Bone marrow-derived mesenchymal stromal cells accelerate wound healing in the rat

ABSTRACT Bone marrow‐derived mesenchymal stromal cells (BMSCs) are multipotential stem cells capable of differentiation into numerous cell types, including fibroblasts, cartilage, bone, muscle, and brain cells. BMSCs also secrete a large number of growth factors and cytokines that are critical to th...

Full description

Saved in:
Bibliographic Details
Published inWound repair and regeneration Vol. 14; no. 4; pp. 471 - 478
Main Authors McFarlin, Kellie, Gao, Xiaohua, Liu, Yong Bo, Dulchavsky, Deborah S., Kwon, David, Arbab, Ali S., Bansal, Mona, Li, Yi, Chopp, Michael, Dulchavsky, Scott A., Gautam, Subhash C.
Format Journal Article
LanguageEnglish
Published Malden, USA Blackwell Publishing Inc 01.07.2006
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Bone marrow‐derived mesenchymal stromal cells (BMSCs) are multipotential stem cells capable of differentiation into numerous cell types, including fibroblasts, cartilage, bone, muscle, and brain cells. BMSCs also secrete a large number of growth factors and cytokines that are critical to the repair of injured tissues. Because of the extraordinary plasticity and the ability of syngeneic or allogeneic BMSCs to secrete tissue‐repair factors, we investigated the therapeutic efficacy of BMSCs for healing of fascial and cutaneous incisional wounds in Sprague–Dawley rats. Systemic administration of syngeneic BMSCs (2 × 106) once daily for 4 days or a single treatment with 5 × 106 BMSCs 24 hours after wounding significantly increased the wound bursting strength of fascial and cutaneous wounds on days 7 and 14 postwounding. Wound healing was also significantly improved following injection of BMSCs locally at the wound site. Furthermore, allogeneic BMSCs were as efficient as syngeneic BMSCs in promoting wound healing. Administration of BMSCs labeled with iron oxides/1,1′‐dioctadecyl‐3,3,3′,3′‐tetramethylindocarbocyanine perchlorate fluorescent dye revealed that systemically administered BMSCs engraft to the wound. The increase in the tensile strength of wounds treated with BMSCs was associated with increased production of collagen in the wound. In addition, BMSC treatment caused more rapid histologic maturation of wounds compared with untreated wounds. These data suggest that cell therapy with BMSCs has the potential to augment healing of surgical and cutaneous wounds.
AbstractList ABSTRACT Bone marrow‐derived mesenchymal stromal cells (BMSCs) are multipotential stem cells capable of differentiation into numerous cell types, including fibroblasts, cartilage, bone, muscle, and brain cells. BMSCs also secrete a large number of growth factors and cytokines that are critical to the repair of injured tissues. Because of the extraordinary plasticity and the ability of syngeneic or allogeneic BMSCs to secrete tissue‐repair factors, we investigated the therapeutic efficacy of BMSCs for healing of fascial and cutaneous incisional wounds in Sprague–Dawley rats. Systemic administration of syngeneic BMSCs (2 × 106) once daily for 4 days or a single treatment with 5 × 106 BMSCs 24 hours after wounding significantly increased the wound bursting strength of fascial and cutaneous wounds on days 7 and 14 postwounding. Wound healing was also significantly improved following injection of BMSCs locally at the wound site. Furthermore, allogeneic BMSCs were as efficient as syngeneic BMSCs in promoting wound healing. Administration of BMSCs labeled with iron oxides/1,1′‐dioctadecyl‐3,3,3′,3′‐tetramethylindocarbocyanine perchlorate fluorescent dye revealed that systemically administered BMSCs engraft to the wound. The increase in the tensile strength of wounds treated with BMSCs was associated with increased production of collagen in the wound. In addition, BMSC treatment caused more rapid histologic maturation of wounds compared with untreated wounds. These data suggest that cell therapy with BMSCs has the potential to augment healing of surgical and cutaneous wounds.
Bone marrow-derived mesenchymal stromal cells (BMSCs) are multipotential stem cells capable of differentiation into numerous cell types, including fibroblasts, cartilage, bone, muscle, and brain cells. BMSCs also secrete a large number of growth factors and cytokines that are critical to the repair of injured tissues. Because of the extraordinary plasticity and the ability of syngeneic or allogeneic BMSCs to secrete tissue-repair factors, we investigated the therapeutic efficacy of BMSCs for healing of fascial and cutaneous incisional wounds in Sprague-Dawley rats. Systemic administration of syngeneic BMSCs (2 x 10(6)) once daily for 4 days or a single treatment with 5 x 10(6) BMSCs 24 hours after wounding significantly increased the wound bursting strength of fascial and cutaneous wounds on days 7 and 14 postwounding. Wound healing was also significantly improved following injection of BMSCs locally at the wound site. Furthermore, allogeneic BMSCs were as efficient as syngeneic BMSCs in promoting wound healing. Administration of BMSCs labeled with iron oxides/1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate fluorescent dye revealed that systemically administered BMSCs engraft to the wound. The increase in the tensile strength of wounds treated with BMSCs was associated with increased production of collagen in the wound. In addition, BMSC treatment caused more rapid histologic maturation of wounds compared with untreated wounds. These data suggest that cell therapy with BMSCs has the potential to augment healing of surgical and cutaneous wounds.
ABSTRACT Bone marrow‐derived mesenchymal stromal cells (BMSCs) are multipotential stem cells capable of differentiation into numerous cell types, including fibroblasts, cartilage, bone, muscle, and brain cells. BMSCs also secrete a large number of growth factors and cytokines that are critical to the repair of injured tissues. Because of the extraordinary plasticity and the ability of syngeneic or allogeneic BMSCs to secrete tissue‐repair factors, we investigated the therapeutic efficacy of BMSCs for healing of fascial and cutaneous incisional wounds in Sprague–Dawley rats. Systemic administration of syngeneic BMSCs (2 × 10 6 ) once daily for 4 days or a single treatment with 5 × 10 6 BMSCs 24 hours after wounding significantly increased the wound bursting strength of fascial and cutaneous wounds on days 7 and 14 postwounding. Wound healing was also significantly improved following injection of BMSCs locally at the wound site. Furthermore, allogeneic BMSCs were as efficient as syngeneic BMSCs in promoting wound healing. Administration of BMSCs labeled with iron oxides/1,1′‐dioctadecyl‐3,3,3′,3′‐tetramethylindocarbocyanine perchlorate fluorescent dye revealed that systemically administered BMSCs engraft to the wound. The increase in the tensile strength of wounds treated with BMSCs was associated with increased production of collagen in the wound. In addition, BMSC treatment caused more rapid histologic maturation of wounds compared with untreated wounds. These data suggest that cell therapy with BMSCs has the potential to augment healing of surgical and cutaneous wounds.
Author McFarlin, Kellie
Gautam, Subhash C.
Gao, Xiaohua
Liu, Yong Bo
Arbab, Ali S.
Bansal, Mona
Dulchavsky, Scott A.
Dulchavsky, Deborah S.
Li, Yi
Kwon, David
Chopp, Michael
Author_xml – sequence: 1
  givenname: Kellie
  surname: McFarlin
  fullname: McFarlin, Kellie
  organization: Department of Surgery
– sequence: 2
  givenname: Xiaohua
  surname: Gao
  fullname: Gao, Xiaohua
  organization: Department of Surgery
– sequence: 3
  givenname: Yong Bo
  surname: Liu
  fullname: Liu, Yong Bo
  organization: Department of Surgery
– sequence: 4
  givenname: Deborah S.
  surname: Dulchavsky
  fullname: Dulchavsky, Deborah S.
  organization: Department of Surgery
– sequence: 5
  givenname: David
  surname: Kwon
  fullname: Kwon, David
  organization: Department of Surgery
– sequence: 6
  givenname: Ali S.
  surname: Arbab
  fullname: Arbab, Ali S.
  organization: Department of Diagnostic Radiology
– sequence: 7
  givenname: Mona
  surname: Bansal
  fullname: Bansal, Mona
  organization: Department of Pathology, and
– sequence: 8
  givenname: Yi
  surname: Li
  fullname: Li, Yi
  organization: Department of Neurology, Henry Ford Health System, Detroit, Michigan
– sequence: 9
  givenname: Michael
  surname: Chopp
  fullname: Chopp, Michael
  organization: Department of Neurology, Henry Ford Health System, Detroit, Michigan
– sequence: 10
  givenname: Scott A.
  surname: Dulchavsky
  fullname: Dulchavsky, Scott A.
  organization: Department of Surgery
– sequence: 11
  givenname: Subhash C.
  surname: Gautam
  fullname: Gautam, Subhash C.
  organization: Department of Surgery
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16939576$$D View this record in MEDLINE/PubMed
BookMark eNqNkMtOwzAURC0E4v0LyCt2CXac2LHEhmeLQKBWRbCzHOeGpuQBdkrbv8ehFWzxZq7kmbn2OUDbTdsAQpiSkPpzNgupiFnAKZFhRAgPCaEJC5dbaJ8mURzEInnd9jPhIqAyEnvowLkZISRJZLqL9iiXTCaC76PRpW_Gtba2XQQ52PILclyDg8ZMV7WusOts26uBqnJYG69gdQd40c6bHE9BV2XzhssGd1PA_uYI7RS6cnC80UP0fHszuRoGD0-Du6uLh8DEUrJAsgi4IZoC41pQkWU01zItYs6jjJgkhUxGUWFAZ2mcx1JQmRtiqJQFiw1k7BCdrns_bPs5B9epunT9K3UD7dwpnqYkFYJ4Y7o2Gts6Z6FQH7b0P14pSlSPU81Uj1P1OFWPU_3gVEsfPdnsmGc15H_BDT9vOF8bFmUFq38Xq5fx2A8-Hqzjpetg-RvX9l1xwUSiXh4HajCKJqPr4b0asm9uYZVm
CitedBy_id crossref_primary_10_1007_s40495_024_00352_4
crossref_primary_10_1517_14712598_2010_519333
crossref_primary_10_1155_2016_5317630
crossref_primary_10_51249_hs_v4i03_2107
crossref_primary_10_1080_15583724_2014_881374
crossref_primary_10_1134_S0022093023030110
crossref_primary_10_1016_j_berh_2014_10_023
crossref_primary_10_1089_wound_2014_0539
crossref_primary_10_1093_jbcr_irad080
crossref_primary_10_1371_journal_pone_0029399
crossref_primary_10_1016_j_jconrel_2023_04_032
crossref_primary_10_1016_j_rhum_2008_04_004
crossref_primary_10_1021_acsabm_3c00747
crossref_primary_10_3390_ijms222011030
crossref_primary_10_1016_j_biomaterials_2014_11_011
crossref_primary_10_1097_01_EHX_0000464786_52906_32
crossref_primary_10_12968_jowc_2018_27_5_334
crossref_primary_10_1007_s12325_017_0478_y
crossref_primary_10_1111_j_1365_2141_2007_06610_x
crossref_primary_10_1111_j_1742_481X_2007_00349_x
crossref_primary_10_1016_j_acthis_2019_07_007
crossref_primary_10_3390_ijms20174312
crossref_primary_10_1089_ten_tec_2011_0037
crossref_primary_10_1038_gt_2008_133
crossref_primary_10_1097_01_ASW_0000407648_89961_a6
crossref_primary_10_1089_ten_teb_2011_0488
crossref_primary_10_1093_burnst_tkad058
crossref_primary_10_1038_s41598_020_76971_w
crossref_primary_10_3892_etm_2016_3527
crossref_primary_10_1016_j_jvs_2010_06_009
crossref_primary_10_1089_ten_teb_2019_0351
crossref_primary_10_1002_stem_420
crossref_primary_10_1007_s11064_014_1257_7
crossref_primary_10_1016_j_medengphy_2012_08_002
crossref_primary_10_1111_j_1600_0625_2010_01087_x
crossref_primary_10_1136_annrheumdis_2013_204147
crossref_primary_10_6002_ect_MESOT2018_O29
crossref_primary_10_1038_sj_mt_6300156
crossref_primary_10_1039_c3tb20550a
crossref_primary_10_3389_fcell_2020_00697
crossref_primary_10_1080_08923973_2016_1222617
crossref_primary_10_1634_stemcells_2007_0226
crossref_primary_10_1586_eem_09_61
crossref_primary_10_1016_j_retram_2022_103356
crossref_primary_10_1155_2013_608313
crossref_primary_10_3727_096368915X687219
crossref_primary_10_3390_ma15186366
crossref_primary_10_1186_scrt111
crossref_primary_10_1098_rsif_2009_0020
crossref_primary_10_1111_j_1742_481X_2007_00408_x
crossref_primary_10_3390_gels10020097
crossref_primary_10_1371_journal_pone_0218536
crossref_primary_10_3109_09553002_2011_570854
crossref_primary_10_1186_s13287_015_0163_5
crossref_primary_10_1097_SAP_0000000000001947
crossref_primary_10_1089_scd_2014_0486
crossref_primary_10_1007_s00441_018_2879_x
crossref_primary_10_7547_1000385
crossref_primary_10_1371_journal_pone_0007119
crossref_primary_10_1007_s11259_014_9597_y
crossref_primary_10_1016_j_jbiomech_2018_11_050
crossref_primary_10_1038_s41598_018_34119_x
crossref_primary_10_3390_ijms20235859
crossref_primary_10_1002_term_2044
crossref_primary_10_1016_j_cps_2012_04_005
crossref_primary_10_3390_jfb10010010
