Host–Pathogen Coevolution: The Selective Advantage of Bacillus thuringiensis Virulence and Its Cry Toxin Genes

Reciprocal coevolution between host and pathogen is widely seen as a major driver of evolution and biological innovation. Yet, to date, the underlying genetic mechanisms and associated trait functions that are unique to rapid coevolutionary change are generally unknown. We here combined experimental...

Full description

Saved in:
Bibliographic Details
Published inPLoS biology Vol. 13; no. 6; p. e1002169
Main Authors Masri, Leila, Branca, Antoine, Sheppard, Anna E., Papkou, Andrei, Laehnemann, David, Guenther, Patrick S., Prahl, Swantje, Saebelfeld, Manja, Hollensteiner, Jacqueline, Liesegang, Heiko, Brzuszkiewicz, Elzbieta, Daniel, Rolf, Michiels, Nicolaas K., Schulte, Rebecca D., Kurtz, Joachim, Rosenstiel, Philip, Telschow, Arndt, Bornberg-Bauer, Erich, Schulenburg, Hinrich
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.06.2015
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reciprocal coevolution between host and pathogen is widely seen as a major driver of evolution and biological innovation. Yet, to date, the underlying genetic mechanisms and associated trait functions that are unique to rapid coevolutionary change are generally unknown. We here combined experimental evolution of the bacterial biocontrol agent Bacillus thuringiensis and its nematode host Caenorhabditis elegans with large-scale phenotyping, whole genome analysis, and functional genetics to demonstrate the selective benefit of pathogen virulence and the underlying toxin genes during the adaptation process. We show that: (i) high virulence was specifically favoured during pathogen-host coevolution rather than pathogen one-sided adaptation to a nonchanging host or to an environment without host; (ii) the pathogen genotype BT-679 with known nematocidal toxin genes and high virulence specifically swept to fixation in all of the independent replicate populations under coevolution but only some under one-sided adaptation; (iii) high virulence in the BT-679-dominated populations correlated with elevated copy numbers of the plasmid containing the nematocidal toxin genes; (iv) loss of virulence in a toxin-plasmid lacking BT-679 isolate was reconstituted by genetic reintroduction or external addition of the toxins. We conclude that sustained coevolution is distinct from unidirectional selection in shaping the pathogen's genome and life history characteristics. To our knowledge, this study is the first to characterize the pathogen genes involved in coevolutionary adaptation in an animal host-pathogen interaction system.
AbstractList Reciprocal coevolution between host and pathogen is widely seen as a major driver of evolution and biological innovation. Yet, to date, the underlying genetic mechanisms and associated trait functions that are unique to rapid coevolutionary change are generally unknown. We here combined experimental evolution of the bacterial biocontrol agent Bacillus thuringiensis and its nematode host Caenorhabditis elegans with large-scale phenotyping, whole genome analysis, and functional genetics to demonstrate the selective benefit of pathogen virulence and the underlying toxin genes during the adaptation process. We show that: (i) high virulence was specifically favoured during pathogen-host coevolution rather than pathogen one-sided adaptation to a nonchanging host or to an environment without host; (ii) the pathogen genotype BT-679 with known nematocidal toxin genes and high virulence specifically swept to fixation in all of the independent replicate populations under coevolution but only some under one-sided adaptation; (iii) high virulence in the BT-679-dominated populations correlated with elevated copy numbers of the plasmid containing the nematocidal toxin genes; (iv) loss of virulence in a toxin-plasmid lacking BT-679 isolate was reconstituted by genetic reintroduction or external addition of the toxins. We conclude that sustained coevolution is distinct from unidirectional selection in shaping the pathogen's genome and life history characteristics. To our knowledge, this study is the first to characterize the pathogen genes involved in coevolutionary adaptation in an animal host-pathogen interaction system.
Reciprocal coevolution between host and pathogen is widely seen as a major driver of evolution and biological innovation. Yet, to date, the underlying genetic mechanisms and associated trait functions that are unique to rapid coevolutionary change are generally unknown. We here combined experimental evolution of the bacterial biocontrol agent Bacillus thuringiensis and its nematode host Caenorhabditis elegans with large-scale phenotyping, whole genome analysis, and functional genetics to demonstrate the selective benefit of pathogen virulence and the underlying toxin genes during the adaptation process. We show that: (i) high virulence was specifically favoured during pathogen–host coevolution rather than pathogen one-sided adaptation to a nonchanging host or to an environment without host; (ii) the pathogen genotype BT-679 with known nematocidal toxin genes and high virulence specifically swept to fixation in all of the independent replicate populations under coevolution but only some under one-sided adaptation; (iii) high virulence in the BT-679-dominated populations correlated with elevated copy numbers of the plasmid containing the nematocidal toxin genes; (iv) loss of virulence in a toxin-plasmid lacking BT-679 isolate was reconstituted by genetic reintroduction or external addition of the toxins. We conclude that sustained coevolution is distinct from unidirectional selection in shaping the pathogen's genome and life history characteristics. To our knowledge, this study is the first to characterize the pathogen genes involved in coevolutionary adaptation in an animal host–pathogen interaction system. A combination of experimental evolution with large-scale phenotyping, genomics and functional genetics reveals the specific role of virulence and toxin genes during the evolutionary adaptation of a pathogen to an animal host. Evolution can be extremely fast and dramatic, especially when infectious disease agents such as bacterial pathogens engage in a continuous arms race with their host organism. Rounds of novel pathogen attack strategies and associated host counterdefenses conspire to drive host–pathogen coevolution and biological innovation. To better understand the underlying genetic mechanisms and the exact trait characteristics under selection, we conducted experimental evolution using a simple host–pathogen model system (nematode versus bacterium) under controlled laboratory conditions. We analysed the associated adaptive changes in real time using large-scale phenotyping, population whole genome sequencing, and genetic analysis of the identified candidate genes. We show that coevolution (rather than one-sided adaptation) particularly favors and maintains pathogen virulence, and that two specific toxin genes significantly influence this virulence during coevolution.
  Reciprocal coevolution between host and pathogen is widely seen as a major driver of evolution and biological innovation. Yet, to date, the underlying genetic mechanisms and associated trait functions that are unique to rapid coevolutionary change are generally unknown. We here combined experimental evolution of the bacterial biocontrol agent Bacillus thuringiensis and its nematode host Caenorhabditis elegans with large-scale phenotyping, whole genome analysis, and functional genetics to demonstrate the selective benefit of pathogen virulence and the underlying toxin genes during the adaptation process. We show that: (i) high virulence was specifically favoured during pathogen-host coevolution rather than pathogen one-sided adaptation to a nonchanging host or to an environment without host; (ii) the pathogen genotype BT-679 with known nematocidal toxin genes and high virulence specifically swept to fixation in all of the independent replicate populations under coevolution but only some under one-sided adaptation; (iii) high virulence in the BT-679-dominated populations correlated with elevated copy numbers of the plasmid containing the nematocidal toxin genes; (iv) loss of virulence in a toxin-plasmid lacking BT-679 isolate was reconstituted by genetic reintroduction or external addition of the toxins. We conclude that sustained coevolution is distinct from unidirectional selection in shaping the pathogen's genome and life history characteristics. To our knowledge, this study is the first to characterize the pathogen genes involved in coevolutionary adaptation in an animal host-pathogen interaction system.
Author Papkou, Andrei
Schulte, Rebecca D.
Prahl, Swantje
Hollensteiner, Jacqueline
Guenther, Patrick S.
Liesegang, Heiko
Daniel, Rolf
Bornberg-Bauer, Erich
Laehnemann, David
Saebelfeld, Manja
Masri, Leila
Sheppard, Anna E.
Michiels, Nicolaas K.
Schulenburg, Hinrich
Rosenstiel, Philip
Branca, Antoine
Brzuszkiewicz, Elzbieta
Telschow, Arndt
Kurtz, Joachim
AuthorAffiliation 3 Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany
Stanford University, UNITED STATES
2 Department of Animal Evolutionary Ecology, Institute of Evolution and Ecology, University of Tuebingen, Tuebingen, Germany
6 Institute for Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
5 Department of Behavioural Biology, University of Osnabrueck, Osnabrueck, Germany
1 Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
4 Goettingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Goettingen, Goettingen, Germany
AuthorAffiliation_xml – name: 5 Department of Behavioural Biology, University of Osnabrueck, Osnabrueck, Germany
– name: 6 Institute for Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
– name: Stanford University, UNITED STATES
– name: 1 Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
– name: 3 Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany
– name: 4 Goettingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Goettingen, Goettingen, Germany
– name: 2 Department of Animal Evolutionary Ecology, Institute of Evolution and Ecology, University of Tuebingen, Tuebingen, Germany
Author_xml – sequence: 1
  givenname: Leila
  surname: Masri
  fullname: Masri, Leila
– sequence: 2
  givenname: Antoine
  surname: Branca
  fullname: Branca, Antoine
– sequence: 3
  givenname: Anna E.
  surname: Sheppard
  fullname: Sheppard, Anna E.
– sequence: 4
  givenname: Andrei
  surname: Papkou
  fullname: Papkou, Andrei
– sequence: 5
  givenname: David
  surname: Laehnemann
  fullname: Laehnemann, David
– sequence: 6
  givenname: Patrick S.
  surname: Guenther
  fullname: Guenther, Patrick S.
– sequence: 7
  givenname: Swantje
  surname: Prahl
  fullname: Prahl, Swantje
– sequence: 8
  givenname: Manja
  surname: Saebelfeld
  fullname: Saebelfeld, Manja
– sequence: 9
  givenname: Jacqueline
  surname: Hollensteiner
  fullname: Hollensteiner, Jacqueline
– sequence: 10
  givenname: Heiko
  surname: Liesegang
  fullname: Liesegang, Heiko
– sequence: 11
  givenname: Elzbieta
  surname: Brzuszkiewicz
  fullname: Brzuszkiewicz, Elzbieta
– sequence: 12
  givenname: Rolf
  surname: Daniel
  fullname: Daniel, Rolf
– sequence: 13
  givenname: Nicolaas K.
  surname: Michiels
  fullname: Michiels, Nicolaas K.
– sequence: 14
  givenname: Rebecca D.
  surname: Schulte
  fullname: Schulte, Rebecca D.
– sequence: 15
  givenname: Joachim
  surname: Kurtz
  fullname: Kurtz, Joachim
– sequence: 16
  givenname: Philip
  surname: Rosenstiel
  fullname: Rosenstiel, Philip
– sequence: 17
  givenname: Arndt
  surname: Telschow
  fullname: Telschow, Arndt
– sequence: 18
  givenname: Erich
  surname: Bornberg-Bauer
  fullname: Bornberg-Bauer, Erich
– sequence: 19
  givenname: Hinrich
  surname: Schulenburg
  fullname: Schulenburg, Hinrich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26042786$$D View this record in MEDLINE/PubMed
BookMark eNp9Us1uEzEYXKEi-gNvgMBHLgn-390ekNoI2kiVQCJwtRz728SRYwfbG9Eb78Ab8iRsmrRqOXCyZc83Mx7PaXUUYoCqek3wmLCavF_FPgXtx5u5i2OCMSWyfVadEMHFqG4acfRof1yd5rwaMLSlzYvqmErMad3Ik2pzHXP58-v3F12WcQEBTSJso--Li-EczZaAvoIHU9wW0IXd6lD0AlDs0KU2zvs-o7LskwsLByG7jL671HsIBpAOFk1LRpN0i2bxpwvoCgLkl9XzTvsMrw7rWfXt08fZ5Hp08_lqOrm4GRneNmXUWcyMbMGCnhNRY4lF3QFua040CM46yYmxXHPNpK25oYySDnPb6E4SDJSdVW_3vBsfszqEldUQkmwE4w0bENM9wka9Upvk1jrdqqidujuIaaF0Ks54UFqIhlvGsMbAWztvBw8NJZQJihnHZuD6cFDr52uwBkJJ2j8hfXoT3FIt4lZxLiS7M_PuQJDijx5yUWuXDXivA8R-57uRbdsyuXvZm8daDyL3nzoA-B5gUsw5QfcAIVjtunMfh9p1Rx26M4yd_zNmXNG7IgyOnf__8F-uOs_I
CitedBy_id crossref_primary_10_1186_s40168_023_01472_7
crossref_primary_10_1186_s12859_016_1207_2
crossref_primary_10_1111_mec_14146
crossref_primary_10_1371_journal_ppat_1008826
crossref_primary_10_3390_ijms221910388
crossref_primary_10_1016_j_jmb_2019_02_005
crossref_primary_10_3390_toxins10070281
crossref_primary_10_21307_jofnem_2017_083
crossref_primary_10_1080_21505594_2017_1325975
crossref_primary_10_1007_s10682_025_10334_7
crossref_primary_10_1111_eva_12538
crossref_primary_10_3390_jof9090929
crossref_primary_10_1093_molbev_msv160
crossref_primary_10_3389_fimmu_2021_635131
crossref_primary_10_1093_molbev_msw210
crossref_primary_10_3389_fevo_2021_739047
crossref_primary_10_1371_journal_ppat_1011225
crossref_primary_10_3389_fpls_2024_1461896
crossref_primary_10_1534_genetics_115_186288
crossref_primary_10_1038_s41559_022_01697_z
crossref_primary_10_1093_femspd_fty040
crossref_primary_10_1002_ece3_2264
crossref_primary_10_1128_msystems_00864_21
crossref_primary_10_1098_rstb_2015_0297
crossref_primary_10_1016_j_jip_2015_11_009
crossref_primary_10_1016_j_zool_2016_03_005
crossref_primary_10_1098_rspb_2022_0532
crossref_primary_10_1007_s00239_016_9743_y
crossref_primary_10_1186_s40793_017_0259_x
crossref_primary_10_1186_s12864_017_4368_0
crossref_primary_10_1186_s12915_016_0258_1
crossref_primary_10_1016_j_dci_2021_104144
crossref_primary_10_1016_j_pt_2015_06_002
crossref_primary_10_1186_s40168_021_01092_z
crossref_primary_10_3389_fmicb_2016_02171
crossref_primary_10_1098_rspb_2021_2269
crossref_primary_10_3389_fmicb_2017_00485
crossref_primary_10_1111_1365_2435_13261
crossref_primary_10_1038_s41598_023_31197_4
crossref_primary_10_1016_j_jbiotec_2017_09_003
crossref_primary_10_3389_ffunb_2021_778882
crossref_primary_10_1186_s12864_016_2603_8
crossref_primary_10_1186_s12870_018_1598_5
crossref_primary_10_3390_ani12172176
crossref_primary_10_1093_biosci_biab008
crossref_primary_10_1098_rstb_2022_0047
crossref_primary_10_1016_j_zool_2016_06_003
crossref_primary_10_1073_pnas_1607183113
crossref_primary_10_1016_j_cub_2022_01_063
crossref_primary_10_1534_genetics_116_195511
crossref_primary_10_1186_s40538_024_00720_8
crossref_primary_10_1016_j_zool_2016_06_005
crossref_primary_10_1111_pim_12731
crossref_primary_10_1073_pnas_1810402116
crossref_primary_10_1002_ece3_7774
crossref_primary_10_1016_j_exppara_2017_02_016
crossref_primary_10_1128_mBio_00863_19
crossref_primary_10_3389_fcimb_2022_775728
crossref_primary_10_1111_cmi_13167
crossref_primary_10_1111_tbed_13001
crossref_primary_10_1111_jeb_13211
crossref_primary_10_1098_rspb_2023_2193
crossref_primary_10_1016_j_zool_2016_06_010
crossref_primary_10_1111_evo_13306
Cites_doi 10.1111/j.1365-2672.2009.04151.x
10.1016/j.mib.2008.05.012
10.1073/pnas.0504062102
10.1111/ele.12068
10.1093/bioinformatics/btp394
10.1126/science.1206360
10.1186/1471-2148-11-319
10.1111/j.1365-294X.2010.04903.x
10.1101/cshperspect.a000398
10.1016/j.dci.2011.08.016
10.1016/j.tree.2013.02.009
10.1016/j.pbi.2013.12.003
10.1016/j.cub.2009.06.062
10.1038/ng1202-569
10.1016/S0065-308X(09)70011-9
10.1128/IAI.57.11.3276-3280.1989
10.1101/gr.092981.109
10.1038/nature08798
10.1126/science.1214449
10.1111/jeb.12174
10.1016/j.mib.2012.04.006
10.1101/gr.114876.110
10.1098/rstb.2009.0290
10.1038/nrg2812
10.1086/676591
10.1093/bioinformatics/btq057
10.1126/science.1253621
10.1098/rsbl.2011.0684
10.1038/nature03913
10.1098/rspb.2011.0019
10.1371/journal.pbio.0050310
10.1186/gb-2009-10-3-r25
10.1002/bies.20239
10.1371/journal.pone.0035811
10.1371/journal.pone.0090581
10.1111/j.2517-6161.1995.tb02031.x
10.1093/bioinformatics/btp324
10.1093/nar/gkr599
10.1371/journal.pone.0011147
10.1371/journal.pbio.1002023
10.1128/jb.177.21.6027-6032.1995
10.1038/nrmicro2960
10.1073/pnas.0538072100
10.1186/1471-2105-12-231
10.1371/journal.pgen.1002188
10.4049/jimmunol.1001610
10.1016/j.antiviral.2012.01.009
10.1073/pnas.1003113107
10.1111/j.1751-7915.2012.00342.x
10.1038/nature07517
10.1093/bioinformatics/btn025
10.1139/w06-042
ContentType Journal Article
Copyright 2015 Masri et al 2015 Masri et al
2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Virulence and Its Cry Toxin Genes. PLoS Biol 13(6): e1002169. doi:10.1371/journal.pbio.1002169
Copyright_xml – notice: 2015 Masri et al 2015 Masri et al
– notice: 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Virulence and Its Cry Toxin Genes. PLoS Biol 13(6): e1002169. doi:10.1371/journal.pbio.1002169
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
CZG
DOI 10.1371/journal.pbio.1002169
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
PLoS Biology
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Selective Benefit of Pathogen Virulence and Toxins during Coevolution
EISSN 1545-7885
EndPage e1002169
ExternalDocumentID 1696853483
oai_doaj_org_article_a5584d330a0e49db9ae582123520340c
PMC4456383
26042786
10_1371_journal_pbio_1002169
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
29O
2WC
36B
53G
5VS
7X7
7XC
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AFXKF
AHMBA
AKRSQ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBS
EJD
EMB
EMK
EMOBN
EPL
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IGS
IHR
IOV
ISE
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PATMY
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
PYCSY
QF4
QN7
RNS
RPM
RZL
SJN
SV3
TR2
TUS
UKHRP
WOW
XSB
YZZ
~8M
.GJ
3V.
AGJBV
C1A
CGR
CUY
CVF
ECM
EIF
IPNFZ
M~E
NPM
RIG
WOQ
YIN
7X8
PJZUB
PPXIY
PQGLB
5PM
PUEGO
-
AAPBV
ABFLS
ABPTK
ADACO
BBAFP
CZG
PQEST
PQUKI
PRINS
ZA5
ID FETCH-LOGICAL-c498t-fd03c69edeab15706057fe09741ae543f641cd4a4a36d74c2321f04d8af610e23
IEDL.DBID M48
ISSN 1545-7885
1544-9173
IngestDate Fri Nov 26 17:13:14 EST 2021
Wed Aug 27 01:32:04 EDT 2025
Thu Aug 21 18:34:47 EDT 2025
Mon Jul 21 09:59:57 EDT 2025
Wed Feb 19 02:33:53 EST 2025
Tue Jul 01 00:46:07 EDT 2025
Thu Apr 24 22:59:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c498t-fd03c69edeab15706057fe09741ae543f641cd4a4a36d74c2321f04d8af610e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: LM AB AES PR EBB HS. Performed the experiments: LM AB AES AP DL PSG SP MS JH. Analyzed the data: LM AB AES AP HS. Wrote the paper: LM AB AES AP JH EB HL RD NKM RDS JK PR AT EBB HS. Supported pathogen whole genome analysis: HL EB RD. Contributed to design and analysis of evolution experiment: NKM RDS JK AT. Contributed to genome data analysis: PR EBB.
Current address: Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
Current address: Laboratory Ecologie, Systématique et Evolution, CNRS-Univ Paris-Sud, UMR8079, Orsay, France
Current address: Institute of Science and Technology Austria, Klosterneuburg, Austria
AP is an associate member of the International Max-Planck Research School for Evolutionary Biology at the University of Kiel. The authors have declared that no other competing interests exist.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pbio.1002169
PMID 26042786
PQID 1686999362
PQPubID 23479
ParticipantIDs plos_journals_1696853483
doaj_primary_oai_doaj_org_article_a5584d330a0e49db9ae582123520340c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4456383
proquest_miscellaneous_1686999362
pubmed_primary_26042786
crossref_primary_10_1371_journal_pbio_1002169
crossref_citationtrail_10_1371_journal_pbio_1002169
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-01
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PLoS biology
PublicationTitleAlternate PLoS Biol
PublicationYear 2015
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References RD Schulte (ref24) 2011; 278
KC King (ref11) 2009; 19
PJ Kerr (ref14) 2012; 93
PD Sniegowski (ref32) 2010; 365
Z Wei (ref52) 2011; 39
LT Morran (ref13) 2011; 333
C Nielsen-LeRoux (ref23) 2012; 15
L Masri (ref27) 2013; 16
TD Wu (ref50) 2010; 26
B Langmead (ref46) 2009; 10
R Li (ref49) 2008; 24
RD Schulte (ref25) 2012; 8
D Ebert (ref10) 2008; 11
Y Benjamini (ref28) 1995; 57
H Agaisse (ref31) 1995; 177
D Peng (ref58) 2009; 106
RD Schulte (ref21) 2010; 107
JS Weitz (ref5) 2005; 102
SY Kim (ref54) 2011; 12
S Yoon (ref57) 2009; 19
H Teotonio (ref43) 2012; 7
AD Morgan (ref33) 2005; 437
T Stiernagle (ref44) 2006
DR Bentley (ref45) 2008; 456
S Dupas (ref12) 2009; 70
A Kashiwagi (ref17) 2011; 7
DJ Begun (ref36) 2007; 5
JM Ling (ref38) 2006; 52
V Poullain (ref19) 2008; 62
JR Meyer (ref20) 2012; 335
ME Woolhouse (ref1) 2002; 32
PN Dodds (ref7) 2010; 11
JS Griffitts (ref22) 2005; 27
W-P Lee (ref48) 2014; 9
J Wang (ref35) 2012; 37
K Ye (ref55) 2009; 25
S Paterson (ref16) 2010; 464
D Lopez (ref30) 2010; 2
M Carsiotis (ref37) 1989; 57
TK Ulland (ref39) 2010; 185
N Crickmore (ref42) 2000
(ref53) 2010
L Zaman (ref4) 2014; 12
P Schmid-Hempel (ref2) 2011
B Koskella (ref6) 2014
J Jousimo (ref9) 2014; 344
H Vlamakis (ref29) 2013; 11
MA Brockhurst (ref15) 2013; 28
H Li (ref47) 2009; 25
MF Dybdahl (ref3) 2014; 184
A Bravo (ref41) 2013; 6
RD Schulte (ref26) 2013; 26
JZ Wei (ref40) 2003; 100
PD Scanlan (ref18) 2011; 20
TL Karasov (ref8) 2014; 18
A Tellier (ref34) 2011; 11
AE Darling (ref51) 2010; 5
A Abyzov (ref56) 2011; 21
References_xml – start-page: 65
  year: 2000
  ident: ref42
  article-title: Entomopathogenic bacteria: From laboratory to field application
– volume: 106
  start-page: 1849
  year: 2009
  ident: ref58
  article-title: Elaboration of an electroporation protocol for large plasmids and wild-type strains of Bacillus thuringiensis
  publication-title: J Appl Microbiol
  doi: 10.1111/j.1365-2672.2009.04151.x
– volume: 11
  start-page: 290
  year: 2008
  ident: ref10
  article-title: Host-parasite coevolution: Insights from the Daphnia-parasite model system
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2008.05.012
– volume: 102
  start-page: 9535
  year: 2005
  ident: ref5
  article-title: Coevolutionary arms races between bacteria and bacteriophage
  publication-title: Proc Nat Acad Sci U S A
  doi: 10.1073/pnas.0504062102
– volume: 16
  start-page: 461
  year: 2013
  ident: ref27
  article-title: Sex differences in host defence interfere with parasite-mediated selection for outcrossing during host-parasite coevolution
  publication-title: Ecol Lett
  doi: 10.1111/ele.12068
– volume: 25
  start-page: 2865
  year: 2009
  ident: ref55
  article-title: Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp394
– volume: 333
  start-page: 216
  year: 2011
  ident: ref13
  article-title: Running with the Red Queen: Host-Parasite Coevolution Selects for Biparental Sex
  publication-title: Science
  doi: 10.1126/science.1206360
– volume: 11
  start-page: 319
  year: 2011
  ident: ref34
  article-title: Spatial heterogeneity, frequency-dependent selection and polymorphism in host-parasite interactions
  publication-title: BMC Evol Biol
  doi: 10.1186/1471-2148-11-319
– volume: 20
  start-page: 981
  year: 2011
  ident: ref18
  article-title: Genetic basis of infectivity evolution in a bacteriophage
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2010.04903.x
– volume: 2
  start-page: a000398
  year: 2010
  ident: ref30
  article-title: Biofilms
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a000398
– volume: 37
  start-page: 193
  year: 2012
  ident: ref35
  article-title: Activation of the Caenorhabditis elegans FOXO family transcription factor DAF-16 by pathogenic Bacillus thuringiensis
  publication-title: Dev Comp Immunol
  doi: 10.1016/j.dci.2011.08.016
– volume: 28
  start-page: 367
  year: 2013
  ident: ref15
  article-title: Experimental coevolution of species interactions
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2013.02.009
– volume: 18
  start-page: 24
  year: 2014
  ident: ref8
  article-title: Genomic variability as a driver of plant-pathogen coevolution?
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2013.12.003
– year: 2010
  ident: ref53
  article-title: R: A language and environment for statistical computing
– volume: 62
  start-page: 1
  year: 2008
  ident: ref19
  article-title: The evolution of specificity in evolving and coevolving antagonistic interactions between a bacteria and its phage
  publication-title: Evolution
– volume: 19
  start-page: 1438
  year: 2009
  ident: ref11
  article-title: The geographic mosaic of sex and the Red Queen
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2009.06.062
– year: 2006
  ident: ref44
  article-title: WormBook
– volume: 32
  start-page: 569
  year: 2002
  ident: ref1
  article-title: Biological and biomedical implications of the co-evolution of pathogens and their hosts
  publication-title: Nat Genet
  doi: 10.1038/ng1202-569
– volume: 70
  start-page: 281
  year: 2009
  ident: ref12
  article-title: Local, geographic and phylogenetic scales of coevolution in Drosophila-parasitoid interactions
  publication-title: Adv Parasitol
  doi: 10.1016/S0065-308X(09)70011-9
– volume: 57
  start-page: 3276
  year: 1989
  ident: ref37
  article-title: A Salmonella typhimurium virulence gene linked to flg
  publication-title: Infect Immun
  doi: 10.1128/IAI.57.11.3276-3280.1989
– volume: 19
  start-page: 1586
  year: 2009
  ident: ref57
  article-title: Sensitive and accurate detection of copy number variants using read depth of coverage
  publication-title: Genome Res
  doi: 10.1101/gr.092981.109
– volume: 464
  start-page: 275
  year: 2010
  ident: ref16
  article-title: Antagonistic coevolution accelerates molecular evolution
  publication-title: Nature
  doi: 10.1038/nature08798
– volume: 335
  start-page: 428
  year: 2012
  ident: ref20
  article-title: Repeatability and contingency in the evolution of a key innovation in phage lambda
  publication-title: Science
  doi: 10.1126/science.1214449
– volume: 26
  start-page: 1836
  year: 2013
  ident: ref26
  article-title: Host-parasite coevolution favours parasite genetic diversity and horizontal gene transfer
  publication-title: J Evol Biol
  doi: 10.1111/jeb.12174
– volume: 15
  start-page: 220
  year: 2012
  ident: ref23
  article-title: How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2012.04.006
– volume: 21
  start-page: 974
  year: 2011
  ident: ref56
  article-title: CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing
  publication-title: Genome Res
  doi: 10.1101/gr.114876.110
– volume: 365
  start-page: 1255
  year: 2010
  ident: ref32
  article-title: Beneficial mutations and the dynamics of adaptation in asexual populations
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2009.0290
– volume: 11
  start-page: 539
  year: 2010
  ident: ref7
  article-title: Plant immunity: towards an integrated view of plant-pathogen interactions
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2812
– volume: 184
  start-page: 1
  year: 2014
  ident: ref3
  article-title: Identifying the molecular basis of host-parasite coevolution: merging models and mechanisms
  publication-title: Am Nat
  doi: 10.1086/676591
– volume: 26
  start-page: 873
  year: 2010
  ident: ref50
  article-title: Fast and SNP-tolerant detection of complex variants and splicing in short reads
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq057
– volume: 344
  start-page: 1289
  year: 2014
  ident: ref9
  article-title: Disease ecology. Ecological and evolutionary effects of fragmentation on infectious disease dynamics
  publication-title: Science
  doi: 10.1126/science.1253621
– volume: 8
  start-page: 234
  year: 2012
  ident: ref25
  article-title: Increased responsiveness in feeding behaviour of Caenorhabditis elegans after experimental coevolution with its microparasite Bacillus thuringiensis
  publication-title: Biol Lett
  doi: 10.1098/rsbl.2011.0684
– volume: 437
  start-page: 253
  year: 2005
  ident: ref33
  article-title: The effect of migration on local adaptation in a coevolving host-parasite system
  publication-title: Nature
  doi: 10.1038/nature03913
– volume: 278
  start-page: 2832
  year: 2011
  ident: ref24
  article-title: Host-parasite local adaptation after experimental coevolution of Caenorhabditis elegans and its microparasite Bacillus thuringiensis
  publication-title: Proc Biol Sci
  doi: 10.1098/rspb.2011.0019
– volume: 5
  start-page: e310
  year: 2007
  ident: ref36
  article-title: Population genomics: whole-genome analysis of polymorphism and divergence in Drosophila simulans
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0050310
– volume: 10
  start-page: R25
  year: 2009
  ident: ref46
  article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-3-r25
– year: 2014
  ident: ref6
  article-title: Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities
  publication-title: FEMS Microbiol Rev
– volume: 27
  start-page: 614
  year: 2005
  ident: ref22
  article-title: Many roads to resistance: how invertebrates adapt to Bt toxins
  publication-title: Bioessays
  doi: 10.1002/bies.20239
– volume: 7
  start-page: e35811
  year: 2012
  ident: ref43
  article-title: Evolution of outcrossing in experimental populations of Caenorhabditis elegans
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0035811
– volume: 9
  start-page: e90581
  year: 2014
  ident: ref48
  article-title: MOSAIK: A hash-based algorithm for accurate next-generation sequencing short-read mapping
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0090581
– volume: 57
  start-page: 289
  year: 1995
  ident: ref28
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J R Stat Soc B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 25
  start-page: 1754
  year: 2009
  ident: ref47
  article-title: Fast and accurate short read alignment with Burrows-Wheeler transform
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp324
– volume: 39
  start-page: e132
  year: 2011
  ident: ref52
  article-title: SNVer: a statistical tool for variant calling in analysis of pooled or individual next-generation sequencing data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr599
– volume: 5
  start-page: e11147
  year: 2010
  ident: ref51
  article-title: progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0011147
– volume: 12
  start-page: e1002023
  year: 2014
  ident: ref4
  article-title: Coevolution Drives the Emergence of Complex Traits and Promotes Evolvability. Keller L, editor
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1002023
– volume: 177
  start-page: 6027
  year: 1995
  ident: ref31
  article-title: How does Bacillus thuringiensis produce so much insecticidal crystal protein?
  publication-title: J Bacteriol
  doi: 10.1128/jb.177.21.6027-6032.1995
– volume: 11
  start-page: 157
  year: 2013
  ident: ref29
  article-title: Sticking together: building a biofilm the Bacillus subtilis way
  publication-title: Nature Reviews Microbiology
  doi: 10.1038/nrmicro2960
– volume: 100
  start-page: 2760
  year: 2003
  ident: ref40
  article-title: Bacillus thuringiensis crystal proteins that target nematodes
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0538072100
– volume: 12
  start-page: 231
  year: 2011
  ident: ref54
  article-title: Estimation of allele frequency and association mapping using next-generation sequencing data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-231
– volume: 7
  start-page: e1002188
  year: 2011
  ident: ref17
  article-title: Ongoing phenotypic and genomic changes in experimental coevolution of RNA bacteriophage Qb and Escherichia coli
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002188
– volume: 185
  start-page: 2670
  year: 2010
  ident: ref39
  article-title: Cutting edge: mutation of Francisella tularensis mviN leads to increased macrophage absent in melanoma 2 inflammasome activation and a loss of virulence
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1001610
– volume: 93
  start-page: 387
  year: 2012
  ident: ref14
  article-title: Myxomatosis in Australia and Europe: a model for emerging infectious diseases
  publication-title: Antiviral Res
  doi: 10.1016/j.antiviral.2012.01.009
– volume: 107
  start-page: 7359
  year: 2010
  ident: ref21
  article-title: Multiple reciprocal adaptations and rapid genetic change upon experimental coevolution of an animal host and its microbial parasite
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1003113107
– volume: 6
  start-page: 17
  year: 2013
  ident: ref41
  article-title: Evolution of Bacillus thuringiensis Cry toxins insecticidal activity: Evolution of Bt toxins
  publication-title: Microbial Biotechnology
  doi: 10.1111/j.1751-7915.2012.00342.x
– volume: 456
  start-page: 53
  year: 2008
  ident: ref45
  article-title: Accurate whole human genome sequencing using reversible terminator chemistry
  publication-title: Nature
  doi: 10.1038/nature07517
– volume: 24
  start-page: 713
  year: 2008
  ident: ref49
  article-title: SOAP: short oligonucleotide alignment program
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn025
– year: 2011
  ident: ref2
  article-title: Evolutionary parasitology
– volume: 52
  start-page: 831
  year: 2006
  ident: ref38
  article-title: The mviN homolog in Burkholderia pseudomallei is essential for viability and virulence
  publication-title: Can J Microbiol
  doi: 10.1139/w06-042
SSID ssj0022928
Score 2.4305801
Snippet Reciprocal coevolution between host and pathogen is widely seen as a major driver of evolution and biological innovation. Yet, to date, the underlying genetic...
  Reciprocal coevolution between host and pathogen is widely seen as a major driver of evolution and biological innovation. Yet, to date, the underlying...
SourceID plos
doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1002169
SubjectTerms Adaptation
Animals
Bacillus thuringiensis - genetics
Bacillus thuringiensis - pathogenicity
Bacteria
Bacterial Proteins - genetics
Biological Evolution
Caenorhabditis elegans - microbiology
Evolution
Funding
Genes
Genome, Bacterial
Genomes
Genomics
Genotype
Host-Pathogen Interactions - genetics
Insect Proteins
Phenotype
Receptors, Cell Surface - genetics
Selection, Genetic
Virulence
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1KoJBLaZs0cdIWFXp1I1uSP3prloZtoaXQJORmZFkmhsUKa29o_n1nZO2yWwq55GrL2NY8Se-h0RuAjyI1OOunbYwBMChQeB3XiS1jq7UwKjW29ELxx89sfiW_36ibrVJflBM22QNPHXemFS6RDapuza0sm7rUls52pkgcuJDc0OyLa95aTAWplZa-qipZzeBwzkU4NCfy5CzE6NNd3TlvQJpQsvPWouS9-8nrdOGG__HOf9Mnt9aji5fwIhBJ9mX6gVfwzPav4flUWvLhAPq5G8b4F_I7hxBhM2fvA8g-M4QG--3r3-BUx3xd5RGnFeZadq5Nt1isBjbe-vOLHeW3D-y6W6786SSm-4Z9Gwc2Wz6wS_en6xkZVw-HcHXx9XI2j0NthdjIshjjtuHCZKVtrK4TRRY6Km8tR3WRYAdL0WYyMY3UUousyaVB4pW0XDaFbpFw2VS8gb3e9fYYWKZs0WYah6_BCAlVciOMQd1mFcdwywjEunMrE4zHqf7FovK7aTkKkKnLKgpJFUISQbx56m4y3nik_TnFbdOWbLP9BQRTFcBUPQamCI4p6usXDFVC3kFKyEJE8GGNhApHIG2r6N66FbUpMqTZyAQiOJqQsfkKVItUyySLIN_BzM5n7t7pu1vv8i2R2opCnDzFf53CPhI9NaW4vYW9cbmy75BMjfV7P27-AqthG-I
  priority: 102
  providerName: Directory of Open Access Journals
Title Host–Pathogen Coevolution: The Selective Advantage of Bacillus thuringiensis Virulence and Its Cry Toxin Genes
URI https://www.ncbi.nlm.nih.gov/pubmed/26042786
https://www.proquest.com/docview/1686999362
https://pubmed.ncbi.nlm.nih.gov/PMC4456383
https://doaj.org/article/a5584d330a0e49db9ae582123520340c
http://dx.doi.org/10.1371/journal.pbio.1002169
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7aRUi8IO7LgMpIvGZyYjuXSQjRalMBbRqwor5FjuNskaKkNCla3_gP_EN-CcdOUlE0hMRLH1I7cXzOsb8T298H8Ir5Ckd9P3fRAAoTFJq6qadjV0vJlPCVjm2ieHYeTGf8_VzMd2DQbO07sLk1tTN6UrNleXTzdf0GA_61VW0IvaHS0SItaksp6gXxLuzj3BQaTYMzvllX8P3Yqq0aChoM85D1h-n-dhdDFRxYNYpga96y9P6GDrWsm9ug6Z87LH-bsk7vw70ea5K3nXM8gB1dPYQ7nfrk-hEspnXT_vz-4wJBYI1-RCa1_tZ74jFB_yGfrUgOjofEii-3OPaQOidjqYqyXDWkvbaHHAuzCb4hX4rlyh5hIrLKyLu2IZPlmlzWN0VFDLt18xhmpyeXk6nbCzC4isdR6-YZZSqIdaZl6gnDsyPCXFNMQTypBWd5wD2VccklC7KQK0RnXk55FskcUZn22RPYq-pKHwAJhI7yQGKMK83NaWCqmFKY3GlB0Se4A2zo3kT17ORGJKNM7JJbiFlK12mJsU_S28cBd1Nr0bFz_KP82FhuU9Zwa9sL9fIq6UM1kQJBWcYYlRSbmqUxvmtkZnjhU8apcuDA2H14QJN4hmBIMB4xB14OvpBgmJq1F1npemXKRAFicYQLDjztfGPTisHFHAi3vGarmdv_VMW1pQLniH9ZxA7_u-YzuIsQUHSb357DXrtc6RcIs9p0BLvhPBzB_vjk_OLTyH6swN8PH6ORjalfQBUt4Q
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Host%E2%80%93Pathogen+Coevolution%3A+The+Selective+Advantage+of+Bacillus+thuringiensis+Virulence+and+Its+Cry+Toxin+Genes&rft.jtitle=PLoS+biology&rft.au=Masri%2C+Leila&rft.au=Branca%2C+Antoine&rft.au=Sheppard%2C+Anna+E.&rft.au=Papkou%2C+Andrei&rft.date=2015-06-01&rft.pub=Public+Library+of+Science&rft.issn=1544-9173&rft.eissn=1545-7885&rft.volume=13&rft.issue=6&rft_id=info:doi/10.1371%2Fjournal.pbio.1002169&rft_id=info%3Apmid%2F26042786&rft.externalDocID=PMC4456383
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon