Variability in large-scale wind power generation

The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net loa...

Full description

Saved in:
Bibliographic Details
Published inWind energy (Chichester, England) Vol. 19; no. 9; pp. 1649 - 1665
Main Authors Kiviluoma, Juha, Holttinen, Hannele, Weir, David, Scharff, Richard, Söder, Lennart, Menemenlis, Nickie, Cutululis, Nicolaos A., Danti Lopez, Irene, Lannoye, Eamonn, Estanqueiro, Ana, Gomez-Lazaro, Emilio, Zhang, Qin, Bai, Jianhua, Wan, Yih-Huei, Milligan, Michael
Format Journal Article
LanguageEnglish
Published Bognor Regis Blackwell Publishing Ltd 01.09.2016
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1 h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well‐dispersed wind power. Copyright © 2015 John Wiley & Sons, Ltd.
AbstractList The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1 h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well‐dispersed wind power. Copyright © 2015 John Wiley & Sons, Ltd.
The article demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability, and low net load events. In some characteristics the power systems are different, but in others they are significantly similar. Somewhat surprisingly there seems to be no straightforward correlation between wind power penetration level and variability. As long as there are several wind power plants with enough geographical spread, most of the smoothing impact is captured. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are auto correlated and dependent on the operating output level. In most cases wind power did not have strong diurnal or seasonal variations in the variability. However, there can be exceptions depending on the latitude and on the local characteristics of the wind resource.
The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well-dispersed wind power. Copyright © 2015 John Wiley & Sons, Ltd.
The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well-dispersed wind power.
Author Scharff, Richard
Gomez-Lazaro, Emilio
Söder, Lennart
Weir, David
Lannoye, Eamonn
Bai, Jianhua
Wan, Yih-Huei
Zhang, Qin
Holttinen, Hannele
Estanqueiro, Ana
Kiviluoma, Juha
Cutululis, Nicolaos A.
Milligan, Michael
Danti Lopez, Irene
Menemenlis, Nickie
Author_xml – sequence: 1
  givenname: Juha
  surname: Kiviluoma
  fullname: Kiviluoma, Juha
  email: Juha Kiviluoma, VTT Technical Research Centre of Finland, Espoo, Finland., juha.kiviluoma@vtt.fi
  organization: VTT Technical Research Centre of Finland, Espoo, Finland
– sequence: 2
  givenname: Hannele
  surname: Holttinen
  fullname: Holttinen, Hannele
  organization: VTT Technical Research Centre of Finland, Espoo, Finland
– sequence: 3
  givenname: David
  surname: Weir
  fullname: Weir, David
  organization: Energy Department, Norwegian Water Resources and Energy Directorate, Oslo, Norway
– sequence: 4
  givenname: Richard
  surname: Scharff
  fullname: Scharff, Richard
  organization: KTH Royal Institute of Technology, Electric Power Systems, Stockholm, Sweden
– sequence: 5
  givenname: Lennart
  surname: Söder
  fullname: Söder, Lennart
  organization: Royal Institute of Technology, Electric Power Systems, Stockholm, Sweden
– sequence: 6
  givenname: Nickie
  surname: Menemenlis
  fullname: Menemenlis, Nickie
  organization: Institut de recherche Hydro-Québec, Montreal, Canada
– sequence: 7
  givenname: Nicolaos A.
  surname: Cutululis
  fullname: Cutululis, Nicolaos A.
  organization: DTU, Wind Energy, Roskilde, Denmark
– sequence: 8
  givenname: Irene
  surname: Danti Lopez
  fullname: Danti Lopez, Irene
  organization: Electricity Research Centre, University College Dublin, Dublin, Ireland
– sequence: 9
  givenname: Eamonn
  surname: Lannoye
  fullname: Lannoye, Eamonn
  organization: Electric Power Research Institute, California, Palo Alto, USA
– sequence: 10
  givenname: Ana
  surname: Estanqueiro
  fullname: Estanqueiro, Ana
  organization: LNEG, Laboratorio Nacional de Energia e Geologia, UESEO, Lisbon, Spain
– sequence: 11
  givenname: Emilio
  surname: Gomez-Lazaro
  fullname: Gomez-Lazaro, Emilio
  organization: Renewable Energy Research Institute and DIEEAC/EDII-AB, Castilla-La Mancha University, Albacete, Spain
– sequence: 12
  givenname: Qin
  surname: Zhang
  fullname: Zhang, Qin
  organization: State Grid Corporation of China, Beijing, China
– sequence: 13
  givenname: Jianhua
  surname: Bai
  fullname: Bai, Jianhua
  organization: State Grid Energy Research Institute Beijing, Beijing, China
– sequence: 14
  givenname: Yih-Huei
  surname: Wan
  fullname: Wan, Yih-Huei
  organization: National Renewable Energy Laboratory, Transmission and Grid Integration Group, Colorado, Golden, USA
– sequence: 15
  givenname: Michael
  surname: Milligan
  fullname: Milligan, Michael
  organization: National Renewable Energy Laboratory, Transmission and Grid Integration Group, Colorado, Golden, USA
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-171066$$DView record from Swedish Publication Index
BookMark eNp10M9PwjAUB_DGYKKg8V9Y4kETM2y7dl2PiD8wQT2ocGy68obVuWI7MvnvZUI4mHh67_DJy_t-u6hTuQoQOiG4TzCmlw30iWR0Dx0SLGVMMso6vzuPGWXsAHVDeMeYYEKyQ4Qn2lud29LWq8hWUan9HOJgdAlRY6tZtHAN-GgOFXhdW1cdof1ClwGOt7OHXm9vXoajePx0dz8cjGPDpKRxbpigFEiiZ5qD0RiYzAU3gIUwghWGGp5QkksGKQUDWZpBMcuFKPKZFFgkPRRv7oYGFstcLbz91H6lnLbq2k4Gyvm5-qjfFBEEp-nan2_8wruvJYRafdpgoCx1BW4ZFMnWeSVPRUtP_9B3t_TVOk2rME84Ya062yjjXQgeit0LBKu2adWAaptey4uNbGwJq_-Ymt5s9TaYDTV877T2HyoVieBq-ninxPPjw9Xoliua_ADzco2_
CitedBy_id crossref_primary_10_1109_TPWRS_2019_2891057
crossref_primary_10_1016_j_energy_2016_10_096
crossref_primary_10_1016_j_renene_2020_05_153
crossref_primary_10_5194_wes_5_1731_2020
crossref_primary_10_1016_j_gloei_2019_11_005
crossref_primary_10_3390_en14092573
crossref_primary_10_1016_j_renene_2018_10_084
crossref_primary_10_1016_j_jweia_2017_03_008
crossref_primary_10_1049_iet_rpg_2019_0723
crossref_primary_10_1016_j_segy_2021_100038
crossref_primary_10_5194_wes_9_263_2024
crossref_primary_10_1016_j_renene_2019_07_002
crossref_primary_10_1088_1748_9326_aca2c2
crossref_primary_10_1016_j_epsr_2020_106936
crossref_primary_10_1016_j_gloei_2020_11_008
crossref_primary_10_1049_iet_rpg_2016_0508
crossref_primary_10_1002_we_2645
crossref_primary_10_3390_en13133366
crossref_primary_10_3390_en14082184
crossref_primary_10_1002_we_2685
crossref_primary_10_1016_j_egyr_2021_06_060
crossref_primary_10_1088_1748_9326_aca9e6
crossref_primary_10_1049_iet_rpg_2017_0107
crossref_primary_10_1002_wene_329
crossref_primary_10_1016_j_enconman_2017_06_005
crossref_primary_10_3390_en13133304
crossref_primary_10_1080_14786451_2023_2189490
crossref_primary_10_3390_en13164132
crossref_primary_10_5194_wes_6_461_2021
crossref_primary_10_1002_we_2153
crossref_primary_10_3390_app10010143
crossref_primary_10_3390_en11123325
crossref_primary_10_3934_mbe_2022386
crossref_primary_10_3390_en11040943
crossref_primary_10_1002_we_2410
Cites_doi 10.1016/j.enpol.2010.03.069
10.1016/j.enpol.2005.10.003
10.2172/1033036
10.1002/we.144
10.1088/1748-9326/7/3/034017
10.1016/j.ijepes.2010.08.027
10.1260/0309-524X.32.4.355
10.1073/pnas.0909075107
10.2172/1004166
10.1109/TPWRS.2005.846206
ContentType Journal Article
Copyright Copyright © 2015 John Wiley & Sons, Ltd.
Copyright © 2016 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2015 John Wiley & Sons, Ltd.
– notice: Copyright © 2016 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7ST
C1K
SOI
ADTPV
AOWAS
D8V
DOI 10.1002/we.1942
DatabaseName Istex
CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

Environment Abstracts

Environment Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1824
EndPage 1665
ExternalDocumentID oai_DiVA_org_kth_171066
4143681661
10_1002_we_1942
WE1942
ark_67375_WNG_7SNMBHF5_2
Genre article
GeographicLocations ANE, Norway
ANE, Portugal
Canada, Quebec
ANE, Eire
ASW, USA, Texas
ANE, Sweden
ANE, Finland
China, People's Rep
Denmark
ANE, Spain
Germany
GeographicLocations_xml – name: ANE, Finland
– name: ASW, USA, Texas
– name: Germany
– name: ANE, Spain
– name: ANE, Portugal
– name: China, People's Rep
– name: ANE, Sweden
– name: Denmark
– name: Canada, Quebec
– name: ANE, Norway
– name: ANE, Eire
GroupedDBID 05W
0R~
123
1OC
24P
31~
3SF
3WU
4.4
50Y
52U
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AAONW
AAZKR
ABCUV
ABIJN
ABJCF
ACBWZ
ACCFJ
ACGFS
ACPOU
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADXAS
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ASPBG
ATCPS
ATUGU
AUFTA
AVUZU
AVWKF
AZFZN
AZVAB
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BKSAR
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
CCPQU
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDH
EJD
FEDTE
G-S
GODZA
GROUPED_DOAJ
HCIFZ
HF~
HVGLF
HZ~
I-F
IAO
ITC
IX1
LATKE
LAW
LITHE
LOXES
LUTES
LYRES
M7S
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
NNB
O66
O9-
OIG
OK1
P2P
P2W
P4E
PATMY
PCBAR
PTHSS
PYCSY
QRW
R.K
ROL
RX1
RYL
SUPJJ
UCJ
W99
WBKPD
WIH
WIK
WOHZO
WUPDE
WYISQ
WYJ
XPP
XV2
ZZTAW
AAYXX
ACRPL
ACYXJ
CITATION
7ST
C1K
SOI
ADTPV
AOWAS
D8V
ID FETCH-LOGICAL-c4992-bc4722e13ada5eca0e49b75ce077c74fc2c5321b94e62ece868efdb77fbd97073
IEDL.DBID DR2
ISSN 1095-4244
1099-1824
IngestDate Tue Oct 01 22:34:11 EDT 2024
Thu Aug 15 22:39:02 EDT 2024
Mon Nov 25 09:48:18 EST 2024
Fri Dec 06 05:39:41 EST 2024
Sat Aug 24 00:58:34 EDT 2024
Wed Oct 30 09:49:52 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4992-bc4722e13ada5eca0e49b75ce077c74fc2c5321b94e62ece868efdb77fbd97073
Notes ArticleID:WE1942
ark:/67375/WNG-7SNMBHF5-2
istex:6A91C2D231C8E8D7BC948EF419D2BEAEDDB9FDB4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2016-1739
0000-0003-2438-1429
OpenAccessLink http://hdl.handle.net/10400.9/2968
PQID 1810535146
PQPubID 1006436
PageCount 17
ParticipantIDs swepub_primary_oai_DiVA_org_kth_171066
proquest_miscellaneous_1811895676
proquest_journals_1810535146
crossref_primary_10_1002_we_1942
wiley_primary_10_1002_we_1942_WE1942
istex_primary_ark_67375_WNG_7SNMBHF5_2
PublicationCentury 2000
PublicationDate September 2016
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Wind energy (Chichester, England)
PublicationTitleAlternate Wind Energ
PublicationYear 2016
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
References Molly JP. Rated power of wind turbines: what is best? DEWI Magazine 2011; 38: 49-57.
Degeilh Y, Singh C. A quantitative approach to wind farm diversification and reliability. Electrical Power and Energy Systems 2011; 33: 303-314.
Katzenstein W, Fertig E, Apt J. The variability of interconnected wind plants. Energy Policy 2010; 38: 4400-4410.
Kempton W, Pimenta FM, Veron DE, Colle BA. Electric power from offshore wind via synoptic-scale interconnection. PNAS 2010; 107: 7240-7245.
Holttinen H, Milligan M, Kirby B, Acker T, Neimane V, Molinski T. Using standard deviation as a measure of increased operational reserve requirement for wind power. Wind Engineering 2008; 32: 355-377.
Fertig E, Apt J, Jaramillo P, Katzenstein W. The effect of long-distance interconnection on wind power variability. Environmental Research Letters 2012; 7: 6p. 034017.
Holttinen H. Hourly wind power variations in the Nordic countries. Wind Energy 2005; 8: 173-195.
Sinden G. Characteristics of the UK wind resource: long-term patterns and relationship to electricity demand. Energy Policy 2007; 35: 112-127.
Doherty R, O'Malley M. A new approach to quantify reserve demand in systems with significant installed wind capacity. IEEE Transactions on Power Systems 2005; 20: 587-595.
2010; 38
2012
2010; 107
2011
2010
2005; 8
2008
2011; 33
2005; 20
2005
2008; 32
2004
2013
2012; 7
2011; 38
2007; 35
1999
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
Molly JP (e_1_2_5_25_1) 2011; 38
References_xml – year: 2011
– volume: 33
  start-page: 303
  year: 2011
  end-page: 314
  article-title: A quantitative approach to wind farm diversification and reliability
  publication-title: Electrical Power and Energy Systems
– volume: 38
  start-page: 49
  year: 2011
  end-page: 57
  article-title: Rated power of wind turbines: what is best?
  publication-title: DEWI Magazine
– volume: 107
  start-page: 7240
  year: 2010
  end-page: 7245
  article-title: Electric power from offshore wind via synoptic‐scale interconnection
  publication-title: PNAS
– year: 2005
– volume: 32
  start-page: 355
  year: 2008
  end-page: 377
  article-title: Using standard deviation as a measure of increased operational reserve requirement for wind power
  publication-title: Wind Engineering
– volume: 38
  start-page: 4400
  year: 2010
  end-page: 4410
  article-title: The variability of interconnected wind plants
  publication-title: Energy Policy
– year: 2008
– year: 2004
– volume: 7
  start-page: 6
  year: 2012
  article-title: The effect of long‐distance interconnection on wind power variability
  publication-title: Environmental Research Letters
– volume: 20
  start-page: 587
  year: 2005
  end-page: 595
  article-title: A new approach to quantify reserve demand in systems with significant installed wind capacity
  publication-title: IEEE Transactions on Power Systems
– volume: 35
  start-page: 112
  year: 2007
  end-page: 127
  article-title: Characteristics of the UK wind resource: long‐term patterns and relationship to electricity demand
  publication-title: Energy Policy
– volume: 8
  start-page: 173
  year: 2005
  end-page: 195
  article-title: Hourly wind power variations in the Nordic countries
  publication-title: Wind Energy
– year: 2010
– year: 2013
– year: 1999
– year: 2012
– ident: e_1_2_5_16_1
  doi: 10.1016/j.enpol.2010.03.069
– ident: e_1_2_5_19_1
  doi: 10.1016/j.enpol.2005.10.003
– ident: e_1_2_5_23_1
– ident: e_1_2_5_15_1
– ident: e_1_2_5_11_1
  doi: 10.2172/1033036
– ident: e_1_2_5_9_1
  doi: 10.1002/we.144
– ident: e_1_2_5_26_1
– ident: e_1_2_5_18_1
  doi: 10.1088/1748-9326/7/3/034017
– ident: e_1_2_5_22_1
– ident: e_1_2_5_7_1
– ident: e_1_2_5_4_1
– ident: e_1_2_5_14_1
  doi: 10.1016/j.ijepes.2010.08.027
– ident: e_1_2_5_21_1
  doi: 10.1260/0309-524X.32.4.355
– ident: e_1_2_5_17_1
  doi: 10.1073/pnas.0909075107
– ident: e_1_2_5_13_1
– ident: e_1_2_5_10_1
– ident: e_1_2_5_12_1
  doi: 10.2172/1004166
– ident: e_1_2_5_5_1
– ident: e_1_2_5_8_1
– ident: e_1_2_5_6_1
– ident: e_1_2_5_3_1
– ident: e_1_2_5_24_1
– volume: 38
  start-page: 49
  year: 2011
  ident: e_1_2_5_25_1
  article-title: Rated power of wind turbines: what is best?
  publication-title: DEWI Magazine
  contributor:
    fullname: Molly JP
– ident: e_1_2_5_2_1
– ident: e_1_2_5_20_1
  doi: 10.1109/TPWRS.2005.846206
SSID ssj0010118
Score 2.4034352
Snippet The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years....
The article demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple...
SourceID swepub
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 1649
SubjectTerms Electric power generation
Electrical Engineering
Elektro- och systemteknik
net load
power systems
Probability distribution
Variability
variable generation
Wind power
Title Variability in large-scale wind power generation
URI https://api.istex.fr/ark:/67375/WNG-7SNMBHF5-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwe.1942
https://www.proquest.com/docview/1810535146
https://search.proquest.com/docview/1811895676
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-171066
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQXODAjiibgoS4pTRpEsdHtlIh0QO7uFi2MymoKEVdVODEJ_CNfAkzcRsoEhLilIPHiu3xjJ_tmWfGdqrkDuPEdyMwqRvwRLhCpcL1jOImUQlUBWUjnzWi-lVwehvefnvqy_JDFAduZBm5vyYDV7q790UaOoAybsDJ-3pVTsF8R-cFcZRH-ZT5PacIXUrlsumyVHNvWG9sHZqiIX0eB5mWOHQcs-aLTm2O3Y2aa2NNWuV-T5fN6w8mx3_1Z57NDqGos2_nzgKbgGyRzXwjKFxi_jVupS2T94vzkDmPFDf-8fbeRc2CM8D9vPNEz6w5zZy9mpS8zK5qx5eHdXf4yoJrAgo91Yb4IsGrqkSFYFQFAqF5aKDCueFBanwToka1CCDywUAcxZAmmvNUJ4Kjh1hhk1k7g1XmVDylIgEG7TwOEIlpL4oN0OFSGqpAV0rMGY25fLJkGtLSJvtyAJK6X2K7uS6KctVpUewZD-VN40Tyi8bZQb0WShTcGClLDs2uKxGuEF8Nev8S2y6K0WDoFkRl0O7nMl6Mu0KOMrtWycXPiGv76OF6X7Y7Tdnq3UsPAViEgju55n5rtLw5ps_a38TW2TSirsgGqm2wyV6nD5uIbHp6K5_En4Ol9VI
link.rule.ids 230,314,780,784,885,1375,27924,27925,46294,46718,50814,50923
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI4QOwAHxFMMBhQJcSusXds0x_EY47FdYANxidLUHQjUobFpcOMn8Bv5JdhNKeyAxKmHOmplx87nxP7C2G6NwmEYu3YAOrE9HgtbqETYjlZcxyqGmqBu5FY7aHa881v_Nq-qpF4Yww9RbLiRZ2TxmhycNqQPflhDx7CPGTiG3xIuegSOSvVu565TnCFQT2V21il8m9q5TMssDT7Ih06sRSVS6-sk0DTkoZO4NVt4GgtsPkeMVt2YeJFNQbrE5n7xCC4zt4sZryHcfrMeUuuJyrs_3z9e0ABgjTHttp7pNjSrl5FMky1WWKdxcn3UtPPLEGztUYVopInWEZyaipUPWlXBExH3NVQ519xLtKt9VHwkPAhc0BAGISRxxHkSxYKjI6-y6bSfwhqzqo5SgQCN7hh6CJgiJwg10B5Q4isvqpaZ9a0W-Ww4L6RhN3blGCRprsz2MnUV79XgkUrEuC9v2qeSX7Vbh82GL1Gw8q1PmXvHi0RUQbQyGKTLbKd4jfOaDitUCv1RJuOEmLxxlNkzdig-RpTYxw_duuwPevJxeC8dxEkBCu5mdvrrp-XNCT3W_ye2zWaa161LeXnWvthgswiUAlNbVmHTw8EINhGMDKOtfNZ9AcwS2xs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZQI6H2wKOlakqBRap62zS78drrYyENAdqoAvoQF8v2zpYq1SbKQ2k58RP4jfwSZtbJ0iAhoZ724LHW9njGn-2Zz4zttsgdplkcCnB5yGWmQmVyFUbOSJeZDFqKspGPe6J7yj9cJBd3nvry_BDVgRtZRumvycCHWb7_hzR0Bg3cgKP3rXERK6LNb3-qmKMiSqgsLzpVElIul8-Xpar784pLC1GNxvRmGWV65tBl0FquOp3H7OuivT7YpN-YTmzDff-LyvFeHXrCHs2xaHDgJ89T9gCKdbZ2h6Fwg8VnuJf2VN63wVURXFPg-K8fP8eoWghmuKEPhvTOWnBZ0leTlp-x087hl7fdcP7MQug4xZ5aR4SRELVMZhJwpglcWZk4aErpJM9d7BJUqVUcRAwOUpFCnlkpc5spiS5ik60UgwK2WNCMjBEKHBp6yhGK2UikDuh0KU8Mt806CxZjroeeTUN73uRYz0BT9-tsr9RFVW5GfQo-k4k-773T8nPv-E23k2gU3FkoS8_tbqwRrxBhDbr_OntdFaPF0DWIKWAwLWWiFLeFEmX2vJKrnxHZdvvq7EAPRpe6P_mmI0RgAgV3S839q9H6_JA-2_8n9oo9PGl39NH73sfnbBURmPBBaztsZTKawgtEORP7spzPvwECR_gi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variability+in+large-scale+wind+power+generation&rft.jtitle=Wind+energy+%28Chichester%2C+England%29&rft.au=Kiviluoma%2C+Juha&rft.au=Holttinen%2C+Hannele&rft.au=Weir%2C+David&rft.au=Scharff%2C+Richard&rft.date=2016-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1095-4244&rft.eissn=1099-1824&rft.volume=19&rft.issue=9&rft.spage=1649&rft_id=info:doi/10.1002%2Fwe.1942&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4143681661
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1095-4244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1095-4244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1095-4244&client=summon