crossref_primary_10_1186_s13287_020_01706_7
crossref_primary_10_1007_s10029_012_0941_2
crossref_primary_10_1517_14712598_2011_606212
crossref_primary_10_1186_s13287_015_0008_2
crossref_primary_10_1007_s11626_013_9687_0
crossref_primary_10_1089_wound_2013_0449
crossref_primary_10_1016_j_yexcr_2009_08_001
crossref_primary_10_1016_j_biomaterials_2012_12_014
crossref_primary_10_1016_j_jss_2006_07_037
crossref_primary_10_1007_s00405_017_4595_7
crossref_primary_10_1002_jcp_25731
crossref_primary_10_1111_wrr_12749
crossref_primary_10_3389_fphar_2018_00945
crossref_primary_10_4161_org_6_4_12393
crossref_primary_10_1186_s13287_015_0198_7
crossref_primary_10_5966_sctm_2011_0024
crossref_primary_10_1590_1678_4162_9461
crossref_primary_10_1042_BSR20200461
crossref_primary_10_1186_cc10570
crossref_primary_10_3390_ijms221910702
crossref_primary_10_1089_scd_2014_0148
crossref_primary_10_1111_exd_12141
crossref_primary_10_1016_j_jbspin_2008_04_004
crossref_primary_10_1016_j_lfs_2016_02_050
crossref_primary_10_1089_wound_2011_0314
crossref_primary_10_4103_1673_5374_165325
crossref_primary_10_1016_j_yexcr_2010_05_009
crossref_primary_10_1038_jid_2011_64
crossref_primary_10_1089_wound_2014_0579
crossref_primary_10_5897_AJB2016_15836
crossref_primary_10_1155_2018_6901983
crossref_primary_10_1042_BSR20180369
crossref_primary_10_3389_fendo_2014_00086
crossref_primary_10_1002_bdrc_21001
crossref_primary_10_1007_s13577_018_0222_1
crossref_primary_10_1111_j_1524_475X_2009_00507_x
crossref_primary_10_3892_ijo_2013_2109
crossref_primary_10_1002_lary_27110
crossref_primary_10_1517_14728214_2013_833184
crossref_primary_10_1002_sctm_17_0267
crossref_primary_10_1002_jsfa_4435
crossref_primary_10_1002_term_1622
crossref_primary_10_1080_14712598_2022_1990260
crossref_primary_10_3109_2000656X_2013_793193
crossref_primary_10_1038_jid_2012_326
crossref_primary_10_1007_s13346_021_00925_6
crossref_primary_10_1093_stcltm_szab014
crossref_primary_10_1002_jcb_28398
crossref_primary_10_1038_s41598_017_04496_w
crossref_primary_10_1111_wrr_12251
crossref_primary_10_1186_s13287_015_0001_9
crossref_primary_10_1111_j_1524_475X_2007_00277_x
crossref_primary_10_1002_adhm_202300970
crossref_primary_10_1155_2015_831095
crossref_primary_10_1016_j_biomaterials_2023_122256
crossref_primary_10_1002_bem_20550
crossref_primary_10_1007_s10029_014_1288_7
crossref_primary_10_1016_j_biocel_2014_07_022
crossref_primary_10_1038_s41598_017_05099_1
crossref_primary_10_1136_vr_165_19_563
crossref_primary_10_1111_cpr_12042
crossref_primary_10_7317_pk_2014_38_3_338
crossref_primary_10_1186_s13287_016_0361_9
crossref_primary_10_1016_j_ejphar_2007_02_033
crossref_primary_10_1645_15_754_1
crossref_primary_10_1002_iub_1427
crossref_primary_10_1016_j_gene_2011_06_027
crossref_primary_10_1016_j_pathophys_2016_07_001
crossref_primary_10_1016_j_canrad_2019_06_002
crossref_primary_10_1177_08839115211073156
crossref_primary_10_1038_JID_2015_346
crossref_primary_10_3390_jfb9040065
crossref_primary_10_1371_journal_pone_0089882
crossref_primary_10_1007_s12015_012_9364_9
crossref_primary_10_1016_j_drudis_2015_01_005
crossref_primary_10_1017_S1431927611012372
crossref_primary_10_2174_1574888X18666230823091017
crossref_primary_10_3923_pjbs_2010_596_603
crossref_primary_10_1080_08941930802216831
crossref_primary_10_1039_c3tb21525c
crossref_primary_10_1002_lary_21068
crossref_primary_10_1371_journal_pone_0031504
crossref_primary_10_1007_s10561_016_9606_1
crossref_primary_10_1007_s13770_020_00288_y
crossref_primary_10_1016_j_msec_2018_04_045
crossref_primary_10_1007_s00441_018_2830_1
crossref_primary_10_1186_s13287_020_01723_6
crossref_primary_10_1038_s41598_017_08311_4
crossref_primary_10_1155_2013_592454
crossref_primary_10_1038_cr_2007_4
crossref_primary_10_1155_2011_564089
crossref_primary_10_1002_stem_2924
crossref_primary_10_1007_s10856_015_5450_2
crossref_primary_10_1111_wrr_12304
crossref_primary_10_1016_j_jss_2012_07_054
crossref_primary_10_1002_lary_24293
crossref_primary_10_1155_2018_7806435
crossref_primary_10_1186_scrt30
Cites_doi 10.1126/science.279.5356.1528
10.1016/S1474-4422(02)00040-6
10.1016/S1073-4449(97)70027-X
10.1002/(SICI)1097-4652(199807)176:1<57::AID-JCP7>3.0.CO;2-7
10.1038/6529
10.1001/archderm.139.4.510
10.1002/hep.20469
10.1016/0140-6736(92)90143-Q
10.1046/j.1524-475x.2001.00347.x
10.1016/S0094-1298(20)32471-8
10.1097/00129334-200407000-00013
10.1634/stemcells.22-3-377
10.1006/jsre.1998.5326
10.1016/0014-5793(96)00240-2
10.1002/1097-4547(20000815)61:4<364::AID-JNR2>3.0.CO;2-C
10.1056/NEJM199909023411006
10.2337/diacare.26.6.1856
10.1182/blood.V81.10.2547.2547
10.1016/S1357-2725(96)00134-3
10.1002/jcp.10260
10.1046/j.1440-1789.2002.00450.x
10.1073/pnas.181177898
10.1046/j.1523-1747.1998.00381.x
10.1111/j.1365-2133.2005.06402.x
10.1038/35070587
10.1042/BC20040099
10.1667/RR3189
10.12968/jowc.2005.14.3.26746
10.1016/j.mehy.2004.11.036
10.1182/blood.V89.5.1560
10.1016/S0741-5214(95)70142-7
10.1002/jor.1100090504
10.1182/blood-2004-02-0655
ContentType Journal Article
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1111/j.1743-6109.2006.00153.x
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1524-475X
EndPage 478
ExternalDocumentID 10_1111_j_1743_6109_2006_00153_x
16939576
WRR153
ark_67375_WNG_GQ2TQDHK_H
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: T32 GM 08420-09
GroupedDBID ---
.3N
.GA
.Y3
04C
05W
0R~
10A
123
1OB
1OC
29R
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAVGM
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBTR
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AHBTC
AHEFC
AIACR
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
CYRXZ
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EAS
EBC
EBD
EBS
ECF
ECT
ECV
EIHBH
EJD
EMB
EMK
EMOBN
ENC
EPT
ESX
EX3
F00
F01
F04
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQ9
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
ADOJX
AITYG
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c4993-932e6c0a1e36a717bb1da98f4662b0c58eb922fceab84d49719dc0c199f34ceb3
IEDL.DBID DR2
ISSN 1067-1927
IngestDate Thu Aug 15 22:39:53 EDT 2024
Fri Aug 23 00:43:18 EDT 2024
Sat Sep 28 07:39:56 EDT 2024
Sat Aug 24 00:50:08 EDT 2024
Wed Jan 17 05:01:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4993-932e6c0a1e36a717bb1da98f4662b0c58eb922fceab84d49719dc0c199f34ceb3
Notes istex:6A164CE7789F56E74C9037AE12B2468BEEB9C4E5
ArticleID:WRR153
ark:/67375/WNG-GQ2TQDHK-H
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 16939576
PQID 68808770
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_68808770
crossref_primary_10_1111_j_1743_6109_2006_00153_x
pubmed_primary_16939576
wiley_primary_10_1111_j_1743_6109_2006_00153_x_WRR153
istex_primary_ark_67375_WNG_GQ2TQDHK_H
PublicationCentury 2000
PublicationDate 2006-07
July–August 2006
2006 Jul-Aug
2006-07-00
20060701
PublicationDateYYYYMMDD 2006-07-01
PublicationDate_xml – month: 07
  year: 2006
  text: 2006-07
PublicationDecade 2000
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: United States
PublicationTitle Wound repair and regeneration
PublicationTitleAlternate Wound Repair Regen
PublicationYear 2006
Publisher Blackwell Publishing Inc
Publisher_xml – name: Blackwell Publishing Inc
References Loots MA, Lamme EN, Zeegelaar J, Mekkes JR, Bos JD, Middelkoop E. Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds. J Invest Dermatol 1998; 111: 850-7.
Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410: 701-5.
Horowitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK. Transplantability and therapeutic effects of bone marrow derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 1999; 5: 309-13.
Pittenger M, Vanguri P, Simonetti D, Young R. Adult mesenchymal stem cells: potential for muscle and tendon regeneration and use in gene therapy. J Musculoskelet Neuronal Interact 2002; 2: 309-20.
Caplan AI. Mesenchymal stem cells. J Orthop Res 1991; 9: 641-50.
Paul RG, Tarlton JF, Purslow PP, Sims TJ, Watkins P, Marshall F, Ferguson MJ, Bailey AJ. Biomechanical and biochemical study of a standardized wound healing model. Int J Biochem Cell Biol 1997; 29: 211-20.
Ferguson MK. The effect of antineoplastic agents on wound healing. Surg Gynecol Obstet 1982; 154: 421-9.
Sieggreen MY, Kline RA. Recognizing and managing venous leg ulcers. Adv Skin Wound Care 2004; 17: 302-11.
Buckmire MA, Parquet G, Greenway S, Rolandelli RH. Temporal expression of TGF-β1, EGF, and PDGF-BB in a model of colonic wound healing. J Surg Res 1998; 80: 52-7.
Steeper R. A critical review of the aetiology of diabetic neuropathic ulcers. J Wound Care 2005; 14: 101-3.
Abboud SL. A bone marrow stromal cell line is a source and target for platelet-derived growth factor. Blood 1993; 81: 2547-53.
Singer AJ, Clark RAF. Cutaneous wound healing. N Engl J Med 1999; 341: 738-46.
Takai K, Hara J, Matsumoto K, Hosoi G, Osugi Y, Tawa A, Okada S, Nakamura T. Hepatocyte growth factor is constitutively produced by human bone marrow stromal cells and indirectly promotes hematopoiesis. Blood 1997; 89: 1560-5.
Gomez NJ. Wound care management in the end-stage renal disease population. Adv Ren Replace Ther 1997; 4: 390-6.
Badiavas EV, Falanga V. Treatment of chronic wounds with bone marrow-derived cells. Arch Dermatol 2003; 139: 510-6.
Arbab AS, Yocum GT, Kalish H, Jordan EK, Anderson SA, Khakoo AY, Read EJ, Frank JA. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 2004; 104: 1217-122.
Graves G, Cunningham P, Raaf JH. Effect of chemotherapy on healing of surgical wounds. Clin Bull 1980; 10: 144-9.
Robson MC, Phillips LG, Falanga V, Odenheimer DJ, Parish LC, Jensen JL, Steed DL. Randomized trial of topically applied repifermin (recombinant human ulcer. keratinocyte growth factor-2) to accelerate wound healing in venous. Wound Rep Reg 2001; 9: 347-52.
Johnson BL, Glickman MH, Bandyk DF, Esses GE. Failure of foot salvage in patients with end-stage renal disease after surgical revascularization. J Vasc Surg 1995; 22: 280-5.
Steed DL. Modifying the wound healing response with exogenous growth factors. Clin Plast Surg 1998; 25: 397-405.
Pierce GF, Tarpley JE, Allman RM, Goode PS, Serdar CM, Morris B, Mustoe TA, Vande Berg J. Tissue repair processes in healing chronic pressure ulcers treated with recombinant platelet-derived growth factor BB. Am J Pathol 1994; 145: 1399-410.
Robson MC, Phillips LG, Thomason A, Robson LE, Pierce GF. Platelet-derived growth factor BB for the treatment of chronic pressure ulcers. Lancet 1992; 339: 23-5.
Shi C, Cheng T, Su Y, Mai Y, Qu J, Lou S, Ran X, Xu H, Luo C. Transplantation of dermal multipotent cells promotes survival and wound healing in rats with combined radiation and wound injury. Radiat Res 2004; 162: 56-63.
Heng BC, Liu H, Cao T. Transplanted human embryonic stem cells as biological "catalysts" for tissue repair and regeneration. Med Hypotheses 2005; 64: 1085-8.
Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 2001; 98: 10344-9.
Chen X, Li Y, Wang L, Katakowski M, Zhang L, Chen J, Xu Y, Gautam SC, Chopp M. Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology 2002; 22: 275-9.
Bello YM, Phillips TJ. Chronic leg ulcers: types and treatment. Hosp Pract (Off Ed) 2000; 35: 101-7.
Anstead GM. Steroids, retinoids, and wound healing. Adv Wound Care 1998; 11: 277-85.
Lee KD, Kuo TK, Whang-Peng J, Chung YF, Lin CT, Chou SH, Chen JR, Chen YP, Lee OK. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 2004; 40: 1275-84.
Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 2000; 61: 364-70.
Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276: 71-4.
Yoon YS, Lee N, Scadova H. Myocardial regeneration with bone-marrow-derived stem cells. Biol Cell 2005; 97: 253-63.
Zimny S, Pfohl M. Healing times and prediction of wound healing in neuropathic diabetic foot ulcers: a prospective study. Exp Clin Endocrinol Diabetes 2005; 113: 90-3.
Badiavas EV, Abedi M, Butmarc J, Falanga V, Quesenberry P. Participation of bone marrow derived cells in cutaneous wound healing. J Cell Physiol 2003; 196: 245-50.
Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL. Phenotypic and functional comparison of cultures of marrow derived mesenchymal stem cells (MSCs) and stromal cells. J Cellular Physiol 1998; 176: 57-66.
Tsang MW, Wong WK, Hung CS, Lai KM, Tang W, Cheung EY, Kam G, Leung L, Chan CW, Chu CM, Lam EK. Human epidermal growth factor enhances healing of diabetic foot ulcers. Diabetes Care 2003; 26: 1856-61.
Ferrari G, Angelis GC-D, Coletta M, Paolucci E, Stornatiuolo A, Cossu G, Mavilio F. Muscle regeneration by none marrow-derived myogenic progenitors. Science 1998; 279: 1528-30.
Haynesworth SE, Baber MA, Caplan AI. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J Cellular Physiol 1996; 166: 585-92.
Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M, Werner C. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 2004; 22: 377-84.
Bennett NT, Schultz GS. Growth factors and wound healing: biochemical properties of growth factors and their receptors. Am J Surg 1993; 165: 728-34.
Chopp M, Li Y. Treatment of neural injury with marrow stromal cells. Lancet Neurol 2002; 1: 92-100.
Yamaguchi Y, Kubo T, Murakami T, Takahashi M, Hakamata Y, Kobayashi E, Yoshida S, Hosokawa K, Yoshikawa K, Itami S. Bone marrow cells differentiate into wound myofibroblasts and accelerate the healing of wounds with exposed bones when combined with an occlusive dressing. Br J Dermatol 2005; 152: 616-22.
2004; 22
2004; 40
2004; 104
2003; 139
2005; 152
2005; 113
1993; 81
2004; 162
1997; 276
1997; 89
2002; 1
2002; 2
1997; 29
1999; 341
2005; 64
1996; 166
1998; 279
1998; 80
1992
1998; 111
1998; 176
1997; 4
1999; 5
1991; 9
1993; 165
1998; 25
2003; 196
1994; 145
2001; 410
2004; 17
2000; 35
1995; 22
2001; 9
1980; 10
2002; 22
2000; 61
2003; 26
2005; 97
1982; 154
1992; 339
1998; 11
2005; 14
2001; 98
e_1_2_7_5_2
e_1_2_7_2_2
Gomez NJ. (e_1_2_7_4_2) 1997; 4
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_13_2
e_1_2_7_41_2
Bennett NT (e_1_2_7_42_2) 1993; 165
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_44_2
Pittenger M (e_1_2_7_19_2) 2002; 2
e_1_2_7_27_2
e_1_2_7_28_2
e_1_2_7_29_2
Haynesworth SE (e_1_2_7_26_2) 1996; 166
Zimny S (e_1_2_7_3_2) 2005; 113
Pierce GF (e_1_2_7_12_2) 1994; 145
Rudolph R (e_1_2_7_36_2) 1992
Graves G (e_1_2_7_9_2) 1980; 10
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_31_2
Bello YM (e_1_2_7_7_2) 2000; 35
Ferguson MK. (e_1_2_7_8_2) 1982; 154
e_1_2_7_22_2
e_1_2_7_32_2
Anstead GM. (e_1_2_7_10_2) 1998; 11
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_35_2
e_1_2_7_37_2
e_1_2_7_38_2
e_1_2_7_39_2
References_xml – volume: 1
  start-page: 92
  year: 2002
  end-page: 100
  article-title: Treatment of neural injury with marrow stromal cells
  publication-title: Lancet Neurol
– volume: 410
  start-page: 701
  year: 2001
  end-page: 5
  article-title: Bone marrow cells regenerate infarcted myocardium
  publication-title: Nature
– volume: 22
  start-page: 377
  year: 2004
  end-page: 84
  article-title: Mesenchymal stem cells can be differentiated into endothelial cells in vitro
  publication-title: Stem Cells
– volume: 11
  start-page: 277
  year: 1998
  end-page: 85
  article-title: Steroids, retinoids, and wound healing
  publication-title: Adv Wound Care
– volume: 162
  start-page: 56
  year: 2004
  end-page: 63
  article-title: Transplantation of dermal multipotent cells promotes survival and wound healing in rats with combined radiation and wound injury
  publication-title: Radiat Res
– volume: 80
  start-page: 52
  year: 1998
  end-page: 7
  article-title: Temporal expression of TGF‐β1, EGF, and PDGF‐BB in a model of colonic wound healing
  publication-title: J Surg Res
– volume: 22
  start-page: 280
  year: 1995
  end-page: 5
  article-title: Failure of foot salvage in patients with end‐stage renal disease after surgical revascularization
  publication-title: J Vasc Surg
– volume: 145
  start-page: 1399
  year: 1994
  end-page: 410
  article-title: Tissue repair processes in healing chronic pressure ulcers treated with recombinant platelet‐derived growth factor BB
  publication-title: Am J Pathol
– volume: 26
  start-page: 1856
  year: 2003
  end-page: 61
  article-title: Human epidermal growth factor enhances healing of diabetic foot ulcers
  publication-title: Diabetes Care
– volume: 166
  start-page: 585
  year: 1996
  end-page: 92
  article-title: Cytokine expression by human marrow‐derived mesenchymal progenitor cells in vitro
  publication-title: effects of dexamethasone and IL-1 alpha
– volume: 89
  start-page: 1560
  year: 1997
  end-page: 5
  article-title: Hepatocyte growth factor is constitutively produced by human bone marrow stromal cells and indirectly promotes hematopoiesis
  publication-title: Blood
– volume: 111
  start-page: 850
  year: 1998
  end-page: 7
  article-title: Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds
  publication-title: J Invest Dermatol
– volume: 176
  start-page: 57
  year: 1998
  end-page: 66
  article-title: Phenotypic and functional comparison of cultures of marrow derived mesenchymal stem cells (MSCs) and stromal cells
  publication-title: J Cellular Physiol
– volume: 9
  start-page: 641
  year: 1991
  end-page: 50
  article-title: Mesenchymal stem cells
  publication-title: J Orthop Res
– volume: 4
  start-page: 390
  year: 1997
  end-page: 6
  article-title: Wound care management in the end‐stage renal disease population
  publication-title: Adv Ren Replace Ther
– volume: 152
  start-page: 616
  year: 2005
  end-page: 22
  article-title: Bone marrow cells differentiate into wound myofibroblasts and accelerate the healing of wounds with exposed bones when combined with an occlusive dressing
  publication-title: Br J Dermatol
– volume: 341
  start-page: 738
  year: 1999
  end-page: 46
  article-title: Cutaneous wound healing
  publication-title: N Engl J Med
– volume: 35
  start-page: 101
  year: 2000
  end-page: 7
  article-title: Chronic leg ulcers
  publication-title: types and treatment
– volume: 81
  start-page: 2547
  year: 1993
  end-page: 53
  article-title: A bone marrow stromal cell line is a source and target for platelet‐derived growth factor
  publication-title: Blood
– volume: 276
  start-page: 71
  year: 1997
  end-page: 4
  article-title: Marrow stromal cells as stem cells for nonhematopoietic tissues
  publication-title: Science
– volume: 2
  start-page: 309
  year: 2002
  end-page: 20
  article-title: Adult mesenchymal stem cells
  publication-title: potential for muscle and tendon regeneration and use in gene therapy
– volume: 5
  start-page: 309
  year: 1999
  end-page: 13
  article-title: Transplantability and therapeutic effects of bone marrow derived mesenchymal cells in children with osteogenesis imperfecta
  publication-title: Nat Med
– volume: 10
  start-page: 144
  year: 1980
  end-page: 9
  article-title: Effect of chemotherapy on healing of surgical wounds
  publication-title: Clin Bull
– volume: 139
  start-page: 510
  year: 2003
  end-page: 6
  article-title: Treatment of chronic wounds with bone marrow‐derived cells
  publication-title: Arch Dermatol
– volume: 61
  start-page: 364
  year: 2000
  end-page: 70
  article-title: Adult rat and human bone marrow stromal cells differentiate into neurons
  publication-title: J Neurosci Res
– start-page: 96
  year: 1992
  end-page: 114
– volume: 113
  start-page: 90
  year: 2005
  end-page: 3
  article-title: Healing times and prediction of wound healing in neuropathic diabetic foot ulcers
  publication-title: a prospective study
– volume: 14
  start-page: 101
  year: 2005
  end-page: 3
  article-title: A critical review of the aetiology of diabetic neuropathic ulcers
  publication-title: J Wound Care
– volume: 97
  start-page: 253
  year: 2005
  end-page: 63
  article-title: Myocardial regeneration with bone‐marrow‐derived stem cells
  publication-title: Biol Cell
– volume: 154
  start-page: 421
  year: 1982
  end-page: 9
  article-title: The effect of antineoplastic agents on wound healing
  publication-title: Surg Gynecol Obstet
– volume: 64
  start-page: 1085
  year: 2005
  end-page: 8
  article-title: Transplanted human embryonic stem cells as biological “catalysts” for tissue repair and regeneration
  publication-title: Med Hypotheses
– volume: 29
  start-page: 211
  year: 1997
  end-page: 20
  article-title: Biomechanical and biochemical study of a standardized wound healing model
  publication-title: Int J Biochem Cell Biol
– volume: 339
  start-page: 23
  year: 1992
  end-page: 5
  article-title: Platelet‐derived growth factor BB for the treatment of chronic pressure ulcers
  publication-title: Lancet
– volume: 196
  start-page: 245
  year: 2003
  end-page: 50
  article-title: Participation of bone marrow derived cells in cutaneous wound healing
  publication-title: J Cell Physiol
– volume: 104
  start-page: 1217
  year: 2004
  end-page: 122
  article-title: Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI
  publication-title: Blood
– volume: 165
  start-page: 728
  year: 1993
  end-page: 34
  article-title: Growth factors and wound healing
  publication-title: biochemical properties of growth factors and their receptors
– volume: 17
  start-page: 302
  year: 2004
  end-page: 11
  article-title: Recognizing and managing venous leg ulcers
  publication-title: Adv Skin Wound Care
– volume: 279
  start-page: 1528
  year: 1998
  end-page: 30
  article-title: Muscle regeneration by none marrow‐derived myogenic progenitors
  publication-title: Science
– volume: 25
  start-page: 397
  year: 1998
  end-page: 405
  article-title: Modifying the wound healing response with exogenous growth factors
  publication-title: Clin Plast Surg
– volume: 9
  start-page: 347
  year: 2001
  end-page: 52
  article-title: Randomized trial of topically applied repifermin (recombinant human ulcer. keratinocyte growth factor‐2) to accelerate wound healing in venous
  publication-title: Wound Rep Reg
– volume: 40
  start-page: 1275
  year: 2004
  end-page: 84
  article-title: In vitro hepatic differentiation of human mesenchymal stem cells
  publication-title: Hepatology
– volume: 98
  start-page: 10344
  year: 2001
  end-page: 9
  article-title: Mobilized bone marrow cells repair the infarcted heart, improving function and survival
  publication-title: Proc Natl Acad Sci USA
– volume: 22
  start-page: 275
  year: 2002
  end-page: 9
  article-title: Ischemic rat brain extracts induce human marrow stromal cell growth factor production
  publication-title: Neuropathology
– ident: e_1_2_7_22_2
  doi: 10.1126/science.279.5356.1528
– ident: e_1_2_7_31_2
  doi: 10.1016/S1474-4422(02)00040-6
– volume: 11
  start-page: 277
  year: 1998
  ident: e_1_2_7_10_2
  article-title: Steroids, retinoids, and wound healing
  publication-title: Adv Wound Care
  contributor:
    fullname: Anstead GM.
– volume: 4
  start-page: 390
  year: 1997
  ident: e_1_2_7_4_2
  article-title: Wound care management in the end‐stage renal disease population
  publication-title: Adv Ren Replace Ther
  doi: 10.1016/S1073-4449(97)70027-X
  contributor:
    fullname: Gomez NJ.
– ident: e_1_2_7_27_2
  doi: 10.1002/(SICI)1097-4652(199807)176:1<57::AID-JCP7>3.0.CO;2-7
– volume: 2
  start-page: 309
  year: 2002
  ident: e_1_2_7_19_2
  article-title: Adult mesenchymal stem cells
  publication-title: potential for muscle and tendon regeneration and use in gene therapy
  contributor:
    fullname: Pittenger M
– ident: e_1_2_7_33_2
  doi: 10.1038/6529
– ident: e_1_2_7_38_2
  doi: 10.1001/archderm.139.4.510
– ident: e_1_2_7_23_2
  doi: 10.1002/hep.20469
– ident: e_1_2_7_14_2
  doi: 10.1016/0140-6736(92)90143-Q
– ident: e_1_2_7_15_2
  doi: 10.1046/j.1524-475x.2001.00347.x
– ident: e_1_2_7_16_2
  doi: 10.1016/S0094-1298(20)32471-8
– volume: 165
  start-page: 728
  year: 1993
  ident: e_1_2_7_42_2
  article-title: Growth factors and wound healing
  publication-title: biochemical properties of growth factors and their receptors
  contributor:
    fullname: Bennett NT
– volume: 145
  start-page: 1399
  year: 1994
  ident: e_1_2_7_12_2
  article-title: Tissue repair processes in healing chronic pressure ulcers treated with recombinant platelet‐derived growth factor BB
  publication-title: Am J Pathol
  contributor:
    fullname: Pierce GF
– ident: e_1_2_7_6_2
  doi: 10.1097/00129334-200407000-00013
– ident: e_1_2_7_24_2
  doi: 10.1634/stemcells.22-3-377
– ident: e_1_2_7_41_2
  doi: 10.1006/jsre.1998.5326
– ident: e_1_2_7_44_2
  doi: 10.1016/0014-5793(96)00240-2
– ident: e_1_2_7_25_2
  doi: 10.1002/1097-4547(20000815)61:4<364::AID-JNR2>3.0.CO;2-C
– ident: e_1_2_7_40_2
  doi: 10.1056/NEJM199909023411006
– ident: e_1_2_7_13_2
  doi: 10.2337/diacare.26.6.1856
– ident: e_1_2_7_28_2
  doi: 10.1182/blood.V81.10.2547.2547
– ident: e_1_2_7_35_2
  doi: 10.1016/S1357-2725(96)00134-3
– volume: 10
  start-page: 144
  year: 1980
  ident: e_1_2_7_9_2
  article-title: Effect of chemotherapy on healing of surgical wounds
  publication-title: Clin Bull
  contributor:
    fullname: Graves G
– ident: e_1_2_7_37_2
  doi: 10.1002/jcp.10260
– ident: e_1_2_7_30_2
  doi: 10.1046/j.1440-1789.2002.00450.x
– ident: e_1_2_7_32_2
  doi: 10.1073/pnas.181177898
– start-page: 96
  volume-title: Wound healing: biochemical and clinical aspects
  year: 1992
  ident: e_1_2_7_36_2
  contributor:
    fullname: Rudolph R
– ident: e_1_2_7_11_2
  doi: 10.1046/j.1523-1747.1998.00381.x
– ident: e_1_2_7_39_2
  doi: 10.1111/j.1365-2133.2005.06402.x
– volume: 35
  start-page: 101
  year: 2000
  ident: e_1_2_7_7_2
  article-title: Chronic leg ulcers
  publication-title: types and treatment
  contributor:
    fullname: Bello YM
– ident: e_1_2_7_20_2
  doi: 10.1038/35070587
– ident: e_1_2_7_21_2
  doi: 10.1042/BC20040099
– volume: 113
  start-page: 90
  year: 2005
  ident: e_1_2_7_3_2
  article-title: Healing times and prediction of wound healing in neuropathic diabetic foot ulcers
  publication-title: a prospective study
  contributor:
    fullname: Zimny S
– volume: 154
  start-page: 421
  year: 1982
  ident: e_1_2_7_8_2
  article-title: The effect of antineoplastic agents on wound healing
  publication-title: Surg Gynecol Obstet
  contributor:
    fullname: Ferguson MK.
– ident: e_1_2_7_17_2
  doi: 10.1667/RR3189
– ident: e_1_2_7_2_2
  doi: 10.12968/jowc.2005.14.3.26746
– ident: e_1_2_7_18_2
  doi: 10.1016/j.mehy.2004.11.036
– ident: e_1_2_7_29_2
  doi: 10.1182/blood.V89.5.1560
– ident: e_1_2_7_5_2
  doi: 10.1016/S0741-5214(95)70142-7
– ident: e_1_2_7_43_2
  doi: 10.1002/jor.1100090504
– volume: 166
  start-page: 585
  year: 1996
  ident: e_1_2_7_26_2
  article-title: Cytokine expression by human marrow‐derived mesenchymal progenitor cells in vitro
  publication-title: effects of dexamethasone and IL-1 alpha
  contributor:
    fullname: Haynesworth SE
– ident: e_1_2_7_34_2
  doi: 10.1182/blood-2004-02-0655
SSID ssj0005598
Score 2.323142
Snippet ABSTRACT Bone marrow‐derived mesenchymal stromal cells (BMSCs) are multipotential stem cells capable of differentiation into numerous cell types, including...
Bone marrow-derived mesenchymal stromal cells (BMSCs) are multipotential stem cells capable of differentiation into numerous cell types, including fibroblasts,...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 471
SubjectTerms Animals
Bone Marrow Cells - physiology
Collagen - metabolism
Fascia - injuries
Male
Mesoderm - cytology
Rats
Rats, Sprague-Dawley
Skin - injuries
Stromal Cells - physiology
Tensile Strength
Wound Healing - physiology
Wounds, Penetrating - metabolism
Wounds, Penetrating - physiopathology
Title Bone marrow-derived mesenchymal stromal cells accelerate wound healing in the rat
URI https://api.istex.fr/ark:/67375/WNG-GQ2TQDHK-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1743-6109.2006.00153.x
https://www.ncbi.nlm.nih.gov/pubmed/16939576
https://search.proquest.com/docview/68808770
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQvfQCVBRInz4gblnl4TjxkZburlqBxAKCm2VPHFGtNlvtA2hP_Qn9jfySzji7C4s4IMQpkSwn9jzsz57xZ8Z2QZnMlBCFypgoFD5ImGYQ5nFcVRUWpYb2IQ-PZPdMfL_ILmb5T3QWpuGHWGy4kWf48Zoc3NjxspMTvSbRhS9iClnaIjxJvHqEj3p3TFLEQ-4DnzguIKjJHyb1PPKhpZnqFQn95jEYuoxq_bTUXmf9eYeabJR-azqxLfjzgOvxZXq8wdZm6JXvN-b2hq24epOdfBnWjg88m-Pt338l2vSVK_mAzjXB5e8BVhhPRkN6UphgzA3gk8icHb-mW504oVWcQvnPmiMe5Vjylp21v51-7YazuxpCEJQCiDDQSYhM7FJpcIlobVwaVVRCysRGkBXOqiSpwBlbiFKoPFZoIRArVaUCcEW_xVZrbO0O42Vkc4hSZ6ukEpGAQhQgU1lIq0ApKAIWz_WifzWUHPreUgZFpElEdMGmT9nLUn0TsD2vwEUFM-pTSlue6fOjju4cJ6fHB90fuhuwz3MNa3Q0Eoup3XA61hJHuiLPo4BtN4q_-7lUFO2UAcu8-p7cKn3e6-HLu2fWe89eNxtClDz8ga1ORlP3ESHSxH7yxv8fY1ADhg
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQe4ALBfEKr_qAuGWVh-3ER6C0gbYrddmqvVn2xBGobLbaBxRO_AR-I7-EGWd3y1Y9IMQpkSwn9ozH_jwz_szYC9BW2hqSWFubxCIECXMJcZGmTdNgUW7JD3nYV9WxeH8qTxfXAdFZmI4fYuVwI8sI8zUZODmk162c-DWJL3wVVJB5DwHlJlq_JCvdGVxySRETeQh94syAsKa4mtZzzZfW1qpNEvvFdUB0HdeGhWl3i31edqnLRznrzWeuB9-vsD3-pz7fYbcXAJa_6kbcXXbDt_fYh9fj1vNRIHT89eNnjcP6i6_5iI42wcdvI6wwnU3G9KRIwZRbwCfxOXv-lS524gRYcRXln1qOkJRjyX12vPt2-KaKF9c1xCAoCxCRoFeQ2NTnyuIu0bm0trpshFKZS0CW3uksa8BbV4pa6CLVOEgg1brJBeCm_gHbaLG1jxivE1dAknvXZI1IBJSiBJWrUjkNWkMZsXSpGHPesXKYP3YzKCJDIqI7NkPWnszNRcReBg2uKtjJGWW1FdKc9PfM3lE2PNqp9k0Vse2lig3aGonFtn48nxqFk11ZFEnEHnaav_y50hTwVBGTQX9_3SpzMhjgy-N_rLfNblbDwwNz8K6__4Td6vxDlEv8lG3MJnP_DBHTzD0PlvAbtCoHpg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQSKiXPkQfoQ98qHrLKokdJz7SbpdtoauyBcHNsh1boNVm0T4o5cRP6G_sL-mMs7t0EYeq6imRLCf2jMf-xjP-TMhbK3WuK5vEUusk5iFIyHIbF2nqvYcipnEf8ktPdI_559P8dJ7_hGdhGn6I5YYbWkaYr9HALyq_auRIr4l04cuYQs5agCc3uGAZOmLt_i2VFBKRh8gnTAyAaoq7WT33fGllqdpAqV_dh0NXYW1YlzqPyGDRoyYdZdCaTU3LXt8he_w_XX5MHs7hK91txtsTsubqLfLt_ah2dBjoHH_d_KxgUF-6ig7xYJM9-zGECpPpeIRPjBNMqLbwRDZnR7_jtU4U4SqsofS8pgBIKZQ8Jcedj0cfuvH8sobYcswBBBzohE106pjQ4CMak1Zalp4LkZnE5qUzMsu8ddqUvOKySCUMEZtK6Rm34NI_I-s1tPYFoVViCpswZ3zmecJtyUsrmCiFkVZKW0YkXehFXTScHOoPXwZEpFBEeMNmyNnLmbqKyLugwGUFPR5gTluRq5Pento7zI4O29191Y3IzkLDCiwNxaJrN5pNlICpriyKJCLPG8Xf_lxIDHeKiORBfX_dKnXS78PL9j_W2yGbX9sddfCpt_-SPGg2hzCR-BVZn45n7jXApal5E-zgN4wlBlU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bone+marrow%E2%80%90derived+mesenchymal+stromal+cells+accelerate+wound+healing+in+the+rat&rft.jtitle=Wound+repair+and+regeneration&rft.au=McFarlin%2C+Kellie&rft.au=Gao%2C+Xiaohua&rft.au=Liu%2C+Yong+Bo&rft.au=Dulchavsky%2C+Deborah+S.&rft.date=2006-07-01&rft.pub=Blackwell+Publishing+Inc&rft.issn=1067-1927&rft.eissn=1524-475X&rft.volume=14&rft.issue=4&rft.spage=471&rft.epage=478&rft_id=info:doi/10.1111%2Fj.1743-6109.2006.00153.x&rft.externalDBID=10.1111%252Fj.1743-6109.2006.00153.x&rft.externalDocID=WRR153
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1067-1927&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1067-1927&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1067-1927&client=summon