Host–Pathogen Coevolution: The Selective Advantage of Bacillus thuringiensis Virulence and Its Cry Toxin Genes
Reciprocal coevolution between host and pathogen is widely seen as a major driver of evolution and biological innovation. Yet, to date, the underlying genetic mechanisms and associated trait functions that are unique to rapid coevolutionary change are generally unknown. We here combined experimental...
Saved in:
Published in | PLoS biology Vol. 13; no. 6; p. e1002169 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.06.2015
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reciprocal coevolution between host and pathogen is widely seen as a major driver of evolution and biological innovation. Yet, to date, the underlying genetic mechanisms and associated trait functions that are unique to rapid coevolutionary change are generally unknown. We here combined experimental evolution of the bacterial biocontrol agent Bacillus thuringiensis and its nematode host Caenorhabditis elegans with large-scale phenotyping, whole genome analysis, and functional genetics to demonstrate the selective benefit of pathogen virulence and the underlying toxin genes during the adaptation process. We show that: (i) high virulence was specifically favoured during pathogen-host coevolution rather than pathogen one-sided adaptation to a nonchanging host or to an environment without host; (ii) the pathogen genotype BT-679 with known nematocidal toxin genes and high virulence specifically swept to fixation in all of the independent replicate populations under coevolution but only some under one-sided adaptation; (iii) high virulence in the BT-679-dominated populations correlated with elevated copy numbers of the plasmid containing the nematocidal toxin genes; (iv) loss of virulence in a toxin-plasmid lacking BT-679 isolate was reconstituted by genetic reintroduction or external addition of the toxins. We conclude that sustained coevolution is distinct from unidirectional selection in shaping the pathogen's genome and life history characteristics. To our knowledge, this study is the first to characterize the pathogen genes involved in coevolutionary adaptation in an animal host-pathogen interaction system. |
---|---|
AbstractList | Reciprocal coevolution between host and pathogen is widely seen as a major driver of evolution and biological innovation. Yet, to date, the underlying genetic mechanisms and associated trait functions that are unique to rapid coevolutionary change are generally unknown. We here combined experimental evolution of the bacterial biocontrol agent Bacillus thuringiensis and its nematode host Caenorhabditis elegans with large-scale phenotyping, whole genome analysis, and functional genetics to demonstrate the selective benefit of pathogen virulence and the underlying toxin genes during the adaptation process. We show that: (i) high virulence was specifically favoured during pathogen-host coevolution rather than pathogen one-sided adaptation to a nonchanging host or to an environment without host; (ii) the pathogen genotype BT-679 with known nematocidal toxin genes and high virulence specifically swept to fixation in all of the independent replicate populations under coevolution but only some under one-sided adaptation; (iii) high virulence in the BT-679-dominated populations correlated with elevated copy numbers of the plasmid containing the nematocidal toxin genes; (iv) loss of virulence in a toxin-plasmid lacking BT-679 isolate was reconstituted by genetic reintroduction or external addition of the toxins. We conclude that sustained coevolution is distinct from unidirectional selection in shaping the pathogen's genome and life history characteristics. To our knowledge, this study is the first to characterize the pathogen genes involved in coevolutionary adaptation in an animal host-pathogen interaction system. Reciprocal coevolution between host and pathogen is widely seen as a major driver of evolution and biological innovation. Yet, to date, the underlying genetic mechanisms and associated trait functions that are unique to rapid coevolutionary change are generally unknown. We here combined experimental evolution of the bacterial biocontrol agent Bacillus thuringiensis and its nematode host Caenorhabditis elegans with large-scale phenotyping, whole genome analysis, and functional genetics to demonstrate the selective benefit of pathogen virulence and the underlying toxin genes during the adaptation process. We show that: (i) high virulence was