Learning Regularized LDA by Clustering

As a supervised dimensionality reduction technique, linear discriminant analysis has a serious overfitting problem when the number of training samples per class is small. The main reason is that the between- and within-class scatter matrices computed from the limited number of training samples devia...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 25; no. 12; pp. 2191 - 2201
Main Authors Pang, Yanwei, Wang, Shuang, Yuan, Yuan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As a supervised dimensionality reduction technique, linear discriminant analysis has a serious overfitting problem when the number of training samples per class is small. The main reason is that the between- and within-class scatter matrices computed from the limited number of training samples deviate greatly from the underlying ones. To overcome the problem without increasing the number of training samples, we propose making use of the structure of the given training data to regularize the between- and within-class scatter matrices by between- and within-cluster scatter matrices, respectively, and simultaneously. The within- and between-cluster matrices are computed from unsupervised clustered data. The within-cluster scatter matrix contributes to encoding the possible variations in intraclasses and the between-cluster scatter matrix is useful for separating extra classes. The contributions are inversely proportional to the number of training samples per class. The advantages of the proposed method become more remarkable as the number of training samples per class decreases. Experimental results on the AR and Feret face databases demonstrate the effectiveness of the proposed method.
AbstractList As a supervised dimensionality reduction technique, linear discriminant analysis has a serious overfitting problem when the number of training samples per class is small. The main reason is that the between- and within-class scatter matrices computed from the limited number of training samples deviate greatly from the underlying ones. To overcome the problem without increasing the number of training samples, we propose making use of the structure of the given training data to regularize the between- and within-class scatter matrices by between- and within-cluster scatter matrices, respectively, and simultaneously. The within- and between-cluster matrices are computed from unsupervised clustered data. The within-cluster scatter matrix contributes to encoding the possible variations in intraclasses and the between-cluster scatter matrix is useful for separating extra classes. The contributions are inversely proportional to the number of training samples per class. The advantages of the proposed method become more remarkable as the number of training samples per class decreases. Experimental results on the AR and Feret face databases demonstrate the effectiveness of the proposed method.As a supervised dimensionality reduction technique, linear discriminant analysis has a serious overfitting problem when the number of training samples per class is small. The main reason is that the between- and within-class scatter matrices computed from the limited number of training samples deviate greatly from the underlying ones. To overcome the problem without increasing the number of training samples, we propose making use of the structure of the given training data to regularize the between- and within-class scatter matrices by between- and within-cluster scatter matrices, respectively, and simultaneously. The within- and between-cluster matrices are computed from unsupervised clustered data. The within-cluster scatter matrix contributes to encoding the possible variations in intraclasses and the between-cluster scatter matrix is useful for separating extra classes. The contributions are inversely proportional to the number of training samples per class. The advantages of the proposed method become more remarkable as the number of training samples per class decreases. Experimental results on the AR and Feret face databases demonstrate the effectiveness of the proposed method.
As a supervised dimensionality reduction technique, linear discriminant analysis has a serious overfitting problem when the number of training samples per class is small. The main reason is that the between- and within-class scatter matrices computed from the limited number of training samples deviate greatly from the underlying ones. To overcome the problem without increasing the number of training samples, we propose making use of the structure of the given training data to regularize the between- and within-class scatter matrices by between- and within-cluster scatter matrices, respectively, and simultaneously. The within- and between-cluster matrices are computed from unsupervised clustered data. The within-cluster scatter matrix contributes to encoding the possible variations in intraclasses and the between-cluster scatter matrix is useful for separating extra classes. The contributions are inversely proportional to the number of training samples per class. The advantages of the proposed method become more remarkable as the number of training samples per class decreases. Experimental results on the AR and Feret face databases demonstrate the effectiveness of the proposed method.
Author Shuang Wang
Yanwei Pang
Yuan Yuan
Author_xml – sequence: 1
  givenname: Yanwei
  surname: Pang
  fullname: Pang, Yanwei
– sequence: 2
  givenname: Shuang
  surname: Wang
  fullname: Wang, Shuang
– sequence: 3
  givenname: Yuan
  surname: Yuan
  fullname: Yuan, Yuan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25420242$$D View this record in MEDLINE/PubMed
BookMark eNqNkctKw0AUhgep2Fr7AgoSEMRN6twyl2WpVwgVtIK7MJlMypQ0qTPJoj69ia1ddCHO5gyc7z-3_xT0yqo0AJwjOEYIytv5bBa_jTFEdIwJZILSIzDAiOEQEyF6-z__6IOR90vYPgYjRuUJ6OOIYogpHoDr2ChX2nIRvJpFUyhnv0wWxHeTIN0E06LxtXFt9gwc56rwZrSLQ_D-cD-fPoXxy-PzdBKHmkpRhzmDXAhMhZI51pmIIsQEFJSjTMs809pkTCsoc9LOLUUKKUm55EwTpiNCUzIEN9u6a1d9NsbXycp6bYpClaZqfIJYhCgkBEX_QLHoTsFhi14doMuqcWW7SEdxhiMhOupyRzXpymTJ2tmVcpvk91gtgLeAdpX3zuR7BMGkMyX5MSXpTEl2prQicSDStla1rcraKVv8Lb3YSq0xZt-LcSkxluQbdyiVHQ
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TSP_2017_2708023
crossref_primary_10_1007_s11432_018_9567_8
crossref_primary_10_1007_s13042_020_01163_x
crossref_primary_10_3390_ijms20092329
crossref_primary_10_1016_j_neucom_2016_05_018
crossref_primary_10_1016_j_neucom_2015_03_125
crossref_primary_10_1016_j_neucom_2021_02_062
crossref_primary_10_1109_TPAMI_2020_3002587
crossref_primary_10_1016_j_neucom_2015_10_119
crossref_primary_10_1109_TCYB_2015_2457611
crossref_primary_10_1109_JSEN_2019_2893892
crossref_primary_10_1007_s00521_024_10454_1
crossref_primary_10_1007_s13042_022_01752_y
crossref_primary_10_1109_TBC_2016_2623241
crossref_primary_10_1007_s10489_022_04058_2
crossref_primary_10_1016_j_neucom_2014_12_120
crossref_primary_10_1016_j_neucom_2014_12_121
crossref_primary_10_1109_TMM_2017_2660440
crossref_primary_10_1016_j_sigpro_2018_11_015
crossref_primary_10_1109_TNNLS_2015_2441735
crossref_primary_10_1016_j_neucom_2015_03_121
crossref_primary_10_1109_TIM_2018_2834085
crossref_primary_10_1117_1_JEI_27_5_053050
crossref_primary_10_1109_TNNLS_2015_2451151
crossref_primary_10_1109_TIFS_2017_2718490
crossref_primary_10_1016_j_neucom_2014_11_099
crossref_primary_10_1016_j_neucom_2015_05_002
crossref_primary_10_1109_TKDE_2021_3114204
crossref_primary_10_1142_S0218001418560062
crossref_primary_10_1016_j_chemolab_2024_105136
crossref_primary_10_1007_s10489_020_02044_0
crossref_primary_10_1109_TCYB_2015_2472478
crossref_primary_10_1016_j_neucom_2015_01_103
crossref_primary_10_1016_j_neucom_2015_02_099
crossref_primary_10_1016_j_neucom_2015_01_105
crossref_primary_10_1016_j_neucom_2015_02_098
crossref_primary_10_1109_TMM_2015_2505089
crossref_primary_10_1016_j_neucom_2015_01_021
crossref_primary_10_1007_s13042_020_01231_2
crossref_primary_10_1007_s10489_022_03409_3
crossref_primary_10_1016_j_sigpro_2017_05_012
crossref_primary_10_1016_j_ins_2022_07_135
crossref_primary_10_1007_s12559_015_9373_5
crossref_primary_10_1109_TKDE_2019_2911946
crossref_primary_10_1016_j_neucom_2018_09_051
crossref_primary_10_1109_TMM_2021_3109442
crossref_primary_10_1016_j_neucom_2014_11_101
crossref_primary_10_1016_j_patcog_2022_109282
crossref_primary_10_1002_adma_201902431
crossref_primary_10_1007_s10489_019_01489_2
crossref_primary_10_1016_j_neunet_2017_05_011
crossref_primary_10_1016_j_neucom_2015_02_100
crossref_primary_10_1007_s00521_018_3554_6
