from southern Africa. Eur J Biochem 2002;269: 4799-4810.
– reference: Frohm M, et al. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 1997;272: 15258-15263.
– reference: Orivel J, et al. Ponericins, new antibacterial and insecticidal peptides from the venom of the ant Pachycondyla goeldii. J Biol Chem 2001;276: 17823-17829.
– reference: Kato Y, Komatsu S. ASABF, a novel cysteine-rich antibacterial peptide isolated from the nematode Ascaris suum. J Biol Chem 1996;48: 30493-30498.
– reference: Otvos L Jr, Et Al. Insect peptides with improved protease-resistance protect mice against bacterial infection. Protein Sci 2000;9: 742-749.
– reference: Goraya J, et al. Peptides with antimicrobial activity from four different families isolated from the skins of the North American frogs Rana luteiventris, Rana berlandieri and Rana pipiens. Eur J Biochem 2000;267: 894-900.
– reference: Ali MF, Soto A, Knoop FC, Conlon JM. Antimicrobial peptides isolated from skin secretions of the diploid frog, Xenopus tropicalis (Pipidae). Biochem Biophys Acta 2001;1550: 81-89.
– reference: Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos L Jr. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 2001;40: 3016-3026.
– reference: Dimarcq JL, Bulet P, Hetru C, Hoffmann J. Cysteine-rich antimicrobial peptides in invertebrates. In: Biopolymers, Peptide Science 1998;47: 465-477.
– reference: Park CB, Lee JH, Park IY, Kim MS, Kim SC. A novel antimicrobial peptide from the loach, Misgurnus anguillicaudatus. FEBS Lett 1997;411: 173-178.
– reference: Cole AM, Weis P, Diamond G. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J Biol Chem 1997;272: 12008-12013.
– reference: Basanez G, Shinnar AE, Zimmerberg J. Interaction of hagfish cathelicidin antimicrobial peptides with model lipid membranes. FEBS Lett 2002;532: 115-120.
– reference: Mignogna G, Simmaco M, Kreil G, Barra D. Antibacterial and haemolytic peptides containing d-alloisoleucine from the skin of Bombina variegata. EMBO J 1993; 12: 4829-4832.
– reference: Lee SY, Lee BL, Soderhall K. Processing of an antibacterial peptide from hemocyanin of the freshwater crayfish Pacifastacus leniusculus. J Biol Chem 2003;278: 7927-7933.
– reference: Schuhmann B, Seitz V, Vilcinskas A, Podsiadlowski L. Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella. Arch Insect Biochem Physiol 2003;53: 125-133.
– reference: Zasloff M. In: Dutton CJ, Haxell MA, McArthur HAI, Wax RG, eds. Peptide Antibiotics: Discovery, Mode of Actions, and Applications. New York: Marcel Dekker, 2002: 243-287.
– reference: Garcia-Olmedo F, Molina A, Alamillo JM, Rodriguez-Palenzuela P. Plant defense peptides. Biopolymers 1998;47: 479-491.
– reference: Destoumieux D, Bulet P, Loew D, Van Dorsselaer A, Rodriguez J, Bachere E. Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). J Biol Chem 1997;272: 28398-28406.
– reference: Lee IH, Zhao C, Cho Y, Harwig SS, Cooper EL, Lehrer RI. Clavanins, α-helical antimicrobial peptides from tunicate hemocytes. FEBS Lett 1997;400: 158-162.
– reference: Lamberty M, et al. Insect immunity. Constitutive expression of a cysteine-rich antifungal and a linear antibacterial peptide in a termite insect. J Biol Chem 2001; 276: 4085-4092.
– reference: Panyutich A, Shi J, Boutz PL, Zhao C, Ganz T. Porcine polymorphonuclear leukocytes generate extracellular microbicidal activity by elastase-mediated activation of secreted proprotegrins. Infect Immun 1997; 65: 978-985.
– reference: Silva PI Jr, Daffre S, Bulet P. Isolation and characterization of gomesin, an 18-residue cysteine-rich defense peptide from the spider Acanthoscurria gomesiana hemocytes with sequence similarities to horseshoe crab antimicrobial peptides of the tachyplesin family. J Biol Chem 2000;275: 33464-33470.
– reference: Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K, Tomita M. Identification of the bactericidal domain of lactoferrin. Biochim Biophys Acta 1992;1121: 130-136.
– reference: Huttner KM, Bevins CL. Antimicrobial peptides as mediators of epithelial host defense. Pediatric Res 1999;45: 785-794.
– reference: Bulet P, Hetru C, Dimarcq JL, Hoffmann D. Antimicrobial peptides in insects; structure and function. Dev Comp Immunol 1999;23: 329-344.
– reference: Fernandes JM, Saint N, Kemp GD, Smith VJ. Oncorhyncin III: a potent antimicrobial peptide derived from the non-histone chromosomal protein H6 of rainbow trout, Oncorhynchus mykiss. Biochem J 2003; 373: 621-628.
– reference: Tran D, Tran PA, Tang YQ, Yuan J, Cole T, Selsted ME. Homodimeric theta-defensins from rhesus macaque leukocytes: isolation, synthesis, antimicrobial activities, and bacterial binding properties of the cyclic peptides. J Biol Chem 2002;277: 3079-3084.
– reference: Boulanger N, Brun R, Ehret-Sabatier L, Kunz C, Bulet P. Immunopeptides in the defense reactions of Glossina morsitans to bacterial and Trypanosoma brucei brucei infections. Insect Biochem Mol Biol 2002;32: 369-375.
– reference: Maloy WL, Kari UP. Structure-activity studies on magainins and other host defense peptides. Biopolymers 1995;37: 105-122.
– reference: Romeo D, Skerlavaj B, Bolognesi M, Gennaro R. Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. J Biol Chem 1988;263: 9573-9575.
– reference: Tossi A, Sandri L, Giangaspero A. Amphipathic, alpha-helical antimicrobial peptides. In: Biopolymers, Peptide Science 2000;55: 4-30.
– reference: Mandard N, Bulet P, Caille A, Daffre S, Vovelle F. The solution structure of gomesin, an antimicrobial cysteine-rich peptide from the spider. Eur J Biochem 2002;269: 1190-1198.
– reference: Steiner H, Hultmark D, Engström A, Bennich H, Boman HG. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 1981;292: 246-248.
– reference: Jang WS, Kim KN, Lee YS, Nam MH, Lee IH. Halocidin: a new antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium. FEBS Lett 2002; 521: 81-86.
– reference: Iijima N, et al. Purification and characterization of three isoforms of chrysophsin, a novel antimicrobial peptide in the gills of the red sea bream, Chrysophrys major. Eur J Biochem 2003;270: 675-686.
– reference: Ganz T. Epithelia: not just physical barriers. Proc Natl Acad Sci USA 2002;99: 3357-3358.
– reference: Mandard N, et al. Solution structure of thanatin, a potent bactericidal and fungicidal insect peptide, determined from proton two-dimensional nuclear magnetic resonance data. Eur J Biochem 1998;256: 404-410.
– reference: Hancock REW, Diamond G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol 2000;8: 402-410.
– reference: Simmaco M, Mignogna G, Barra D. Antimicrobial peptides from amphibian skin: what do they tell us? In: Biopolymers, Peptide Science 1998;47: 435-450.
– reference: Lauth X, et al. Discovery and characterization of two isoforms of moronecidin, a novel antimicrobial peptides from hybrid striped bass. J Biol Chem 2002;277: 5030-5039.
– reference: Smith VJ, Fernandes JM, Jones SJ, Kemp GD, Tatner MF. Antibacterial proteins in rainbow trout, Oncorhynchus mykiss. Fish Shellfish Immunol 2000;10: 243-260.
– reference: Taylor SW, Craig AG, Fischer WH, Park M, Lehrer RI. Styelin D, an extensively modified antimicrobial peptide from ascidian hemocytes. J Biol Chem 2000; 275: 38417-38426.
– reference: Steinborner ST, Currie GJ, Bowie JH, Wallace JC, Tyler MJ. New antibiotic caerin 1 peptides from the skin secretion of the Australian tree frog Litoria chloris. Comparison of the activities of the caerin 1 peptides from the genus Litoria. J Pept Res 1998; 51: 121-126.
– reference: Oren Z, Shai Y. Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers 1998;47: 451-463.
– reference: Lee IH, Cho Y, Lehrer RI. Effects of pH and salinity on the antimicrobial properties of clavanins. Infect Immun 1997; 65: 2898-2903.
– reference: Hunter HN, Fulton DB, Ganz T, Vogel HJ. The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis. J Biol Chem 2002;277: 37597-37603.
– reference: Zanetti M, Del Sal G, Storici P, Schneider C, Romeo D. The cDNA of the neutrophil antibiotic Bac5 predicts a pro-sequence homologous to a cysteine proteinase inhibitor that is common to other neutrophil antibiotics. J Biol Chem 1993;268: 522-526.
– reference: Nicolas G, et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest 2002;110: 1037-1044.
– reference: Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 1987;84: 5449-5453.
– reference: Fehlbaum P, et al. Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proc Natl Acad Sci USA 1996;93: 1221-1225.
– reference: Oren Z, Shai Y. A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from Moses sole fish Pardachirus marmoratus. Eur J Biochem 1996;237: 303-310.
– reference: Cole AM, Darouiche RO, Legarda D, Connell N, Diamond G. Characterization of a fish antimicrobial peptide. gene expression, subcellular localization, and spectrum of activity. Antimicrob Agents Chemother 2000;44: 2039-2045.
– reference: Torres-Larios A, Gurrola GB, Zamudio FZ, Possani LD. Hadrurin, a new antimicrobial peptide from the venom of the scorpion Hadrurus aztecus. Eur J Biochem 2000;267: 5023-5031.
– reference: Mor A, Nguyen VH, Delfour A, Migliore-Samour D, Nicolas P. Isolation, amino acid sequence, and synthesis of dermaseptin, a novel antimicrobial peptide of amphibian skin. Biochemistry 1991;30: 8824-8830.
– reference: Park JM, Jung JE, Lee BJ. Antimicrobial peptides from the skin of a Korean frog, Rana rugosa. Biochem Biophys Res Commun 1994;205: 948-954.
– reference: Ganz T, Lehrer RI. Antimicrobial peptides of vertebrates. Curr Opin Immunol 1998; 10: 41-44.
– reference: Lazarovici P, Primor N, Loew LM. Purification and pore-forming activity of two hydrophobic polypeptides from the secretion of the Red Sea Moses sole (Pardachirus marmoratus). J Biol Chem 1986; 261: 16704-16713.
– reference: Douglas SE, Gallant JW, Gong Z, Hew C. Cloning and developmental expression of a family of pleurocidin-like antimicrobial peptides from winter flounder, Pleuronectes americanus (Walbaum). Dev Comp Immunol 2001;25: 137-147.
– reference: Pierre TN, Seon AA, Amiche M, Nicolas P. Phylloxin, a novel peptide antibiotic of the dermaseptin family of antimicrobial/opioid peptide precursors. Eur J Biochem 2000;267: 370-378.
– reference: Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1999;1462: 55-70.
– reference: Hancock RE, Lehrer R. Cationic peptides: a new source of antibiotics. Trends Biotechnol 1998;16: 82-88.
– reference: Kuhn-Nentwig L, Muller J, Schaller J, Walz A, Dathe M, Nentwig W. Cupiennin 1, a new family of highly basic antimicrobial peptides in the venom of the spider Cupiennius salei (Ctenidae). J Biol Chem 2002; 277: 11208-11216.
– volume: 272
  start-page: 15258
  year: 1997
  end-page: 15263
  article-title: The expression of the gene coding for the antibacterial peptide LL‐37 is induced in human keratinocytes during inflammatory disorders
  publication-title: J Biol Chem
– start-page: 89
  year: 2003
  end-page: 107
– volume: 10
  start-page: 243
  year: 2000
  end-page: 260
  article-title: Antibacterial proteins in rainbow trout,
  publication-title: Fish Shellfish Immunol
– volume: 8
  start-page: 402
  year: 2000
  end-page: 410
  article-title: The role of cationic antimicrobial peptides in innate host defences
  publication-title: Trends Microbiol
– volume: 16
  start-page: 82
  year: 1998
  end-page: 88
  article-title: Cationic peptides: a new source of antibiotics
  publication-title: Trends Biotechnol
– volume: 278
  start-page: 51053
  year: 2003
  end-page: 51058
– volume: 110
  start-page: 1037
  year: 2002
  end-page: 1044
  article-title: The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation
  publication-title: J Clin Invest
– volume: 486
  start-page: 185
  year: 2000
  end-page: 190
  article-title: Original involvement of antimicrobial peptides in mussel innate immunity
  publication-title: FEBS Lett
– volume: 1550
  start-page: 81
  year: 2001
  end-page: 89
  article-title: Antimicrobial peptides isolated from skin secretions of the diploid frog, (Pipidae)
  publication-title: Biochem Biophys Acta
– volume: 277
  start-page: 37597
  year: 2002
  end-page: 37603
  article-title: The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis
  publication-title: J Biol Chem
– volume: 55
  start-page: 4
  year: 2000
  end-page: 30
  article-title: Amphipathic, alpha‐helical antimicrobial peptides
  publication-title: Biopolymers, Peptide Science
– volume: 275
  start-page: 33464
  year: 2000
  end-page: 33470
  article-title: Isolation and characterization of gomesin, an 18‐residue cysteine‐rich defense peptide from the spider hemocytes with sequence similarities to horseshoe crab antimicrobial peptides of the tachyplesin family
  publication-title: J Biol Chem
– volume: 28
  start-page: 127
  year: 2004
  end-page: 138
  article-title: Isolation and characterization of Oncorhyncin II, a histone H1‐derived antimicrobial peptide from skin secretions of rainbow trout,
  publication-title: Dev Comp Immunol
– volume: 28
  start-page: 127
  year: 2004
  end-page: 138
  article-title: Isolation and characterisation of oncorhyncin II, a histone H1‐derived antimicrobial peptide from skin secretions of rainbow trout,
  publication-title: Dev Comp Immunol
– volume: 32
  start-page: 369
  year: 2002
  end-page: 375
  article-title: Immunopeptides in the defense reactions of to bacterial and infections
  publication-title: Insect Biochem Mol Biol
– volume: 53
  start-page: 125
  year: 2003
  end-page: 133
  article-title: Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae,
  publication-title: Arch Insect Biochem Physiol
– volume: 276
  start-page: 17823
  year: 2001
  end-page: 17829
  article-title: Ponericins, new antibacterial and insecticidal peptides from the venom of the ant
  publication-title: J Biol Chem
– volume: 84
  start-page: 5449
  year: 1987
  end-page: 5453
  article-title: Magainins, a class of antimicrobial peptides from skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor
  publication-title: Proc Natl Acad Sci USA
– volume: 268
  start-page: 522
  year: 1993
  end-page: 526
  article-title: The cDNA of the neutrophil antibiotic Bac5 predicts a pro‐sequence homologous to a cysteine proteinase inhibitor that is common to other neutrophil antibiotics
  publication-title: J Biol Chem
– volume: 23
  start-page: 329
  year: 1999
  end-page: 344
  article-title: Antimicrobial peptides in insects; structure and function
  publication-title: Dev Comp Immunol
– volume: 277
  start-page: 23627
  year: 2002
  end-page: 23637
  article-title: Oxyopinins, large amphipathic peptides isolated from the venom of the wolf spider with cytolytic properties and positive insecticidal cooperativity with spider neurotoxins
  publication-title: J Biol Chem
– volume: 40
  start-page: 3016
  year: 2001
  end-page: 3026
  article-title: The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone‐assisted protein folding
  publication-title: Biochemistry
– volume: 274
  start-page: 32555
  year: 1999
  end-page: 32564
  article-title: Lethal effects of apidaecin on involve sequential molecular interactions with diverse targets
  publication-title: J Biol Chem
– volume: 240
  start-page: 143
  year: 1996
  end-page: 149
  article-title: Characterization and ion channel activities of novel antibacterial proteins from the skin mucosa of carp ( )
  publication-title: Eur J Biochem
– volume: 13
  start-page: 737
  year: 2000
  end-page: 748
  article-title: Tissue‐specific inducible expression of antimicrobial peptide genes in surface epithelia
  publication-title: Immunity
– volume: 267
  start-page: 5023
  year: 2000
  end-page: 5031
  article-title: Hadrurin, a new antimicrobial peptide from the venom of the scorpion
  publication-title: Eur J Biochem
– volume: 1462
  start-page: 55
  year: 1999
  end-page: 70
  article-title: Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha‐helical antimicrobial and cell non‐selective membrane‐lytic peptides
  publication-title: Biochim Biophys Acta
– volume: 286
  start-page: 498
  year: 1999
  end-page: 502
  article-title: A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha‐defensins
  publication-title: Science
– volume: 48
  start-page: 30493
  year: 1996
  end-page: 30498
  article-title: ASABF, a novel cysteine‐rich antibacterial peptide isolated from the nematode
  publication-title: J Biol Chem
– volume: 95
  start-page: 9541
  year: 1998
  end-page: 9546
  article-title: The peptide antibiotic LL‐37/hCAP‐18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface
  publication-title: Proc Natl Acad Sci USA
– volume: 532
  start-page: 115
  year: 2002
  end-page: 120
  article-title: Interaction of hagfish cathelicidin antimicrobial peptides with model lipid membranes
  publication-title: FEBS Lett
– volume: 205
  start-page: 948
  year: 1994
  end-page: 954
  article-title: Antimicrobial peptides from the skin of a Korean frog,
  publication-title: Biochem Biophys Res Commun
– volume: 55
  start-page: 31
  year: 2000
  end-page: 49
  article-title: Structural features and biological activities of the cathelicidin‐derived antimicrobial peptides
  publication-title: Biopolymers
– volume: 269
  start-page: 2232
  year: 2002
  end-page: 2237
  article-title: Bass hepcidin is a novel antimicrobial peptide induced by bacterial challenge
  publication-title: Eur J Biochem
– volume: 1121
  start-page: 130
  year: 1992
  end-page: 136
  article-title: Identification of the bactericidal domain of lactoferrin
  publication-title: Biochim Biophys Acta
– volume: 277
  start-page: 3079
  year: 2002
  end-page: 3084
  article-title: Homodimeric theta‐defensins from rhesus macaque leukocytes: isolation, synthesis, antimicrobial activities, and bacterial binding properties of the cyclic peptides
  publication-title: J Biol Chem
– volume: 277
  start-page: 49921
  year: 2002
  end-page: 49926
  article-title: Epithelial innate immunity. A novel antimicrobial peptide with antiparasitic activity in the blood‐sucking insect
  publication-title: J Biol Chem
– volume: 47
  start-page: 435
  year: 1998
  end-page: 450
  article-title: Antimicrobial peptides from amphibian skin: what do they tell us?
  publication-title: Biopolymers, Peptide Science
– volume: 275
  start-page: 38417
  year: 2000
  end-page: 38426
  article-title: Styelin D, an extensively modified antimicrobial peptide from ascidian hemocytes
  publication-title: J Biol Chem
– start-page: 243
  year: 2002
  end-page: 287
– volume: 521
  start-page: 81
  year: 2002
  end-page: 86
  article-title: Halocidin: a new antimicrobial peptide from hemocytes of the solitary tunicate,
  publication-title: FEBS Lett
– volume: 263
  start-page: 9573
  year: 1988
  end-page: 9575
  article-title: Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils
  publication-title: J Biol Chem
– volume: 276
  start-page: 4085
  year: 2001
  end-page: 4092
  article-title: Insect immunity. Constitutive expression of a cysteine‐rich antifungal and a linear antibacterial peptide in a termite insect
  publication-title: J Biol Chem
– volume: 277
  start-page: 5030
  year: 2002
  end-page: 5039
  article-title: Discovery and characterization of two isoforms of moronecidin, a novel antimicrobial peptides from hybrid striped bass
  publication-title: J Biol Chem
– volume: 276
  start-page: 7806
  year: 2001
  end-page: 7810
  article-title: Hepcidin, a urinary antimicrobial peptide synthesized in the liver
  publication-title: J Biol Chem
– start-page: 81
  year: 2002
  end-page: 117
– volume: 267
  start-page: 370
  year: 2000
  end-page: 378
  article-title: Phylloxin, a novel peptide antibiotic of the dermaseptin family of antimicrobial/opioid peptide precursors
  publication-title: Eur J Biochem
– volume: 248
  start-page: 17
  year: 2000
  end-page: 36
– start-page: 47
  year: 2002
  end-page: 80
– volume: 25
  start-page: 137
  year: 2001
  end-page: 147
  article-title: Cloning and developmental expression of a family of pleurocidin‐like antimicrobial peptides from winter flounder, (Walbaum)
  publication-title: Dev Comp Immunol
– volume: 373
  start-page: 621
  year: 2003
  end-page: 628
  article-title: Oncorhyncin III: a potent antimicrobial peptide derived from the non‐histone chromosomal protein H6 of rainbow trout,
  publication-title: Biochem J
– volume: 277
  start-page: 11208
  year: 2002
  end-page: 11216
  article-title: Cupiennin 1, a new family of highly basic antimicrobial peptides in the venom of the spider (Ctenidae)
  publication-title: J Biol Chem
– volume: 50
  start-page: 88
  year: 1997
  end-page: 93
  article-title: Antimicrobial and hemolytic activities of crabrolin, a 13‐residue peptide from the venom of the European hornet, , and its analogs
  publication-title: J Pept Res
– volume: 237
  start-page: 303
  year: 1996
  end-page: 310
  article-title: A class of highly potent antibacterial peptides derived from pardaxin, a pore‐forming peptide isolated from Moses sole fish
  publication-title: Eur J Biochem
– volume: 47
  start-page: 451
  year: 1998
  end-page: 463
  article-title: Mode of action of linear amphipathic alpha‐helical antimicrobial peptides
  publication-title: Biopolymers
– volume: 30
  start-page: 8824
  year: 1991
  end-page: 8830
  article-title: Isolation, amino acid sequence, and synthesis of dermaseptin, a novel antimicrobial peptide of amphibian skin
  publication-title: Biochemistry
– volume: 400
  start-page: 158
  year: 1997
  end-page: 162
  article-title: Clavanins, α‐helical antimicrobial peptides from tunicate hemocytes
  publication-title: FEBS Lett
– volume: 261
  start-page: 16704
  year: 1986
  end-page: 16713
  article-title: Purification and pore‐forming activity of two hydrophobic polypeptides from the secretion of the Red Sea Moses sole ( )
  publication-title: J Biol Chem
– volume: 412
  start-page: 144
  year: 1997
  end-page: 148
  article-title: cDNA cloning of three cecropin‐like antimicrobial peptides (Styelins) from the tunicate,
  publication-title: FEBS Lett
– volume: 12
  start-page: 4829
  year: 1993
  end-page: 4832
  article-title: Antibacterial and haemolytic peptides containing d‐alloisoleucine from the skin of
  publication-title: EMBO J
– volume: 65
  start-page: 2898
  year: 1997
  end-page: 2903
  article-title: Effects of pH and salinity on the antimicrobial properties of clavanins
  publication-title: Infect Immun
– volume: 278
  start-page: 7927
  year: 2003
  end-page: 7933
  article-title: Processing of an antibacterial peptide from hemocyanin of the freshwater crayfish
  publication-title: J Biol Chem
– start-page: 155
  year: 2002
  end-page: 171
– volume: 9
  start-page: 742
  year: 2000
  end-page: 749
  article-title: Insect peptides with improved protease‐resistance protect mice against bacterial infection
  publication-title: Protein Sci
– volume: 99
  start-page: 3357
  year: 2002
  end-page: 3358
  article-title: Epithelia: not just physical barriers
  publication-title: Proc Natl Acad Sci USA
– volume: 270
  start-page: 675
  year: 2003
  end-page: 686
  article-title: Purification and characterization of three isoforms of chrysophsin, a novel antimicrobial peptide in the gills of the red sea bream,
  publication-title: Eur J Biochem
– volume: 165
  start-page: 3268
  year: 2000
  end-page: 3274
  article-title: Pepsin‐mediated processing of the cytoplasmic histone H2A to strong antimicrobial peptide buforin I
  publication-title: J Immunol
– start-page: 189
  year: 1996
  end-page: 191
– start-page: 109
  year: 2003
  end-page: 125
– volume: 65
  start-page: 978
  year: 1997
  end-page: 985
  article-title: Porcine polymorphonuclear leukocytes generate extracellular microbicidal activity by elastase‐mediated activation of secreted proprotegrins
  publication-title: Infect Immun
– volume: 44
  start-page: 2039
  year: 2000
  end-page: 2045
  article-title: Characterization of a fish antimicrobial peptide. gene expression, subcellular localization, and spectrum of activity
  publication-title: Antimicrob Agents Chemother
– volume: 271
  start-page: 29537
  year: 1996
  end-page: 29544
  article-title: Characterization of novel cysteine‐rich antimicrobial peptides from scorpion blood
  publication-title: J Biol Chem
– volume: 437
  start-page: 258
  year: 1998
  end-page: 262
  article-title: Parasin I, an antimicrobial peptide derived from histone H2A in the catfish,
  publication-title: FEBS Lett
– start-page: 287
  year: 2003
  end-page: 303
– volume: 37
  start-page: 105
  year: 1995
  end-page: 122
  article-title: Structure–activity studies on magainins and other host defense peptides
  publication-title: Biopolymers
– volume: 68
  start-page: 4297
  year: 2000
  end-page: 4302
  article-title: The human cationic antimicrobial protein (hCAP‐18) is expressed in the epithelium of human epididymis, is present in seminal plasma at high concentrations, and is attached to spermatozoa
  publication-title: Infect Immun
– volume: 411
  start-page: 173
  year: 1997
  end-page: 178
  article-title: A novel antimicrobial peptide from the loach,
  publication-title: FEBS Lett
– volume: 267
  start-page: 894
  year: 2000
  end-page: 900
  article-title: Peptides with antimicrobial activity from four different families isolated from the skins of the North American frogs , and
  publication-title: Eur J Biochem
– volume: 45
  start-page: 785
  year: 1999
  end-page: 794
  article-title: Antimicrobial peptides as mediators of epithelial host defense
  publication-title: Pediatric Res
– volume: 40
  start-page: 11995
  year: 2001
  end-page: 12003
  article-title: Solution structures of the antifungal heliomicin and a selected variant with both antibacterial and antifungal activities
  publication-title: Biochemistry
– volume: 47
  start-page: 465
  year: 1998
  end-page: 477
  article-title: Cysteine‐rich antimicrobial peptides in invertebrates
  publication-title: Biopolymers, Peptide Science
– volume: 256
  start-page: 404
  year: 1998
  end-page: 410
  article-title: Solution structure of thanatin, a potent bactericidal and fungicidal insect peptide, determined from proton two‐dimensional nuclear magnetic resonance data
  publication-title: Eur J Biochem
– volume: 31
  start-page: 219
  year: 2001
  end-page: 229
  article-title: Innate immune response of
  publication-title: Insect Biochem Mol Biol
– volume: 99
  start-page: 1813
  year: 2002
  end-page: 1818
  article-title: Retrocyclin: a primate peptide that protects cells from infection by T‐ and M‐tropic strains of HIV‐1
  publication-title: Proc Natl Acad Sci USA
– volume: 40
  start-page: 6398
  year: 2001
  end-page: 6405
  article-title: Membrane activity of the peptide antibiotic clavanin and the importance of its glycine residues
  publication-title: Biochemistry
– volume: 284
  start-page: 1313
  year: 1999
  end-page: 1318
  article-title: Phylogenetic perspectives in innate immunity
  publication-title: Science
– volume: 93
  start-page: 1221
  year: 1996
  end-page: 1225
  article-title: Structure‐activity analysis of thanatin, a 21‐residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides
  publication-title: Proc Natl Acad Sci USA
– volume: 269
  start-page: 1190
  year: 2002
  end-page: 1198
  article-title: The solution structure of gomesin, an antimicrobial cysteine‐rich peptide from the spider
  publication-title: Eur J Biochem
– volume: 276
  start-page: 2701
  year: 2001
  end-page: 2707
  article-title: Tigerinins: novel antimicrobial peptides from the Indian frog
  publication-title: J Biol Chem
– volume: 229
  start-page: 381
  year: 1996
  end-page: 387
  article-title: cDNA cloning and characterization of buforin I, an antimicrobial peptide: a cleavage product of histone H2A
  publication-title: Biochem Biophys Res Commun
– volume: 10
  start-page: 41
  year: 1998
  end-page: 44
  article-title: Antimicrobial peptides of vertebrates
  publication-title: Curr Opin Immunol
– volume: 292
  start-page: 246
  year: 1981
  end-page: 248
  article-title: Sequence and specificity of two antibacterial proteins involved in insect immunity
  publication-title: Nature
– volume: 228
  start-page: 941
  year: 1995
  end-page: 946
  article-title: PMAP‐37, a novel antibacterial peptide from pig myeloid cells. cDNA cloning, chemical synthesis and activity
  publication-title: Eur J Biochem
– volume: 272
  start-page: 12008
  year: 1997
  end-page: 12013
  article-title: Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder
  publication-title: J Biol Chem
– volume: 47
  start-page: 479
  year: 1998
  end-page: 491
  article-title: Plant defense peptides
  publication-title: Biopolymers
– volume: 271
  start-page: 21808
  year: 1996
  end-page: 21813
  article-title: Innate immunity. Isolation of several cysteine‐rich antimicrobial peptides from the blood of a mollusc,
  publication-title: J Biol Chem
– volume: 51
  start-page: 121
  year: 1998
  end-page: 126
  article-title: New antibiotic caerin 1 peptides from the skin secretion of the Australian tree frog . Comparison of the activities of the caerin 1 peptides from the genus
  publication-title: J Pept Res
– volume: 23
  start-page: 267
  year: 1999
  end-page: 279
  article-title: Antimicrobial and cytolytic polypeptides of amoeboid protozoa‐effector molecules of primitive phagocytes
  publication-title: Dev Comp Immunol
– volume: 272
  start-page: 28398
  year: 1997
  end-page: 28406
  article-title: Penaeidins, a new family of antimicrobial peptides isolated from the shrimp (Decapoda)
  publication-title: J Biol Chem
– volume: 269
  start-page: 4799
  year: 2002
  end-page: 4810
  article-title: Antibacterial and antifungal properties of alpha‐helical, cationic peptides in the venom of scorpions from southern Africa
  publication-title: Eur J Biochem
– ident: e_1_2_5_6_2
  doi: 10.1126/science.284.5418.1313
– ident: e_1_2_5_57_2
  doi: 10.1073/pnas.84.15.5449
– ident: e_1_2_5_49_2
  doi: 10.1074/jbc.272.18.12008
– start-page: 287
  volume-title: Infectious Disease: Innate Immunity
  year: 2003
  ident: e_1_2_5_68_2
– ident: e_1_2_5_41_2
  doi: 10.1074/jbc.M006762200
– ident: e_1_2_5_10_2
  doi: 10.1016/S0005-2736(99)00200-X
– ident: e_1_2_5_16_2
  doi: 10.1016/S0145-305X(99)00015-4
– ident: e_1_2_5_79_2
  doi: 10.1074/jbc.271.36.21808
– ident: e_1_2_5_83_2
  doi: 10.1006/bbrc.1994.2757
– ident: e_1_2_5_14_2
  doi: 10.1002/1097-0282(2000)55:1<4::AID-BIP30>3.0.CO;2-M
– ident: e_1_2_5_36_2
  doi: 10.1074/jbc.M111099200
– ident: e_1_2_5_95_2
  doi: 10.1002/arch.10091
– ident: e_1_2_5_54_2
  doi: 10.1074/jbc.M109173200
– ident: e_1_2_5_29_2
  doi: 10.1074/jbc.M206296200
– ident: e_1_2_5_97_2
  doi: 10.1021/bi0103563
– ident: e_1_2_5_63_2
  doi: 10.4049/jimmunol.165.6.3268
– ident: e_1_2_5_99_2
  doi: 10.1074/jbc.M306839200
– ident: e_1_2_5_40_2
  doi: 10.1016/S0014-5793(02)02827-2
– ident: e_1_2_5_52_2
  doi: 10.1016/S0145-305X(03)00120-4
– ident: e_1_2_5_89_2
  doi: 10.1074/jbc.M008922200
– ident: e_1_2_5_32_2
  doi: 10.1046/j.1432-1327.2000.01556.x
– ident: e_1_2_5_44_2
  doi: 10.1111/j.1432-1033.1996.0303n.x
– ident: e_1_2_5_92_2
  doi: 10.1172/JCI0215686
– ident: e_1_2_5_64_2
  doi: 10.1016/S1074-7613(00)00072-8
– ident: e_1_2_5_76_2
  doi: 10.1016/S0167-7799(97)01156-6
– ident: e_1_2_5_101_2
  doi: 10.1073/pnas.052706399
– start-page: 47
  volume-title: Peptide Antibiotics: Discovery, Mode of Actions, and Applications
  year: 2002
  ident: e_1_2_5_3_2
– ident: e_1_2_5_93_2
  doi: 10.1016/S0965-1748(00)00141-7
– ident: e_1_2_5_31_2
  doi: 10.1074/jbc.M100216200
– ident: e_1_2_5_82_2
  doi: 10.1074/jbc.M006615200
– ident: e_1_2_5_5_2
  doi: 10.1002/(SICI)1097-0282(1998)47:6<479::AID-BIP6>3.0.CO;2-K
– ident: e_1_2_5_20_2
  doi: 10.1042/bj20030259
– ident: e_1_2_5_90_2
  doi: 10.1046/j.1432-1033.2002.02881.x
– ident: e_1_2_5_80_2
  doi: 10.1073/pnas.93.3.1221
– ident: e_1_2_5_24_2
  doi: 10.1002/(SICI)1097-0282(1998)47:6<435::AID-BIP3>3.0.CO;2-8
– ident: e_1_2_5_12_2
  doi: 10.1074/jbc.274.46.32555
– ident: e_1_2_5_2_2
  doi: 10.1016/S0145-305X(99)00010-5
– start-page: 243
  volume-title: Peptide Antibiotics: Discovery, Mode of Actions, and Applications
  year: 2002
  ident: e_1_2_5_25_2
– ident: e_1_2_5_34_2
  doi: 10.1074/jbc.M200511200
– ident: e_1_2_5_67_2
  doi: 10.1002/1097-0282(2000)55:1<31::AID-BIP40>3.0.CO;2-9
– ident: e_1_2_5_70_2
  doi: 10.1128/IAI.65.3.978-985.1997
– ident: e_1_2_5_48_2
  doi: 10.1016/S0014-5793(97)00684-4
– ident: e_1_2_5_56_2
  doi: 10.1016/S0014-5793(02)03651-7
– ident: e_1_2_5_42_2
  doi: 10.1128/iai.65.7.2898-2903.1997
– ident: e_1_2_5_19_2
  doi: 10.1016/0167-4838(92)90346-F
– ident: e_1_2_5_69_2
  doi: 10.1016/S0021-9258(18)54182-X
– ident: e_1_2_5_84_2
  doi: 10.1016/S0021-9258(19)81553-3
– ident: e_1_2_5_46_2
  doi: 10.1111/j.1432-1033.1996.0143h.x
– ident: e_1_2_5_87_2
  doi: 10.1074/jbc.M001491200
– ident: e_1_2_5_98_2
  doi: 10.1074/jbc.271.48.30493
– ident: e_1_2_5_55_2
  doi: 10.1046/j.1432-1033.2003.03419.x
– ident: e_1_2_5_11_2
  doi: 10.1110/ps.9.4.742
– ident: e_1_2_5_86_2
  doi: 10.1074/jbc.271.47.29537
– ident: e_1_2_5_27_2
  doi: 10.1038/292246a0
– ident: e_1_2_5_51_2
  doi: 10.1016/S0145-305X(00)00052-5
– ident: e_1_2_5_100_2
  doi: 10.1074/jbc.M109117200
– ident: e_1_2_5_35_2
  doi: 10.1021/bi00100a014
– ident: e_1_2_5_8_2
  doi: 10.1007/978-3-642-59674-2_2
– ident: e_1_2_5_13_2
  doi: 10.1021/bi002656a
– start-page: 89
  volume-title: Infectious Disease: Innate Immunity
  year: 2003
  ident: e_1_2_5_28_2
– ident: e_1_2_5_18_2
  doi: 10.1016/S0014-5793(98)01238-1
– ident: e_1_2_5_66_2
  doi: 10.1002/bip.360370206
– ident: e_1_2_5_26_2
  doi: 10.1073/pnas.072073199
– ident: e_1_2_5_58_2
  doi: 10.1046/j.1432-1327.2000.01074.x
– volume: 261
  start-page: 16704
  year: 1986
  ident: e_1_2_5_45_2
  article-title: Purification and pore‐forming activity of two hydrophobic polypeptides from the secretion of the Red Sea Moses sole (Pardachirus marmoratus)
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)66622-0
– ident: e_1_2_5_96_2
  doi: 10.1016/S0014-5793(00)02192-X
– ident: e_1_2_5_78_2
  doi: 10.1016/S0952-7915(98)80029-0
– ident: e_1_2_5_21_2
  doi: 10.1016/S0145-305X(03)00120-4
– ident: e_1_2_5_39_2
  doi: 10.1016/S0014-5793(96)01374-9
– start-page: 109
  volume-title: Infectious Disease: Innate Immunity
  year: 2003
  ident: e_1_2_5_85_2
– ident: e_1_2_5_22_2
  doi: 10.1074/jbc.272.45.28398
– ident: e_1_2_5_61_2
  doi: 10.1046/j.1432-1327.2000.01012.x
– ident: e_1_2_5_37_2
  doi: 10.1074/jbc.M002998200
– ident: e_1_2_5_88_2
  doi: 10.1046/j.0014-2956.2002.02760.x
– ident: e_1_2_5_60_2
  doi: 10.1016/S0167-4838(01)00272-2
– ident: e_1_2_5_91_2
  doi: 10.1074/jbc.M205305200
– ident: e_1_2_5_81_2
  doi: 10.1046/j.1432-1327.1998.2560404.x
– ident: e_1_2_5_9_2
  doi: 10.1002/(SICI)1097-0282(1998)47:6<451::AID-BIP4>3.0.CO;2-F
– ident: e_1_2_5_23_2
  doi: 10.1074/jbc.M209239200
– ident: e_1_2_5_71_2
  doi: 10.1074/jbc.272.24.15258
– ident: e_1_2_5_75_2
  doi: 10.1126/science.286.5439.498
– start-page: 155
  volume-title: Membrane Interacting Peptides and Proteins.
  year: 2002
  ident: e_1_2_5_77_2
– ident: e_1_2_5_53_2
  doi: 10.1006/fsim.1999.0254
– ident: e_1_2_5_17_2
  doi: 10.1006/bbrc.1996.1814
– ident: e_1_2_5_73_2
  doi: 10.1128/IAI.68.7.4297-4302.2000
– ident: e_1_2_5_72_2
  doi: 10.1073/pnas.95.16.9541
– ident: e_1_2_5_38_2
  doi: 10.1016/S0014-5793(97)00769-2
– ident: e_1_2_5_59_2
  doi: 10.1111/j.1399-3011.1998.tb00629.x
– ident: e_1_2_5_7_2
  doi: 10.1016/S0966-842X(00)01823-0
– ident: e_1_2_5_33_2
  doi: 10.1046/j.1432-1033.2002.03177.x
– ident: e_1_2_5_62_2
  doi: 10.1002/j.1460-2075.1993.tb06172.x
– start-page: 189
  volume-title: Peptide Chemistry, Structure and Biology. Proceedings of the 12th American Peptide Symposium
  year: 1996
  ident: e_1_2_5_47_2
– ident: e_1_2_5_94_2
  doi: 10.1016/S0965-1748(02)00029-2
– ident: e_1_2_5_50_2
  doi: 10.1128/AAC.44.8.2039-2045.2000
– ident: e_1_2_5_30_2
  doi: 10.1111/j.1399-3011.1997.tb01173.x
– ident: e_1_2_5_74_2
  doi: 10.1111/j.1432-1033.1995.0941m.x
– ident: e_1_2_5_15_2
  doi: 10.1002/(SICI)1097-0282(1998)47:6<465::AID-BIP5>3.0.CO;2-#
– ident: e_1_2_5_65_2
  doi: 10.1203/00006450-199906000-00001
– start-page: 81
  volume-title: Peptide Antibiotics: Discovery, Mode of Actions, and Applications
  year: 2002
  ident: e_1_2_5_4_2
– ident: e_1_2_5_43_2
  doi: 10.1021/bi0028136
SSID ssj0017324
Score 2.3899028
SecondaryResourceType review_article
Snippet Gene‐encoded anti‐microbial peptides (AMPs) are widespread in nature, as they are synthesized by microorganisms as well as by multicellular organisms from both...
Gene-encoded anti-microbial peptides (AMPs) are widespread in nature, as they are synthesized by microorganisms as well as by multicellular organisms from both...
SourceID hal
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 169
SubjectTerms Amino Acid Sequence
Animals
Anti-Bacterial Agents - chemistry
Antimicrobial Cationic Peptides - chemistry
Invertebrates - metabolism
Life Sciences
Models, Molecular
Molecular Sequence Data
Peptides, Cyclic - chemistry
Protein Structure, Secondary
Protein Structure, Tertiary
Vertebrates - metabolism
Title Anti-microbial peptides: from invertebrates to vertebrates
URI https://api.istex.fr/ark:/67375/WNG-Z72C7Q5H-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.0105-2896.2004.0124.x
https://www.ncbi.nlm.nih.gov/pubmed/15199962
https://www.proquest.com/docview/72035816
https://hal.science/hal-03828656
Volume 198
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RT9UwFD5BjIkvgqg4VFyM8W03d13brYaXGyJMgyQSjMSXpu3acEF3CXeXAE_8BH6jv4SebXeXa0g0xrd16Vna03Pa0_XrdwDeeqMwsctUxIxDUu1MREILF7lC09j6RcLPy4i22OX5V_rpgB20lEJ4F6bhh-h-uKFn1PM1OrjS4zknx-SOkd8w1EgD6ouE9jCcROQWhkd7HZFUnCakYfluJVqkV4PpufM7c-vUvUNESd5HxZ_fFYrOR7b10rS1BEfTTjWIlOPepNI9c_kb3-N_6fUyPGoD2HDQWNxjWLDlCjxoUlpePIGNQVkNf11d_xzWDE--5gniZgo7fh_iVZZwWGIGaDyu9kFuWI3CW8WnsL_1YX8zj9oMDZGhyCmcGs2SNCaKi8SSglhMIeqDRt1XmpmUaKH6XChSqKxwynCdOWcyopkVhfK742ewWI5K-xzCgpu00FpZZzRVKOOcSIRR2nBqExUAnw6HNC17OSbR-CFnuxjUjETNYG5NKlEz8jyAfid40hB4_FnkjR_vrjYScOeDHYnv-gleu2f8LA7gXW0OXTV1eowguZTJb7vb8ntKNtMvLJd5AK-n9iK96-J5jCrtaDKWeALOspgHsNqY0ayBDNkhOAmA1sbwty2XHz_v-Ye1fxN7AQ9nuKSXsFidTuwrH3JVer32phvl-RyY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5BKwSXlr_S8NcIIW5ZbRzbiRGXVUVJYbsS1SIqLpbt2GK1NFu12apw4hF4xj4JniSbZVElEOIWR54otmfsGfvzNwDPvVKY2GUqYsYhqXYmIqGFi1yhaWz9IuHnZURbjHj-gb49Ykct_gnvwjT8EN2GG1pGPV-jgeOG9IqVY3bHyEcMNdSA-iKhPe9PrmN-7zq8OuyopOI0IQ3PdyvSYr0aVM-VH1pZqa5_RpzkOnb9xVXO6KpvWy9Oe5swXTSrwaRMe_NK98y33xgf_0-7b8NG68OGg0bp7sA1W96FG01Wy6_34NWgrCaX338cT2qSJ1_zBKEzhT17GeJtlnBSYhJoPLH2fm5YzcJfivdhvPd6vJtHbZKGyFCkFU6NZkkaE8VFYklBLGYR9X6j7ivNTEq0UH0uFClUVjhluM6cMxnRzIpC-QB5C9bKWWm3ISy4SQutlXVGU4UyzolEGKUNpzZRAfDFeEjTEphjHo0vchnIYM9I7BlMr0kl9oy8CKDfCZ40HB5_FnnmB7yrjRzc-WAo8V0_wZv3jJ_HAbyo9aGrpk6niJNLmfw4eiM_pWQ3fc9ymQews1AY6a0Xj2RUaWfzM4mH4CyLeQAPGj1a_iBDgghOAqC1Nvztn8v9g0P_8PDfxHbgZj4-GMrh_ujdI7i1hCk9hrXqdG6feA-s0k9r0_oJsxMgsw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BKxAX3o_waoQQt6wSx3YSxGXVsqRQVlAVUXGx_FS3heyqzaLCiZ_Ab-SX4EmyWRZVAiFuceSJ7PGMPY4_fwPw2BuFTlwuI6YdkmrnRVSowkXOKJpYv0j4eRnRFmNevqMv99l-RymEd2Fafoj-hxt6RjNfo4PPjFtxckzuGPkNQ4M0oL5I6MCHk-uUxzka-NZuzySVZClpab47kQ7q1YJ6zvzQykJ1_gBhkuuo-dOzYtHV0LZZm0ZX4HDRqxaScjSY12qgv_5G-Phfun0VLncRbDhsTe4anLPVdbjQ5rT8cgOeDat68uPb90-ThuLJ15whcMbYk6ch3mUJJxWmgMbzah_lhvU0_KV4E_ZGz_c2y6hL0RBpiqTCmVYszRIieZFaYojFHKI-alSxVExnRBUy5oUkRubGSc1V7pzOiWK2MNJvj2_BWjWt7B0IDdeZUUpapxWVKONckRZaKs2pTWUAfDEcQnf05ZhF46NYbmNQMwI1g8k1qUDNiNMA4l5w1jJ4_FnkkR_vvjYycJfDHYHv4hTv3TP-OQngSWMOfTV5fIQouYyJ9-MX4kNGNrO3rBRlABsLexHed_FARlZ2Oj8ReATO8oQHcLs1o2UDGdJDcBIAbYzhb1sutl_v-oe7_ya2ARffbI3Ezvb41T24tMQo3Ye1-nhuH_jwq1YPG8f6CUTGH2s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti-microbial+peptides%3A+from+invertebrates+to+vertebrates&rft.jtitle=Immunological+reviews&rft.au=Bulet%2C+Philippe&rft.au=St%C3%B6cklin%2C+Reto&rft.au=Menin%2C+Laure&rft.date=2004-04-01&rft.pub=Munksgaard+International+Publishers&rft.issn=0105-2896&rft.eissn=1600-065X&rft.volume=198&rft.issue=1&rft.spage=169&rft.epage=184&rft_id=info:doi/10.1111%2Fj.0105-2896.2004.0124.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_Z72C7Q5H_H
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0105-2896&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0105-2896&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0105-2896&client=summon