Anti-microbial peptides: from invertebrates to vertebrates
Gene‐encoded anti‐microbial peptides (AMPs) are widespread in nature, as they are synthesized by microorganisms as well as by multicellular organisms from both the vegetal and the animal kingdoms. These naturally occurring AMPs form a first line of host defense against pathogens and are involved in...
Saved in:
Published in | Immunological reviews Vol. 198; no. 1; pp. 169 - 184 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK; Malden , USA
Munksgaard International Publishers
01.04.2004
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gene‐encoded anti‐microbial peptides (AMPs) are widespread in nature, as they are synthesized by microorganisms as well as by multicellular organisms from both the vegetal and the animal kingdoms. These naturally occurring AMPs form a first line of host defense against pathogens and are involved in innate immunity. Depending on their tissue distribution, AMPs ensure either a systemic or a local protection of the organism against environmental pathogens. They are classified into three major groups: (i) peptides with an α‐helical conformation (insect cecropins, magainins, etc.), (ii) cyclic and open‐ended cyclic peptides with pairs of cysteine residues (defensins, protegrin, etc.), and (iii) peptides with an over‐representation of some amino acids (proline rich, histidine rich, etc.). Most AMPs display hydrophobic and cationic properties, have a molecular mass below 25–30 kDa, and adopt an amphipathic structure (α‐helix, β‐hairpin‐like β‐sheet, β‐sheet, or α‐helix/β‐sheet mixed structures) that is believed to be essential to their anti‐microbial action. Interestingly, in recent years, a series of novel AMPs have been discovered as processed forms of large proteins. Despite the extreme diversity in their primary and secondary structures, all natural AMPs have the in vitro particularity to affect a large number of microorganisms (bacteria, fungi, yeast, virus, etc.) with identical or complementary activity spectra. This review focuses on AMPs forming α‐helices, β‐hairpin‐like β‐sheets, β‐sheets, or α‐helix/β‐sheet mixed structures from invertebrate and vertebrate origins. These molecules show some promise for therapeutic use. |
---|---|
AbstractList | Gene-encoded anti-microbial peptides (AMPs) are widespread in nature, as they are synthesized by microorganisms as well as by multicellular organisms from both the vegetal and the animal kingdoms. These naturally occurring AMPs form a first line of host defense against pathogens and are involved in innate immunity. Depending on their tissue distribution, AMPs ensure either a systemic or a local protection of the organism against environmental pathogens. They are classified into three major groups: (i) peptides with an alpha-helical conformation (insect cecropins, magainins, etc.), (ii) cyclic and open-ended cyclic peptides with pairs of cysteine residues (defensins, protegrin, etc.), and (iii) peptides with an over-representation of some amino acids (proline rich, histidine rich, etc.). Most AMPs display hydrophobic and cationic properties, have a molecular mass below 25-30 kDa, and adopt an amphipathic structure (alpha-helix, beta-hairpin-like beta-sheet, beta-sheet, or alpha-helix/beta-sheet mixed structures) that is believed to be essential to their anti-microbial action. Interestingly, in recent years, a series of novel AMPs have been discovered as processed forms of large proteins. Despite the extreme diversity in their primary and secondary structures, all natural AMPs have the in vitro particularity to affect a large number of microorganisms (bacteria, fungi, yeast, virus, etc.) with identical or complementary activity spectra. This review focuses on AMPs forming alpha-helices, beta-hairpin-like beta-sheets, beta-sheets, or alpha-helix/beta-sheet mixed structures from invertebrate and vertebrate origins. These molecules show some promise for therapeutic use. Gene-encoded anti-microbial peptides (AMPs) are widespread in nature, as they are synthesized by microorganisms as well as by multicellular organisms from both the vegetal and the animal kingdoms. These naturally occurring AMPs form a first line of host defense against pathogens and are involved in innate immunity. Depending on their tissue distribution, AMPs ensure either a systemic or a local protection of the organism against environmental pathogens. They are classified into three major groups: (i) peptides with an alpha-helical conformation (insect cecropins, magainins, etc.), (ii) cyclic and open-ended cyclic peptides with pairs of cysteine residues (defensins, protegrin, etc.), and (iii) peptides with an over-representation of some amino acids (proline rich, histidine rich, etc.). Most AMPs display hydrophobic and cationic properties, have a molecular mass below 25-30 kDa, and adopt an amphipathic structure (alpha-helix, beta-hairpin-like beta-sheet, beta-sheet, or alpha-helix/beta-sheet mixed structures) that is believed to be essential to their anti-microbial action. Interestingly, in recent years, a series of novel AMPs have been discovered as processed forms of large proteins. Despite the extreme diversity in their primary and secondary structures, all natural AMPs have the in vitro particularity to affect a large number of microorganisms (bacteria, fungi, yeast, virus, etc.) with identical or complementary activity spectra. This review focuses on AMPs forming alpha-helices, beta-hairpin-like beta-sheets, beta-sheets, or alpha-helix/beta-sheet mixed structures from invertebrate and vertebrate origins. These molecules show some promise for therapeutic use.Gene-encoded anti-microbial peptides (AMPs) are widespread in nature, as they are synthesized by microorganisms as well as by multicellular organisms from both the vegetal and the animal kingdoms. These naturally occurring AMPs form a first line of host defense against pathogens and are involved in innate immunity. Depending on their tissue distribution, AMPs ensure either a systemic or a local protection of the organism against environmental pathogens. They are classified into three major groups: (i) peptides with an alpha-helical conformation (insect cecropins, magainins, etc.), (ii) cyclic and open-ended cyclic peptides with pairs of cysteine residues (defensins, protegrin, etc.), and (iii) peptides with an over-representation of some amino acids (proline rich, histidine rich, etc.). Most AMPs display hydrophobic and cationic properties, have a molecular mass below 25-30 kDa, and adopt an amphipathic structure (alpha-helix, beta-hairpin-like beta-sheet, beta-sheet, or alpha-helix/beta-sheet mixed structures) that is believed to be essential to their anti-microbial action. Interestingly, in recent years, a series of novel AMPs have been discovered as processed forms of large proteins. Despite the extreme diversity in their primary and secondary structures, all natural AMPs have the in vitro particularity to affect a large number of microorganisms (bacteria, fungi, yeast, virus, etc.) with identical or complementary activity spectra. This review focuses on AMPs forming alpha-helices, beta-hairpin-like beta-sheets, beta-sheets, or alpha-helix/beta-sheet mixed structures from invertebrate and vertebrate origins. These molecules show some promise for therapeutic use. Gene‐encoded anti‐microbial peptides (AMPs) are widespread in nature, as they are synthesized by microorganisms as well as by multicellular organisms from both the vegetal and the animal kingdoms. These naturally occurring AMPs form a first line of host defense against pathogens and are involved in innate immunity. Depending on their tissue distribution, AMPs ensure either a systemic or a local protection of the organism against environmental pathogens. They are classified into three major groups: (i) peptides with an α‐helical conformation (insect cecropins, magainins, etc.), (ii) cyclic and open‐ended cyclic peptides with pairs of cysteine residues (defensins, protegrin, etc.), and (iii) peptides with an over‐representation of some amino acids (proline rich, histidine rich, etc.). Most AMPs display hydrophobic and cationic properties, have a molecular mass below 25–30 kDa, and adopt an amphipathic structure (α‐helix, β‐hairpin‐like β‐sheet, β‐sheet, or α‐helix/β‐sheet mixed structures) that is believed to be essential to their anti‐microbial action. Interestingly, in recent years, a series of novel AMPs have been discovered as processed forms of large proteins. Despite the extreme diversity in their primary and secondary structures, all natural AMPs have the in vitro particularity to affect a large number of microorganisms (bacteria, fungi, yeast, virus, etc.) with identical or complementary activity spectra. This review focuses on AMPs forming α‐helices, β‐hairpin‐like β‐sheets, β‐sheets, or α‐helix/β‐sheet mixed structures from invertebrate and vertebrate origins. These molecules show some promise for therapeutic use. Gene‐encoded anti‐microbial peptides (AMPs) are widespread in nature, as they are synthesized by microorganisms as well as by multicellular organisms from both the vegetal and the animal kingdoms. These naturally occurring AMPs form a first line of host defense against pathogens and are involved in innate immunity. Depending on their tissue distribution, AMPs ensure either a systemic or a local protection of the organism against environmental pathogens. They are classified into three major groups: (i) peptides with an α‐helical conformation (insect cecropins, magainins, etc.), (ii) cyclic and open‐ended cyclic peptides with pairs of cysteine residues (defensins, protegrin, etc.), and (iii) peptides with an over‐representation of some amino acids (proline rich, histidine rich, etc.). Most AMPs display hydrophobic and cationic properties, have a molecular mass below 25–30 kDa, and adopt an amphipathic structure (α‐helix, β‐hairpin‐like β‐sheet, β‐sheet, or α‐helix/β‐sheet mixed structures) that is believed to be essential to their anti‐microbial action. Interestingly, in recent years, a series of novel AMPs have been discovered as processed forms of large proteins. Despite the extreme diversity in their primary and secondary structures, all natural AMPs have the in vitro particularity to affect a large number of microorganisms (bacteria, fungi, yeast, virus, etc.) with identical or complementary activity spectra. This review focuses on AMPs forming α‐helices, β‐hairpin‐like β‐sheets, β‐sheets, or α‐helix/β‐sheet mixed structures from invertebrate and vertebrate origins. These molecules show some promise for therapeutic use. |
Author | Stöcklin, Reto Menin, Laure Bulet, Philippe |
Author_xml | – sequence: 1 givenname: Philippe surname: Bulet fullname: Bulet, Philippe email: philippe.bulet@atheris.ch organization: Atheris Laboratories, Geneva, Switzerland – sequence: 2 givenname: Reto surname: Stöcklin fullname: Stöcklin, Reto organization: Atheris Laboratories, Geneva, Switzerland – sequence: 3 givenname: Laure surname: Menin fullname: Menin, Laure organization: Atheris Laboratories, Geneva, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15199962$$D View this record in MEDLINE/PubMed https://hal.science/hal-03828656$$DView record in HAL |
BookMark | eNqNkU1vEzEQhi1URNOWvwB7QuKwwR9re13UQxRBUylQtaoE4jKyd73CYT-C7ZT03-PVloA41Rd7rOeZkd45QUf90FuEXhM8J-m828wxwTynpRJzinGRSlrM98_QjAiMcyz41yM0OzDH6CSEDcZEMlq8QMeEE6WUoDN0vuijyztX-cE43WZbu42utuE8a_zQZa6_tz5a43W0IYtD9k95hp43ug325eN9iu4-frhbrvL19eXVcrHOq0KpIpeV4UwSqoViltbUSlYKTJTB2vBKUqM0FkrTWpd1oythyqapSmq4VbUmjJ2it1Pb77qFrXed9g8waAerxRrGP8xKWgou7kli30zs1g8_dzZE6FyobNvq3g67AJJixksiEvjqEdyZztaHvn-CSYCcgBRMCN42fxEM4wpgA2O8MMYL4wpgXAHsk3nxn1m5qKMb-ui1a5_gv5_8X661D08dC1efbtMj2flkuxDt_mBr_wOEZJLDl8-X8E3SpbzhK1ix3-nwrPA |
CitedBy_id | crossref_primary_10_3390_toxins11010039 crossref_primary_10_1016_j_bcp_2016_09_018 crossref_primary_10_1074_jbc_M110_214007 crossref_primary_10_1016_j_csbj_2023_03_031 crossref_primary_10_1016_j_fsi_2015_03_013 crossref_primary_10_1371_journal_ppat_1009479 crossref_primary_10_1007_s10989_022_10478_y crossref_primary_10_1111_oik_03900 crossref_primary_10_1016_j_wndm_2020_100179 crossref_primary_10_2174_0115748936274103231114105340 crossref_primary_10_3390_microorganisms13010156 crossref_primary_10_1016_j_ijid_2011_02_003 crossref_primary_10_3389_fbioe_2020_00454 crossref_primary_10_1002_bip_22871 crossref_primary_10_1007_s12562_008_0027_3 crossref_primary_10_1016_j_pep_2005_04_010 crossref_primary_10_1016_j_toxicon_2008_12_011 crossref_primary_10_3390_pharmaceutics15020406 crossref_primary_10_1038_s41598_018_31681_2 crossref_primary_10_1111_febs_14194 crossref_primary_10_1016_j_micinf_2010_05_001 crossref_primary_10_1016_j_peptides_2011_01_026 crossref_primary_10_1016_j_dci_2017_05_003 crossref_primary_10_1016_j_jddst_2020_102016 crossref_primary_10_1021_bi900272r crossref_primary_10_1016_j_ejphar_2013_03_028 crossref_primary_10_1111_j_1570_7458_2011_01187_x crossref_primary_10_1016_j_bcp_2005_10_010 crossref_primary_10_1111_j_1365_2583_2007_00745_x crossref_primary_10_1002_ece3_2460 crossref_primary_10_1016_j_bpj_2008_11_053 crossref_primary_10_1038_s41598_018_35749_x crossref_primary_10_1016_j_foodchem_2021_130874 crossref_primary_10_1016_j_fsi_2019_03_007 crossref_primary_10_1016_j_jgar_2020_07_019 crossref_primary_10_1007_s10989_024_10656_0 crossref_primary_10_1016_j_peptides_2013_04_004 crossref_primary_10_1016_j_toxicon_2009_06_014 crossref_primary_10_3390_jof6040333 crossref_primary_10_1016_j_bbapap_2005_07_013 crossref_primary_10_1016_j_ibmb_2012_04_003 crossref_primary_10_1038_jid_2011_387 crossref_primary_10_1242_jeb_154310 crossref_primary_10_1021_jm701604t crossref_primary_10_1016_j_biopha_2019_109152 crossref_primary_10_1007_s43630_024_00542_5 crossref_primary_10_1016_j_fsi_2020_07_069 crossref_primary_10_1016_j_fsi_2014_09_019 crossref_primary_10_1128_JB_01406_07 crossref_primary_10_1007_s10989_022_10477_z crossref_primary_10_1016_j_dci_2015_08_001 crossref_primary_10_1016_j_peptides_2013_04_012 crossref_primary_10_1016_j_jinsphys_2013_08_011 crossref_primary_10_1021_ja076300z crossref_primary_10_1111_pbi_12119 crossref_primary_10_1186_s12859_015_0633_x crossref_primary_10_3390_pr10122470 crossref_primary_10_1002_adfm_201202850 crossref_primary_10_1007_s10499_017_0139_9 crossref_primary_10_1016_j_fsi_2015_11_039 crossref_primary_10_1016_j_cclet_2016_04_024 crossref_primary_10_1111_1744_7917_12453 crossref_primary_10_1016_j_peptides_2012_09_001 crossref_primary_10_3390_microorganisms12020412 crossref_primary_10_3390_md20080501 crossref_primary_10_1074_jbc_M111_269225 crossref_primary_10_3390_ijms242115607 crossref_primary_10_1016_j_cbpb_2010_02_003 crossref_primary_10_1586_14787210_2013_841450 crossref_primary_10_1016_j_yexmp_2013_07_006 crossref_primary_10_1371_journal_pone_0178785 crossref_primary_10_1007_s12526_017_0815_z crossref_primary_10_1016_j_jinsphys_2006_08_007 crossref_primary_10_1515_CCLM_2010_098 crossref_primary_10_1002_bip_20660 crossref_primary_10_1016_j_micpath_2021_104749 crossref_primary_10_1016_j_bpj_2009_04_039 crossref_primary_10_1080_17425255_2020_1803278 crossref_primary_10_1016_j_fsi_2023_109286 crossref_primary_10_1371_journal_pone_0101742 crossref_primary_10_1016_j_virol_2017_11_009 crossref_primary_10_3390_antibiotics13080783 crossref_primary_10_1021_ci2002186 crossref_primary_10_1016_j_dci_2016_03_006 crossref_primary_10_1080_10495398_2012_745417 crossref_primary_10_1111_bjd_20750 crossref_primary_10_1186_s12864_015_1849_x crossref_primary_10_1161_01_RES_0000153188_68898_ac crossref_primary_10_1016_j_ejmech_2023_115377 crossref_primary_10_1016_j_fsi_2013_07_001 crossref_primary_10_1016_j_genrep_2020_100867 crossref_primary_10_1007_s13659_012_0016_1 crossref_primary_10_1016_j_bbagen_2015_12_010 crossref_primary_10_1016_j_peptides_2011_07_007 crossref_primary_10_1016_S0123_9392_10_70093_X crossref_primary_10_1111_j_1462_5822_2011_01589_x crossref_primary_10_1111_j_1742_4658_2009_07497_x crossref_primary_10_1016_j_bmcl_2013_07_063 crossref_primary_10_1016_j_fsi_2013_06_026 crossref_primary_10_1016_j_ibmb_2007_07_010 crossref_primary_10_1016_j_bbamem_2007_08_022 crossref_primary_10_1016_j_fsi_2006_08_013 crossref_primary_10_1128_AEM_00711_09 crossref_primary_10_1007_s13205_020_2151_4 crossref_primary_10_1098_rspb_2007_1211 crossref_primary_10_3923_ajbkr_2020_75_86 crossref_primary_10_1016_j_peptides_2006_04_019 crossref_primary_10_1021_cb400591d crossref_primary_10_1016_j_peptides_2006_04_013 crossref_primary_10_1021_bi800991e crossref_primary_10_1039_C6MB00810K crossref_primary_10_1021_jp1052248 crossref_primary_10_1007_s00018_009_0241_x crossref_primary_10_1016_j_fsi_2018_10_081 crossref_primary_10_1016_j_virol_2010_07_033 crossref_primary_10_3390_ijms20225743 crossref_primary_10_1186_s12864_015_1748_1 crossref_primary_10_1371_journal_pone_0016441 crossref_primary_10_3389_fmed_2022_835843 crossref_primary_10_1002_ejoc_201200291 crossref_primary_10_1016_j_dci_2018_06_008 crossref_primary_10_1016_j_dci_2018_06_005 crossref_primary_10_1080_10408398_2015_1031726 crossref_primary_10_1002_bip_20404 crossref_primary_10_1016_j_cbpb_2019_05_004 crossref_primary_10_1016_j_dci_2007_06_009 crossref_primary_10_1021_jf200486t crossref_primary_10_1016_j_dci_2019_02_012 crossref_primary_10_1080_15569543_2024_2331250 crossref_primary_10_1016_j_biotechadv_2010_08_012 crossref_primary_10_1016_j_bmcl_2012_04_018 crossref_primary_10_1021_bi900724x crossref_primary_10_29252_ijaah_4_1_1 crossref_primary_10_1074_jbc_M112_382028 crossref_primary_10_1603_EN10137 crossref_primary_10_1051_e3sconf_202560202004 crossref_primary_10_1096_fj_08_122317 crossref_primary_10_3389_fchem_2021_626059 crossref_primary_10_1016_j_dci_2008_03_008 crossref_primary_10_3390_md22040172 crossref_primary_10_1007_s12602_023_10061_x crossref_primary_10_1051_apido_2008057 crossref_primary_10_1016_j_jphotobiol_2010_02_005 crossref_primary_10_1016_j_peptides_2011_10_005 crossref_primary_10_1016_j_antiviral_2019_04_012 crossref_primary_10_1007_s11030_006_9032_6 crossref_primary_10_1074_jbc_M109_016410 crossref_primary_10_1016_j_jinsphys_2008_04_013 crossref_primary_10_1186_s12898_019_0259_3 crossref_primary_10_2217_fmb_11_73 crossref_primary_10_3390_ijms232213844 crossref_primary_10_1007_s10126_024_10367_z crossref_primary_10_3389_fimmu_2020_01511 crossref_primary_10_3389_fmicb_2021_555022 crossref_primary_10_3390_md20030157 crossref_primary_10_1016_j_dci_2010_01_008 crossref_primary_10_3390_fermentation10110540 crossref_primary_10_1371_journal_pone_0164597 crossref_primary_10_1016_j_bioflm_2023_100164 crossref_primary_10_1002_cbdv_202200494 crossref_primary_10_3389_fphys_2019_00529 crossref_primary_10_1016_j_cbpb_2017_01_004 crossref_primary_10_1016_j_fsi_2019_03_027 crossref_primary_10_1002_bip_20865 crossref_primary_10_1002_chem_200700845 crossref_primary_10_1016_j_gene_2016_05_030 crossref_primary_10_1016_j_jff_2010_01_003 crossref_primary_10_1021_acs_biochem_6b01071 crossref_primary_10_1074_jbc_M110_216358 crossref_primary_10_3389_fimmu_2020_01629 crossref_primary_10_1016_j_bpc_2006_12_009 crossref_primary_10_1016_j_mrl_2022_08_001 crossref_primary_10_1007_s13355_024_00888_3 crossref_primary_10_1128_spectrum_00826_21 crossref_primary_10_1016_j_imbio_2010_05_030 crossref_primary_10_1016_j_fsi_2024_109785 crossref_primary_10_1051_jbio_2015018 crossref_primary_10_3390_molecules23123202 crossref_primary_10_1111_j_1472_765X_2009_02763_x crossref_primary_10_1016_j_dci_2015_11_006 crossref_primary_10_1016_j_micpath_2017_11_039 crossref_primary_10_1016_j_jip_2018_07_005 crossref_primary_10_1186_1471_2164_11_452 crossref_primary_10_3958_059_042_0104 crossref_primary_10_1016_j_dci_2010_01_012 crossref_primary_10_1096_fj_202301218R crossref_primary_10_1177_1534734608326916 crossref_primary_10_1016_j_fsi_2015_11_005 crossref_primary_10_1128_IAI_01265_12 crossref_primary_10_1016_j_jinorgbio_2021_111386 crossref_primary_10_1186_1471_2164_11_450 crossref_primary_10_2141_jpsa_010065 crossref_primary_10_1002_bip_21700 crossref_primary_10_1007_s10989_012_9328_6 crossref_primary_10_1002_psc_1195 crossref_primary_10_1371_journal_pone_0167953 crossref_primary_10_1007_s10142_014_0366_3 crossref_primary_10_1016_j_ibmb_2012_10_012 crossref_primary_10_1016_j_micpath_2018_08_056 crossref_primary_10_1111_raq_12306 crossref_primary_10_1002_psc_967 crossref_primary_10_1371_journal_pone_0016400 crossref_primary_10_1007_s00894_017_3479_5 crossref_primary_10_1016_j_clim_2009_12_004 crossref_primary_10_3390_ijms26051885 crossref_primary_10_1016_j_bbrc_2011_09_021 crossref_primary_10_3892_ijo_2016_3651 crossref_primary_10_1016_j_bbamem_2015_03_030 crossref_primary_10_1016_j_dci_2018_05_002 crossref_primary_10_1016_j_aspen_2021_01_013 crossref_primary_10_1590_0103_8478cr20160668 crossref_primary_10_1007_s10393_016_1102_3 crossref_primary_10_1071_AN21124 crossref_primary_10_1002_pep2_24325 crossref_primary_10_3390_insects9030117 crossref_primary_10_1016_j_peptides_2010_12_004 crossref_primary_10_1080_87559129_2016_1210632 crossref_primary_10_1002_pep2_24329 crossref_primary_10_1002_prot_23233 crossref_primary_10_1007_s00018_010_0354_2 crossref_primary_10_1002_psc_853 crossref_primary_10_1017_S0043933907001559 crossref_primary_10_52547_pgr_8_2_7 crossref_primary_10_1016_j_fsi_2020_05_025 crossref_primary_10_1007_s10719_011_9353_2 crossref_primary_10_3389_fimmu_2021_628054 crossref_primary_10_1016_j_cbpb_2010_05_010 crossref_primary_10_3390_microorganisms9112307 crossref_primary_10_1007_s12010_015_1631_1 crossref_primary_10_3390_ijms131217048 crossref_primary_10_1021_acsami_0c17550 crossref_primary_10_5012_bkcs_2008_29_6_1190 crossref_primary_10_1021_jm050882i crossref_primary_10_5352_JLS_2016_26_3_296 crossref_primary_10_1016_j_fsi_2009_11_005 crossref_primary_10_1016_j_plantsci_2019_110398 crossref_primary_10_3389_fmicb_2018_01522 crossref_primary_10_1007_s42247_023_00601_0 crossref_primary_10_1016_j_bbrc_2011_09_018 crossref_primary_10_1016_j_peptides_2009_05_019 crossref_primary_10_1021_ja0588510 crossref_primary_10_1186_s13071_014_0554_y crossref_primary_10_1002_bkcs_10213 crossref_primary_10_1002_cbdv_200890111 crossref_primary_10_1002_psc_701 crossref_primary_10_1016_j_molimm_2008_07_021 crossref_primary_10_3390_ijms222111691 crossref_primary_10_1074_jbc_M110_143388 crossref_primary_10_1093_femspd_fty004 crossref_primary_10_1002_ajoc_201402242 crossref_primary_10_1016_j_peptides_2011_11_013 crossref_primary_10_1007_s10126_025_10426_z crossref_primary_10_1096_fj_08_114579 crossref_primary_10_12714_egejfas_40_1_05 crossref_primary_10_1016_j_procbio_2008_08_012 crossref_primary_10_1039_D0RA04299D crossref_primary_10_1016_j_bbamem_2019_183055 crossref_primary_10_1016_j_dci_2014_05_020 crossref_primary_10_1007_s11033_012_2152_4 crossref_primary_10_1371_journal_pone_0220344 crossref_primary_10_1016_j_pharmthera_2017_10_010 crossref_primary_10_1016_j_molimm_2010_09_018 crossref_primary_10_1007_s11033_011_1311_3 crossref_primary_10_1590_S0100_879X2010005000010 crossref_primary_10_1002_bip_20700 crossref_primary_10_1016_j_molimm_2009_09_042 crossref_primary_10_1111_j_1365_2109_2009_02266_x crossref_primary_10_1371_journal_pone_0016968 crossref_primary_10_1586_ehm_10_40 crossref_primary_10_1007_s11756_024_01703_8 crossref_primary_10_1007_s10529_007_9351_4 crossref_primary_10_1016_j_ijbiomac_2025_142158 crossref_primary_10_1016_j_peptides_2018_01_017 crossref_primary_10_1016_j_peptides_2006_06_010 crossref_primary_10_7852_jses_2012_50_2_145 crossref_primary_10_1146_annurev_animal_022516_022914 crossref_primary_10_1016_j_peptides_2014_01_012 crossref_primary_10_1016_j_peptides_2010_10_029 crossref_primary_10_1007_s00018_023_04795_8 crossref_primary_10_1128_MCB_00223_10 crossref_primary_10_3390_pharmaceutics16050582 crossref_primary_10_1021_bi101687t crossref_primary_10_1016_j_peptides_2008_02_019 crossref_primary_10_1080_87559129_2015_1137311 crossref_primary_10_1186_1756_3305_7_388 crossref_primary_10_1002_ps_6529 crossref_primary_10_1016_j_biochi_2012_09_019 crossref_primary_10_1016_j_ibmb_2015_01_015 crossref_primary_10_1097_MRM_0000000000000032 crossref_primary_10_1128_AAC_00023_08 crossref_primary_10_1016_j_cirep_2024_200150 crossref_primary_10_1038_s41598_021_86155_9 crossref_primary_10_3390_molecules180810056 crossref_primary_10_4137_EBO_S25580 crossref_primary_10_3390_biom12040527 crossref_primary_10_1098_rstb_2015_0290 crossref_primary_10_5657_FAS_2014_0377 crossref_primary_10_1016_j_dci_2018_04_014 crossref_primary_10_1016_j_fsi_2008_04_005 crossref_primary_10_1016_j_ibmb_2007_11_001 crossref_primary_10_1042_BJ20050218 crossref_primary_10_1016_j_vetpar_2007_12_027 crossref_primary_10_1038_s41598_022_15812_4 crossref_primary_10_3390_ani11071937 crossref_primary_10_1007_s00360_024_01549_1 crossref_primary_10_1016_j_fsi_2009_12_001 crossref_primary_10_1016_j_cnsns_2015_04_013 crossref_primary_10_1016_j_peptides_2011_07_027 crossref_primary_10_1016_j_cellsig_2014_02_024 crossref_primary_10_1016_j_bbamem_2020_183261 crossref_primary_10_1128_AAC_01231_09 crossref_primary_10_1016_j_fsi_2020_06_029 crossref_primary_10_1016_S1875_5364_18_30005_0 crossref_primary_10_1002_bip_20917 crossref_primary_10_1155_2012_101989 crossref_primary_10_1016_j_bbrc_2012_10_092 crossref_primary_10_1097_01_CCM_0000148091_84857_E1 crossref_primary_10_1016_j_foodchem_2017_06_084 crossref_primary_10_1007_s13258_017_0532_9 crossref_primary_10_1016_j_peptides_2010_10_008 crossref_primary_10_22358_jafs_69998_2017 crossref_primary_10_1111_1365_2435_12013 crossref_primary_10_1089_jop_2014_0089 crossref_primary_10_1016_j_procbio_2008_06_009 crossref_primary_10_1016_j_procbio_2009_08_017 crossref_primary_10_1016_j_wasman_2022_04_017 crossref_primary_10_1016_j_bmc_2005_01_009 crossref_primary_10_1016_j_addr_2021_114008 crossref_primary_10_1074_jbc_M800495200 crossref_primary_10_1186_s12866_017_0957_y crossref_primary_10_1515_BC_2007_030 crossref_primary_10_1007_s00436_015_4694_6 crossref_primary_10_1016_j_dci_2012_02_011 crossref_primary_10_1016_j_fsi_2013_10_025 crossref_primary_10_3389_fimmu_2019_01785 crossref_primary_10_1042_BSR20171282 crossref_primary_10_1248_yakushi_126_1213 crossref_primary_10_1016_j_peptides_2005_05_004 crossref_primary_10_1016_j_micinf_2015_01_005 crossref_primary_10_1074_jbc_M110_189662 crossref_primary_10_1016_j_aquaculture_2008_07_046 crossref_primary_10_1016_j_dci_2011_09_007 crossref_primary_10_1016_j_dci_2016_09_002 crossref_primary_10_1155_2015_212715 crossref_primary_10_1007_s00018_019_03138_w crossref_primary_10_1134_S1068162016030055 crossref_primary_10_1007_s10989_015_9456_x crossref_primary_10_1016_j_peptides_2013_09_007 crossref_primary_10_1016_j_jconrel_2023_01_084 crossref_primary_10_3390_molecules23112943 crossref_primary_10_1111_j_1420_9101_2005_00907_x crossref_primary_10_1371_journal_pone_0161585 crossref_primary_10_1016_j_dci_2013_04_019 crossref_primary_10_1007_s10989_020_10068_w crossref_primary_10_1021_jm100483y crossref_primary_10_1038_nature05267 crossref_primary_10_1556_ABiol_59_2008_3_3 crossref_primary_10_1074_jbc_M510850200 crossref_primary_10_5352_JLS_2014_24_8_860 crossref_primary_10_1016_j_peptides_2007_09_010 crossref_primary_10_3390_ijms25073835 crossref_primary_10_1016_j_bpj_2012_08_055 crossref_primary_10_1016_j_fsi_2015_07_003 crossref_primary_10_1016_j_peptides_2007_09_017 crossref_primary_10_1016_j_bbamem_2015_10_011 crossref_primary_10_1002_mds_28925 crossref_primary_10_1016_j_molimm_2006_02_025 crossref_primary_10_1016_j_dci_2008_11_007 crossref_primary_10_1111_j_1600_0625_2012_01538_x crossref_primary_10_1038_nrurol_2012_109 crossref_primary_10_2174_1389203721666200116091911 crossref_primary_10_1016_j_fsi_2011_01_031 crossref_primary_10_1002_prot_22494 crossref_primary_10_3897_jhr_91_82381 crossref_primary_10_3389_fimmu_2017_01320 crossref_primary_10_1016_j_bbamem_2018_09_011 crossref_primary_10_1097_00062752_200701000_00005 crossref_primary_10_1099_jmm_0_46929_0 crossref_primary_10_3389_fmicb_2017_00984 crossref_primary_10_1038_s41598_024_64691_4 crossref_primary_10_1002_cbdv_202403202 crossref_primary_10_1007_s12602_018_9483_y crossref_primary_10_1016_j_gene_2012_08_013 crossref_primary_10_3390_md20120745 crossref_primary_10_1007_s00726_020_02900_w crossref_primary_10_3390_v13050912 crossref_primary_10_1002_arch_20280 crossref_primary_10_3389_fmicb_2022_1053078 crossref_primary_10_1111_j_1365_313X_2009_04121_x crossref_primary_10_1016_j_japr_2023_100346 crossref_primary_10_3390_ijms25021072 crossref_primary_10_3390_molecules28010050 crossref_primary_10_1074_jbc_M705480200 crossref_primary_10_1007_s00249_006_0047_9 crossref_primary_10_1155_2013_390230 crossref_primary_10_1016_j_dci_2016_07_015 crossref_primary_10_1016_j_jembe_2014_09_005 crossref_primary_10_7717_peerj_5369 crossref_primary_10_1016_j_fsi_2013_04_048 crossref_primary_10_1002_psc_1343 crossref_primary_10_1016_j_bbamem_2012_06_008 crossref_primary_10_1093_jisesa_ieab054 crossref_primary_10_1371_journal_ppat_1008935 crossref_primary_10_1002_psc_2679 crossref_primary_10_1016_j_molbiopara_2004_09_009 crossref_primary_10_1104_pp_105_060079 crossref_primary_10_1002_psc_2439 crossref_primary_10_1016_j_bbagen_2017_04_009 crossref_primary_10_1134_S0006350924700787 crossref_primary_10_1007_s00265_006_0226_9 crossref_primary_10_1016_j_tig_2007_05_003 crossref_primary_10_1128_AAC_01436_08 crossref_primary_10_1007_s10126_005_5006_4 crossref_primary_10_1007_s11103_008_9372_y crossref_primary_10_1038_sj_onc_1209599 crossref_primary_10_1186_gb_2007_8_8_r177 crossref_primary_10_1186_s12858_015_0052_7 crossref_primary_10_3389_fmars_2021_690879 crossref_primary_10_1515_bmc_2011_006 crossref_primary_10_1016_j_fsi_2011_07_020 crossref_primary_10_1016_j_cbpa_2010_07_013 crossref_primary_10_1111_j_1574_6968_2010_01950_x crossref_primary_10_1021_la100662a crossref_primary_10_1111_j_1462_5822_2005_00549_x crossref_primary_10_1042_BJ20082330 crossref_primary_10_1016_j_soilbio_2021_108435 crossref_primary_10_1016_j_dci_2007_04_004 crossref_primary_10_1016_j_fsi_2012_08_010 crossref_primary_10_3390_biom10040652 crossref_primary_10_1007_s00114_020_01700_2 crossref_primary_10_1016_j_ibmb_2005_01_014 crossref_primary_10_1016_j_micpath_2024_107161 crossref_primary_10_1016_j_peptides_2005_07_013 crossref_primary_10_3389_fmicb_2015_00339 crossref_primary_10_3390_molecules23040815 crossref_primary_10_1016_j_peptides_2014_03_013 crossref_primary_10_2478_aoas_2025_0004 crossref_primary_10_1111_1748_5967_12214 crossref_primary_10_1038_nature08698 crossref_primary_10_1098_rspb_2015_0293 crossref_primary_10_1016_j_coemr_2024_100557 crossref_primary_10_1021_jp411886u crossref_primary_10_1158_0008_5472_CAN_05_4569 crossref_primary_10_1016_j_chemphyslip_2012_01_009 crossref_primary_10_1653_024_097_0350 crossref_primary_10_1016_j_biochi_2023_07_016 crossref_primary_10_1016_j_bbrc_2007_06_029 crossref_primary_10_1186_s12866_017_0959_9 crossref_primary_10_1007_s10989_020_10072_0 crossref_primary_10_1016_j_cbpc_2021_109243 crossref_primary_10_1002_bip_21071 crossref_primary_10_1002_pmic_200800569 crossref_primary_10_4001_003_024_0197 crossref_primary_10_1016_j_fsi_2014_05_032 crossref_primary_10_1111_j_1462_2920_2009_02138_x crossref_primary_10_1016_j_fsi_2016_09_054 crossref_primary_10_1593_neo_07885 crossref_primary_10_1016_j_fsi_2018_06_026 crossref_primary_10_1128_EC_00133_10 crossref_primary_10_1016_j_femsle_2005_06_055 crossref_primary_10_1016_j_biotechadv_2014_12_003 crossref_primary_10_1007_s00018_010_0364_0 crossref_primary_10_3389_fimmu_2019_01365 crossref_primary_10_1016_j_ibmb_2016_08_002 crossref_primary_10_3390_insects14030215 crossref_primary_10_1016_j_micpath_2015_11_023 crossref_primary_10_1080_10826068_2024_2365357 crossref_primary_10_1016_j_bbamem_2013_10_022 crossref_primary_10_1016_j_ibmb_2022_103816 crossref_primary_10_1016_j_aquaculture_2009_03_047 crossref_primary_10_1021_bi200746t crossref_primary_10_1038_srep12048 crossref_primary_10_1007_s13205_019_1725_5 crossref_primary_10_1128_AAC_05338_11 crossref_primary_10_3390_ph6121543 crossref_primary_10_4049_jimmunol_2300871 crossref_primary_10_3390_md19110600 crossref_primary_10_3390_toxins11100559 crossref_primary_10_1016_j_imbio_2011_01_004 crossref_primary_10_1017_S000748531200048X crossref_primary_10_1016_j_peptides_2007_12_012 crossref_primary_10_1016_j_toxicon_2009_03_011 crossref_primary_10_1038_s41598_020_69485_y crossref_primary_10_1016_j_fsi_2014_04_027 crossref_primary_10_3390_antibiotics9020066 crossref_primary_10_3389_fimmu_2016_00664 crossref_primary_10_3389_fmicb_2017_00775 crossref_primary_10_1128_JB_00892_09 crossref_primary_10_1016_j_meegid_2019_02_015 crossref_primary_10_1039_b617527a crossref_primary_10_3390_ijms10062860 crossref_primary_10_1080_08977190701344120 crossref_primary_10_1039_C6MD00376A crossref_primary_10_1007_s10096_011_1430_8 crossref_primary_10_1080_07391102_2022_2105957 crossref_primary_10_3389_fmicb_2016_02006 crossref_primary_10_1016_j_fsi_2009_08_007 crossref_primary_10_1016_S1359_6446_05_03432_X crossref_primary_10_1016_j_ibmb_2007_03_012 crossref_primary_10_1038_s41598_023_50832_8 crossref_primary_10_1016_j_dci_2010_12_009 crossref_primary_10_1021_mp8001914 crossref_primary_10_1155_2014_675985 crossref_primary_10_1016_j_febslet_2006_01_041 crossref_primary_10_3390_molecules20046941 crossref_primary_10_1016_j_fsi_2025_110243 crossref_primary_10_1016_j_pep_2012_08_006 crossref_primary_10_1016_j_molimm_2010_01_025 crossref_primary_10_1007_s12539_011_0088_3 crossref_primary_10_1016_j_peptides_2012_05_014 crossref_primary_10_3390_antibiotics9120921 crossref_primary_10_1111_j_1365_2583_2009_00897_x crossref_primary_10_1016_j_ibmb_2007_03_013 crossref_primary_10_1021_jm1012853 crossref_primary_10_1186_1756_3305_4_63 crossref_primary_10_1002_psc_1372 crossref_primary_10_1016_j_fsi_2012_09_018 crossref_primary_10_1016_j_fsi_2016_08_058 crossref_primary_10_1016_j_ibmb_2011_05_005 crossref_primary_10_1111_j_1600_0854_2006_00531_x crossref_primary_10_1016_j_molimm_2012_09_006 crossref_primary_10_1016_j_fsi_2010_12_031 crossref_primary_10_1016_j_molimm_2011_03_022 crossref_primary_10_1074_jbc_M110_127019 crossref_primary_10_1016_j_scitotenv_2018_01_056 crossref_primary_10_1134_S0026261719020103 crossref_primary_10_3389_fimmu_2020_01198 crossref_primary_10_1002_psc_1016 crossref_primary_10_1002_psc_1019 crossref_primary_10_1039_c1np00022e crossref_primary_10_1104_pp_114_255505 crossref_primary_10_1016_j_peptides_2010_02_001 crossref_primary_10_1080_21505594_2018_1441589 crossref_primary_10_1016_j_str_2005_02_013 crossref_primary_10_1021_jm1010463 crossref_primary_10_1902_jop_2013_120679 crossref_primary_10_1016_j_exppara_2007_09_009 crossref_primary_10_1155_2017_9390803 crossref_primary_10_1016_S1671_2927_09_60245_5 crossref_primary_10_1021_bi800957n crossref_primary_10_1186_gb_2010_11_2_r21 crossref_primary_10_1016_j_actbio_2021_02_002 crossref_primary_10_1016_j_fsi_2012_11_030 crossref_primary_10_1016_j_jinsphys_2009_05_015 crossref_primary_10_1186_1471_2164_11_51 crossref_primary_10_3390_molecules180911311 crossref_primary_10_1016_j_dci_2007_05_008 crossref_primary_10_1016_j_fsi_2021_12_020 crossref_primary_10_1186_1471_2105_11_S1_S19 crossref_primary_10_1111_j_1742_4658_2006_05407_x crossref_primary_10_1016_j_fsi_2012_09_005 crossref_primary_10_1016_j_rinim_2011_09_001 crossref_primary_10_1186_s43141_022_00330_7 crossref_primary_10_1016_j_mehy_2016_05_025 crossref_primary_10_1128_CMR_00056_05 crossref_primary_10_1002_bip_22360 crossref_primary_10_3390_ijms23116345 crossref_primary_10_1590_S0074_02762007005000028 crossref_primary_10_3390_biom14101332 crossref_primary_10_1111_j_1365_2583_2009_00907_x crossref_primary_10_1111_j_1744_7917_2006_00092_x crossref_primary_10_1016_j_fsi_2016_02_004 crossref_primary_10_1016_j_heliyon_2024_e28484 crossref_primary_10_1016_j_dci_2008_07_009 crossref_primary_10_1016_j_fsi_2019_07_002 crossref_primary_10_3390_ijms23052789 crossref_primary_10_1002_cphc_201000472 crossref_primary_10_1016_j_aspen_2010_10_002 crossref_primary_10_4103_jmedsci_jmedsci_194_18 crossref_primary_10_1128_AEM_72_5_3302_3308_2006 crossref_primary_10_1186_s12866_016_0828_y crossref_primary_10_1098_rstb_2015_0302 crossref_primary_10_1016_j_dci_2007_09_004 crossref_primary_10_1002_slct_202000851 crossref_primary_10_1038_srep09877 crossref_primary_10_1016_j_aquaculture_2021_736783 crossref_primary_10_3390_antibiotics11101318 crossref_primary_10_1002_chem_201001279 crossref_primary_10_1002_jps_20188 crossref_primary_10_3390_cells13242042 crossref_primary_10_1007_s00726_010_0625_0 crossref_primary_10_1128_AEM_02759_10 crossref_primary_10_3390_ph7030265 crossref_primary_10_1016_j_ijbiomac_2018_03_139 crossref_primary_10_1016_j_jmbbm_2015_02_003 crossref_primary_10_1016_j_tim_2008_05_007 crossref_primary_10_1016_j_dci_2012_05_003 crossref_primary_10_1016_j_fsi_2016_07_030 crossref_primary_10_1111_j_1742_4658_2006_05246_x crossref_primary_10_1111_imb_12321 crossref_primary_10_3389_fmicb_2021_720381 crossref_primary_10_3390_md17090512 crossref_primary_10_1371_journal_pone_0159423 crossref_primary_10_1016_j_bbrc_2006_07_078 crossref_primary_10_1016_j_dci_2009_10_006 crossref_primary_10_1016_j_dci_2022_104554 crossref_primary_10_1093_icb_icw023 crossref_primary_10_1146_annurev_pathol_4_110807_092205 crossref_primary_10_1016_j_micron_2014_10_006 crossref_primary_10_1016_j_carbpol_2015_03_089 crossref_primary_10_1002_bit_22970 crossref_primary_10_1007_s10753_020_01371_1 crossref_primary_10_1016_j_ibmb_2011_12_005 crossref_primary_10_1002_bip_20286 crossref_primary_10_1134_S0022093011060032 crossref_primary_10_5483_BMBRep_2010_43_5_362 crossref_primary_10_1007_s12602_012_9098_7 crossref_primary_10_1021_bi902166d crossref_primary_10_1016_j_fsi_2015_02_040 crossref_primary_10_1016_j_jfluchem_2020_109685 crossref_primary_10_31857_S0006302924040136 crossref_primary_10_1016_j_aquaculture_2009_03_013 crossref_primary_10_1080_07388551_2020_1828810 crossref_primary_10_1016_j_dci_2015_03_007 crossref_primary_10_1016_j_fsi_2024_110063 crossref_primary_10_1007_s10126_013_9550_z crossref_primary_10_1128_spectrum_03089_22 crossref_primary_10_1021_bc800280u crossref_primary_10_1038_icb_2009_19 crossref_primary_10_1021_bi900756y crossref_primary_10_3109_10428194_2013_770847 crossref_primary_10_1016_j_imbio_2005_10_017 crossref_primary_10_1007_s12010_016_2365_4 crossref_primary_10_1007_s00210_024_03056_0 crossref_primary_10_1007_s10989_022_10472_4 crossref_primary_10_1038_s41598_017_11396_6 crossref_primary_10_1096_fj_13_234575 crossref_primary_10_1017_S0031182009006283 crossref_primary_10_1371_journal_pone_0085515 crossref_primary_10_1016_j_fsi_2016_12_034 crossref_primary_10_1042_BSR20180988 crossref_primary_10_1002_bip_20396 crossref_primary_10_1016_j_dci_2018_09_001 crossref_primary_10_1016_j_peptides_2011_03_019 crossref_primary_10_1016_j_micinf_2013_01_003 crossref_primary_10_1371_journal_pone_0124210 crossref_primary_10_1128_AAC_01553_05 crossref_primary_10_1080_00218839_2015_1109919 crossref_primary_10_1186_1471_2180_12_132 crossref_primary_10_1021_np4009317 crossref_primary_10_1007_s00109_006_0143_4 crossref_primary_10_1371_journal_pntd_0003754 crossref_primary_10_1016_j_toxicon_2013_05_020 crossref_primary_10_1371_journal_pone_0073563 crossref_primary_10_1016_j_dci_2015_04_018 crossref_primary_10_1016_j_peptides_2008_11_001 crossref_primary_10_6564_JKMRS_2015_19_2_054 crossref_primary_10_1016_j_ibmb_2014_02_002 crossref_primary_10_5483_BMBRep_2014_47_11_262 crossref_primary_10_5604_01_3001_0053_8703 crossref_primary_10_1016_j_acthis_2013_08_014 crossref_primary_10_1371_journal_pone_0007358 crossref_primary_10_1351_pac200779040717 crossref_primary_10_1007_s10658_021_02257_0 crossref_primary_10_1007_s10989_024_10636_4 crossref_primary_10_3390_toxins8020032 crossref_primary_10_1007_s11033_022_07483_1 crossref_primary_10_1016_j_gene_2008_02_016 crossref_primary_10_1038_s41598_017_01626_2 crossref_primary_10_1111_j_1742_4658_2007_06109_x crossref_primary_10_1007_s00344_023_11069_x crossref_primary_10_1021_pr400519d crossref_primary_10_3390_biologics2010008 crossref_primary_10_1016_j_isci_2022_104478 crossref_primary_10_1016_j_peptides_2008_07_005 crossref_primary_10_1016_j_dci_2006_07_006 crossref_primary_10_1016_j_aqrep_2022_101162 crossref_primary_10_1016_j_jconrel_2017_10_011 crossref_primary_10_1098_rstb_2008_0151 crossref_primary_10_1186_2051_5960_1_55 crossref_primary_10_1021_jp064580j crossref_primary_10_1002_bip_20370 crossref_primary_10_1016_j_dci_2010_04_003 crossref_primary_10_1016_j_dci_2012_06_012 crossref_primary_10_1016_j_peptides_2021_170626 crossref_primary_10_1007_s10528_024_10695_8 crossref_primary_10_1021_acs_jafc_3c07217 crossref_primary_10_1016_j_dci_2012_12_009 crossref_primary_10_1002_psc_1439 crossref_primary_10_1016_j_fsi_2017_12_016 crossref_primary_10_1016_j_peptides_2007_04_019 crossref_primary_10_3390_s90906967 crossref_primary_10_1016_j_bmcl_2013_03_053 crossref_primary_10_1016_j_fsi_2015_02_013 crossref_primary_10_1016_j_matpr_2019_11_138 crossref_primary_10_1530_REP_09_0181 crossref_primary_10_1007_s12257_008_0044_1 crossref_primary_10_1021_am5045604 crossref_primary_10_1021_bi700978h crossref_primary_10_3184_175815514X13902927945697 crossref_primary_10_1016_j_tree_2014_09_002 crossref_primary_10_1016_j_fsi_2017_12_029 crossref_primary_10_1016_j_dci_2021_104012 crossref_primary_10_7554_eLife_04111 crossref_primary_10_3390_polym4010539 crossref_primary_10_1002_psc_2990 crossref_primary_10_1016_j_dci_2015_02_009 crossref_primary_10_1534_g3_115_021782 crossref_primary_10_1371_journal_pone_0086436 crossref_primary_10_1111_j_1365_313X_2007_03136_x crossref_primary_10_1134_S0006297910090117 crossref_primary_10_1042_BA20060207 crossref_primary_10_1002_psc_1309 crossref_primary_10_1016_j_biotechadv_2016_02_009 crossref_primary_10_1016_j_fsirep_2021_100034 crossref_primary_10_1371_journal_pone_0074309 crossref_primary_10_1099_mic_0_046755_0 crossref_primary_10_1529_biophysj_104_056077 crossref_primary_10_1039_C3OB42422G crossref_primary_10_1371_journal_pntd_0002594 crossref_primary_10_1007_s00253_018_9561_9 crossref_primary_10_1016_j_aspen_2022_101892 crossref_primary_10_1021_acs_chemrev_7b00522 crossref_primary_10_1371_journal_pone_0133240 crossref_primary_10_1007_s00018_011_0715_5 crossref_primary_10_1016_j_aquaculture_2016_06_023 crossref_primary_10_1016_j_jmb_2024_168853 crossref_primary_10_1016_j_actbio_2018_12_041 crossref_primary_10_6564_JKMRS_2016_20_4_138 crossref_primary_10_1007_s00251_007_0259_x crossref_primary_10_1021_bi0514515 crossref_primary_10_1007_s00005_010_0089_7 crossref_primary_10_1007_s10989_021_10343_4 crossref_primary_10_1371_journal_pone_0016387 crossref_primary_10_1002_ejoc_201300215 crossref_primary_10_1016_j_micpath_2018_11_047 crossref_primary_10_1371_journal_pone_0147855 crossref_primary_10_1016_j_jip_2019_107215 crossref_primary_10_1016_j_dci_2016_11_013 crossref_primary_10_1186_s13071_016_1360_5 crossref_primary_10_1016_j_femsim_2004_11_003 crossref_primary_10_1016_j_fsi_2012_07_013 crossref_primary_10_1016_j_dci_2021_104143 crossref_primary_10_1016_j_gene_2014_03_002 crossref_primary_10_1159_000434752 crossref_primary_10_1007_s12041_008_0017_3 crossref_primary_10_1038_s41598_020_75341_w crossref_primary_10_3390_insects11060387 crossref_primary_10_1128_AEM_02537_14 crossref_primary_10_1186_1471_2180_12_28 crossref_primary_10_1016_j_fsi_2018_08_028 crossref_primary_10_1111_j_1365_2591_2008_01404_x crossref_primary_10_1016_j_dci_2009_02_009 crossref_primary_10_1016_j_aquaculture_2019_734263 crossref_primary_10_1007_s10989_020_10127_2 crossref_primary_10_1139_o2012_013 crossref_primary_10_1016_j_exppara_2007_07_011 crossref_primary_10_3389_fphys_2018_01478 crossref_primary_10_1016_j_bbamem_2014_07_028 crossref_primary_10_1186_s12866_018_1190_z crossref_primary_10_2174_1381612826666201102105827 crossref_primary_10_3390_antibiotics10020212 crossref_primary_10_1186_s13567_025_01465_4 crossref_primary_10_1016_j_jip_2019_107227 crossref_primary_10_1021_jm400884w crossref_primary_10_1016_S2221_1691_11_60132_9 crossref_primary_10_22159_ijap_2022_v14s4_PP08 crossref_primary_10_1016_j_peptides_2016_01_016 crossref_primary_10_1186_1471_2105_8_263 crossref_primary_10_4049_jimmunol_179_10_6943 crossref_primary_10_1016_j_bbamem_2005_01_011 |
Cites_doi | 10.1126/science.284.5418.1313 10.1073/pnas.84.15.5449 10.1074/jbc.272.18.12008 10.1074/jbc.M006762200 10.1016/S0005-2736(99)00200-X 10.1016/S0145-305X(99)00015-4 10.1074/jbc.271.36.21808 10.1006/bbrc.1994.2757 10.1002/1097-0282(2000)55:1<4::AID-BIP30>3.0.CO;2-M 10.1074/jbc.M111099200 10.1002/arch.10091 10.1074/jbc.M109173200 10.1074/jbc.M206296200 10.1021/bi0103563 10.4049/jimmunol.165.6.3268 10.1074/jbc.M306839200 10.1016/S0014-5793(02)02827-2 10.1016/S0145-305X(03)00120-4 10.1074/jbc.M008922200 10.1046/j.1432-1327.2000.01556.x 10.1111/j.1432-1033.1996.0303n.x 10.1172/JCI0215686 10.1016/S1074-7613(00)00072-8 10.1016/S0167-7799(97)01156-6 10.1073/pnas.052706399 10.1016/S0965-1748(00)00141-7 10.1074/jbc.M100216200 10.1074/jbc.M006615200 10.1002/(SICI)1097-0282(1998)47:6<479::AID-BIP6>3.0.CO;2-K 10.1042/bj20030259 10.1046/j.1432-1033.2002.02881.x 10.1073/pnas.93.3.1221 10.1002/(SICI)1097-0282(1998)47:6<435::AID-BIP3>3.0.CO;2-8 10.1074/jbc.274.46.32555 10.1016/S0145-305X(99)00010-5 10.1074/jbc.M200511200 10.1002/1097-0282(2000)55:1<31::AID-BIP40>3.0.CO;2-9 10.1128/IAI.65.3.978-985.1997 10.1016/S0014-5793(97)00684-4 10.1016/S0014-5793(02)03651-7 10.1128/iai.65.7.2898-2903.1997 10.1016/0167-4838(92)90346-F 10.1016/S0021-9258(18)54182-X 10.1016/S0021-9258(19)81553-3 10.1111/j.1432-1033.1996.0143h.x 10.1074/jbc.M001491200 10.1074/jbc.271.48.30493 10.1046/j.1432-1033.2003.03419.x 10.1110/ps.9.4.742 10.1074/jbc.271.47.29537 10.1038/292246a0 10.1016/S0145-305X(00)00052-5 10.1074/jbc.M109117200 10.1021/bi00100a014 10.1007/978-3-642-59674-2_2 10.1021/bi002656a 10.1016/S0014-5793(98)01238-1 10.1002/bip.360370206 10.1073/pnas.072073199 10.1046/j.1432-1327.2000.01074.x 10.1016/S0021-9258(18)66622-0 10.1016/S0014-5793(00)02192-X 10.1016/S0952-7915(98)80029-0 10.1016/S0014-5793(96)01374-9 10.1074/jbc.272.45.28398 10.1046/j.1432-1327.2000.01012.x 10.1074/jbc.M002998200 10.1046/j.0014-2956.2002.02760.x 10.1016/S0167-4838(01)00272-2 10.1074/jbc.M205305200 10.1046/j.1432-1327.1998.2560404.x 10.1002/(SICI)1097-0282(1998)47:6<451::AID-BIP4>3.0.CO;2-F 10.1074/jbc.M209239200 10.1074/jbc.272.24.15258 10.1126/science.286.5439.498 10.1006/fsim.1999.0254 10.1006/bbrc.1996.1814 10.1128/IAI.68.7.4297-4302.2000 10.1073/pnas.95.16.9541 10.1016/S0014-5793(97)00769-2 10.1111/j.1399-3011.1998.tb00629.x 10.1016/S0966-842X(00)01823-0 10.1046/j.1432-1033.2002.03177.x 10.1002/j.1460-2075.1993.tb06172.x 10.1016/S0965-1748(02)00029-2 10.1128/AAC.44.8.2039-2045.2000 10.1111/j.1399-3011.1997.tb01173.x 10.1111/j.1432-1033.1995.0941m.x 10.1002/(SICI)1097-0282(1998)47:6<465::AID-BIP5>3.0.CO;2-# 10.1203/00006450-199906000-00001 10.1021/bi0028136 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC |
DOI | 10.1111/j.0105-2896.2004.0124.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1600-065X |
EndPage | 184 |
ExternalDocumentID | oai_HAL_hal_03828656v1 15199962 10_1111_j_0105_2896_2004_0124_x IMR124 ark_67375_WNG_Z72C7Q5H_H |
Genre | article Journal Article Review |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8F7 8UM 930 A01 A03 AAESR AAEVG AAHHS AAKAS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOETA ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EAS EBB EBC EBD EBS EBX EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IH2 IHE IX1 J0M K48 KBYEO L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OBC OBS OEB OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 V8K VH1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR X7N XG1 XV2 YFH YOC YUY YYP ZGI ZXP ZZTAW ~IA ~KM ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM PKN 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 1XC |
ID | FETCH-LOGICAL-c4994-7cb53712a693e2d2e7386019b0ab5c72b9a069a2da8dfac6b8ffc82b5e9da133 |
IEDL.DBID | DR2 |
ISSN | 0105-2896 |
IngestDate | Fri May 09 12:25:30 EDT 2025 Fri Jul 11 10:50:09 EDT 2025 Wed Feb 19 01:42:01 EST 2025 Tue Jul 01 03:22:53 EDT 2025 Thu Apr 24 23:10:33 EDT 2025 Wed Jan 22 17:08:59 EST 2025 Wed Oct 30 09:55:50 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4994-7cb53712a693e2d2e7386019b0ab5c72b9a069a2da8dfac6b8ffc82b5e9da133 |
Notes | istex:D177984F3D6A7D537852844FFA9ABF938700305A ark:/67375/WNG-Z72C7Q5H-H ArticleID:IMR124 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 15199962 |
PQID | 72035816 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | hal_primary_oai_HAL_hal_03828656v1 proquest_miscellaneous_72035816 pubmed_primary_15199962 crossref_primary_10_1111_j_0105_2896_2004_0124_x crossref_citationtrail_10_1111_j_0105_2896_2004_0124_x wiley_primary_10_1111_j_0105_2896_2004_0124_x_IMR124 istex_primary_ark_67375_WNG_Z72C7Q5H_H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2004 |
PublicationDateYYYYMMDD | 2004-04-01 |
PublicationDate_xml | – month: 04 year: 2004 text: April 2004 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK; Malden , USA |
PublicationPlace_xml | – name: Oxford, UK; Malden , USA – name: England |
PublicationTitle | Immunological reviews |
PublicationTitleAlternate | Immunol Rev |
PublicationYear | 2004 |
Publisher | Munksgaard International Publishers Wiley |
Publisher_xml | – name: Munksgaard International Publishers – name: Wiley |
References | Zhao C, Liaw L, Lee IH, Lehrer RI. cDNA cloning of three cecropin-like antimicrobial peptides (Styelins) from the tunicate, Styela clava. FEBS Lett 1997;412: 144-148. Tossi A, Sandri L, Giangaspero A. Amphipathic, alpha-helical antimicrobial peptides. In: Biopolymers, Peptide Science 2000;55: 4-30. Ali MF, Soto A, Knoop FC, Conlon JM. Antimicrobial peptides isolated from skin secretions of the diploid frog, Xenopus tropicalis (Pipidae). Biochem Biophys Acta 2001;1550: 81-89. Gennaro R, Zanetti M. Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Biopolymers 2000;55: 31-49. Schuhmann B, Seitz V, Vilcinskas A, Podsiadlowski L. Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella. Arch Insect Biochem Physiol 2003;53: 125-133. Mitta G, Vandenbulcke F, Roch P. Original involvement of antimicrobial peptides in mussel innate immunity. FEBS Lett 2000;486: 185-190. Maloy WL, Kari UP. Structure-activity studies on magainins and other host defense peptides. Biopolymers 1995;37: 105-122. Lamberty M, et al. Solution structures of the antifungal heliomicin and a selected variant with both antibacterial and antifungal activities. Biochemistry 2001;40: 11995-12003. Huttner KM, Bevins CL. Antimicrobial peptides as mediators of epithelial host defense. Pediatric Res 1999;45: 785-794. Park CB, Lee JH, Park IY, Kim MS, Kim SC. A novel antimicrobial peptide from the loach, Misgurnus anguillicaudatus. FEBS Lett 1997;411: 173-178. Oren Z, Shai Y. Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers 1998;47: 451-463. Iijima N, et al. Purification and characterization of three isoforms of chrysophsin, a novel antimicrobial peptide in the gills of the red sea bream, Chrysophrys major. Eur J Biochem 2003;270: 675-686. Tang YQ, et al. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science 1999;286: 498-502. Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 1987;84: 5449-5453. Castle M, Nazarian A, Yi SS, Tempst P. Lethal effects of apidaecin on Escherichia coli involve sequential molecular interactions with diverse targets. J Biol Chem 1999;274: 32555-32564. Boulanger N, et al. Epithelial innate immunity. A novel antimicrobial peptide with antiparasitic activity in the blood-sucking insect Stomoxys calcitrans. J Biol Chem 2002;277: 49921-49926. Lemaitre C, Orange N, Saglio P, Saint N, Gagnon J, Molle G. Characterization and ion channel activities of novel antibacterial proteins from the skin mucosa of carp (Cyprinus carpio). Eur J Biochem 1996;240: 143-149. Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 2001;276: 7806-7810. Charlet M, Chernysh S, Philippe H, Hetru C, Hoffmann JA, Bulet P. Innate immunity. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. J Biol Chem 1996;271: 21808-21813. Shike H, et al. Bass hepcidin is a novel antimicrobial peptide induced by bacterial challenge. Eur J Biochem 2002;269: 2232-2237. Mandard N, et al. Solution structure of thanatin, a potent bactericidal and fungicidal insect peptide, determined from proton two-dimensional nuclear magnetic resonance data. Eur J Biochem 1998;256: 404-410. Jang WS, Kim KN, Lee YS, Nam MH, Lee IH. Halocidin: a new antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium. FEBS Lett 2002; 521: 81-86. Krishnakumari V, Nagaraj R. Antimicrobial and hemolytic activities of crabrolin, a 13-residue peptide from the venom of the European hornet, Vespa crabro, and its analogs. J Pept Res 1997;50: 88-93. Steinborner ST, Currie GJ, Bowie JH, Wallace JC, Tyler MJ. New antibiotic caerin 1 peptides from the skin secretion of the Australian tree frog Litoria chloris. Comparison of the activities of the caerin 1 peptides from the genus Litoria. J Pept Res 1998; 51: 121-126. Orivel J, et al. Ponericins, new antibacterial and insecticidal peptides from the venom of the ant Pachycondyla goeldii. J Biol Chem 2001;276: 17823-17829. Kim HS, et al. Pepsin-mediated processing of the cytoplasmic histone H2A to strong antimicrobial peptide buforin I. J Immunol 2000;165: 3268-3274. Zanetti M, Del Sal G, Storici P, Schneider C, Romeo D. The cDNA of the neutrophil antibiotic Bac5 predicts a pro-sequence homologous to a cysteine proteinase inhibitor that is common to other neutrophil antibiotics. J Biol Chem 1993;268: 522-526. Lee IH, Cho Y, Lehrer RI. Effects of pH and salinity on the antimicrobial properties of clavanins. Infect Immun 1997; 65: 2898-2903. Ganz T, Lehrer RI. Antimicrobial peptides of vertebrates. Curr Opin Immunol 1998; 10: 41-44. Van Kan EJ, Van Der Bent A, Demel RA, De Kruijff B. Membrane activity of the peptide antibiotic clavanin and the importance of its glycine residues. Biochemistry 2001;40: 6398-6405. Hancock RE, Lehrer R. Cationic peptides: a new source of antibiotics. Trends Biotechnol 1998;16: 82-88. Silva PI Jr, Daffre S, Bulet P. Isolation and characterization of gomesin, an 18-residue cysteine-rich defense peptide from the spider Acanthoscurria gomesiana hemocytes with sequence similarities to horseshoe crab antimicrobial peptides of the tachyplesin family. J Biol Chem 2000;275: 33464-33470. Lowenberger C. Innate immune response of Aedes aegypti. Insect Biochem Mol Biol 2001;31: 219-229. Moerman L, et al. Antibacterial and antifungal properties of alpha-helical, cationic peptides in the venom of scorpions from southern Africa. Eur J Biochem 2002;269: 4799-4810. Mignogna G, Simmaco M, Kreil G, Barra D. Antibacterial and haemolytic peptides containing d-alloisoleucine from the skin of Bombina variegata. EMBO J 1993; 12: 4829-4832. Simmaco M, Mignogna G, Barra D. Antimicrobial peptides from amphibian skin: what do they tell us? In: Biopolymers, Peptide Science 1998;47: 435-450. Cole AM, Darouiche RO, Legarda D, Connell N, Diamond G. Characterization of a fish antimicrobial peptide. gene expression, subcellular localization, and spectrum of activity. Antimicrob Agents Chemother 2000;44: 2039-2045. Destoumieux D, Bulet P, Loew D, Van Dorsselaer A, Rodriguez J, Bachere E. Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). J Biol Chem 1997;272: 28398-28406. Ganz T. Epithelia: not just physical barriers. Proc Natl Acad Sci USA 2002;99: 3357-3358. Ehret-Sabatier L, et al. Characterization of novel cysteine-rich antimicrobial peptides from scorpion blood. J Biol Chem 1996;271: 29537-29544. Fernandes JM, Saint N, Kemp GD, Smith VJ. Oncorhyncin III: a potent antimicrobial peptide derived from the non-histone chromosomal protein H6 of rainbow trout, Oncorhynchus mykiss. Biochem J 2003; 373: 621-628. Lee IH, Zhao C, Cho Y, Harwig SS, Cooper EL, Lehrer RI. Clavanins, α-helical antimicrobial peptides from tunicate hemocytes. FEBS Lett 1997;400: 158-162. Park IY, Park CB, Kim MS, Kim SC. Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus. FEBS Lett 1998;437: 258-262. Frohm M, et al. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 1997;272: 15258-15263. Romeo D, Skerlavaj B, Bolognesi M, Gennaro R. Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. J Biol Chem 1988;263: 9573-9575. Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RAB. Phylogenetic perspectives in innate immunity. Science 1999;284: 1313-1318. Park JM, Jung JE, Lee BJ. Antimicrobial peptides from the skin of a Korean frog, Rana rugosa. Biochem Biophys Res Commun 1994;205: 948-954. Fernandes JM, Molle G, Kemp GD, Smith VJ. Isolation and characterization of Oncorhyncin II, a histone H1-derived antimicrobial peptide from skin secretions of rainbow trout, Oncorhynchus mykiss. Dev Comp Immunol 2004;28: 127-138. Malm J, et al. The human cationic antimicrobial protein (hCAP-18) is expressed in the epithelium of human epididymis, is present in seminal plasma at high concentrations, and is attached to spermatozoa. Infect Immun 2000; 68: 4297-4302. Torres-Larios A, Gurrola GB, Zamudio FZ, Possani LD. Hadrurin, a new antimicrobial peptide from the venom of the scorpion Hadrurus aztecus. Eur J Biochem 2000;267: 5023-5031. Fernandes JM, Molle G, Kemp GD, Smith VJ. Isolation and characterisation of oncorhyncin II, a histone H1-derived antimicrobial peptide from skin secretions of rainbow trout, Oncorhynchus mykiss. Dev Comp Immunol 2004;28: 127-138. Kim HS, Park CB, Kim MS, Kim SC. cDNA cloning and characterization of buforin I, an antimicrobial peptide: a cleavage product of histone H2A. Biochem Biophys Res Commun 1996;229: 381-387. Hunter HN, Fulton DB, Ganz T, Vogel HJ. The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis. J Biol Chem 2002;277: 37597-37603. Goraya J, et al. Peptides with antimicrobial activity from four different families isolated from the skins of the North American frogs Rana luteiventris, Rana berlandieri and Rana pipiens. Eur J Biochem 2000;267: 894-900. Lazarovici P, Primor N, Loew LM. Purification and pore-forming activity of two hydrophobic polypeptides from the secretion of the Red Sea Moses sole (Pardachirus marmoratus). J Biol Chem 1986; 261: 16704-16713. Leippe M. Antimicrobial and cytolytic polypeptides of amoeboid protozoa-effector molecules of primitive phagocytes. Dev Comp Immunol 1999;23: 267-279. Panyutich A, Shi J, Boutz PL, Zhao C, Ganz T. Porcine polymorphonuclear leukocytes generate extracellular microbicidal activity by elastase-mediated activation of secreted proprotegrins. Infect Immun 1997; 65: 978- 2002; 110 1997; 272 1995; 37 2004; 28 2000; 9 2000; 44 2000; 8 2002; 99 2002; 277 1998; 437 1999; 45 1999; 286 2003; 270 1999; 284 1999; 1462 1988; 263 2003; 278 2001; 40 1996; 229 2003; 53 1998; 47 1998; 16 1997; 50 1987; 84 2000; 248 2000; 13 2000; 10 2000; 55 1986; 261 2002; 269 2000; 165 2000; 486 1998; 51 1998; 95 1998; 10 1997; 411 1997; 412 1992; 1121 1997; 65 2000; 68 1991; 30 2002; 532 2002; 32 1999; 23 1996; 93 1996 2000; 275 2003 2002 1996; 240 1993; 268 1998; 256 2001; 25 2003; 373 1981; 292 2001; 276 1997; 400 1993; 12 1994; 205 2000; 267 2002; 521 1999; 274 1995; 228 1996; 271 1996; 48 2001; 1550 2001; 31 1996; 237 e_1_2_5_27_2 e_1_2_5_46_2 e_1_2_5_101_2 e_1_2_5_23_2 e_1_2_5_42_2 e_1_2_5_65_2 e_1_2_5_88_2 e_1_2_5_69_2 e_1_2_5_80_2 e_1_2_5_61_2 e_1_2_5_84_2 e_1_2_5_38_2 e_1_2_5_15_2 e_1_2_5_57_2 e_1_2_5_7_2 e_1_2_5_34_2 e_1_2_5_11_2 e_1_2_5_53_2 Zasloff M. (e_1_2_5_25_2) 2002 e_1_2_5_76_2 e_1_2_5_99_2 e_1_2_5_19_2 Kawabata S (e_1_2_5_85_2) 2003 e_1_2_5_91_2 e_1_2_5_72_2 e_1_2_5_95_2 e_1_2_5_30_2 e_1_2_5_26_2 e_1_2_5_49_2 e_1_2_5_22_2 e_1_2_5_100_2 e_1_2_5_64_2 e_1_2_5_87_2 e_1_2_5_60_2 e_1_2_5_83_2 e_1_2_5_41_2 e_1_2_5_14_2 e_1_2_5_37_2 e_1_2_5_8_2 e_1_2_5_10_2 e_1_2_5_33_2 e_1_2_5_56_2 e_1_2_5_75_2 e_1_2_5_98_2 e_1_2_5_18_2 e_1_2_5_79_2 e_1_2_5_90_2 e_1_2_5_71_2 e_1_2_5_94_2 e_1_2_5_52_2 e_1_2_5_48_2 Shinnar AE (e_1_2_5_47_2) 1996 e_1_2_5_44_2 e_1_2_5_21_2 e_1_2_5_86_2 e_1_2_5_67_2 Bulet P (e_1_2_5_28_2) 2003 Nes IF (e_1_2_5_4_2) 2002 e_1_2_5_29_2 e_1_2_5_82_2 e_1_2_5_63_2 e_1_2_5_40_2 e_1_2_5_13_2 e_1_2_5_59_2 e_1_2_5_9_2 e_1_2_5_36_2 e_1_2_5_55_2 e_1_2_5_5_2 e_1_2_5_32_2 e_1_2_5_97_2 e_1_2_5_78_2 e_1_2_5_17_2 Mandard N (e_1_2_5_77_2) 2002 e_1_2_5_70_2 e_1_2_5_93_2 e_1_2_5_74_2 e_1_2_5_51_2 Lazarovici P (e_1_2_5_45_2) 1986; 261 e_1_2_5_24_2 e_1_2_5_20_2 e_1_2_5_43_2 e_1_2_5_66_2 e_1_2_5_89_2 e_1_2_5_81_2 e_1_2_5_62_2 Ganz T (e_1_2_5_68_2) 2003 e_1_2_5_16_2 e_1_2_5_35_2 e_1_2_5_58_2 e_1_2_5_6_2 e_1_2_5_12_2 e_1_2_5_31_2 e_1_2_5_54_2 e_1_2_5_2_2 e_1_2_5_39_2 e_1_2_5_92_2 e_1_2_5_73_2 e_1_2_5_96_2 Pag U (e_1_2_5_3_2) 2002 e_1_2_5_50_2 |
References_xml | – reference: Lemaitre C, Orange N, Saglio P, Saint N, Gagnon J, Molle G. Characterization and ion channel activities of novel antibacterial proteins from the skin mucosa of carp (Cyprinus carpio). Eur J Biochem 1996;240: 143-149. – reference: Sai KP, et al. Tigerinins: novel antimicrobial peptides from the Indian frog Rana tigerina. J Biol Chem 2001;276: 2701-2707. – reference: Fernandes JM, Molle G, Kemp GD, Smith VJ. Isolation and characterization of Oncorhyncin II, a histone H1-derived antimicrobial peptide from skin secretions of rainbow trout, Oncorhynchus mykiss. Dev Comp Immunol 2004;28: 127-138. – reference: Boulanger N, et al. Epithelial innate immunity. A novel antimicrobial peptide with antiparasitic activity in the blood-sucking insect Stomoxys calcitrans. J Biol Chem 2002;277: 49921-49926. – reference: Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 2001;276: 7806-7810. – reference: Kim HS, Park CB, Kim MS, Kim SC. cDNA cloning and characterization of buforin I, an antimicrobial peptide: a cleavage product of histone H2A. Biochem Biophys Res Commun 1996;229: 381-387. – reference: Shinnar AE, et al. In: Kaumaya PTP, Hodges RS, eds. Peptide Chemistry, Structure and Biology. Proceedings of the 12th American Peptide Symposium. London: Mayflower Scientific 1996, 189-191. – reference: Malm J, et al. The human cationic antimicrobial protein (hCAP-18) is expressed in the epithelium of human epididymis, is present in seminal plasma at high concentrations, and is attached to spermatozoa. Infect Immun 2000; 68: 4297-4302. – reference: Shike H, et al. Bass hepcidin is a novel antimicrobial peptide induced by bacterial challenge. Eur J Biochem 2002;269: 2232-2237. – reference: Krishnakumari V, Nagaraj R. Antimicrobial and hemolytic activities of crabrolin, a 13-residue peptide from the venom of the European hornet, Vespa crabro, and its analogs. J Pept Res 1997;50: 88-93. – reference: Bals R, Wang X, Zasloff M, Wilson JM. The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci USA 1998;95: 9541-9546. – reference: Castle M, Nazarian A, Yi SS, Tempst P. Lethal effects of apidaecin on Escherichia coli involve sequential molecular interactions with diverse targets. J Biol Chem 1999;274: 32555-32564. – reference: Ehret-Sabatier L, et al. Characterization of novel cysteine-rich antimicrobial peptides from scorpion blood. J Biol Chem 1996;271: 29537-29544. – reference: Kim HS, et al. Pepsin-mediated processing of the cytoplasmic histone H2A to strong antimicrobial peptide buforin I. J Immunol 2000;165: 3268-3274. – reference: Zhao C, Liaw L, Lee IH, Lehrer RI. cDNA cloning of three cecropin-like antimicrobial peptides (Styelins) from the tunicate, Styela clava. FEBS Lett 1997;412: 144-148. – reference: Leippe M. Antimicrobial and cytolytic polypeptides of amoeboid protozoa-effector molecules of primitive phagocytes. Dev Comp Immunol 1999;23: 267-279. – reference: Fernandes JM, Molle G, Kemp GD, Smith VJ. Isolation and characterisation of oncorhyncin II, a histone H1-derived antimicrobial peptide from skin secretions of rainbow trout, Oncorhynchus mykiss. Dev Comp Immunol 2004;28: 127-138. – reference: Tossi A, Scocchi M, Zanetti M, Storici P, Gennaro R. PMAP-37, a novel antibacterial peptide from pig myeloid cells. cDNA cloning, chemical synthesis and activity. Eur J Biochem 1995;228: 941-946. – reference: Charlet M, Chernysh S, Philippe H, Hetru C, Hoffmann JA, Bulet P. Innate immunity. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. J Biol Chem 1996;271: 21808-21813. – reference: Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RAB. Phylogenetic perspectives in innate immunity. Science 1999;284: 1313-1318. – reference: Lowenberger C. Innate immune response of Aedes aegypti. Insect Biochem Mol Biol 2001;31: 219-229. – reference: Lamberty M, et al. Solution structures of the antifungal heliomicin and a selected variant with both antibacterial and antifungal activities. Biochemistry 2001;40: 11995-12003. – reference: Van Kan EJ, Van Der Bent A, Demel RA, De Kruijff B. Membrane activity of the peptide antibiotic clavanin and the importance of its glycine residues. Biochemistry 2001;40: 6398-6405. – reference: Corzo G, Villegas E, Gomez-Lagunas F, Possani LD, Belokoneva OS, Nakajima T. Oxyopinins, large amphipathic peptides isolated from the venom of the wolf spider Oxyopes kitabensis with cytolytic properties and positive insecticidal cooperativity with spider neurotoxins. J Biol Chem 2002; 277: 23627-23637. – reference: Tang YQ, et al. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science 1999;286: 498-502. – reference: Park IY, Park CB, Kim MS, Kim SC. Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus. FEBS Lett 1998;437: 258-262. – reference: Gennaro R, Zanetti M. Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Biopolymers 2000;55: 31-49. – reference: Mitta G, Vandenbulcke F, Roch P. Original involvement of antimicrobial peptides in mussel innate immunity. FEBS Lett 2000;486: 185-190. – reference: Tzou P, et al. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 2000;13: 737-748. – reference: Cole AM, et al. Retrocyclin: a primate peptide that protects cells from infection by T- and M-tropic strains of HIV-1. Proc Natl Acad Sci USA 2002;99: 1813-1818. – reference: Moerman L, et al. Antibacterial and antifungal properties of alpha-helical, cationic peptides in the venom of scorpions from southern Africa. Eur J Biochem 2002;269: 4799-4810. – reference: Frohm M, et al. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 1997;272: 15258-15263. – reference: Orivel J, et al. Ponericins, new antibacterial and insecticidal peptides from the venom of the ant Pachycondyla goeldii. J Biol Chem 2001;276: 17823-17829. – reference: Kato Y, Komatsu S. ASABF, a novel cysteine-rich antibacterial peptide isolated from the nematode Ascaris suum. J Biol Chem 1996;48: 30493-30498. – reference: Otvos L Jr, Et Al. Insect peptides with improved protease-resistance protect mice against bacterial infection. Protein Sci 2000;9: 742-749. – reference: Goraya J, et al. Peptides with antimicrobial activity from four different families isolated from the skins of the North American frogs Rana luteiventris, Rana berlandieri and Rana pipiens. Eur J Biochem 2000;267: 894-900. – reference: Ali MF, Soto A, Knoop FC, Conlon JM. Antimicrobial peptides isolated from skin secretions of the diploid frog, Xenopus tropicalis (Pipidae). Biochem Biophys Acta 2001;1550: 81-89. – reference: Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos L Jr. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 2001;40: 3016-3026. – reference: Dimarcq JL, Bulet P, Hetru C, Hoffmann J. Cysteine-rich antimicrobial peptides in invertebrates. In: Biopolymers, Peptide Science 1998;47: 465-477. – reference: Park CB, Lee JH, Park IY, Kim MS, Kim SC. A novel antimicrobial peptide from the loach, Misgurnus anguillicaudatus. FEBS Lett 1997;411: 173-178. – reference: Cole AM, Weis P, Diamond G. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J Biol Chem 1997;272: 12008-12013. – reference: Basanez G, Shinnar AE, Zimmerberg J. Interaction of hagfish cathelicidin antimicrobial peptides with model lipid membranes. FEBS Lett 2002;532: 115-120. – reference: Mignogna G, Simmaco M, Kreil G, Barra D. Antibacterial and haemolytic peptides containing d-alloisoleucine from the skin of Bombina variegata. EMBO J 1993; 12: 4829-4832. – reference: Lee SY, Lee BL, Soderhall K. Processing of an antibacterial peptide from hemocyanin of the freshwater crayfish Pacifastacus leniusculus. J Biol Chem 2003;278: 7927-7933. – reference: Schuhmann B, Seitz V, Vilcinskas A, Podsiadlowski L. Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella. Arch Insect Biochem Physiol 2003;53: 125-133. – reference: Zasloff M. In: Dutton CJ, Haxell MA, McArthur HAI, Wax RG, eds. Peptide Antibiotics: Discovery, Mode of Actions, and Applications. New York: Marcel Dekker, 2002: 243-287. – reference: Garcia-Olmedo F, Molina A, Alamillo JM, Rodriguez-Palenzuela P. Plant defense peptides. Biopolymers 1998;47: 479-491. – reference: Destoumieux D, Bulet P, Loew D, Van Dorsselaer A, Rodriguez J, Bachere E. Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). J Biol Chem 1997;272: 28398-28406. – reference: Lee IH, Zhao C, Cho Y, Harwig SS, Cooper EL, Lehrer RI. Clavanins, α-helical antimicrobial peptides from tunicate hemocytes. FEBS Lett 1997;400: 158-162. – reference: Lamberty M, et al. Insect immunity. Constitutive expression of a cysteine-rich antifungal and a linear antibacterial peptide in a termite insect. J Biol Chem 2001; 276: 4085-4092. – reference: Panyutich A, Shi J, Boutz PL, Zhao C, Ganz T. Porcine polymorphonuclear leukocytes generate extracellular microbicidal activity by elastase-mediated activation of secreted proprotegrins. Infect Immun 1997; 65: 978-985. – reference: Silva PI Jr, Daffre S, Bulet P. Isolation and characterization of gomesin, an 18-residue cysteine-rich defense peptide from the spider Acanthoscurria gomesiana hemocytes with sequence similarities to horseshoe crab antimicrobial peptides of the tachyplesin family. J Biol Chem 2000;275: 33464-33470. – reference: Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K, Tomita M. Identification of the bactericidal domain of lactoferrin. Biochim Biophys Acta 1992;1121: 130-136. – reference: Huttner KM, Bevins CL. Antimicrobial peptides as mediators of epithelial host defense. Pediatric Res 1999;45: 785-794. – reference: Bulet P, Hetru C, Dimarcq JL, Hoffmann D. Antimicrobial peptides in insects; structure and function. Dev Comp Immunol 1999;23: 329-344. – reference: Fernandes JM, Saint N, Kemp GD, Smith VJ. Oncorhyncin III: a potent antimicrobial peptide derived from the non-histone chromosomal protein H6 of rainbow trout, Oncorhynchus mykiss. Biochem J 2003; 373: 621-628. – reference: Tran D, Tran PA, Tang YQ, Yuan J, Cole T, Selsted ME. Homodimeric theta-defensins from rhesus macaque leukocytes: isolation, synthesis, antimicrobial activities, and bacterial binding properties of the cyclic peptides. J Biol Chem 2002;277: 3079-3084. – reference: Boulanger N, Brun R, Ehret-Sabatier L, Kunz C, Bulet P. Immunopeptides in the defense reactions of Glossina morsitans to bacterial and Trypanosoma brucei brucei infections. Insect Biochem Mol Biol 2002;32: 369-375. – reference: Maloy WL, Kari UP. Structure-activity studies on magainins and other host defense peptides. Biopolymers 1995;37: 105-122. – reference: Romeo D, Skerlavaj B, Bolognesi M, Gennaro R. Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. J Biol Chem 1988;263: 9573-9575. – reference: Tossi A, Sandri L, Giangaspero A. Amphipathic, alpha-helical antimicrobial peptides. In: Biopolymers, Peptide Science 2000;55: 4-30. – reference: Mandard N, Bulet P, Caille A, Daffre S, Vovelle F. The solution structure of gomesin, an antimicrobial cysteine-rich peptide from the spider. Eur J Biochem 2002;269: 1190-1198. – reference: Steiner H, Hultmark D, Engström A, Bennich H, Boman HG. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 1981;292: 246-248. – reference: Jang WS, Kim KN, Lee YS, Nam MH, Lee IH. Halocidin: a new antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium. FEBS Lett 2002; 521: 81-86. – reference: Iijima N, et al. Purification and characterization of three isoforms of chrysophsin, a novel antimicrobial peptide in the gills of the red sea bream, Chrysophrys major. Eur J Biochem 2003;270: 675-686. – reference: Ganz T. Epithelia: not just physical barriers. Proc Natl Acad Sci USA 2002;99: 3357-3358. – reference: Mandard N, et al. Solution structure of thanatin, a potent bactericidal and fungicidal insect peptide, determined from proton two-dimensional nuclear magnetic resonance data. Eur J Biochem 1998;256: 404-410. – reference: Hancock REW, Diamond G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol 2000;8: 402-410. – reference: Simmaco M, Mignogna G, Barra D. Antimicrobial peptides from amphibian skin: what do they tell us? In: Biopolymers, Peptide Science 1998;47: 435-450. – reference: Lauth X, et al. Discovery and characterization of two isoforms of moronecidin, a novel antimicrobial peptides from hybrid striped bass. J Biol Chem 2002;277: 5030-5039. – reference: Smith VJ, Fernandes JM, Jones SJ, Kemp GD, Tatner MF. Antibacterial proteins in rainbow trout, Oncorhynchus mykiss. Fish Shellfish Immunol 2000;10: 243-260. – reference: Taylor SW, Craig AG, Fischer WH, Park M, Lehrer RI. Styelin D, an extensively modified antimicrobial peptide from ascidian hemocytes. J Biol Chem 2000; 275: 38417-38426. – reference: Steinborner ST, Currie GJ, Bowie JH, Wallace JC, Tyler MJ. New antibiotic caerin 1 peptides from the skin secretion of the Australian tree frog Litoria chloris. Comparison of the activities of the caerin 1 peptides from the genus Litoria. J Pept Res 1998; 51: 121-126. – reference: Oren Z, Shai Y. Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers 1998;47: 451-463. – reference: Lee IH, Cho Y, Lehrer RI. Effects of pH and salinity on the antimicrobial properties of clavanins. Infect Immun 1997; 65: 2898-2903. – reference: Hunter HN, Fulton DB, Ganz T, Vogel HJ. The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis. J Biol Chem 2002;277: 37597-37603. – reference: Zanetti M, Del Sal G, Storici P, Schneider C, Romeo D. The cDNA of the neutrophil antibiotic Bac5 predicts a pro-sequence homologous to a cysteine proteinase inhibitor that is common to other neutrophil antibiotics. J Biol Chem 1993;268: 522-526. – reference: Nicolas G, et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest 2002;110: 1037-1044. – reference: Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 1987;84: 5449-5453. – reference: Fehlbaum P, et al. Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proc Natl Acad Sci USA 1996;93: 1221-1225. – reference: Oren Z, Shai Y. A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from Moses sole fish Pardachirus marmoratus. Eur J Biochem 1996;237: 303-310. – reference: Cole AM, Darouiche RO, Legarda D, Connell N, Diamond G. Characterization of a fish antimicrobial peptide. gene expression, subcellular localization, and spectrum of activity. Antimicrob Agents Chemother 2000;44: 2039-2045. – reference: Torres-Larios A, Gurrola GB, Zamudio FZ, Possani LD. Hadrurin, a new antimicrobial peptide from the venom of the scorpion Hadrurus aztecus. Eur J Biochem 2000;267: 5023-5031. – reference: Mor A, Nguyen VH, Delfour A, Migliore-Samour D, Nicolas P. Isolation, amino acid sequence, and synthesis of dermaseptin, a novel antimicrobial peptide of amphibian skin. Biochemistry 1991;30: 8824-8830. – reference: Park JM, Jung JE, Lee BJ. Antimicrobial peptides from the skin of a Korean frog, Rana rugosa. Biochem Biophys Res Commun 1994;205: 948-954. – reference: Ganz T, Lehrer RI. Antimicrobial peptides of vertebrates. Curr Opin Immunol 1998; 10: 41-44. – reference: Lazarovici P, Primor N, Loew LM. Purification and pore-forming activity of two hydrophobic polypeptides from the secretion of the Red Sea Moses sole (Pardachirus marmoratus). J Biol Chem 1986; 261: 16704-16713. – reference: Douglas SE, Gallant JW, Gong Z, Hew C. Cloning and developmental expression of a family of pleurocidin-like antimicrobial peptides from winter flounder, Pleuronectes americanus (Walbaum). Dev Comp Immunol 2001;25: 137-147. – reference: Pierre TN, Seon AA, Amiche M, Nicolas P. Phylloxin, a novel peptide antibiotic of the dermaseptin family of antimicrobial/opioid peptide precursors. Eur J Biochem 2000;267: 370-378. – reference: Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1999;1462: 55-70. – reference: Hancock RE, Lehrer R. Cationic peptides: a new source of antibiotics. Trends Biotechnol 1998;16: 82-88. – reference: Kuhn-Nentwig L, Muller J, Schaller J, Walz A, Dathe M, Nentwig W. Cupiennin 1, a new family of highly basic antimicrobial peptides in the venom of the spider Cupiennius salei (Ctenidae). J Biol Chem 2002; 277: 11208-11216. – volume: 272 start-page: 15258 year: 1997 end-page: 15263 article-title: The expression of the gene coding for the antibacterial peptide LL‐37 is induced in human keratinocytes during inflammatory disorders publication-title: J Biol Chem – start-page: 89 year: 2003 end-page: 107 – volume: 10 start-page: 243 year: 2000 end-page: 260 article-title: Antibacterial proteins in rainbow trout, publication-title: Fish Shellfish Immunol – volume: 8 start-page: 402 year: 2000 end-page: 410 article-title: The role of cationic antimicrobial peptides in innate host defences publication-title: Trends Microbiol – volume: 16 start-page: 82 year: 1998 end-page: 88 article-title: Cationic peptides: a new source of antibiotics publication-title: Trends Biotechnol – volume: 278 start-page: 51053 year: 2003 end-page: 51058 – volume: 110 start-page: 1037 year: 2002 end-page: 1044 article-title: The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation publication-title: J Clin Invest – volume: 486 start-page: 185 year: 2000 end-page: 190 article-title: Original involvement of antimicrobial peptides in mussel innate immunity publication-title: FEBS Lett – volume: 1550 start-page: 81 year: 2001 end-page: 89 article-title: Antimicrobial peptides isolated from skin secretions of the diploid frog, (Pipidae) publication-title: Biochem Biophys Acta – volume: 277 start-page: 37597 year: 2002 end-page: 37603 article-title: The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis publication-title: J Biol Chem – volume: 55 start-page: 4 year: 2000 end-page: 30 article-title: Amphipathic, alpha‐helical antimicrobial peptides publication-title: Biopolymers, Peptide Science – volume: 275 start-page: 33464 year: 2000 end-page: 33470 article-title: Isolation and characterization of gomesin, an 18‐residue cysteine‐rich defense peptide from the spider hemocytes with sequence similarities to horseshoe crab antimicrobial peptides of the tachyplesin family publication-title: J Biol Chem – volume: 28 start-page: 127 year: 2004 end-page: 138 article-title: Isolation and characterization of Oncorhyncin II, a histone H1‐derived antimicrobial peptide from skin secretions of rainbow trout, publication-title: Dev Comp Immunol – volume: 28 start-page: 127 year: 2004 end-page: 138 article-title: Isolation and characterisation of oncorhyncin II, a histone H1‐derived antimicrobial peptide from skin secretions of rainbow trout, publication-title: Dev Comp Immunol – volume: 32 start-page: 369 year: 2002 end-page: 375 article-title: Immunopeptides in the defense reactions of to bacterial and infections publication-title: Insect Biochem Mol Biol – volume: 53 start-page: 125 year: 2003 end-page: 133 article-title: Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, publication-title: Arch Insect Biochem Physiol – volume: 276 start-page: 17823 year: 2001 end-page: 17829 article-title: Ponericins, new antibacterial and insecticidal peptides from the venom of the ant publication-title: J Biol Chem – volume: 84 start-page: 5449 year: 1987 end-page: 5453 article-title: Magainins, a class of antimicrobial peptides from skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor publication-title: Proc Natl Acad Sci USA – volume: 268 start-page: 522 year: 1993 end-page: 526 article-title: The cDNA of the neutrophil antibiotic Bac5 predicts a pro‐sequence homologous to a cysteine proteinase inhibitor that is common to other neutrophil antibiotics publication-title: J Biol Chem – volume: 23 start-page: 329 year: 1999 end-page: 344 article-title: Antimicrobial peptides in insects; structure and function publication-title: Dev Comp Immunol – volume: 277 start-page: 23627 year: 2002 end-page: 23637 article-title: Oxyopinins, large amphipathic peptides isolated from the venom of the wolf spider with cytolytic properties and positive insecticidal cooperativity with spider neurotoxins publication-title: J Biol Chem – volume: 40 start-page: 3016 year: 2001 end-page: 3026 article-title: The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone‐assisted protein folding publication-title: Biochemistry – volume: 274 start-page: 32555 year: 1999 end-page: 32564 article-title: Lethal effects of apidaecin on involve sequential molecular interactions with diverse targets publication-title: J Biol Chem – volume: 240 start-page: 143 year: 1996 end-page: 149 article-title: Characterization and ion channel activities of novel antibacterial proteins from the skin mucosa of carp ( ) publication-title: Eur J Biochem – volume: 13 start-page: 737 year: 2000 end-page: 748 article-title: Tissue‐specific inducible expression of antimicrobial peptide genes in surface epithelia publication-title: Immunity – volume: 267 start-page: 5023 year: 2000 end-page: 5031 article-title: Hadrurin, a new antimicrobial peptide from the venom of the scorpion publication-title: Eur J Biochem – volume: 1462 start-page: 55 year: 1999 end-page: 70 article-title: Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha‐helical antimicrobial and cell non‐selective membrane‐lytic peptides publication-title: Biochim Biophys Acta – volume: 286 start-page: 498 year: 1999 end-page: 502 article-title: A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha‐defensins publication-title: Science – volume: 48 start-page: 30493 year: 1996 end-page: 30498 article-title: ASABF, a novel cysteine‐rich antibacterial peptide isolated from the nematode publication-title: J Biol Chem – volume: 95 start-page: 9541 year: 1998 end-page: 9546 article-title: The peptide antibiotic LL‐37/hCAP‐18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface publication-title: Proc Natl Acad Sci USA – volume: 532 start-page: 115 year: 2002 end-page: 120 article-title: Interaction of hagfish cathelicidin antimicrobial peptides with model lipid membranes publication-title: FEBS Lett – volume: 205 start-page: 948 year: 1994 end-page: 954 article-title: Antimicrobial peptides from the skin of a Korean frog, publication-title: Biochem Biophys Res Commun – volume: 55 start-page: 31 year: 2000 end-page: 49 article-title: Structural features and biological activities of the cathelicidin‐derived antimicrobial peptides publication-title: Biopolymers – volume: 269 start-page: 2232 year: 2002 end-page: 2237 article-title: Bass hepcidin is a novel antimicrobial peptide induced by bacterial challenge publication-title: Eur J Biochem – volume: 1121 start-page: 130 year: 1992 end-page: 136 article-title: Identification of the bactericidal domain of lactoferrin publication-title: Biochim Biophys Acta – volume: 277 start-page: 3079 year: 2002 end-page: 3084 article-title: Homodimeric theta‐defensins from rhesus macaque leukocytes: isolation, synthesis, antimicrobial activities, and bacterial binding properties of the cyclic peptides publication-title: J Biol Chem – volume: 277 start-page: 49921 year: 2002 end-page: 49926 article-title: Epithelial innate immunity. A novel antimicrobial peptide with antiparasitic activity in the blood‐sucking insect publication-title: J Biol Chem – volume: 47 start-page: 435 year: 1998 end-page: 450 article-title: Antimicrobial peptides from amphibian skin: what do they tell us? publication-title: Biopolymers, Peptide Science – volume: 275 start-page: 38417 year: 2000 end-page: 38426 article-title: Styelin D, an extensively modified antimicrobial peptide from ascidian hemocytes publication-title: J Biol Chem – start-page: 243 year: 2002 end-page: 287 – volume: 521 start-page: 81 year: 2002 end-page: 86 article-title: Halocidin: a new antimicrobial peptide from hemocytes of the solitary tunicate, publication-title: FEBS Lett – volume: 263 start-page: 9573 year: 1988 end-page: 9575 article-title: Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils publication-title: J Biol Chem – volume: 276 start-page: 4085 year: 2001 end-page: 4092 article-title: Insect immunity. Constitutive expression of a cysteine‐rich antifungal and a linear antibacterial peptide in a termite insect publication-title: J Biol Chem – volume: 277 start-page: 5030 year: 2002 end-page: 5039 article-title: Discovery and characterization of two isoforms of moronecidin, a novel antimicrobial peptides from hybrid striped bass publication-title: J Biol Chem – volume: 276 start-page: 7806 year: 2001 end-page: 7810 article-title: Hepcidin, a urinary antimicrobial peptide synthesized in the liver publication-title: J Biol Chem – start-page: 81 year: 2002 end-page: 117 – volume: 267 start-page: 370 year: 2000 end-page: 378 article-title: Phylloxin, a novel peptide antibiotic of the dermaseptin family of antimicrobial/opioid peptide precursors publication-title: Eur J Biochem – volume: 248 start-page: 17 year: 2000 end-page: 36 – start-page: 47 year: 2002 end-page: 80 – volume: 25 start-page: 137 year: 2001 end-page: 147 article-title: Cloning and developmental expression of a family of pleurocidin‐like antimicrobial peptides from winter flounder, (Walbaum) publication-title: Dev Comp Immunol – volume: 373 start-page: 621 year: 2003 end-page: 628 article-title: Oncorhyncin III: a potent antimicrobial peptide derived from the non‐histone chromosomal protein H6 of rainbow trout, publication-title: Biochem J – volume: 277 start-page: 11208 year: 2002 end-page: 11216 article-title: Cupiennin 1, a new family of highly basic antimicrobial peptides in the venom of the spider (Ctenidae) publication-title: J Biol Chem – volume: 50 start-page: 88 year: 1997 end-page: 93 article-title: Antimicrobial and hemolytic activities of crabrolin, a 13‐residue peptide from the venom of the European hornet, , and its analogs publication-title: J Pept Res – volume: 237 start-page: 303 year: 1996 end-page: 310 article-title: A class of highly potent antibacterial peptides derived from pardaxin, a pore‐forming peptide isolated from Moses sole fish publication-title: Eur J Biochem – volume: 47 start-page: 451 year: 1998 end-page: 463 article-title: Mode of action of linear amphipathic alpha‐helical antimicrobial peptides publication-title: Biopolymers – volume: 30 start-page: 8824 year: 1991 end-page: 8830 article-title: Isolation, amino acid sequence, and synthesis of dermaseptin, a novel antimicrobial peptide of amphibian skin publication-title: Biochemistry – volume: 400 start-page: 158 year: 1997 end-page: 162 article-title: Clavanins, α‐helical antimicrobial peptides from tunicate hemocytes publication-title: FEBS Lett – volume: 261 start-page: 16704 year: 1986 end-page: 16713 article-title: Purification and pore‐forming activity of two hydrophobic polypeptides from the secretion of the Red Sea Moses sole ( ) publication-title: J Biol Chem – volume: 412 start-page: 144 year: 1997 end-page: 148 article-title: cDNA cloning of three cecropin‐like antimicrobial peptides (Styelins) from the tunicate, publication-title: FEBS Lett – volume: 12 start-page: 4829 year: 1993 end-page: 4832 article-title: Antibacterial and haemolytic peptides containing d‐alloisoleucine from the skin of publication-title: EMBO J – volume: 65 start-page: 2898 year: 1997 end-page: 2903 article-title: Effects of pH and salinity on the antimicrobial properties of clavanins publication-title: Infect Immun – volume: 278 start-page: 7927 year: 2003 end-page: 7933 article-title: Processing of an antibacterial peptide from hemocyanin of the freshwater crayfish publication-title: J Biol Chem – start-page: 155 year: 2002 end-page: 171 – volume: 9 start-page: 742 year: 2000 end-page: 749 article-title: Insect peptides with improved protease‐resistance protect mice against bacterial infection publication-title: Protein Sci – volume: 99 start-page: 3357 year: 2002 end-page: 3358 article-title: Epithelia: not just physical barriers publication-title: Proc Natl Acad Sci USA – volume: 270 start-page: 675 year: 2003 end-page: 686 article-title: Purification and characterization of three isoforms of chrysophsin, a novel antimicrobial peptide in the gills of the red sea bream, publication-title: Eur J Biochem – volume: 165 start-page: 3268 year: 2000 end-page: 3274 article-title: Pepsin‐mediated processing of the cytoplasmic histone H2A to strong antimicrobial peptide buforin I publication-title: J Immunol – start-page: 189 year: 1996 end-page: 191 – start-page: 109 year: 2003 end-page: 125 – volume: 65 start-page: 978 year: 1997 end-page: 985 article-title: Porcine polymorphonuclear leukocytes generate extracellular microbicidal activity by elastase‐mediated activation of secreted proprotegrins publication-title: Infect Immun – volume: 44 start-page: 2039 year: 2000 end-page: 2045 article-title: Characterization of a fish antimicrobial peptide. gene expression, subcellular localization, and spectrum of activity publication-title: Antimicrob Agents Chemother – volume: 271 start-page: 29537 year: 1996 end-page: 29544 article-title: Characterization of novel cysteine‐rich antimicrobial peptides from scorpion blood publication-title: J Biol Chem – volume: 437 start-page: 258 year: 1998 end-page: 262 article-title: Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, publication-title: FEBS Lett – start-page: 287 year: 2003 end-page: 303 – volume: 37 start-page: 105 year: 1995 end-page: 122 article-title: Structure–activity studies on magainins and other host defense peptides publication-title: Biopolymers – volume: 68 start-page: 4297 year: 2000 end-page: 4302 article-title: The human cationic antimicrobial protein (hCAP‐18) is expressed in the epithelium of human epididymis, is present in seminal plasma at high concentrations, and is attached to spermatozoa publication-title: Infect Immun – volume: 411 start-page: 173 year: 1997 end-page: 178 article-title: A novel antimicrobial peptide from the loach, publication-title: FEBS Lett – volume: 267 start-page: 894 year: 2000 end-page: 900 article-title: Peptides with antimicrobial activity from four different families isolated from the skins of the North American frogs , and publication-title: Eur J Biochem – volume: 45 start-page: 785 year: 1999 end-page: 794 article-title: Antimicrobial peptides as mediators of epithelial host defense publication-title: Pediatric Res – volume: 40 start-page: 11995 year: 2001 end-page: 12003 article-title: Solution structures of the antifungal heliomicin and a selected variant with both antibacterial and antifungal activities publication-title: Biochemistry – volume: 47 start-page: 465 year: 1998 end-page: 477 article-title: Cysteine‐rich antimicrobial peptides in invertebrates publication-title: Biopolymers, Peptide Science – volume: 256 start-page: 404 year: 1998 end-page: 410 article-title: Solution structure of thanatin, a potent bactericidal and fungicidal insect peptide, determined from proton two‐dimensional nuclear magnetic resonance data publication-title: Eur J Biochem – volume: 31 start-page: 219 year: 2001 end-page: 229 article-title: Innate immune response of publication-title: Insect Biochem Mol Biol – volume: 99 start-page: 1813 year: 2002 end-page: 1818 article-title: Retrocyclin: a primate peptide that protects cells from infection by T‐ and M‐tropic strains of HIV‐1 publication-title: Proc Natl Acad Sci USA – volume: 40 start-page: 6398 year: 2001 end-page: 6405 article-title: Membrane activity of the peptide antibiotic clavanin and the importance of its glycine residues publication-title: Biochemistry – volume: 284 start-page: 1313 year: 1999 end-page: 1318 article-title: Phylogenetic perspectives in innate immunity publication-title: Science – volume: 93 start-page: 1221 year: 1996 end-page: 1225 article-title: Structure‐activity analysis of thanatin, a 21‐residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides publication-title: Proc Natl Acad Sci USA – volume: 269 start-page: 1190 year: 2002 end-page: 1198 article-title: The solution structure of gomesin, an antimicrobial cysteine‐rich peptide from the spider publication-title: Eur J Biochem – volume: 276 start-page: 2701 year: 2001 end-page: 2707 article-title: Tigerinins: novel antimicrobial peptides from the Indian frog publication-title: J Biol Chem – volume: 229 start-page: 381 year: 1996 end-page: 387 article-title: cDNA cloning and characterization of buforin I, an antimicrobial peptide: a cleavage product of histone H2A publication-title: Biochem Biophys Res Commun – volume: 10 start-page: 41 year: 1998 end-page: 44 article-title: Antimicrobial peptides of vertebrates publication-title: Curr Opin Immunol – volume: 292 start-page: 246 year: 1981 end-page: 248 article-title: Sequence and specificity of two antibacterial proteins involved in insect immunity publication-title: Nature – volume: 228 start-page: 941 year: 1995 end-page: 946 article-title: PMAP‐37, a novel antibacterial peptide from pig myeloid cells. cDNA cloning, chemical synthesis and activity publication-title: Eur J Biochem – volume: 272 start-page: 12008 year: 1997 end-page: 12013 article-title: Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder publication-title: J Biol Chem – volume: 47 start-page: 479 year: 1998 end-page: 491 article-title: Plant defense peptides publication-title: Biopolymers – volume: 271 start-page: 21808 year: 1996 end-page: 21813 article-title: Innate immunity. Isolation of several cysteine‐rich antimicrobial peptides from the blood of a mollusc, publication-title: J Biol Chem – volume: 51 start-page: 121 year: 1998 end-page: 126 article-title: New antibiotic caerin 1 peptides from the skin secretion of the Australian tree frog . Comparison of the activities of the caerin 1 peptides from the genus publication-title: J Pept Res – volume: 23 start-page: 267 year: 1999 end-page: 279 article-title: Antimicrobial and cytolytic polypeptides of amoeboid protozoa‐effector molecules of primitive phagocytes publication-title: Dev Comp Immunol – volume: 272 start-page: 28398 year: 1997 end-page: 28406 article-title: Penaeidins, a new family of antimicrobial peptides isolated from the shrimp (Decapoda) publication-title: J Biol Chem – volume: 269 start-page: 4799 year: 2002 end-page: 4810 article-title: Antibacterial and antifungal properties of alpha‐helical, cationic peptides in the venom of scorpions from southern Africa publication-title: Eur J Biochem – ident: e_1_2_5_6_2 doi: 10.1126/science.284.5418.1313 – ident: e_1_2_5_57_2 doi: 10.1073/pnas.84.15.5449 – ident: e_1_2_5_49_2 doi: 10.1074/jbc.272.18.12008 – start-page: 287 volume-title: Infectious Disease: Innate Immunity year: 2003 ident: e_1_2_5_68_2 – ident: e_1_2_5_41_2 doi: 10.1074/jbc.M006762200 – ident: e_1_2_5_10_2 doi: 10.1016/S0005-2736(99)00200-X – ident: e_1_2_5_16_2 doi: 10.1016/S0145-305X(99)00015-4 – ident: e_1_2_5_79_2 doi: 10.1074/jbc.271.36.21808 – ident: e_1_2_5_83_2 doi: 10.1006/bbrc.1994.2757 – ident: e_1_2_5_14_2 doi: 10.1002/1097-0282(2000)55:1<4::AID-BIP30>3.0.CO;2-M – ident: e_1_2_5_36_2 doi: 10.1074/jbc.M111099200 – ident: e_1_2_5_95_2 doi: 10.1002/arch.10091 – ident: e_1_2_5_54_2 doi: 10.1074/jbc.M109173200 – ident: e_1_2_5_29_2 doi: 10.1074/jbc.M206296200 – ident: e_1_2_5_97_2 doi: 10.1021/bi0103563 – ident: e_1_2_5_63_2 doi: 10.4049/jimmunol.165.6.3268 – ident: e_1_2_5_99_2 doi: 10.1074/jbc.M306839200 – ident: e_1_2_5_40_2 doi: 10.1016/S0014-5793(02)02827-2 – ident: e_1_2_5_52_2 doi: 10.1016/S0145-305X(03)00120-4 – ident: e_1_2_5_89_2 doi: 10.1074/jbc.M008922200 – ident: e_1_2_5_32_2 doi: 10.1046/j.1432-1327.2000.01556.x – ident: e_1_2_5_44_2 doi: 10.1111/j.1432-1033.1996.0303n.x – ident: e_1_2_5_92_2 doi: 10.1172/JCI0215686 – ident: e_1_2_5_64_2 doi: 10.1016/S1074-7613(00)00072-8 – ident: e_1_2_5_76_2 doi: 10.1016/S0167-7799(97)01156-6 – ident: e_1_2_5_101_2 doi: 10.1073/pnas.052706399 – start-page: 47 volume-title: Peptide Antibiotics: Discovery, Mode of Actions, and Applications year: 2002 ident: e_1_2_5_3_2 – ident: e_1_2_5_93_2 doi: 10.1016/S0965-1748(00)00141-7 – ident: e_1_2_5_31_2 doi: 10.1074/jbc.M100216200 – ident: e_1_2_5_82_2 doi: 10.1074/jbc.M006615200 – ident: e_1_2_5_5_2 doi: 10.1002/(SICI)1097-0282(1998)47:6<479::AID-BIP6>3.0.CO;2-K – ident: e_1_2_5_20_2 doi: 10.1042/bj20030259 – ident: e_1_2_5_90_2 doi: 10.1046/j.1432-1033.2002.02881.x – ident: e_1_2_5_80_2 doi: 10.1073/pnas.93.3.1221 – ident: e_1_2_5_24_2 doi: 10.1002/(SICI)1097-0282(1998)47:6<435::AID-BIP3>3.0.CO;2-8 – ident: e_1_2_5_12_2 doi: 10.1074/jbc.274.46.32555 – ident: e_1_2_5_2_2 doi: 10.1016/S0145-305X(99)00010-5 – start-page: 243 volume-title: Peptide Antibiotics: Discovery, Mode of Actions, and Applications year: 2002 ident: e_1_2_5_25_2 – ident: e_1_2_5_34_2 doi: 10.1074/jbc.M200511200 – ident: e_1_2_5_67_2 doi: 10.1002/1097-0282(2000)55:1<31::AID-BIP40>3.0.CO;2-9 – ident: e_1_2_5_70_2 doi: 10.1128/IAI.65.3.978-985.1997 – ident: e_1_2_5_48_2 doi: 10.1016/S0014-5793(97)00684-4 – ident: e_1_2_5_56_2 doi: 10.1016/S0014-5793(02)03651-7 – ident: e_1_2_5_42_2 doi: 10.1128/iai.65.7.2898-2903.1997 – ident: e_1_2_5_19_2 doi: 10.1016/0167-4838(92)90346-F – ident: e_1_2_5_69_2 doi: 10.1016/S0021-9258(18)54182-X – ident: e_1_2_5_84_2 doi: 10.1016/S0021-9258(19)81553-3 – ident: e_1_2_5_46_2 doi: 10.1111/j.1432-1033.1996.0143h.x – ident: e_1_2_5_87_2 doi: 10.1074/jbc.M001491200 – ident: e_1_2_5_98_2 doi: 10.1074/jbc.271.48.30493 – ident: e_1_2_5_55_2 doi: 10.1046/j.1432-1033.2003.03419.x – ident: e_1_2_5_11_2 doi: 10.1110/ps.9.4.742 – ident: e_1_2_5_86_2 doi: 10.1074/jbc.271.47.29537 – ident: e_1_2_5_27_2 doi: 10.1038/292246a0 – ident: e_1_2_5_51_2 doi: 10.1016/S0145-305X(00)00052-5 – ident: e_1_2_5_100_2 doi: 10.1074/jbc.M109117200 – ident: e_1_2_5_35_2 doi: 10.1021/bi00100a014 – ident: e_1_2_5_8_2 doi: 10.1007/978-3-642-59674-2_2 – ident: e_1_2_5_13_2 doi: 10.1021/bi002656a – start-page: 89 volume-title: Infectious Disease: Innate Immunity year: 2003 ident: e_1_2_5_28_2 – ident: e_1_2_5_18_2 doi: 10.1016/S0014-5793(98)01238-1 – ident: e_1_2_5_66_2 doi: 10.1002/bip.360370206 – ident: e_1_2_5_26_2 doi: 10.1073/pnas.072073199 – ident: e_1_2_5_58_2 doi: 10.1046/j.1432-1327.2000.01074.x – volume: 261 start-page: 16704 year: 1986 ident: e_1_2_5_45_2 article-title: Purification and pore‐forming activity of two hydrophobic polypeptides from the secretion of the Red Sea Moses sole (Pardachirus marmoratus) publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)66622-0 – ident: e_1_2_5_96_2 doi: 10.1016/S0014-5793(00)02192-X – ident: e_1_2_5_78_2 doi: 10.1016/S0952-7915(98)80029-0 – ident: e_1_2_5_21_2 doi: 10.1016/S0145-305X(03)00120-4 – ident: e_1_2_5_39_2 doi: 10.1016/S0014-5793(96)01374-9 – start-page: 109 volume-title: Infectious Disease: Innate Immunity year: 2003 ident: e_1_2_5_85_2 – ident: e_1_2_5_22_2 doi: 10.1074/jbc.272.45.28398 – ident: e_1_2_5_61_2 doi: 10.1046/j.1432-1327.2000.01012.x – ident: e_1_2_5_37_2 doi: 10.1074/jbc.M002998200 – ident: e_1_2_5_88_2 doi: 10.1046/j.0014-2956.2002.02760.x – ident: e_1_2_5_60_2 doi: 10.1016/S0167-4838(01)00272-2 – ident: e_1_2_5_91_2 doi: 10.1074/jbc.M205305200 – ident: e_1_2_5_81_2 doi: 10.1046/j.1432-1327.1998.2560404.x – ident: e_1_2_5_9_2 doi: 10.1002/(SICI)1097-0282(1998)47:6<451::AID-BIP4>3.0.CO;2-F – ident: e_1_2_5_23_2 doi: 10.1074/jbc.M209239200 – ident: e_1_2_5_71_2 doi: 10.1074/jbc.272.24.15258 – ident: e_1_2_5_75_2 doi: 10.1126/science.286.5439.498 – start-page: 155 volume-title: Membrane Interacting Peptides and Proteins. year: 2002 ident: e_1_2_5_77_2 – ident: e_1_2_5_53_2 doi: 10.1006/fsim.1999.0254 – ident: e_1_2_5_17_2 doi: 10.1006/bbrc.1996.1814 – ident: e_1_2_5_73_2 doi: 10.1128/IAI.68.7.4297-4302.2000 – ident: e_1_2_5_72_2 doi: 10.1073/pnas.95.16.9541 – ident: e_1_2_5_38_2 doi: 10.1016/S0014-5793(97)00769-2 – ident: e_1_2_5_59_2 doi: 10.1111/j.1399-3011.1998.tb00629.x – ident: e_1_2_5_7_2 doi: 10.1016/S0966-842X(00)01823-0 – ident: e_1_2_5_33_2 doi: 10.1046/j.1432-1033.2002.03177.x – ident: e_1_2_5_62_2 doi: 10.1002/j.1460-2075.1993.tb06172.x – start-page: 189 volume-title: Peptide Chemistry, Structure and Biology. Proceedings of the 12th American Peptide Symposium year: 1996 ident: e_1_2_5_47_2 – ident: e_1_2_5_94_2 doi: 10.1016/S0965-1748(02)00029-2 – ident: e_1_2_5_50_2 doi: 10.1128/AAC.44.8.2039-2045.2000 – ident: e_1_2_5_30_2 doi: 10.1111/j.1399-3011.1997.tb01173.x – ident: e_1_2_5_74_2 doi: 10.1111/j.1432-1033.1995.0941m.x – ident: e_1_2_5_15_2 doi: 10.1002/(SICI)1097-0282(1998)47:6<465::AID-BIP5>3.0.CO;2-# – ident: e_1_2_5_65_2 doi: 10.1203/00006450-199906000-00001 – start-page: 81 volume-title: Peptide Antibiotics: Discovery, Mode of Actions, and Applications year: 2002 ident: e_1_2_5_4_2 – ident: e_1_2_5_43_2 doi: 10.1021/bi0028136 |
SSID | ssj0017324 |
Score | 2.3899028 |
SecondaryResourceType | review_article |
Snippet | Gene‐encoded anti‐microbial peptides (AMPs) are widespread in nature, as they are synthesized by microorganisms as well as by multicellular organisms from both... Gene-encoded anti-microbial peptides (AMPs) are widespread in nature, as they are synthesized by microorganisms as well as by multicellular organisms from both... |
SourceID | hal proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 169 |
SubjectTerms | Amino Acid Sequence Animals Anti-Bacterial Agents - chemistry Antimicrobial Cationic Peptides - chemistry Invertebrates - metabolism Life Sciences Models, Molecular Molecular Sequence Data Peptides, Cyclic - chemistry Protein Structure, Secondary Protein Structure, Tertiary Vertebrates - metabolism |
Title | Anti-microbial peptides: from invertebrates to vertebrates |
URI | https://api.istex.fr/ark:/67375/WNG-Z72C7Q5H-H/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.0105-2896.2004.0124.x https://www.ncbi.nlm.nih.gov/pubmed/15199962 https://www.proquest.com/docview/72035816 https://hal.science/hal-03828656 |
Volume | 198 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RT9UwFD5BjIkvgqg4VFyM8W03d13brYaXGyJMgyQSjMSXpu3acEF3CXeXAE_8BH6jv4SebXeXa0g0xrd16Vna03Pa0_XrdwDeeqMwsctUxIxDUu1MREILF7lC09j6RcLPy4i22OX5V_rpgB20lEJ4F6bhh-h-uKFn1PM1OrjS4zknx-SOkd8w1EgD6ouE9jCcROQWhkd7HZFUnCakYfluJVqkV4PpufM7c-vUvUNESd5HxZ_fFYrOR7b10rS1BEfTTjWIlOPepNI9c_kb3-N_6fUyPGoD2HDQWNxjWLDlCjxoUlpePIGNQVkNf11d_xzWDE--5gniZgo7fh_iVZZwWGIGaDyu9kFuWI3CW8WnsL_1YX8zj9oMDZGhyCmcGs2SNCaKi8SSglhMIeqDRt1XmpmUaKH6XChSqKxwynCdOWcyopkVhfK742ewWI5K-xzCgpu00FpZZzRVKOOcSIRR2nBqExUAnw6HNC17OSbR-CFnuxjUjETNYG5NKlEz8jyAfid40hB4_FnkjR_vrjYScOeDHYnv-gleu2f8LA7gXW0OXTV1eowguZTJb7vb8ntKNtMvLJd5AK-n9iK96-J5jCrtaDKWeALOspgHsNqY0ayBDNkhOAmA1sbwty2XHz_v-Ye1fxN7AQ9nuKSXsFidTuwrH3JVer32phvl-RyY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5BKwSXlr_S8NcIIW5ZbRzbiRGXVUVJYbsS1SIqLpbt2GK1NFu12apw4hF4xj4JniSbZVElEOIWR54otmfsGfvzNwDPvVKY2GUqYsYhqXYmIqGFi1yhaWz9IuHnZURbjHj-gb49Ykct_gnvwjT8EN2GG1pGPV-jgeOG9IqVY3bHyEcMNdSA-iKhPe9PrmN-7zq8OuyopOI0IQ3PdyvSYr0aVM-VH1pZqa5_RpzkOnb9xVXO6KpvWy9Oe5swXTSrwaRMe_NK98y33xgf_0-7b8NG68OGg0bp7sA1W96FG01Wy6_34NWgrCaX338cT2qSJ1_zBKEzhT17GeJtlnBSYhJoPLH2fm5YzcJfivdhvPd6vJtHbZKGyFCkFU6NZkkaE8VFYklBLGYR9X6j7ivNTEq0UH0uFClUVjhluM6cMxnRzIpC-QB5C9bKWWm3ISy4SQutlXVGU4UyzolEGKUNpzZRAfDFeEjTEphjHo0vchnIYM9I7BlMr0kl9oy8CKDfCZ40HB5_FnnmB7yrjRzc-WAo8V0_wZv3jJ_HAbyo9aGrpk6niJNLmfw4eiM_pWQ3fc9ymQews1AY6a0Xj2RUaWfzM4mH4CyLeQAPGj1a_iBDgghOAqC1Nvztn8v9g0P_8PDfxHbgZj4-GMrh_ujdI7i1hCk9hrXqdG6feA-s0k9r0_oJsxMgsw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BKxAX3o_waoQQt6wSx3YSxGXVsqRQVlAVUXGx_FS3heyqzaLCiZ_Ab-SX4EmyWRZVAiFuceSJ7PGMPY4_fwPw2BuFTlwuI6YdkmrnRVSowkXOKJpYv0j4eRnRFmNevqMv99l-RymEd2Fafoj-hxt6RjNfo4PPjFtxckzuGPkNQ4M0oL5I6MCHk-uUxzka-NZuzySVZClpab47kQ7q1YJ6zvzQykJ1_gBhkuuo-dOzYtHV0LZZm0ZX4HDRqxaScjSY12qgv_5G-Phfun0VLncRbDhsTe4anLPVdbjQ5rT8cgOeDat68uPb90-ThuLJ15whcMbYk6ch3mUJJxWmgMbzah_lhvU0_KV4E_ZGz_c2y6hL0RBpiqTCmVYszRIieZFaYojFHKI-alSxVExnRBUy5oUkRubGSc1V7pzOiWK2MNJvj2_BWjWt7B0IDdeZUUpapxWVKONckRZaKs2pTWUAfDEcQnf05ZhF46NYbmNQMwI1g8k1qUDNiNMA4l5w1jJ4_FnkkR_vvjYycJfDHYHv4hTv3TP-OQngSWMOfTV5fIQouYyJ9-MX4kNGNrO3rBRlABsLexHed_FARlZ2Oj8ReATO8oQHcLs1o2UDGdJDcBIAbYzhb1sutl_v-oe7_ya2ARffbI3Ezvb41T24tMQo3Ye1-nhuH_jwq1YPG8f6CUTGH2s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti-microbial+peptides%3A+from+invertebrates+to+vertebrates&rft.jtitle=Immunological+reviews&rft.au=Bulet%2C+Philippe&rft.au=St%C3%B6cklin%2C+Reto&rft.au=Menin%2C+Laure&rft.date=2004-04-01&rft.pub=Munksgaard+International+Publishers&rft.issn=0105-2896&rft.eissn=1600-065X&rft.volume=198&rft.issue=1&rft.spage=169&rft.epage=184&rft_id=info:doi/10.1111%2Fj.0105-2896.2004.0124.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_Z72C7Q5H_H |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0105-2896&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0105-2896&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0105-2896&client=summon |