crossref_primary_10_3390_pr12071382
crossref_primary_10_1016_j_neucom_2015_10_139
crossref_primary_10_1016_j_neunet_2023_06_038
crossref_primary_10_1016_j_neucom_2015_04_114
crossref_primary_10_1016_j_engappai_2017_11_008
crossref_primary_10_1016_j_neucom_2015_04_113
crossref_primary_10_1109_TCYB_2016_2585764
crossref_primary_10_3390_jpm12040535
crossref_primary_10_1016_j_neucom_2015_04_116
crossref_primary_10_1016_j_neucom_2015_04_115
crossref_primary_10_1007_s11432_022_3579_1
crossref_primary_10_1016_j_neucom_2016_09_052
crossref_primary_10_1109_TCYB_2018_2868742
crossref_primary_10_1007_s12652_018_1063_1
crossref_primary_10_3390_brainsci11081026
crossref_primary_10_1016_j_engappai_2020_104033
crossref_primary_10_3390_s19132848
crossref_primary_10_1016_j_neucom_2019_10_055
crossref_primary_10_1109_TCSVT_2016_2630731
crossref_primary_10_1016_j_patcog_2021_108422
crossref_primary_10_3390_electronics12061322
crossref_primary_10_1109_ACCESS_2020_2984777
crossref_primary_10_1109_TIE_2020_2969072
crossref_primary_10_1109_TNNLS_2018_2886317
crossref_primary_10_1016_j_patcog_2018_05_021
crossref_primary_10_1109_TIP_2017_2691543
crossref_primary_10_1007_s13042_016_0526_y
crossref_primary_10_1109_ACCESS_2020_3033093
crossref_primary_10_1016_j_neucom_2014_12_118
crossref_primary_10_1109_TIP_2017_2694224
crossref_primary_10_1109_TNNLS_2020_3027602
crossref_primary_10_1016_j_patcog_2016_08_010
crossref_primary_10_1007_s00371_017_1468_4
crossref_primary_10_1109_TCYB_2015_2508603
crossref_primary_10_1109_TNNLS_2017_2689098
crossref_primary_10_1109_TNNLS_2018_2874458
crossref_primary_10_1021_acs_est_2c05874
crossref_primary_10_1109_TNNLS_2019_2939637
Cites_doi 10.1109/TNNLS.2012.2197827
10.1109/34.879790
10.1109/TPAMI.2007.250598
10.1109/TNNLS.2011.2178037
10.1109/TNNLS.2012.2212721
10.1016/j.patcog.2010.08.026
10.1007/s00778-010-0189-3
10.1109/34.908974
10.1109/TNNLS.2012.2214488
10.1109/34.598228
10.1109/TMM.2009.2037373
10.2307/2289860
10.1109/TPAMI.2010.231
10.1109/TPAMI.2005.55
10.1109/TPAMI.2008.174
10.1109/TNSRE.2011.2116125
10.1109/TNNLS.2012.2190420
10.1109/TPAMI.2005.250
10.1109/TCSVT.2008.924108
10.1016/j.patrec.2004.09.014
10.1109/TIP.2011.2180916
10.1016/j.patcog.2012.01.007
10.1016/j.patcog.2007.07.022
10.1109/TFUZZ.2010.2089631
10.1016/j.neucom.2005.07.005
10.1016/S0167-8655(03)00126-0
10.1109/TPAMI.2007.70708
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2014.2306844
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
PubMed
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 2201
ExternalDocumentID 3506204731
25420242
10_1109_TNNLS_2014_2306844
6799229
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: State Key Program of National Natural Science of China
  grantid: 61232010
– fundername: Open Funding Project of State Key Laboratory of Virtual Reality Technology and Systems, Beihang University
  grantid: BUAA-VR-13KF
– fundername: National Natural Science Foundation of China
  grantid: 61172121; 61172143; 61271412; 61222109
  funderid: 10.13039/501100001809
– fundername: Program for New Century Excellent Talents in University
  grantid: NCET-10-0620
  funderid: 10.13039/501100004602
– fundername: National Basic Research Program of China 973 Program
  grantid: 2014CB340404; 2014CB340403
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c498t-f60788248a9f2cd85516808471dc9fdcced6ca09f301498b043b7976c36c534b3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 09:41:09 EDT 2025
Thu Jul 10 23:08:43 EDT 2025
Mon Jun 30 03:36:01 EDT 2025
Thu Apr 03 06:51:27 EDT 2025
Tue Jul 01 00:27:18 EDT 2025
Thu Apr 24 23:12:00 EDT 2025
Tue Aug 26 16:49:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 12
Keywords Dimensionality reduction
face recognition
linear discriminant analysis (LDA)
feature extraction
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c498t-f60788248a9f2cd85516808471dc9fdcced6ca09f301498b043b7976c36c534b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://ir.opt.ac.cn/handle/181661/22417
PMID 25420242
PQID 1627625880
PQPubID 85436
PageCount 11
ParticipantIDs proquest_miscellaneous_1651403315
proquest_journals_1627625880
pubmed_primary_25420242
ieee_primary_6799229
proquest_miscellaneous_1628238870
crossref_primary_10_1109_TNNLS_2014_2306844
crossref_citationtrail_10_1109_TNNLS_2014_2306844
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref34
ref12
ref15
ref14
ref33
ref11
ref32
ref10
ref2
ref1
ref16
perpinan (ref30) 1995
jain (ref13) 2002
ref19
ref18
pang (ref21) 2005
sugiyama (ref27) 2007; 8
ref24
ref23
ref26
ref25
cai (ref3) 2011; 33
ref20
ref22
wang (ref31) 2004
ref28
forstner (ref7) 1990
ref29
ref8
fukunaga (ref9) 1990
ref4
ref6
ref5
li (ref17) 2009; 31
References_xml – ident: ref10
  doi: 10.1109/TNNLS.2012.2197827
– ident: ref25
  doi: 10.1109/34.879790
– start-page: 1
  year: 2004
  ident: ref31
  article-title: Dual-space linear discriminant analysis for face recognition
  publication-title: Proc IEEE Int Conf Comput Vis Pattern Recognit
– ident: ref33
  doi: 10.1109/TPAMI.2007.250598
– ident: ref12
  doi: 10.1109/TNNLS.2011.2178037
– volume: 8
  start-page: 1027
  year: 2007
  ident: ref27
  article-title: Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis
  publication-title: J Mach Learn Res
– year: 1990
  ident: ref9
  publication-title: Statistical Pattern Recognition
– year: 2002
  ident: ref13
  publication-title: The Indian Face Database
– year: 1995
  ident: ref30
  publication-title: Compression neural networks for feature extraction Application to human recognition from ear images
– ident: ref32
  doi: 10.1109/TNNLS.2012.2212721
– ident: ref1
  doi: 10.1016/j.patcog.2010.08.026
– ident: ref4
  doi: 10.1007/s00778-010-0189-3
– ident: ref20
  doi: 10.1109/34.908974
– year: 1990
  ident: ref7
  publication-title: A Metric for Covariance Matrices
– ident: ref26
  doi: 10.1109/TNNLS.2012.2214488
– ident: ref2
  doi: 10.1109/34.598228
– ident: ref29
  doi: 10.1109/TMM.2009.2037373
– ident: ref8
  doi: 10.2307/2289860
– volume: 33
  start-page: 1548
  year: 2011
  ident: ref3
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.231
– ident: ref11
  doi: 10.1109/TPAMI.2005.55
– volume: 31
  start-page: 755
  year: 2009
  ident: ref17
  article-title: Nonparametric discriminant analysis for face recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2008.174
– ident: ref34
  doi: 10.1109/TNSRE.2011.2116125
– ident: ref5
  doi: 10.1109/TNNLS.2012.2190420
– ident: ref19
  doi: 10.1109/TPAMI.2005.250
– ident: ref23
  doi: 10.1109/TCSVT.2008.924108
– ident: ref18
  doi: 10.1016/j.patrec.2004.09.014
– ident: ref28
  doi: 10.1109/TIP.2011.2180916
– ident: ref6
  doi: 10.1016/j.patcog.2012.01.007
– ident: ref24
  doi: 10.1016/j.patcog.2007.07.022
– ident: ref16
  doi: 10.1109/TFUZZ.2010.2089631
– ident: ref22
  doi: 10.1016/j.neucom.2005.07.005
– ident: ref15
  doi: 10.1016/S0167-8655(03)00126-0
– start-page: 4583
  year: 2005
  ident: ref21
  article-title: Cluster-based LDA for single sample problem in face recognition
  publication-title: Proc Int Conf Mach Learn Cybern
– ident: ref14
  doi: 10.1109/TPAMI.2007.70708
SSID ssj0000605649
Score 2.45898
Snippet As a supervised dimensionality reduction technique, linear discriminant analysis has a serious overfitting problem when the number of training samples per...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2191
SubjectTerms Clustering
Computation
Dimensionality reduction
Discriminant analysis
Face
Face recognition
feature extraction
Learning
linear discriminant analysis (LDA)
Neural networks
Scatter
Silicon
Training
Vectors
Title Learning Regularized LDA by Clustering
URI https://ieeexplore.ieee.org/document/6799229
https://www.ncbi.nlm.nih.gov/pubmed/25420242
https://www.proquest.com/docview/1627625880
https://www.proquest.com/docview/1628238870
https://www.proquest.com/docview/1651403315
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGTlx4jUd5qUiIC3T0kabJcRoghMYOPKTdqjZNEAJtCNYD_Hrs9CGBAHGrVLdNYyf-nDifAQ5NYDjjPPYYSniMqcLLVJ55Ar2P9iNTMGOzLcb88p5dTeJJB07aszBaa5t8pvt0affyi5kqaanslCfEoioXYAEDt-qsVrue4iMu5xbthgEPvTBKJs0ZGV-e3o3Ho1tK5GKU-cwFo3o8GBuF5KK-uCRbY-V3uGndzsUyXDcNrrJNnvrlPO-rj29cjv_9oxVYqvGnO6gMZhU6eroGy01tB7ce6j04qolXH9wbW63-9fFDF-7obODm7-7wuSR-Bby7DvcX53fDS6-uqeApJsXcMxwxgQiZyKQJVSFon0z45KIKJU2hlC64ynxpKNSSIvdZlCcIWVTEVRyxPNqA7nQ21VvghoEOpQlQPolZxojIPTOJwngqwTcmkQNB062pqgnHqe7Fc2oDD1-mVispaSWtteLAcfvMS0W38ad0j7q0lax704HdRntpPSLfUjQKnPdjnK4cOGhv41iiDZJsqmellREIYXAK-0smJorDKIgd2Kwso_1-Y1DbP7drBxap9VUyzC5056-l3kNIM8_3rS1_AiDM7AA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB71caAXCpRHoEAqAReUbeI4jn3gUPWhLd3ugW6lvYXEsSvUareiG6H2t_BX-G_MOE4kUOmtErdInjiO5_M87PEMwDubWMGFyCKOFBHnuo5KXZWRRO1j4tTW3Lpoi7EYnvLP02y6BD_7uzDGGBd8Zgb06M7y67luaKtsW-SURVX5EMojc_0DHbSrT4d7yM33jB3sT3aHka8hEGmu5CKyAnWgZFyWyjJdSzoXkjGJ5ForW2ttaqHLWFlyLZSsYp5WOaponQqdpbxKsd9lWEU7I2Pt7bB-BydGT0A4-5olgkUszafdrZxYbU_G49EJhY5xirUWklMFIPTGGCnFP5Sgq-rybwPXKbqDdfjVTVEb33I-aBbVQN_8lT3yf53DR_DQW9jhTrskHsOSmT2B9a56ReiF2QZ88Kllz8Iv5oyCcb_dmDoc7e2E1XW4e9FQBglsfQqn9zLaZ7Aym8_MCwhZYpiyCdLnGS85paovba7RY8yxxzwNIOnYWGifUp0qe1wUzrWKVeFQUBAKCo-CAD7271y2CUXupN4gFvaUnnsBbHZoKbzMuSoQhKjZMhTIAWz1zSgt6AionJl542gkGmkopO-iySiJY5pkATxvkdh_vwPwy9vH9RYeDCfHo2J0OD56BWv0J23ozyasLL435jUacIvqjVtHIXy9b9D9BrPaR_M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+regularized+LDA+by+clustering&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Pang%2C+Yanwei&rft.au=Wang%2C+Shuang&rft.au=Yuan%2C+Yuan&rft.date=2014-12-01&rft.eissn=2162-2388&rft.volume=25&rft.issue=12&rft.spage=2191&rft_id=info:doi/10.1109%2FTNNLS.2014.2306844&rft_id=info%3Apmid%2F25420242&rft.externalDocID=25420242
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon