Learning Regularized LDA by Clustering
As a supervised dimensionality reduction technique, linear discriminant analysis has a serious overfitting problem when the number of training samples per class is small. The main reason is that the between- and within-class scatter matrices computed from the limited number of training samples devia...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 25; no. 12; pp. 2191 - 2201 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As a supervised dimensionality reduction technique, linear discriminant analysis has a serious overfitting problem when the number of training samples per class is small. The main reason is that the between- and within-class scatter matrices computed from the limited number of training samples deviate greatly from the underlying ones. To overcome the problem without increasing the number of training samples, we propose making use of the structure of the given training data to regularize the between- and within-class scatter matrices by between- and within-cluster scatter matrices, respectively, and simultaneously. The within- and between-cluster matrices are computed from unsupervised clustered data. The within-cluster scatter matrix contributes to encoding the possible variations in intraclasses and the between-cluster scatter matrix is useful for separating extra classes. The contributions are inversely proportional to the number of training samples per class. The advantages of the proposed method become more remarkable as the number of training samples per class decreases. Experimental results on the AR and Feret face databases demonstrate the effectiveness of the proposed method. |
---|---|
AbstractList | As a supervised dimensionality reduction technique, linear discriminant analysis has a serious overfitting problem when the number of training samples per class is small. The main reason is that the between- and within-class scatter matrices computed from the limited number of training samples deviate greatly from the underlying ones. To overcome the problem without increasing the number of training samples, we propose making use of the structure of the given training data to regularize the between- and within-class scatter matrices by between- and within-cluster scatter matrices, respectively, and simultaneously. The within- and between-cluster matrices are computed from unsupervised clustered data. The within-cluster scatter matrix contributes to encoding the possible variations in intraclasses and the between-cluster scatter matrix is useful for separating extra classes. The contributions are inversely proportional to the number of training samples per class. The advantages of the proposed method become more remarkable as the number of training samples per class decreases. Experimental results on the AR and Feret face databases demonstrate the effectiveness of the proposed method.As a supervised dimensionality reduction technique, linear discriminant analysis has a serious overfitting problem when the number of training samples per class is small. The main reason is that the between- and within-class scatter matrices computed from the limited number of training samples deviate greatly from the underlying ones. To overcome the problem without increasing the number of training samples, we propose making use of the structure of the given training data to regularize the between- and within-class scatter matrices by between- and within-cluster scatter matrices, respectively, and simultaneously. The within- and between-cluster matrices are computed from unsupervised clustered data. The within-cluster scatter matrix contributes to encoding the possible variations in intraclasses and the between-cluster scatter matrix is useful for separating extra classes. The contributions are inversely proportional to the number of training samples per class. The advantages of the proposed method become more remarkable as the number of training samples per class decreases. Experimental results on the AR and Feret face databases demonstrate the effectiveness of the proposed method. As a supervised dimensionality reduction technique, linear discriminant analysis has a serious overfitting problem when the number of training samples per class is small. The main reason is that the between- and within-class scatter matrices computed from the limited number of training samples deviate greatly from the underlying ones. To overcome the problem without increasing the number of training samples, we propose making use of the structure of the given training data to regularize the between- and within-class scatter matrices by between- and within-cluster scatter matrices, respectively, and simultaneously. The within- and between-cluster matrices are computed from unsupervised clustered data. The within-cluster scatter matrix contributes to encoding the possible variations in intraclasses and the between-cluster scatter matrix is useful for separating extra classes. The contributions are inversely proportional to the number of training samples per class. The advantages of the proposed method become more remarkable as the number of training samples per class decreases. Experimental results on the AR and Feret face databases demonstrate the effectiveness of the proposed method. |
Author | Shuang Wang Yanwei Pang Yuan Yuan |
Author_xml | – sequence: 1 givenname: Yanwei surname: Pang fullname: Pang, Yanwei – sequence: 2 givenname: Shuang surname: Wang fullname: Wang, Shuang – sequence: 3 givenname: Yuan surname: Yuan fullname: Yuan, Yuan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25420242$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctKw0AUhgep2Fr7AgoSEMRN6twyl2WpVwgVtIK7MJlMypQ0qTPJoj69ia1ddCHO5gyc7z-3_xT0yqo0AJwjOEYIytv5bBa_jTFEdIwJZILSIzDAiOEQEyF6-z__6IOR90vYPgYjRuUJ6OOIYogpHoDr2ChX2nIRvJpFUyhnv0wWxHeTIN0E06LxtXFt9gwc56rwZrSLQ_D-cD-fPoXxy-PzdBKHmkpRhzmDXAhMhZI51pmIIsQEFJSjTMs809pkTCsoc9LOLUUKKUm55EwTpiNCUzIEN9u6a1d9NsbXycp6bYpClaZqfIJYhCgkBEX_QLHoTsFhi14doMuqcWW7SEdxhiMhOupyRzXpymTJ2tmVcpvk91gtgLeAdpX3zuR7BMGkMyX5MSXpTEl2prQicSDStla1rcraKVv8Lb3YSq0xZt-LcSkxluQbdyiVHQ |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1109_TSP_2017_2708023 crossref_primary_10_1007_s11432_018_9567_8 crossref_primary_10_1007_s13042_020_01163_x crossref_primary_10_3390_ijms20092329 crossref_primary_10_1016_j_neucom_2016_05_018 crossref_primary_10_1016_j_neucom_2015_03_125 crossref_primary_10_1016_j_neucom_2021_02_062 crossref_primary_10_1109_TPAMI_2020_3002587 crossref_primary_10_1016_j_neucom_2015_10_119 crossref_primary_10_1109_TCYB_2015_2457611 crossref_primary_10_1109_JSEN_2019_2893892 crossref_primary_10_1007_s00521_024_10454_1 crossref_primary_10_1007_s13042_022_01752_y crossref_primary_10_1109_TBC_2016_2623241 crossref_primary_10_1007_s10489_022_04058_2 crossref_primary_10_1016_j_neucom_2014_12_120 crossref_primary_10_1016_j_neucom_2014_12_121 crossref_primary_10_1109_TMM_2017_2660440 crossref_primary_10_1016_j_sigpro_2018_11_015 crossref_primary_10_1109_TNNLS_2015_2441735 crossref_primary_10_1016_j_neucom_2015_03_121 crossref_primary_10_1109_TIM_2018_2834085 crossref_primary_10_1117_1_JEI_27_5_053050 crossref_primary_10_1109_TNNLS_2015_2451151 crossref_primary_10_1109_TIFS_2017_2718490 crossref_primary_10_1016_j_neucom_2014_11_099 crossref_primary_10_1016_j_neucom_2015_05_002 crossref_primary_10_1109_TKDE_2021_3114204 crossref_primary_10_1142_S0218001418560062 crossref_primary_10_1016_j_chemolab_2024_105136 crossref_primary_10_1007_s10489_020_02044_0 crossref_primary_10_1109_TCYB_2015_2472478 crossref_primary_10_1016_j_neucom_2015_01_103 crossref_primary_10_1016_j_neucom_2015_02_099 crossref_primary_10_1016_j_neucom_2015_01_105 crossref_primary_10_1016_j_neucom_2015_02_098 crossref_primary_10_1109_TMM_2015_2505089 crossref_primary_10_1016_j_neucom_2015_01_021 crossref_primary_10_1007_s13042_020_01231_2 crossref_primary_10_1007_s10489_022_03409_3 crossref_primary_10_1016_j_sigpro_2017_05_012 crossref_primary_10_1016_j_ins_2022_07_135 crossref_primary_10_1007_s12559_015_9373_5 crossref_primary_10_1109_TKDE_2019_2911946 crossref_primary_10_1016_j_neucom_2018_09_051 crossref_primary_10_1109_TMM_2021_3109442 crossref_primary_10_1016_j_neucom_2014_11_101 crossref_primary_10_1016_j_patcog_2022_109282 crossref_primary_10_1002_adma_201902431 crossref_primary_10_1007_s10489_019_01489_2 crossref_primary_10_1016_j_neunet_2017_05_011 crossref_primary_10_1016_j_neucom_2015_02_100 crossref_primary_10_1007_s00521_018_3554_6 crossref_primary_10_3390_pr12071382 crossref_primary_10_1016_j_neucom_2015_10_139 crossref_primary_10_1016_j_neunet_2023_06_038 crossref_primary_10_1016_j_neucom_2015_04_114 crossref_primary_10_1016_j_engappai_2017_11_008 crossref_primary_10_1016_j_neucom_2015_04_113 crossref_primary_10_1109_TCYB_2016_2585764 crossref_primary_10_3390_jpm12040535 crossref_primary_10_1016_j_neucom_2015_04_116 crossref_primary_10_1016_j_neucom_2015_04_115 crossref_primary_10_1007_s11432_022_3579_1 crossref_primary_10_1016_j_neucom_2016_09_052 crossref_primary_10_1109_TCYB_2018_2868742 crossref_primary_10_1007_s12652_018_1063_1 crossref_primary_10_3390_brainsci11081026 crossref_primary_10_1016_j_engappai_2020_104033 crossref_primary_10_3390_s19132848 crossref_primary_10_1016_j_neucom_2019_10_055 crossref_primary_10_1109_TCSVT_2016_2630731 crossref_primary_10_1016_j_patcog_2021_108422 crossref_primary_10_3390_electronics12061322 crossref_primary_10_1109_ACCESS_2020_2984777 crossref_primary_10_1109_TIE_2020_2969072 crossref_primary_10_1109_TNNLS_2018_2886317 crossref_primary_10_1016_j_patcog_2018_05_021 crossref_primary_10_1109_TIP_2017_2691543 crossref_primary_10_1007_s13042_016_0526_y crossref_primary_10_1109_ACCESS_2020_3033093 crossref_primary_10_1016_j_neucom_2014_12_118 crossref_primary_10_1109_TIP_2017_2694224 crossref_primary_10_1109_TNNLS_2020_3027602 crossref_primary_10_1016_j_patcog_2016_08_010 crossref_primary_10_1007_s00371_017_1468_4 crossref_primary_10_1109_TCYB_2015_2508603 crossref_primary_10_1109_TNNLS_2017_2689098 crossref_primary_10_1109_TNNLS_2018_2874458 crossref_primary_10_1021_acs_est_2c05874 crossref_primary_10_1109_TNNLS_2019_2939637 |
Cites_doi | 10.1109/TNNLS.2012.2197827 10.1109/34.879790 10.1109/TPAMI.2007.250598 10.1109/TNNLS.2011.2178037 10.1109/TNNLS.2012.2212721 10.1016/j.patcog.2010.08.026 10.1007/s00778-010-0189-3 10.1109/34.908974 10.1109/TNNLS.2012.2214488 10.1109/34.598228 10.1109/TMM.2009.2037373 10.2307/2289860 10.1109/TPAMI.2010.231 10.1109/TPAMI.2005.55 10.1109/TPAMI.2008.174 10.1109/TNSRE.2011.2116125 10.1109/TNNLS.2012.2190420 10.1109/TPAMI.2005.250 10.1109/TCSVT.2008.924108 10.1016/j.patrec.2004.09.014 10.1109/TIP.2011.2180916 10.1016/j.patcog.2012.01.007 10.1016/j.patcog.2007.07.022 10.1109/TFUZZ.2010.2089631 10.1016/j.neucom.2005.07.005 10.1016/S0167-8655(03)00126-0 10.1109/TPAMI.2007.70708 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2014.2306844 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 2201 |
ExternalDocumentID | 3506204731 25420242 10_1109_TNNLS_2014_2306844 6799229 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: State Key Program of National Natural Science of China grantid: 61232010 – fundername: Open Funding Project of State Key Laboratory of Virtual Reality Technology and Systems, Beihang University grantid: BUAA-VR-13KF – fundername: National Natural Science Foundation of China grantid: 61172121; 61172143; 61271412; 61222109 funderid: 10.13039/501100001809 – fundername: Program for New Century Excellent Talents in University grantid: NCET-10-0620 funderid: 10.13039/501100004602 – fundername: National Basic Research Program of China 973 Program grantid: 2014CB340404; 2014CB340403 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c498t-f60788248a9f2cd85516808471dc9fdcced6ca09f301498b043b7976c36c534b3 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 09:41:09 EDT 2025 Thu Jul 10 23:08:43 EDT 2025 Mon Jun 30 03:36:01 EDT 2025 Thu Apr 03 06:51:27 EDT 2025 Tue Jul 01 00:27:18 EDT 2025 Thu Apr 24 23:12:00 EDT 2025 Tue Aug 26 16:49:27 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 12 |
Keywords | Dimensionality reduction face recognition linear discriminant analysis (LDA) feature extraction |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c498t-f60788248a9f2cd85516808471dc9fdcced6ca09f301498b043b7976c36c534b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://ir.opt.ac.cn/handle/181661/22417 |
PMID | 25420242 |
PQID | 1627625880 |
PQPubID | 85436 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1651403315 proquest_journals_1627625880 pubmed_primary_25420242 ieee_primary_6799229 proquest_miscellaneous_1628238870 crossref_primary_10_1109_TNNLS_2014_2306844 crossref_citationtrail_10_1109_TNNLS_2014_2306844 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-12-01 |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2014 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref34 ref12 ref15 ref14 ref33 ref11 ref32 ref10 ref2 ref1 ref16 perpinan (ref30) 1995 jain (ref13) 2002 ref19 ref18 pang (ref21) 2005 sugiyama (ref27) 2007; 8 ref24 ref23 ref26 ref25 cai (ref3) 2011; 33 ref20 ref22 wang (ref31) 2004 ref28 forstner (ref7) 1990 ref29 ref8 fukunaga (ref9) 1990 ref4 ref6 ref5 li (ref17) 2009; 31 |
References_xml | – ident: ref10 doi: 10.1109/TNNLS.2012.2197827 – ident: ref25 doi: 10.1109/34.879790 – start-page: 1 year: 2004 ident: ref31 article-title: Dual-space linear discriminant analysis for face recognition publication-title: Proc IEEE Int Conf Comput Vis Pattern Recognit – ident: ref33 doi: 10.1109/TPAMI.2007.250598 – ident: ref12 doi: 10.1109/TNNLS.2011.2178037 – volume: 8 start-page: 1027 year: 2007 ident: ref27 article-title: Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis publication-title: J Mach Learn Res – year: 1990 ident: ref9 publication-title: Statistical Pattern Recognition – year: 2002 ident: ref13 publication-title: The Indian Face Database – year: 1995 ident: ref30 publication-title: Compression neural networks for feature extraction Application to human recognition from ear images – ident: ref32 doi: 10.1109/TNNLS.2012.2212721 – ident: ref1 doi: 10.1016/j.patcog.2010.08.026 – ident: ref4 doi: 10.1007/s00778-010-0189-3 – ident: ref20 doi: 10.1109/34.908974 – year: 1990 ident: ref7 publication-title: A Metric for Covariance Matrices – ident: ref26 doi: 10.1109/TNNLS.2012.2214488 – ident: ref2 doi: 10.1109/34.598228 – ident: ref29 doi: 10.1109/TMM.2009.2037373 – ident: ref8 doi: 10.2307/2289860 – volume: 33 start-page: 1548 year: 2011 ident: ref3 article-title: Graph regularized nonnegative matrix factorization for data representation publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2010.231 – ident: ref11 doi: 10.1109/TPAMI.2005.55 – volume: 31 start-page: 755 year: 2009 ident: ref17 article-title: Nonparametric discriminant analysis for face recognition publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2008.174 – ident: ref34 doi: 10.1109/TNSRE.2011.2116125 – ident: ref5 doi: 10.1109/TNNLS.2012.2190420 – ident: ref19 doi: 10.1109/TPAMI.2005.250 – ident: ref23 doi: 10.1109/TCSVT.2008.924108 – ident: ref18 doi: 10.1016/j.patrec.2004.09.014 – ident: ref28 doi: 10.1109/TIP.2011.2180916 – ident: ref6 doi: 10.1016/j.patcog.2012.01.007 – ident: ref24 doi: 10.1016/j.patcog.2007.07.022 – ident: ref16 doi: 10.1109/TFUZZ.2010.2089631 – ident: ref22 doi: 10.1016/j.neucom.2005.07.005 – ident: ref15 doi: 10.1016/S0167-8655(03)00126-0 – start-page: 4583 year: 2005 ident: ref21 article-title: Cluster-based LDA for single sample problem in face recognition publication-title: Proc Int Conf Mach Learn Cybern – ident: ref14 doi: 10.1109/TPAMI.2007.70708 |
SSID | ssj0000605649 |
Score | 2.45898 |
Snippet | As a supervised dimensionality reduction technique, linear discriminant analysis has a serious overfitting problem when the number of training samples per... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2191 |
SubjectTerms | Clustering Computation Dimensionality reduction Discriminant analysis Face Face recognition feature extraction Learning linear discriminant analysis (LDA) Neural networks Scatter Silicon Training Vectors |
Title | Learning Regularized LDA by Clustering |
URI | https://ieeexplore.ieee.org/document/6799229 https://www.ncbi.nlm.nih.gov/pubmed/25420242 https://www.proquest.com/docview/1627625880 https://www.proquest.com/docview/1628238870 https://www.proquest.com/docview/1651403315 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGTlx4jUd5qUiIC3T0kabJcRoghMYOPKTdqjZNEAJtCNYD_Hrs9CGBAHGrVLdNYyf-nDifAQ5NYDjjPPYYSniMqcLLVJ55Ar2P9iNTMGOzLcb88p5dTeJJB07aszBaa5t8pvt0affyi5kqaanslCfEoioXYAEDt-qsVrue4iMu5xbthgEPvTBKJs0ZGV-e3o3Ho1tK5GKU-cwFo3o8GBuF5KK-uCRbY-V3uGndzsUyXDcNrrJNnvrlPO-rj29cjv_9oxVYqvGnO6gMZhU6eroGy01tB7ce6j04qolXH9wbW63-9fFDF-7obODm7-7wuSR-Bby7DvcX53fDS6-uqeApJsXcMxwxgQiZyKQJVSFon0z45KIKJU2hlC64ynxpKNSSIvdZlCcIWVTEVRyxPNqA7nQ21VvghoEOpQlQPolZxojIPTOJwngqwTcmkQNB062pqgnHqe7Fc2oDD1-mVispaSWtteLAcfvMS0W38ad0j7q0lax704HdRntpPSLfUjQKnPdjnK4cOGhv41iiDZJsqmellREIYXAK-0smJorDKIgd2Kwso_1-Y1DbP7drBxap9VUyzC5056-l3kNIM8_3rS1_AiDM7AA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB71caAXCpRHoEAqAReUbeI4jn3gUPWhLd3ugW6lvYXEsSvUareiG6H2t_BX-G_MOE4kUOmtErdInjiO5_M87PEMwDubWMGFyCKOFBHnuo5KXZWRRO1j4tTW3Lpoi7EYnvLP02y6BD_7uzDGGBd8Zgb06M7y67luaKtsW-SURVX5EMojc_0DHbSrT4d7yM33jB3sT3aHka8hEGmu5CKyAnWgZFyWyjJdSzoXkjGJ5ForW2ttaqHLWFlyLZSsYp5WOaponQqdpbxKsd9lWEU7I2Pt7bB-BydGT0A4-5olgkUszafdrZxYbU_G49EJhY5xirUWklMFIPTGGCnFP5Sgq-rybwPXKbqDdfjVTVEb33I-aBbVQN_8lT3yf53DR_DQW9jhTrskHsOSmT2B9a56ReiF2QZ88Kllz8Iv5oyCcb_dmDoc7e2E1XW4e9FQBglsfQqn9zLaZ7Aym8_MCwhZYpiyCdLnGS85paovba7RY8yxxzwNIOnYWGifUp0qe1wUzrWKVeFQUBAKCo-CAD7271y2CUXupN4gFvaUnnsBbHZoKbzMuSoQhKjZMhTIAWz1zSgt6AionJl542gkGmkopO-iySiJY5pkATxvkdh_vwPwy9vH9RYeDCfHo2J0OD56BWv0J23ozyasLL435jUacIvqjVtHIXy9b9D9BrPaR_M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+regularized+LDA+by+clustering&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Pang%2C+Yanwei&rft.au=Wang%2C+Shuang&rft.au=Yuan%2C+Yuan&rft.date=2014-12-01&rft.eissn=2162-2388&rft.volume=25&rft.issue=12&rft.spage=2191&rft_id=info:doi/10.1109%2FTNNLS.2014.2306844&rft_id=info%3Apmid%2F25420242&rft.externalDocID=25420242 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |