Variability in large-scale wind power generation
The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net loa...
Saved in:
Published in | Wind energy (Chichester, England) Vol. 19; no. 9; pp. 1649 - 1665 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Blackwell Publishing Ltd
01.09.2016
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1 h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well‐dispersed wind power. Copyright © 2015 John Wiley & Sons, Ltd. |
---|---|
AbstractList | The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1 h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well‐dispersed wind power. Copyright © 2015 John Wiley & Sons, Ltd. The article demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability, and low net load events. In some characteristics the power systems are different, but in others they are significantly similar. Somewhat surprisingly there seems to be no straightforward correlation between wind power penetration level and variability. As long as there are several wind power plants with enough geographical spread, most of the smoothing impact is captured. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are auto correlated and dependent on the operating output level. In most cases wind power did not have strong diurnal or seasonal variations in the variability. However, there can be exceptions depending on the latitude and on the local characteristics of the wind resource. The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well-dispersed wind power. Copyright © 2015 John Wiley & Sons, Ltd. The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well-dispersed wind power. |
Author | Scharff, Richard Gomez-Lazaro, Emilio Söder, Lennart Weir, David Lannoye, Eamonn Bai, Jianhua Wan, Yih-Huei Zhang, Qin Holttinen, Hannele Estanqueiro, Ana Kiviluoma, Juha Cutululis, Nicolaos A. Milligan, Michael Danti Lopez, Irene Menemenlis, Nickie |
Author_xml | – sequence: 1 givenname: Juha surname: Kiviluoma fullname: Kiviluoma, Juha email: Juha Kiviluoma, VTT Technical Research Centre of Finland, Espoo, Finland., juha.kiviluoma@vtt.fi organization: VTT Technical Research Centre of Finland, Espoo, Finland – sequence: 2 givenname: Hannele surname: Holttinen fullname: Holttinen, Hannele organization: VTT Technical Research Centre of Finland, Espoo, Finland – sequence: 3 givenname: David surname: Weir fullname: Weir, David organization: Energy Department, Norwegian Water Resources and Energy Directorate, Oslo, Norway – sequence: 4 givenname: Richard surname: Scharff fullname: Scharff, Richard organization: KTH Royal Institute of Technology, Electric Power Systems, Stockholm, Sweden – sequence: 5 givenname: Lennart surname: Söder fullname: Söder, Lennart organization: Royal Institute of Technology, Electric Power Systems, Stockholm, Sweden – sequence: 6 givenname: Nickie surname: Menemenlis fullname: Menemenlis, Nickie organization: Institut de recherche Hydro-Québec, Montreal, Canada – sequence: 7 givenname: Nicolaos A. surname: Cutululis fullname: Cutululis, Nicolaos A. organization: DTU, Wind Energy, Roskilde, Denmark – sequence: 8 givenname: Irene surname: Danti Lopez fullname: Danti Lopez, Irene organization: Electricity Research Centre, University College Dublin, Dublin, Ireland – sequence: 9 givenname: Eamonn surname: Lannoye fullname: Lannoye, Eamonn organization: Electric Power Research Institute, California, Palo Alto, USA – sequence: 10 givenname: Ana surname: Estanqueiro fullname: Estanqueiro, Ana organization: LNEG, Laboratorio Nacional de Energia e Geologia, UESEO, Lisbon, Spain – sequence: 11 givenname: Emilio surname: Gomez-Lazaro fullname: Gomez-Lazaro, Emilio organization: Renewable Energy Research Institute and DIEEAC/EDII-AB, Castilla-La Mancha University, Albacete, Spain – sequence: 12 givenname: Qin surname: Zhang fullname: Zhang, Qin organization: State Grid Corporation of China, Beijing, China – sequence: 13 givenname: Jianhua surname: Bai fullname: Bai, Jianhua organization: State Grid Energy Research Institute Beijing, Beijing, China – sequence: 14 givenname: Yih-Huei surname: Wan fullname: Wan, Yih-Huei organization: National Renewable Energy Laboratory, Transmission and Grid Integration Group, Colorado, Golden, USA – sequence: 15 givenname: Michael surname: Milligan fullname: Milligan, Michael organization: National Renewable Energy Laboratory, Transmission and Grid Integration Group, Colorado, Golden, USA |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-171066$$DView record from Swedish Publication Index |
BookMark | eNp10M9PwjAUB_DGYKKg8V9Y4kETM2y7dl2PiD8wQT2ocGy68obVuWI7MvnvZUI4mHh67_DJy_t-u6hTuQoQOiG4TzCmlw30iWR0Dx0SLGVMMso6vzuPGWXsAHVDeMeYYEKyQ4Qn2lud29LWq8hWUan9HOJgdAlRY6tZtHAN-GgOFXhdW1cdof1ClwGOt7OHXm9vXoajePx0dz8cjGPDpKRxbpigFEiiZ5qD0RiYzAU3gIUwghWGGp5QkksGKQUDWZpBMcuFKPKZFFgkPRRv7oYGFstcLbz91H6lnLbq2k4Gyvm5-qjfFBEEp-nan2_8wruvJYRafdpgoCx1BW4ZFMnWeSVPRUtP_9B3t_TVOk2rME84Ya062yjjXQgeit0LBKu2adWAaptey4uNbGwJq_-Ymt5s9TaYDTV877T2HyoVieBq-ninxPPjw9Xoliua_ADzco2_ |
CitedBy_id | crossref_primary_10_1109_TPWRS_2019_2891057 crossref_primary_10_1016_j_energy_2016_10_096 crossref_primary_10_1016_j_renene_2020_05_153 crossref_primary_10_5194_wes_5_1731_2020 crossref_primary_10_1016_j_gloei_2019_11_005 crossref_primary_10_3390_en14092573 crossref_primary_10_1016_j_renene_2018_10_084 crossref_primary_10_1016_j_jweia_2017_03_008 crossref_primary_10_1049_iet_rpg_2019_0723 crossref_primary_10_1016_j_segy_2021_100038 crossref_primary_10_5194_wes_9_263_2024 crossref_primary_10_1016_j_renene_2019_07_002 crossref_primary_10_1088_1748_9326_aca2c2 crossref_primary_10_1016_j_epsr_2020_106936 crossref_primary_10_1016_j_gloei_2020_11_008 crossref_primary_10_1049_iet_rpg_2016_0508 crossref_primary_10_1002_we_2645 crossref_primary_10_3390_en13133366 crossref_primary_10_3390_en14082184 crossref_primary_10_1002_we_2685 crossref_primary_10_1016_j_egyr_2021_06_060 crossref_primary_10_1088_1748_9326_aca9e6 crossref_primary_10_1049_iet_rpg_2017_0107 crossref_primary_10_1002_wene_329 crossref_primary_10_1016_j_enconman_2017_06_005 crossref_primary_10_3390_en13133304 crossref_primary_10_1080_14786451_2023_2189490 crossref_primary_10_3390_en13164132 crossref_primary_10_5194_wes_6_461_2021 crossref_primary_10_1002_we_2153 crossref_primary_10_3390_app10010143 crossref_primary_10_3390_en11123325 crossref_primary_10_3934_mbe_2022386 crossref_primary_10_3390_en11040943 crossref_primary_10_1002_we_2410 |
Cites_doi | 10.1016/j.enpol.2010.03.069 10.1016/j.enpol.2005.10.003 10.2172/1033036 10.1002/we.144 10.1088/1748-9326/7/3/034017 10.1016/j.ijepes.2010.08.027 10.1260/0309-524X.32.4.355 10.1073/pnas.0909075107 10.2172/1004166 10.1109/TPWRS.2005.846206 |
ContentType | Journal Article |
Copyright | Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2015 John Wiley & Sons, Ltd. – notice: Copyright © 2016 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION 7ST C1K SOI ADTPV AOWAS D8V |
DOI | 10.1002/we.1942 |
DatabaseName | Istex CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Environment Abstracts Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-1824 |
EndPage | 1665 |
ExternalDocumentID | oai_DiVA_org_kth_171066 4143681661 10_1002_we_1942 WE1942 ark_67375_WNG_7SNMBHF5_2 |
Genre | article |
GeographicLocations | ANE, Norway ANE, Portugal Canada, Quebec ANE, Eire ASW, USA, Texas ANE, Sweden ANE, Finland China, People's Rep Denmark ANE, Spain Germany |
GeographicLocations_xml | – name: ANE, Finland – name: ASW, USA, Texas – name: Germany – name: ANE, Spain – name: ANE, Portugal – name: China, People's Rep – name: ANE, Sweden – name: Denmark – name: Canada, Quebec – name: ANE, Norway – name: ANE, Eire |
GroupedDBID | 05W 0R~ 123 1OC 24P 31~ 3SF 3WU 4.4 50Y 52U 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AAONW AAZKR ABCUV ABIJN ABJCF ACBWZ ACCFJ ACGFS ACPOU ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADXAS ADZMN AEEZP AEIMD AENEX AEQDE AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ASPBG ATCPS ATUGU AUFTA AVUZU AVWKF AZFZN AZVAB BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BKSAR BMNLL BMXJE BNHUX BOGZA BRXPI BSCLL CCPQU CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDH EJD FEDTE G-S GODZA GROUPED_DOAJ HCIFZ HF~ HVGLF HZ~ I-F IAO ITC IX1 LATKE LAW LITHE LOXES LUTES LYRES M7S MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ NNB O66 O9- OIG OK1 P2P P2W P4E PATMY PCBAR PTHSS PYCSY QRW R.K ROL RX1 RYL SUPJJ UCJ W99 WBKPD WIH WIK WOHZO WUPDE WYISQ WYJ XPP XV2 ZZTAW AAYXX ACRPL ACYXJ CITATION 7ST C1K SOI ADTPV AOWAS D8V |
ID | FETCH-LOGICAL-c4992-bc4722e13ada5eca0e49b75ce077c74fc2c5321b94e62ece868efdb77fbd97073 |
IEDL.DBID | DR2 |
ISSN | 1095-4244 1099-1824 |
IngestDate | Tue Oct 01 22:34:11 EDT 2024 Thu Aug 15 22:39:02 EDT 2024 Mon Nov 25 09:48:18 EST 2024 Fri Dec 06 05:39:41 EST 2024 Sat Aug 24 00:58:34 EDT 2024 Wed Oct 30 09:49:52 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4992-bc4722e13ada5eca0e49b75ce077c74fc2c5321b94e62ece868efdb77fbd97073 |
Notes | ArticleID:WE1942 ark:/67375/WNG-7SNMBHF5-2 istex:6A91C2D231C8E8D7BC948EF419D2BEAEDDB9FDB4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2016-1739 0000-0003-2438-1429 |
OpenAccessLink | http://hdl.handle.net/10400.9/2968 |
PQID | 1810535146 |
PQPubID | 1006436 |
PageCount | 17 |
ParticipantIDs | swepub_primary_oai_DiVA_org_kth_171066 proquest_miscellaneous_1811895676 proquest_journals_1810535146 crossref_primary_10_1002_we_1942 wiley_primary_10_1002_we_1942_WE1942 istex_primary_ark_67375_WNG_7SNMBHF5_2 |
PublicationCentury | 2000 |
PublicationDate | September 2016 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: September 2016 |
PublicationDecade | 2010 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Wind energy (Chichester, England) |
PublicationTitleAlternate | Wind Energ |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc |
References | Molly JP. Rated power of wind turbines: what is best? DEWI Magazine 2011; 38: 49-57. Degeilh Y, Singh C. A quantitative approach to wind farm diversification and reliability. Electrical Power and Energy Systems 2011; 33: 303-314. Katzenstein W, Fertig E, Apt J. The variability of interconnected wind plants. Energy Policy 2010; 38: 4400-4410. Kempton W, Pimenta FM, Veron DE, Colle BA. Electric power from offshore wind via synoptic-scale interconnection. PNAS 2010; 107: 7240-7245. Holttinen H, Milligan M, Kirby B, Acker T, Neimane V, Molinski T. Using standard deviation as a measure of increased operational reserve requirement for wind power. Wind Engineering 2008; 32: 355-377. Fertig E, Apt J, Jaramillo P, Katzenstein W. The effect of long-distance interconnection on wind power variability. Environmental Research Letters 2012; 7: 6p. 034017. Holttinen H. Hourly wind power variations in the Nordic countries. Wind Energy 2005; 8: 173-195. Sinden G. Characteristics of the UK wind resource: long-term patterns and relationship to electricity demand. Energy Policy 2007; 35: 112-127. Doherty R, O'Malley M. A new approach to quantify reserve demand in systems with significant installed wind capacity. IEEE Transactions on Power Systems 2005; 20: 587-595. 2010; 38 2012 2010; 107 2011 2010 2005; 8 2008 2011; 33 2005; 20 2005 2008; 32 2004 2013 2012; 7 2011; 38 2007; 35 1999 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 e_1_2_5_18_1 Molly JP (e_1_2_5_25_1) 2011; 38 |
References_xml | – year: 2011 – volume: 33 start-page: 303 year: 2011 end-page: 314 article-title: A quantitative approach to wind farm diversification and reliability publication-title: Electrical Power and Energy Systems – volume: 38 start-page: 49 year: 2011 end-page: 57 article-title: Rated power of wind turbines: what is best? publication-title: DEWI Magazine – volume: 107 start-page: 7240 year: 2010 end-page: 7245 article-title: Electric power from offshore wind via synoptic‐scale interconnection publication-title: PNAS – year: 2005 – volume: 32 start-page: 355 year: 2008 end-page: 377 article-title: Using standard deviation as a measure of increased operational reserve requirement for wind power publication-title: Wind Engineering – volume: 38 start-page: 4400 year: 2010 end-page: 4410 article-title: The variability of interconnected wind plants publication-title: Energy Policy – year: 2008 – year: 2004 – volume: 7 start-page: 6 year: 2012 article-title: The effect of long‐distance interconnection on wind power variability publication-title: Environmental Research Letters – volume: 20 start-page: 587 year: 2005 end-page: 595 article-title: A new approach to quantify reserve demand in systems with significant installed wind capacity publication-title: IEEE Transactions on Power Systems – volume: 35 start-page: 112 year: 2007 end-page: 127 article-title: Characteristics of the UK wind resource: long‐term patterns and relationship to electricity demand publication-title: Energy Policy – volume: 8 start-page: 173 year: 2005 end-page: 195 article-title: Hourly wind power variations in the Nordic countries publication-title: Wind Energy – year: 2010 – year: 2013 – year: 1999 – year: 2012 – ident: e_1_2_5_16_1 doi: 10.1016/j.enpol.2010.03.069 – ident: e_1_2_5_19_1 doi: 10.1016/j.enpol.2005.10.003 – ident: e_1_2_5_23_1 – ident: e_1_2_5_15_1 – ident: e_1_2_5_11_1 doi: 10.2172/1033036 – ident: e_1_2_5_9_1 doi: 10.1002/we.144 – ident: e_1_2_5_26_1 – ident: e_1_2_5_18_1 doi: 10.1088/1748-9326/7/3/034017 – ident: e_1_2_5_22_1 – ident: e_1_2_5_7_1 – ident: e_1_2_5_4_1 – ident: e_1_2_5_14_1 doi: 10.1016/j.ijepes.2010.08.027 – ident: e_1_2_5_21_1 doi: 10.1260/0309-524X.32.4.355 – ident: e_1_2_5_17_1 doi: 10.1073/pnas.0909075107 – ident: e_1_2_5_13_1 – ident: e_1_2_5_10_1 – ident: e_1_2_5_12_1 doi: 10.2172/1004166 – ident: e_1_2_5_5_1 – ident: e_1_2_5_8_1 – ident: e_1_2_5_6_1 – ident: e_1_2_5_3_1 – ident: e_1_2_5_24_1 – volume: 38 start-page: 49 year: 2011 ident: e_1_2_5_25_1 article-title: Rated power of wind turbines: what is best? publication-title: DEWI Magazine contributor: fullname: Molly JP – ident: e_1_2_5_2_1 – ident: e_1_2_5_20_1 doi: 10.1109/TPWRS.2005.846206 |
SSID | ssj0010118 |
Score | 2.4034352 |
Snippet | The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years.... The article demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple... |
SourceID | swepub proquest crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 1649 |
SubjectTerms | Electric power generation Electrical Engineering Elektro- och systemteknik net load power systems Probability distribution Variability variable generation Wind power |
Title | Variability in large-scale wind power generation |
URI | https://api.istex.fr/ark:/67375/WNG-7SNMBHF5-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwe.1942 https://www.proquest.com/docview/1810535146 https://search.proquest.com/docview/1811895676 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-171066 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQXODAjiibgoS4pTRpEsdHtlIh0QO7uFi2MymoKEVdVODEJ_CNfAkzcRsoEhLilIPHiu3xjJ_tmWfGdqrkDuPEdyMwqRvwRLhCpcL1jOImUQlUBWUjnzWi-lVwehvefnvqy_JDFAduZBm5vyYDV7q790UaOoAybsDJ-3pVTsF8R-cFcZRH-ZT5PacIXUrlsumyVHNvWG9sHZqiIX0eB5mWOHQcs-aLTm2O3Y2aa2NNWuV-T5fN6w8mx3_1Z57NDqGos2_nzgKbgGyRzXwjKFxi_jVupS2T94vzkDmPFDf-8fbeRc2CM8D9vPNEz6w5zZy9mpS8zK5qx5eHdXf4yoJrAgo91Yb4IsGrqkSFYFQFAqF5aKDCueFBanwToka1CCDywUAcxZAmmvNUJ4Kjh1hhk1k7g1XmVDylIgEG7TwOEIlpL4oN0OFSGqpAV0rMGY25fLJkGtLSJvtyAJK6X2K7uS6KctVpUewZD-VN40Tyi8bZQb0WShTcGClLDs2uKxGuEF8Nev8S2y6K0WDoFkRl0O7nMl6Mu0KOMrtWycXPiGv76OF6X7Y7Tdnq3UsPAViEgju55n5rtLw5ps_a38TW2TSirsgGqm2wyV6nD5uIbHp6K5_En4Ol9VI |
link.rule.ids | 230,314,780,784,885,1375,27924,27925,46294,46718,50814,50923 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI4QOwAHxFMMBhQJcSusXds0x_EY47FdYANxidLUHQjUobFpcOMn8Bv5JdhNKeyAxKmHOmplx87nxP7C2G6NwmEYu3YAOrE9HgtbqETYjlZcxyqGmqBu5FY7aHa881v_Nq-qpF4Yww9RbLiRZ2TxmhycNqQPflhDx7CPGTiG3xIuegSOSvVu565TnCFQT2V21il8m9q5TMssDT7Ih06sRSVS6-sk0DTkoZO4NVt4GgtsPkeMVt2YeJFNQbrE5n7xCC4zt4sZryHcfrMeUuuJyrs_3z9e0ABgjTHttp7pNjSrl5FMky1WWKdxcn3UtPPLEGztUYVopInWEZyaipUPWlXBExH3NVQ519xLtKt9VHwkPAhc0BAGISRxxHkSxYKjI6-y6bSfwhqzqo5SgQCN7hh6CJgiJwg10B5Q4isvqpaZ9a0W-Ww4L6RhN3blGCRprsz2MnUV79XgkUrEuC9v2qeSX7Vbh82GL1Gw8q1PmXvHi0RUQbQyGKTLbKd4jfOaDitUCv1RJuOEmLxxlNkzdig-RpTYxw_duuwPevJxeC8dxEkBCu5mdvrrp-XNCT3W_ye2zWaa161LeXnWvthgswiUAlNbVmHTw8EINhGMDKOtfNZ9AcwS2xs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZQI6H2wKOlakqBRap62zS78drrYyENAdqoAvoQF8v2zpYq1SbKQ2k58RP4jfwSZtbJ0iAhoZ724LHW9njGn-2Zz4zttsgdplkcCnB5yGWmQmVyFUbOSJeZDFqKspGPe6J7yj9cJBd3nvry_BDVgRtZRumvycCHWb7_hzR0Bg3cgKP3rXERK6LNb3-qmKMiSqgsLzpVElIul8-Xpar784pLC1GNxvRmGWV65tBl0FquOp3H7OuivT7YpN-YTmzDff-LyvFeHXrCHs2xaHDgJ89T9gCKdbZ2h6Fwg8VnuJf2VN63wVURXFPg-K8fP8eoWghmuKEPhvTOWnBZ0leTlp-x087hl7fdcP7MQug4xZ5aR4SRELVMZhJwpglcWZk4aErpJM9d7BJUqVUcRAwOUpFCnlkpc5spiS5ik60UgwK2WNCMjBEKHBp6yhGK2UikDuh0KU8Mt806CxZjroeeTUN73uRYz0BT9-tsr9RFVW5GfQo-k4k-773T8nPv-E23k2gU3FkoS8_tbqwRrxBhDbr_OntdFaPF0DWIKWAwLWWiFLeFEmX2vJKrnxHZdvvq7EAPRpe6P_mmI0RgAgV3S839q9H6_JA-2_8n9oo9PGl39NH73sfnbBURmPBBaztsZTKawgtEORP7spzPvwECR_gi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variability+in+large-scale+wind+power+generation&rft.jtitle=Wind+energy+%28Chichester%2C+England%29&rft.au=Kiviluoma%2C+Juha&rft.au=Holttinen%2C+Hannele&rft.au=Weir%2C+David&rft.au=Scharff%2C+Richard&rft.date=2016-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1095-4244&rft.eissn=1099-1824&rft.volume=19&rft.issue=9&rft.spage=1649&rft_id=info:doi/10.1002%2Fwe.1942&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4143681661 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1095-4244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1095-4244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1095-4244&client=summon |