specifically favoured during pathogen–host coevolution rather than pathogen one-sided adaptation to a nonchanging host or to an environment without host; (ii) the pathogen genotype BT-679 with known nematocidal toxin genes and high virulence specifically swept to fixation in all of the independent replicate populations under coevolution but only some under one-sided adaptation; (iii) high virulence in the BT-679-dominated populations correlated with elevated copy numbers of the plasmid containing the nematocidal toxin genes; (iv) loss of virulence in a toxin-plasmid lacking BT-679 isolate was reconstituted by genetic reintroduction or external addition of the toxins. We conclude that sustained coevolution is distinct from unidirectional selection in shaping the pathogen's genome and life history characteristics. To our knowledge, this study is the first to characterize the pathogen genes involved in coevolutionary adaptation in an animal host–pathogen interaction system. A combination of experimental evolution with large-scale phenotyping, genomics and functional genetics reveals the specific role of virulence and toxin genes during the evolutionary adaptation of a pathogen to an animal host. Evolution can be extremely fast and dramatic, especially when infectious disease agents such as bacterial pathogens engage in a continuous arms race with their host organism. Rounds of novel pathogen attack strategies and associated host counterdefenses conspire to drive host–pathogen coevolution and biological innovation. To better understand the underlying genetic mechanisms and the exact trait characteristics under selection, we conducted experimental evolution using a simple host–pathogen model system (nematode versus bacterium) under controlled laboratory conditions. We analysed the associated adaptive changes in real time using large-scale phenotyping, population whole genome sequencing, and genetic analysis of the identified candidate genes. We show that coevolution (rather than one-sided adaptation) particularly favors and maintains pathogen virulence, and that two specific toxin genes significantly influence this virulence during coevolution. Reciprocal coevolution between host and pathogen is widely seen as a major driver of evolution and biological innovation. Yet, to date, the underlying genetic mechanisms and associated trait functions that are unique to rapid coevolutionary change are generally unknown. We here combined experimental evolution of the bacterial biocontrol agent Bacillus thuringiensis and its nematode host Caenorhabditis elegans with large-scale phenotyping, whole genome analysis, and functional genetics to demonstrate the selective benefit of pathogen virulence and the underlying toxin genes during the adaptation process. We show that: (i) high virulence was specifically favoured during pathogen-host coevolution rather than pathogen one-sided adaptation to a nonchanging host or to an environment without host; (ii) the pathogen genotype BT-679 with known nematocidal toxin genes and high virulence specifically swept to fixation in all of the independent replicate populations under coevolution but only some under one-sided adaptation; (iii) high virulence in the BT-679-dominated populations correlated with elevated copy numbers of the plasmid containing the nematocidal toxin genes; (iv) loss of virulence in a toxin-plasmid lacking BT-679 isolate was reconstituted by genetic reintroduction or external addition of the toxins. We conclude that sustained coevolution is distinct from unidirectional selection in shaping the pathogen's genome and life history characteristics. To our knowledge, this study is the first to characterize the pathogen genes involved in coevolutionary adaptation in an animal host-pathogen interaction system. |
Author | Papkou, Andrei Schulte, Rebecca D. Prahl, Swantje Hollensteiner, Jacqueline Guenther, Patrick S. Liesegang, Heiko Daniel, Rolf Bornberg-Bauer, Erich Laehnemann, David Saebelfeld, Manja Masri, Leila Sheppard, Anna E. Michiels, Nicolaas K. Schulenburg, Hinrich Rosenstiel, Philip Branca, Antoine Brzuszkiewicz, Elzbieta Telschow, Arndt Kurtz, Joachim |
AuthorAffiliation | 3 Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany Stanford University, UNITED STATES 2 Department of Animal Evolutionary Ecology, Institute of Evolution and Ecology, University of Tuebingen, Tuebingen, Germany 6 Institute for Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany 5 Department of Behavioural Biology, University of Osnabrueck, Osnabrueck, Germany 1 Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-University of Kiel, Kiel, Germany 4 Goettingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Goettingen, Goettingen, Germany |
AuthorAffiliation_xml | – name: 5 Department of Behavioural Biology, University of Osnabrueck, Osnabrueck, Germany – name: 6 Institute for Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany – name: Stanford University, UNITED STATES – name: 1 Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-University of Kiel, Kiel, Germany – name: 3 Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany – name: 4 Goettingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Goettingen, Goettingen, Germany – name: 2 Department of Animal Evolutionary Ecology, Institute of Evolution and Ecology, University of Tuebingen, Tuebingen, Germany |
Author_xml | – sequence: 1 givenname: Leila surname: Masri fullname: Masri, Leila – sequence: 2 givenname: Antoine surname: Branca fullname: Branca, Antoine – sequence: 3 givenname: Anna E. surname: Sheppard fullname: Sheppard, Anna E. – sequence: 4 givenname: Andrei surname: Papkou fullname: Papkou, Andrei – sequence: 5 givenname: David surname: Laehnemann fullname: Laehnemann, David – sequence: 6 givenname: Patrick S. surname: Guenther fullname: Guenther, Patrick S. – sequence: 7 givenname: Swantje surname: Prahl fullname: Prahl, Swantje – sequence: 8 givenname: Manja surname: Saebelfeld fullname: Saebelfeld, Manja – sequence: 9 givenname: Jacqueline surname: Hollensteiner fullname: Hollensteiner, Jacqueline – sequence: 10 givenname: Heiko surname: Liesegang fullname: Liesegang, Heiko – sequence: 11 givenname: Elzbieta surname: Brzuszkiewicz fullname: Brzuszkiewicz, Elzbieta – sequence: 12 givenname: Rolf surname: Daniel fullname: Daniel, Rolf – sequence: 13 givenname: Nicolaas K. surname: Michiels fullname: Michiels, Nicolaas K. – sequence: 14 givenname: Rebecca D. surname: Schulte fullname: Schulte, Rebecca D. – sequence: 15 givenname: Joachim surname: Kurtz fullname: Kurtz, Joachim – sequence: 16 givenname: Philip surname: Rosenstiel fullname: Rosenstiel, Philip – sequence: 17 givenname: Arndt surname: Telschow fullname: Telschow, Arndt – sequence: 18 givenname: Erich surname: Bornberg-Bauer fullname: Bornberg-Bauer, Erich – sequence: 19 givenname: Hinrich surname: Schulenburg fullname: Schulenburg, Hinrich |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26042786$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Us1uEzEYXKEi-gNvgMBHLgn-390ekNoI2kiVQCJwtRz728SRYwfbG9Eb78Ab8iRsmrRqOXCyZc83Mx7PaXUUYoCqek3wmLCavF_FPgXtx5u5i2OCMSWyfVadEMHFqG4acfRof1yd5rwaMLSlzYvqmErMad3Ik2pzHXP58-v3F12WcQEBTSJso--Li-EczZaAvoIHU9wW0IXd6lD0AlDs0KU2zvs-o7LskwsLByG7jL671HsIBpAOFk1LRpN0i2bxpwvoCgLkl9XzTvsMrw7rWfXt08fZ5Hp08_lqOrm4GRneNmXUWcyMbMGCnhNRY4lF3QFua040CM46yYmxXHPNpK25oYySDnPb6E4SDJSdVW_3vBsfszqEldUQkmwE4w0bENM9wka9Upvk1jrdqqidujuIaaF0Ks54UFqIhlvGsMbAWztvBw8NJZQJihnHZuD6cFDr52uwBkJJ2j8hfXoT3FIt4lZxLiS7M_PuQJDijx5yUWuXDXivA8R-57uRbdsyuXvZm8daDyL3nzoA-B5gUsw5QfcAIVjtunMfh9p1Rx26M4yd_zNmXNG7IgyOnf__8F-uOs_I |
CitedBy_id | crossref_primary_10_1186_s40168_023_01472_7 crossref_primary_10_1186_s12859_016_1207_2 crossref_primary_10_1111_mec_14146 crossref_primary_10_1371_journal_ppat_1008826 crossref_primary_10_3390_ijms221910388 crossref_primary_10_1016_j_jmb_2019_02_005 crossref_primary_10_3390_toxins10070281 crossref_primary_10_21307_jofnem_2017_083 crossref_primary_10_1080_21505594_2017_1325975 crossref_primary_10_1007_s10682_025_10334_7 crossref_primary_10_1111_eva_12538 crossref_primary_10_3390_jof9090929 crossref_primary_10_1093_molbev_msv160 crossref_primary_10_3389_fimmu_2021_635131 crossref_primary_10_1093_molbev_msw210 crossref_primary_10_3389_fevo_2021_739047 crossref_primary_10_1371_journal_ppat_1011225 crossref_primary_10_3389_fpls_2024_1461896 crossref_primary_10_1534_genetics_115_186288 crossref_primary_10_1038_s41559_022_01697_z crossref_primary_10_1093_femspd_fty040 crossref_primary_10_1002_ece3_2264 crossref_primary_10_1128_msystems_00864_21 crossref_primary_10_1098_rstb_2015_0297 crossref_primary_10_1016_j_jip_2015_11_009 crossref_primary_10_1016_j_zool_2016_03_005 crossref_primary_10_1098_rspb_2022_0532 crossref_primary_10_1007_s00239_016_9743_y crossref_primary_10_1186_s40793_017_0259_x crossref_primary_10_1186_s12864_017_4368_0 crossref_primary_10_1186_s12915_016_0258_1 crossref_primary_10_1016_j_dci_2021_104144 crossref_primary_10_1016_j_pt_2015_06_002 crossref_primary_10_1186_s40168_021_01092_z crossref_primary_10_3389_fmicb_2016_02171 crossref_primary_10_1098_rspb_2021_2269 crossref_primary_10_3389_fmicb_2017_00485 crossref_primary_10_1111_1365_2435_13261 crossref_primary_10_1038_s41598_023_31197_4 crossref_primary_10_1016_j_jbiotec_2017_09_003 crossref_primary_10_3389_ffunb_2021_778882 crossref_primary_10_1186_s12864_016_2603_8 crossref_primary_10_1186_s12870_018_1598_5 crossref_primary_10_3390_ani12172176 crossref_primary_10_1093_biosci_biab008 crossref_primary_10_1098_rstb_2022_0047 crossref_primary_10_1016_j_zool_2016_06_003 crossref_primary_10_1073_pnas_1607183113 crossref_primary_10_1016_j_cub_2022_01_063 crossref_primary_10_1534_genetics_116_195511 crossref_primary_10_1186_s40538_024_00720_8 crossref_primary_10_1016_j_zool_2016_06_005 crossref_primary_10_1111_pim_12731 crossref_primary_10_1073_pnas_1810402116 crossref_primary_10_1002_ece3_7774 crossref_primary_10_1016_j_exppara_2017_02_016 crossref_primary_10_1128_mBio_00863_19 crossref_primary_10_3389_fcimb_2022_775728 crossref_primary_10_1111_cmi_13167 crossref_primary_10_1111_tbed_13001 crossref_primary_10_1111_jeb_13211 crossref_primary_10_1098_rspb_2023_2193 crossref_primary_10_1016_j_zool_2016_06_010 crossref_primary_10_1111_evo_13306 |
Cites_doi | 10.1111/j.1365-2672.2009.04151.x 10.1016/j.mib.2008.05.012 10.1073/pnas.0504062102 10.1111/ele.12068 10.1093/bioinformatics/btp394 10.1126/science.1206360 10.1186/1471-2148-11-319 10.1111/j.1365-294X.2010.04903.x 10.1101/cshperspect.a000398 10.1016/j.dci.2011.08.016 10.1016/j.tree.2013.02.009 10.1016/j.pbi.2013.12.003 10.1016/j.cub.2009.06.062 10.1038/ng1202-569 10.1016/S0065-308X(09)70011-9 10.1128/IAI.57.11.3276-3280.1989 10.1101/gr.092981.109 10.1038/nature08798 10.1126/science.1214449 10.1111/jeb.12174 10.1016/j.mib.2012.04.006 10.1101/gr.114876.110 10.1098/rstb.2009.0290 10.1038/nrg2812 10.1086/676591 10.1093/bioinformatics/btq057 10.1126/science.1253621 10.1098/rsbl.2011.0684 10.1038/nature03913 10.1098/rspb.2011.0019 10.1371/journal.pbio.0050310 10.1186/gb-2009-10-3-r25 10.1002/bies.20239 10.1371/journal.pone.0035811 10.1371/journal.pone.0090581 10.1111/j.2517-6161.1995.tb02031.x 10.1093/bioinformatics/btp324 10.1093/nar/gkr599 10.1371/journal.pone.0011147 10.1371/journal.pbio.1002023 10.1128/jb.177.21.6027-6032.1995 10.1038/nrmicro2960 10.1073/pnas.0538072100 10.1186/1471-2105-12-231 10.1371/journal.pgen.1002188 10.4049/jimmunol.1001610 10.1016/j.antiviral.2012.01.009 10.1073/pnas.1003113107 10.1111/j.1751-7915.2012.00342.x 10.1038/nature07517 10.1093/bioinformatics/btn025 10.1139/w06-042 |
ContentType | Journal Article |
Copyright | 2015 Masri et al 2015 Masri et al 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Virulence and Its Cry Toxin Genes. PLoS Biol 13(6): e1002169. doi:10.1371/journal.pbio.1002169 |
Copyright_xml | – notice: 2015 Masri et al 2015 Masri et al – notice: 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Virulence and Its Cry Toxin Genes. PLoS Biol 13(6): e1002169. doi:10.1371/journal.pbio.1002169 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA CZG |
DOI | 10.1371/journal.pbio.1002169 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals PLoS Biology |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Selective Benefit of Pathogen Virulence and Toxins during Coevolution |
EISSN | 1545-7885 |
EndPage | e1002169 |
ExternalDocumentID | 1696853483 oai_doaj_org_article_a5584d330a0e49db9ae582123520340c PMC4456383 26042786 10_1371_journal_pbio_1002169 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 123 29O 2WC 36B 53G 5VS 7X7 7XC 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AFXKF AHMBA AKRSQ ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBS EJD EMB EMK EMOBN EPL ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAG IAO IGS IHR IOV ISE ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PATMY PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 PYCSY QF4 QN7 RNS RPM RZL SJN SV3 TR2 TUS UKHRP WOW XSB YZZ ~8M .GJ 3V. AGJBV C1A CGR CUY CVF ECM EIF IPNFZ M~E NPM RIG WOQ YIN 7X8 PJZUB PPXIY PQGLB 5PM PUEGO - AAPBV ABFLS ABPTK ADACO BBAFP CZG PQEST PQUKI PRINS ZA5 |
ID | FETCH-LOGICAL-c498t-fd03c69edeab15706057fe09741ae543f641cd4a4a36d74c2321f04d8af610e23 |
IEDL.DBID | M48 |
ISSN | 1545-7885 1544-9173 |
IngestDate | Fri Nov 26 17:13:14 EST 2021 Wed Aug 27 01:32:04 EDT 2025 Thu Aug 21 18:34:47 EDT 2025 Mon Jul 21 09:59:57 EDT 2025 Wed Feb 19 02:33:53 EST 2025 Tue Jul 01 00:46:07 EDT 2025 Thu Apr 24 22:59:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c498t-fd03c69edeab15706057fe09741ae543f641cd4a4a36d74c2321f04d8af610e23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: LM AB AES PR EBB HS. Performed the experiments: LM AB AES AP DL PSG SP MS JH. Analyzed the data: LM AB AES AP HS. Wrote the paper: LM AB AES AP JH EB HL RD NKM RDS JK PR AT EBB HS. Supported pathogen whole genome analysis: HL EB RD. Contributed to design and analysis of evolution experiment: NKM RDS JK AT. Contributed to genome data analysis: PR EBB. Current address: Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom Current address: Laboratory Ecologie, Systématique et Evolution, CNRS-Univ Paris-Sud, UMR8079, Orsay, France Current address: Institute of Science and Technology Austria, Klosterneuburg, Austria AP is an associate member of the International Max-Planck Research School for Evolutionary Biology at the University of Kiel. The authors have declared that no other competing interests exist. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pbio.1002169 |
PMID | 26042786 |
PQID | 1686999362 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1696853483 doaj_primary_oai_doaj_org_article_a5584d330a0e49db9ae582123520340c pubmedcentral_primary_oai_pubmedcentral_nih_gov_4456383 proquest_miscellaneous_1686999362 pubmed_primary_26042786 crossref_primary_10_1371_journal_pbio_1002169 crossref_citationtrail_10_1371_journal_pbio_1002169 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-01 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, CA USA |
PublicationTitle | PLoS biology |
PublicationTitleAlternate | PLoS Biol |
PublicationYear | 2015 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | RD Schulte (ref24) 2011; 278 KC King (ref11) 2009; 19 PJ Kerr (ref14) 2012; 93 PD Sniegowski (ref32) 2010; 365 Z Wei (ref52) 2011; 39 LT Morran (ref13) 2011; 333 C Nielsen-LeRoux (ref23) 2012; 15 L Masri (ref27) 2013; 16 TD Wu (ref50) 2010; 26 B Langmead (ref46) 2009; 10 R Li (ref49) 2008; 24 RD Schulte (ref25) 2012; 8 D Ebert (ref10) 2008; 11 Y Benjamini (ref28) 1995; 57 H Agaisse (ref31) 1995; 177 D Peng (ref58) 2009; 106 RD Schulte (ref21) 2010; 107 JS Weitz (ref5) 2005; 102 SY Kim (ref54) 2011; 12 S Yoon (ref57) 2009; 19 H Teotonio (ref43) 2012; 7 AD Morgan (ref33) 2005; 437 T Stiernagle (ref44) 2006 DR Bentley (ref45) 2008; 456 S Dupas (ref12) 2009; 70 A Kashiwagi (ref17) 2011; 7 DJ Begun (ref36) 2007; 5 JM Ling (ref38) 2006; 52 V Poullain (ref19) 2008; 62 JR Meyer (ref20) 2012; 335 ME Woolhouse (ref1) 2002; 32 PN Dodds (ref7) 2010; 11 JS Griffitts (ref22) 2005; 27 W-P Lee (ref48) 2014; 9 J Wang (ref35) 2012; 37 K Ye (ref55) 2009; 25 S Paterson (ref16) 2010; 464 D Lopez (ref30) 2010; 2 M Carsiotis (ref37) 1989; 57 TK Ulland (ref39) 2010; 185 N Crickmore (ref42) 2000 (ref53) 2010 L Zaman (ref4) 2014; 12 P Schmid-Hempel (ref2) 2011 B Koskella (ref6) 2014 J Jousimo (ref9) 2014; 344 H Vlamakis (ref29) 2013; 11 MA Brockhurst (ref15) 2013; 28 H Li (ref47) 2009; 25 MF Dybdahl (ref3) 2014; 184 A Bravo (ref41) 2013; 6 RD Schulte (ref26) 2013; 26 JZ Wei (ref40) 2003; 100 PD Scanlan (ref18) 2011; 20 TL Karasov (ref8) 2014; 18 A Tellier (ref34) 2011; 11 AE Darling (ref51) 2010; 5 A Abyzov (ref56) 2011; 21 |
References_xml | – start-page: 65 year: 2000 ident: ref42 article-title: Entomopathogenic bacteria: From laboratory to field application – volume: 106 start-page: 1849 year: 2009 ident: ref58 article-title: Elaboration of an electroporation protocol for large plasmids and wild-type strains of Bacillus thuringiensis publication-title: J Appl Microbiol doi: 10.1111/j.1365-2672.2009.04151.x – volume: 11 start-page: 290 year: 2008 ident: ref10 article-title: Host-parasite coevolution: Insights from the Daphnia-parasite model system publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2008.05.012 – volume: 102 start-page: 9535 year: 2005 ident: ref5 article-title: Coevolutionary arms races between bacteria and bacteriophage publication-title: Proc Nat Acad Sci U S A doi: 10.1073/pnas.0504062102 – volume: 16 start-page: 461 year: 2013 ident: ref27 article-title: Sex differences in host defence interfere with parasite-mediated selection for outcrossing during host-parasite coevolution publication-title: Ecol Lett doi: 10.1111/ele.12068 – volume: 25 start-page: 2865 year: 2009 ident: ref55 article-title: Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp394 – volume: 333 start-page: 216 year: 2011 ident: ref13 article-title: Running with the Red Queen: Host-Parasite Coevolution Selects for Biparental Sex publication-title: Science doi: 10.1126/science.1206360 – volume: 11 start-page: 319 year: 2011 ident: ref34 article-title: Spatial heterogeneity, frequency-dependent selection and polymorphism in host-parasite interactions publication-title: BMC Evol Biol doi: 10.1186/1471-2148-11-319 – volume: 20 start-page: 981 year: 2011 ident: ref18 article-title: Genetic basis of infectivity evolution in a bacteriophage publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2010.04903.x – volume: 2 start-page: a000398 year: 2010 ident: ref30 article-title: Biofilms publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a000398 – volume: 37 start-page: 193 year: 2012 ident: ref35 article-title: Activation of the Caenorhabditis elegans FOXO family transcription factor DAF-16 by pathogenic Bacillus thuringiensis publication-title: Dev Comp Immunol doi: 10.1016/j.dci.2011.08.016 – volume: 28 start-page: 367 year: 2013 ident: ref15 article-title: Experimental coevolution of species interactions publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2013.02.009 – volume: 18 start-page: 24 year: 2014 ident: ref8 article-title: Genomic variability as a driver of plant-pathogen coevolution? publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2013.12.003 – year: 2010 ident: ref53 article-title: R: A language and environment for statistical computing – volume: 62 start-page: 1 year: 2008 ident: ref19 article-title: The evolution of specificity in evolving and coevolving antagonistic interactions between a bacteria and its phage publication-title: Evolution – volume: 19 start-page: 1438 year: 2009 ident: ref11 article-title: The geographic mosaic of sex and the Red Queen publication-title: Curr Biol doi: 10.1016/j.cub.2009.06.062 – year: 2006 ident: ref44 article-title: WormBook – volume: 32 start-page: 569 year: 2002 ident: ref1 article-title: Biological and biomedical implications of the co-evolution of pathogens and their hosts publication-title: Nat Genet doi: 10.1038/ng1202-569 – volume: 70 start-page: 281 year: 2009 ident: ref12 article-title: Local, geographic and phylogenetic scales of coevolution in Drosophila-parasitoid interactions publication-title: Adv Parasitol doi: 10.1016/S0065-308X(09)70011-9 – volume: 57 start-page: 3276 year: 1989 ident: ref37 article-title: A Salmonella typhimurium virulence gene linked to flg publication-title: Infect Immun doi: 10.1128/IAI.57.11.3276-3280.1989 – volume: 19 start-page: 1586 year: 2009 ident: ref57 article-title: Sensitive and accurate detection of copy number variants using read depth of coverage publication-title: Genome Res doi: 10.1101/gr.092981.109 – volume: 464 start-page: 275 year: 2010 ident: ref16 article-title: Antagonistic coevolution accelerates molecular evolution publication-title: Nature doi: 10.1038/nature08798 – volume: 335 start-page: 428 year: 2012 ident: ref20 article-title: Repeatability and contingency in the evolution of a key innovation in phage lambda publication-title: Science doi: 10.1126/science.1214449 – volume: 26 start-page: 1836 year: 2013 ident: ref26 article-title: Host-parasite coevolution favours parasite genetic diversity and horizontal gene transfer publication-title: J Evol Biol doi: 10.1111/jeb.12174 – volume: 15 start-page: 220 year: 2012 ident: ref23 article-title: How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2012.04.006 – volume: 21 start-page: 974 year: 2011 ident: ref56 article-title: CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing publication-title: Genome Res doi: 10.1101/gr.114876.110 – volume: 365 start-page: 1255 year: 2010 ident: ref32 article-title: Beneficial mutations and the dynamics of adaptation in asexual populations publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2009.0290 – volume: 11 start-page: 539 year: 2010 ident: ref7 article-title: Plant immunity: towards an integrated view of plant-pathogen interactions publication-title: Nat Rev Genet doi: 10.1038/nrg2812 – volume: 184 start-page: 1 year: 2014 ident: ref3 article-title: Identifying the molecular basis of host-parasite coevolution: merging models and mechanisms publication-title: Am Nat doi: 10.1086/676591 – volume: 26 start-page: 873 year: 2010 ident: ref50 article-title: Fast and SNP-tolerant detection of complex variants and splicing in short reads publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq057 – volume: 344 start-page: 1289 year: 2014 ident: ref9 article-title: Disease ecology. Ecological and evolutionary effects of fragmentation on infectious disease dynamics publication-title: Science doi: 10.1126/science.1253621 – volume: 8 start-page: 234 year: 2012 ident: ref25 article-title: Increased responsiveness in feeding behaviour of Caenorhabditis elegans after experimental coevolution with its microparasite Bacillus thuringiensis publication-title: Biol Lett doi: 10.1098/rsbl.2011.0684 – volume: 437 start-page: 253 year: 2005 ident: ref33 article-title: The effect of migration on local adaptation in a coevolving host-parasite system publication-title: Nature doi: 10.1038/nature03913 – volume: 278 start-page: 2832 year: 2011 ident: ref24 article-title: Host-parasite local adaptation after experimental coevolution of Caenorhabditis elegans and its microparasite Bacillus thuringiensis publication-title: Proc Biol Sci doi: 10.1098/rspb.2011.0019 – volume: 5 start-page: e310 year: 2007 ident: ref36 article-title: Population genomics: whole-genome analysis of polymorphism and divergence in Drosophila simulans publication-title: PLoS Biol doi: 10.1371/journal.pbio.0050310 – volume: 10 start-page: R25 year: 2009 ident: ref46 article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol doi: 10.1186/gb-2009-10-3-r25 – year: 2014 ident: ref6 article-title: Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities publication-title: FEMS Microbiol Rev – volume: 27 start-page: 614 year: 2005 ident: ref22 article-title: Many roads to resistance: how invertebrates adapt to Bt toxins publication-title: Bioessays doi: 10.1002/bies.20239 – volume: 7 start-page: e35811 year: 2012 ident: ref43 article-title: Evolution of outcrossing in experimental populations of Caenorhabditis elegans publication-title: PLoS ONE doi: 10.1371/journal.pone.0035811 – volume: 9 start-page: e90581 year: 2014 ident: ref48 article-title: MOSAIK: A hash-based algorithm for accurate next-generation sequencing short-read mapping publication-title: PLoS ONE doi: 10.1371/journal.pone.0090581 – volume: 57 start-page: 289 year: 1995 ident: ref28 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J R Stat Soc B doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 25 start-page: 1754 year: 2009 ident: ref47 article-title: Fast and accurate short read alignment with Burrows-Wheeler transform publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 39 start-page: e132 year: 2011 ident: ref52 article-title: SNVer: a statistical tool for variant calling in analysis of pooled or individual next-generation sequencing data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr599 – volume: 5 start-page: e11147 year: 2010 ident: ref51 article-title: progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement publication-title: PLoS ONE doi: 10.1371/journal.pone.0011147 – volume: 12 start-page: e1002023 year: 2014 ident: ref4 article-title: Coevolution Drives the Emergence of Complex Traits and Promotes Evolvability. Keller L, editor publication-title: PLoS Biol doi: 10.1371/journal.pbio.1002023 – volume: 177 start-page: 6027 year: 1995 ident: ref31 article-title: How does Bacillus thuringiensis produce so much insecticidal crystal protein? publication-title: J Bacteriol doi: 10.1128/jb.177.21.6027-6032.1995 – volume: 11 start-page: 157 year: 2013 ident: ref29 article-title: Sticking together: building a biofilm the Bacillus subtilis way publication-title: Nature Reviews Microbiology doi: 10.1038/nrmicro2960 – volume: 100 start-page: 2760 year: 2003 ident: ref40 article-title: Bacillus thuringiensis crystal proteins that target nematodes publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0538072100 – volume: 12 start-page: 231 year: 2011 ident: ref54 article-title: Estimation of allele frequency and association mapping using next-generation sequencing data publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-231 – volume: 7 start-page: e1002188 year: 2011 ident: ref17 article-title: Ongoing phenotypic and genomic changes in experimental coevolution of RNA bacteriophage Qb and Escherichia coli publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002188 – volume: 185 start-page: 2670 year: 2010 ident: ref39 article-title: Cutting edge: mutation of Francisella tularensis mviN leads to increased macrophage absent in melanoma 2 inflammasome activation and a loss of virulence publication-title: J Immunol doi: 10.4049/jimmunol.1001610 – volume: 93 start-page: 387 year: 2012 ident: ref14 article-title: Myxomatosis in Australia and Europe: a model for emerging infectious diseases publication-title: Antiviral Res doi: 10.1016/j.antiviral.2012.01.009 – volume: 107 start-page: 7359 year: 2010 ident: ref21 article-title: Multiple reciprocal adaptations and rapid genetic change upon experimental coevolution of an animal host and its microbial parasite publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1003113107 – volume: 6 start-page: 17 year: 2013 ident: ref41 article-title: Evolution of Bacillus thuringiensis Cry toxins insecticidal activity: Evolution of Bt toxins publication-title: Microbial Biotechnology doi: 10.1111/j.1751-7915.2012.00342.x – volume: 456 start-page: 53 year: 2008 ident: ref45 article-title: Accurate whole human genome sequencing using reversible terminator chemistry publication-title: Nature doi: 10.1038/nature07517 – volume: 24 start-page: 713 year: 2008 ident: ref49 article-title: SOAP: short oligonucleotide alignment program publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn025 – year: 2011 ident: ref2 article-title: Evolutionary parasitology – volume: 52 start-page: 831 year: 2006 ident: ref38 article-title: The mviN homolog in Burkholderia pseudomallei is essential for viability and virulence publication-title: Can J Microbiol doi: 10.1139/w06-042 |
SSID | ssj0022928 |
Score | 2.4305801 |
Snippet | Reciprocal coevolution between host and pathogen is widely seen as a major driver of evolution and biological innovation. Yet, to date, the underlying genetic... Reciprocal coevolution between host and pathogen is widely seen as a major driver of evolution and biological innovation. Yet, to date, the underlying... |
SourceID | plos doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1002169 |
SubjectTerms | Adaptation Animals Bacillus thuringiensis - genetics Bacillus thuringiensis - pathogenicity Bacteria Bacterial Proteins - genetics Biological Evolution Caenorhabditis elegans - microbiology Evolution Funding Genes Genome, Bacterial Genomes Genomics Genotype Host-Pathogen Interactions - genetics Insect Proteins Phenotype Receptors, Cell Surface - genetics Selection, Genetic Virulence |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1KoJBLaZs0cdIWFXp1I1uSP3prloZtoaXQJORmZFkmhsUKa29o_n1nZO2yWwq55GrL2NY8Se-h0RuAjyI1OOunbYwBMChQeB3XiS1jq7UwKjW29ELxx89sfiW_36ibrVJflBM22QNPHXemFS6RDapuza0sm7rUls52pkgcuJDc0OyLa95aTAWplZa-qipZzeBwzkU4NCfy5CzE6NNd3TlvQJpQsvPWouS9-8nrdOGG__HOf9Mnt9aji5fwIhBJ9mX6gVfwzPav4flUWvLhAPq5G8b4F_I7hxBhM2fvA8g-M4QG--3r3-BUx3xd5RGnFeZadq5Nt1isBjbe-vOLHeW3D-y6W6786SSm-4Z9Gwc2Wz6wS_en6xkZVw-HcHXx9XI2j0NthdjIshjjtuHCZKVtrK4TRRY6Km8tR3WRYAdL0WYyMY3UUousyaVB4pW0XDaFbpFw2VS8gb3e9fYYWKZs0WYah6_BCAlVciOMQd1mFcdwywjEunMrE4zHqf7FovK7aTkKkKnLKgpJFUISQbx56m4y3nik_TnFbdOWbLP9BQRTFcBUPQamCI4p6usXDFVC3kFKyEJE8GGNhApHIG2r6N66FbUpMqTZyAQiOJqQsfkKVItUyySLIN_BzM5n7t7pu1vv8i2R2opCnDzFf53CPhI9NaW4vYW9cbmy75BMjfV7P27-AqthG-I priority: 102 providerName: Directory of Open Access Journals |
Title | Host–Pathogen Coevolution: The Selective Advantage of Bacillus thuringiensis Virulence and Its Cry Toxin Genes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26042786 https://www.proquest.com/docview/1686999362 https://pubmed.ncbi.nlm.nih.gov/PMC4456383 https://doaj.org/article/a5584d330a0e49db9ae582123520340c http://dx.doi.org/10.1371/journal.pbio.1002169 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7aRUi8IO7LgMpIvGZyYjuXSQjRalMBbRqwor5FjuNskaKkNCla3_gP_EN-CcdOUlE0hMRLH1I7cXzOsb8T298H8Ir5Ckd9P3fRAAoTFJq6qadjV0vJlPCVjm2ieHYeTGf8_VzMd2DQbO07sLk1tTN6UrNleXTzdf0GA_61VW0IvaHS0SItaksp6gXxLuzj3BQaTYMzvllX8P3Yqq0aChoM85D1h-n-dhdDFRxYNYpga96y9P6GDrWsm9ug6Z87LH-bsk7vw70ea5K3nXM8gB1dPYQ7nfrk-hEspnXT_vz-4wJBYI1-RCa1_tZ74jFB_yGfrUgOjofEii-3OPaQOidjqYqyXDWkvbaHHAuzCb4hX4rlyh5hIrLKyLu2IZPlmlzWN0VFDLt18xhmpyeXk6nbCzC4isdR6-YZZSqIdaZl6gnDsyPCXFNMQTypBWd5wD2VccklC7KQK0RnXk55FskcUZn22RPYq-pKHwAJhI7yQGKMK83NaWCqmFKY3GlB0Se4A2zo3kT17ORGJKNM7JJbiFlK12mJsU_S28cBd1Nr0bFz_KP82FhuU9Zwa9sL9fIq6UM1kQJBWcYYlRSbmqUxvmtkZnjhU8apcuDA2H14QJN4hmBIMB4xB14OvpBgmJq1F1npemXKRAFicYQLDjztfGPTisHFHAi3vGarmdv_VMW1pQLniH9ZxA7_u-YzuIsQUHSb357DXrtc6RcIs9p0BLvhPBzB_vjk_OLTyH6swN8PH6ORjalfQBUt4Q |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Host%E2%80%93Pathogen+Coevolution%3A+The+Selective+Advantage+of+Bacillus+thuringiensis+Virulence+and+Its+Cry+Toxin+Genes&rft.jtitle=PLoS+biology&rft.au=Masri%2C+Leila&rft.au=Branca%2C+Antoine&rft.au=Sheppard%2C+Anna+E.&rft.au=Papkou%2C+Andrei&rft.date=2015-06-01&rft.pub=Public+Library+of+Science&rft.issn=1544-9173&rft.eissn=1545-7885&rft.volume=13&rft.issue=6&rft_id=info:doi/10.1371%2Fjournal.pbio.1002169&rft_id=info%3Apmid%2F26042786&rft.externalDocID=PMC4456383 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon |