Mesoporous TiO2/TiC@C Composite Membranes with Stable TiO2-C Interface for Robust Lithium Storage
Transition metal oxides/carbon (TMOs/C) composites are important for high-performance lithium-ion batteries (LIBs), but the development of interface-stable TMOs/C composite anodes for robust lithium storage is still a challenge. Herein, mesoporous TiO2/TiC@C composite membranes were synthesized by a...
Saved in:
Published in | iScience Vol. 3; pp. 149 - 160 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
25.05.2018
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transition metal oxides/carbon (TMOs/C) composites are important for high-performance lithium-ion batteries (LIBs), but the development of interface-stable TMOs/C composite anodes for robust lithium storage is still a challenge. Herein, mesoporous TiO2/TiC@C composite membranes were synthesized by an in situ carbothermic reduction method. TiC nanodots with high conductivity and electrochemical inactivity at the TiO2-C interface can significantly enhance the electrical conductivity and structural stability of the membranes. Finite element simulations demonstrate that the TiO2/TiC@C membranes can effectively alleviate tensile and compression stress effects upon lithiation, which is beneficial for robust lithium storage. When used as additives and binder-free electrodes, the TiO2/TiC@C membranes show excellent cycling capability and rate performance. Moreover, a flexible full battery can be assembled by employing the TiO2/TiC@C membranes and shows good performance, highlighting the potential of these membranes in flexible electronics. This work opens an avenue to constructing interface-stable composite structures for the next-generation high-performance LIBs.
[Display omitted]
•Mesoporous TiO2/TiC@C membranes were synthesized by a simple method•This method can be extended to the synthesis of other metal oxide/metal carbide@C•The TiC nanodots can alleviate tensile and compression stress effect upon lithiation•Long working life and excellent rate performance can be achieved
Composite Materials; Nanomaterials; Energy Materials |
---|---|
AbstractList | Transition metal oxides/carbon (TMOs/C) composites are important for high-performance lithium-ion batteries (LIBs), but the development of interface-stable TMOs/C composite anodes for robust lithium storage is still a challenge. Herein, mesoporous TiO
2
/TiC@C composite membranes were synthesized by an
in situ
carbothermic reduction method. TiC nanodots with high conductivity and electrochemical inactivity at the TiO
2
-C interface can significantly enhance the electrical conductivity and structural stability of the membranes. Finite element simulations demonstrate that the TiO
2
/TiC@C membranes can effectively alleviate tensile and compression stress effects upon lithiation, which is beneficial for robust lithium storage. When used as additives and binder-free electrodes, the TiO
2
/TiC@C membranes show excellent cycling capability and rate performance. Moreover, a flexible full battery can be assembled by employing the TiO
2
/TiC@C membranes and shows good performance, highlighting the potential of these membranes in flexible electronics. This work opens an avenue to constructing interface-stable composite structures for the next-generation high-performance LIBs.
•
Mesoporous TiO
2
/TiC@C membranes were synthesized by a simple method
•
This method can be extended to the synthesis of other metal oxide/metal carbide@C
•
The TiC nanodots can alleviate tensile and compression stress effect upon lithiation
•
Long working life and excellent rate performance can be achieved
Composite Materials; Nanomaterials; Energy Materials Transition metal oxides/carbon (TMOs/C) composites are important for high-performance lithium-ion batteries (LIBs), but the development of interface-stable TMOs/C composite anodes for robust lithium storage is still a challenge. Herein, mesoporous TiO2/TiC@C composite membranes were synthesized by an in situ carbothermic reduction method. TiC nanodots with high conductivity and electrochemical inactivity at the TiO2-C interface can significantly enhance the electrical conductivity and structural stability of the membranes. Finite element simulations demonstrate that the TiO2/TiC@C membranes can effectively alleviate tensile and compression stress effects upon lithiation, which is beneficial for robust lithium storage. When used as additives and binder-free electrodes, the TiO2/TiC@C membranes show excellent cycling capability and rate performance. Moreover, a flexible full battery can be assembled by employing the TiO2/TiC@C membranes and shows good performance, highlighting the potential of these membranes in flexible electronics. This work opens an avenue to constructing interface-stable composite structures for the next-generation high-performance LIBs. [Display omitted] •Mesoporous TiO2/TiC@C membranes were synthesized by a simple method•This method can be extended to the synthesis of other metal oxide/metal carbide@C•The TiC nanodots can alleviate tensile and compression stress effect upon lithiation•Long working life and excellent rate performance can be achieved Composite Materials; Nanomaterials; Energy Materials Transition metal oxides/carbon (TMOs/C) composites are important for high-performance lithium-ion batteries (LIBs), but the development of interface-stable TMOs/C composite anodes for robust lithium storage is still a challenge. Herein, mesoporous TiO2/TiC@C composite membranes were synthesized by an in situ carbothermic reduction method. TiC nanodots with high conductivity and electrochemical inactivity at the TiO2-C interface can significantly enhance the electrical conductivity and structural stability of the membranes. Finite element simulations demonstrate that the TiO2/TiC@C membranes can effectively alleviate tensile and compression stress effects upon lithiation, which is beneficial for robust lithium storage. When used as additives and binder-free electrodes, the TiO2/TiC@C membranes show excellent cycling capability and rate performance. Moreover, a flexible full battery can be assembled by employing the TiO2/TiC@C membranes and shows good performance, highlighting the potential of these membranes in flexible electronics. This work opens an avenue to constructing interface-stable composite structures for the next-generation high-performance LIBs. : Composite Materials; Nanomaterials; Energy Materials Subject Areas: Composite Materials, Nanomaterials, Energy Materials Transition metal oxides/carbon (TMOs/C) composites are important for high-performance lithium-ion batteries (LIBs), but the development of interface-stable TMOs/C composite anodes for robust lithium storage is still a challenge. Herein, mesoporous TiO2/TiC@C composite membranes were synthesized by an in situ carbothermic reduction method. TiC nanodots with high conductivity and electrochemical inactivity at the TiO2-C interface can significantly enhance the electrical conductivity and structural stability of the membranes. Finite element simulations demonstrate that the TiO2/TiC@C membranes can effectively alleviate tensile and compression stress effects upon lithiation, which is beneficial for robust lithium storage. When used as additives and binder-free electrodes, the TiO2/TiC@C membranes show excellent cycling capability and rate performance. Moreover, a flexible full battery can be assembled by employing the TiO2/TiC@C membranes and shows good performance, highlighting the potential of these membranes in flexible electronics. This work opens an avenue to constructing interface-stable composite structures for the next-generation high-performance LIBs.Transition metal oxides/carbon (TMOs/C) composites are important for high-performance lithium-ion batteries (LIBs), but the development of interface-stable TMOs/C composite anodes for robust lithium storage is still a challenge. Herein, mesoporous TiO2/TiC@C composite membranes were synthesized by an in situ carbothermic reduction method. TiC nanodots with high conductivity and electrochemical inactivity at the TiO2-C interface can significantly enhance the electrical conductivity and structural stability of the membranes. Finite element simulations demonstrate that the TiO2/TiC@C membranes can effectively alleviate tensile and compression stress effects upon lithiation, which is beneficial for robust lithium storage. When used as additives and binder-free electrodes, the TiO2/TiC@C membranes show excellent cycling capability and rate performance. Moreover, a flexible full battery can be assembled by employing the TiO2/TiC@C membranes and shows good performance, highlighting the potential of these membranes in flexible electronics. This work opens an avenue to constructing interface-stable composite structures for the next-generation high-performance LIBs. |
Author | Lan, Kun Zhang, Wei Zu, Lianhai Chen, Bingjie Liu, Yang He, Haili Zhao, Dongyuan Kong, Biao Yang, Jinhu |
AuthorAffiliation | 3 Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, P. R. China 2 School of Chemical and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China 1 Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and iChEM, Fudan University, Shanghai 200433, P. R. China |
AuthorAffiliation_xml | – name: 1 Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and iChEM, Fudan University, Shanghai 200433, P. R. China – name: 3 Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, P. R. China – name: 2 School of Chemical and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China |
Author_xml | – sequence: 1 givenname: Wei surname: Zhang fullname: Zhang, Wei organization: Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and iChEM, Fudan University, Shanghai 200433, P. R. China – sequence: 2 givenname: Lianhai surname: Zu fullname: Zu, Lianhai organization: School of Chemical and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China – sequence: 3 givenname: Biao surname: Kong fullname: Kong, Biao organization: Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and iChEM, Fudan University, Shanghai 200433, P. R. China – sequence: 4 givenname: Bingjie surname: Chen fullname: Chen, Bingjie organization: School of Chemical and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China – sequence: 5 givenname: Haili surname: He fullname: He, Haili organization: Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and iChEM, Fudan University, Shanghai 200433, P. R. China – sequence: 6 givenname: Kun surname: Lan fullname: Lan, Kun organization: Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and iChEM, Fudan University, Shanghai 200433, P. R. China – sequence: 7 givenname: Yang surname: Liu fullname: Liu, Yang organization: Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and iChEM, Fudan University, Shanghai 200433, P. R. China – sequence: 8 givenname: Jinhu surname: Yang fullname: Yang, Jinhu email: yangjinhu@tongji.edu.cn organization: School of Chemical and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China – sequence: 9 givenname: Dongyuan surname: Zhao fullname: Zhao, Dongyuan email: dyzhao@fudan.edu.cn organization: Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and iChEM, Fudan University, Shanghai 200433, P. R. China |
BookMark | eNp9UctqHDEQHIJD7Dj-gZzmmMuOW9I8IYSEIY-FNYZkcxZ6tNZaZkYbSWOTv4_G64Dtg4VATauq1Kp6m51MbsIse0-gIEDqy31hg7IFBdIWUBYA3avsjFZttwIo6cmj-jS7CGEPADTtsqvfZKcstVtGmrNMXGFwB-fdHPKtvaaXW9t_7vPejQcXbMT8CkfpxYQhv7PxJv8VhRzwHrrq8_UU0RuhMDfO5z-dnEPMNwln5zFBnRc7fJe9NmIIePFwnme_v33d9j9Wm-vv6_7LZqXKro0rQ4UWzDQ1UQpaWUomiQDVMlPSRtOmTcuYVkOpKg2QfmC0MWCIrBCoqNh5tj7qaif2_ODtKPxf7oTl9w3nd1z4aNWAnGpUxhBCqq4qBTVSIJElA6m1prSlSevTUeswyxG1wil6MTwRfXoz2Ru-c7e8JqxhdBnmw4OAd39mDJGPKS4chuRksppTwlh6h3Z1grZHqPIuBI-GKxtFtG5RtgMnwJfA-Z4vgfMlcA4lT4EnKn1G_T_hi6SPRxKmMG4tep4QOCnU1qOKyS37Ev0ffH7F1Q |
CitedBy_id | crossref_primary_10_1002_anie_202002051 crossref_primary_10_1016_j_nanoen_2019_104113 crossref_primary_10_1002_ange_201915502 crossref_primary_10_1016_j_apsusc_2019_02_109 crossref_primary_10_1002_anie_202005840 crossref_primary_10_1002_advs_201902008 crossref_primary_10_1016_j_jallcom_2023_171615 crossref_primary_10_1016_j_jelechem_2018_12_017 crossref_primary_10_1039_C8TA07145D crossref_primary_10_1002_admi_202101528 crossref_primary_10_1016_j_carbpol_2022_120368 crossref_primary_10_1093_nsr_nwaa021 crossref_primary_10_1021_acsaem_1c01249 crossref_primary_10_1039_C8SC04155E crossref_primary_10_1109_JSEN_2021_3080595 crossref_primary_10_1093_nsr_nwaa028 crossref_primary_10_1002_aenm_201803623 crossref_primary_10_1002_aenm_201803865 crossref_primary_10_1002_aenm_202002152 crossref_primary_10_1002_anie_201915502 crossref_primary_10_1002_ange_202005840 crossref_primary_10_1002_ange_202002051 crossref_primary_10_1002_smll_202301038 crossref_primary_10_1039_D0NR06296K crossref_primary_10_1002_cnma_202100527 crossref_primary_10_1016_j_ensm_2021_11_023 crossref_primary_10_1039_C8TA11732B crossref_primary_10_1016_j_jechem_2023_04_016 crossref_primary_10_3103_S1063457621020064 crossref_primary_10_1016_j_isci_2018_12_029 crossref_primary_10_1021_acsanm_3c00692 crossref_primary_10_1016_j_jelechem_2019_113442 crossref_primary_10_1007_s42247_020_00091_4 crossref_primary_10_1002_adfm_202002980 crossref_primary_10_1002_smll_202001526 crossref_primary_10_1039_C9QI00091G crossref_primary_10_1149_2162_8777_ac62ed crossref_primary_10_1007_s10853_023_08440_4 crossref_primary_10_1039_C9NR09042H crossref_primary_10_1016_j_est_2019_101135 crossref_primary_10_1016_j_ensm_2018_11_020 crossref_primary_10_1021_acsami_0c03775 crossref_primary_10_1002_cplu_201900563 crossref_primary_10_1016_j_jcis_2022_11_103 |
Cites_doi | 10.1021/am300349k 10.1002/adma.200700667 10.1021/nn2033693 10.1021/jp069020z 10.1021/acscentsci.5b00256 10.1021/jacs.5b08743 10.1021/jacs.5b05367 10.1038/nmat3601 10.1021/ja2056227 10.1016/j.nantod.2012.06.012 10.1002/anie.201501475 10.1021/cm903207q 10.1002/adma.200601232 10.1038/nchem.2085 10.1002/adma.201602210 10.1002/adma.200901079 10.1002/adfm.201505240 10.1021/jacs.6b10782 10.1038/ncomms13949 10.1002/anie.201605676 10.1021/nn403720p 10.1002/anie.201301622 10.1021/nl102203s 10.1002/adma.201402813 10.1021/nl504427d 10.1126/sciadv.1501554 10.1016/j.nanoen.2016.04.028 10.1021/acs.accounts.6b00480 10.1039/C4TA06869F 10.1021/cr400624r 10.1021/nn202888d 10.1039/C5NR09149G 10.1038/451652a 10.1021/nn506624g 10.1002/anie.201608410 10.1002/adma.201302710 10.1038/nmat1368 10.1021/ja310849c 10.1039/c3ta10275k |
ContentType | Journal Article |
Copyright | 2018 The Author(s) Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved. 2018 The Author(s) 2018 |
Copyright_xml | – notice: 2018 The Author(s) – notice: Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2018 The Author(s) 2018 |
DBID | 6I. AAFTH AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1016/j.isci.2018.04.009 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-0042 |
EndPage | 160 |
ExternalDocumentID | oai_doaj_org_article_2decff1115954a2fbae1b430bddd2282 PMC6137325 10_1016_j_isci_2018_04_009 S2589004218300415 |
GroupedDBID | 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c498t-f2ada3f761cc08b4b3b1a0c83f427d278888ff8d04c5d00304fdff0f1b5e02a53 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 01:30:53 EDT 2025 Thu Aug 21 14:10:44 EDT 2025 Fri Jul 11 02:48:42 EDT 2025 Tue Jul 01 01:03:24 EDT 2025 Thu Apr 24 23:11:09 EDT 2025 Wed May 17 01:19:02 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Composite Materials Nanomaterials Energy Materials |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c498t-f2ada3f761cc08b4b3b1a0c83f427d278888ff8d04c5d00304fdff0f1b5e02a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact These authors contributed equally |
OpenAccessLink | https://doaj.org/article/2decff1115954a2fbae1b430bddd2282 |
PMID | 30428317 |
PQID | 2133823296 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2decff1115954a2fbae1b430bddd2282 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6137325 proquest_miscellaneous_2133823296 crossref_citationtrail_10_1016_j_isci_2018_04_009 crossref_primary_10_1016_j_isci_2018_04_009 elsevier_sciencedirect_doi_10_1016_j_isci_2018_04_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-25 |
PublicationDateYYYYMMDD | 2018-05-25 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-25 day: 25 |
PublicationDecade | 2010 |
PublicationTitle | iScience |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Yao, Huo, Hu, Liu, Cha, McDowell, Chu, Cui (bib33) 2011; 5 Aricò, Bruce, Scrosati, Tarascon, Van Schalkwijk (bib3) 2005; 4 Larcher, Tarascon (bib19) 2015; 7 Su, Xie, Zhang, Du, Xu (bib28) 2013; 7 Wang, Zhang, Ang, Zhang, Tan, Zhang, Guo, Franklin, Wu, Srinivasan (bib32) 2016; 26 Kong, Zu, Peng, Zhang, Zhang, Tang, Selomulya, Zhang, Chen, Wang (bib18) 2016; 138 Kim, Zhu, Yan, Perkins, Frank (bib16) 2010; 10 Jeong, Choi, Lee, Lee, Chang, Han, Lee, Lee, Kwon, Lee (bib14) 2013; 25 Mo, Rooney, Sun, Yang (bib24) 2017; 8 Huang, Gu, Zhao, Doong (bib12) 2010; 22 Kaskhedikar, Maier (bib15) 2009; 21 Wang, Yu, He, Wang, Zhou, Abruna (bib30) 2015; 9 Augustyn, Come, Lowe, Kim, Taberna, Tolbert, Abruña, Simon, Dunn (bib6) 2013; 12 Liu, Chen (bib20) 2014; 114 Guan, Yu, Li, Lou (bib11) 2016; 2 Liu, Luo, Elzatahry, Luo, Che, Fan, Lan, Al-Enizi, Sun, Li (bib21) 2015; 1 Fang, Lv, Che, Wu, Zhang, Gu, Zheng, Zhao (bib8) 2013; 135 Wang, Yu, Lou (bib31) 2016; 55 Huang, Yang, Chen, Wang, Huang, Tao, Ma, Hasan, Li, Xu (bib13) 2016; 8 Liu, Elzatahry, Luo, Lan, Zhang, Fan, Wei, Wang, Deng, Zheng (bib23) 2016; 25 Armstrong, Armstrong, Bruce, Reale, Scrosati (bib5) 2006; 18 Zeng, Zheng, Xia, Wang, Wei (bib37) 2013; 1 Shan, Archana, Shen, Gupta, Bakker, Pan (bib27) 2015; 137 Peng, Chen, Qin, Yang, Li, Zuo, Liu, Yang (bib25) 2012; 6 Yu, Hu, Wu, Lou (bib36) 2017 Feng, Lv, Wu, Dou, Han, Sun, Xia, Zheng, Zhao (bib40) 2011; 133 Armand, Tarascon (bib4) 2008; 451 Fang, Lv, Gong, Elzatahry, Zheng, Zhao (bib9) 2016; 28 Gu, Li, Wang, Bongard, Spliethoff, Schmidt, Weidenthaler, Xia, Zhao, Schüth (bib10) 2015; 54 Kiran, Sampath (bib17) 2012; 4 Liu, Li, Shen, Zhao, Wang (bib22) 2015; 137 Allcorn, Manthiram (bib1) 2015; 3 Cai, Xu, Yan, Han, He, Hercule, Niu, Yuan, Xu, Qu (bib7) 2014; 15 Yu, Deng, Wang, Liu, Zhang, Tu, Zhao (bib34) 2007; 19 Yu, Wu, Lou (bib35) 2017; 50 Zhang, Du, Li, Shen, Yang, Guo, Liu, Elzatahry, Zhao (bib39) 2014; 26 Wang, Yang, Tang, Dong, Jin, Yang, Kisailus, Zhao, Tang, Wang (bib29) 2013; 52 Zhang, Elzatahry, Al-Deyab, Zhao (bib38) 2012; 7 Angelomé, Andrini, Calvo, Requejo, Bilmes, Soler-Illia (bib2) 2007; 111 Peng, Zhang, Chen, Zhang, Xu, Huang, Zhang (bib26) 2016; 55 Cai (10.1016/j.isci.2018.04.009_bib7) 2014; 15 Fang (10.1016/j.isci.2018.04.009_bib8) 2013; 135 Fang (10.1016/j.isci.2018.04.009_bib9) 2016; 28 Liu (10.1016/j.isci.2018.04.009_bib23) 2016; 25 Mo (10.1016/j.isci.2018.04.009_bib24) 2017; 8 Kim (10.1016/j.isci.2018.04.009_bib16) 2010; 10 Kiran (10.1016/j.isci.2018.04.009_bib17) 2012; 4 Huang (10.1016/j.isci.2018.04.009_bib12) 2010; 22 Yu (10.1016/j.isci.2018.04.009_bib34) 2007; 19 Allcorn (10.1016/j.isci.2018.04.009_bib1) 2015; 3 Wang (10.1016/j.isci.2018.04.009_bib31) 2016; 55 Feng (10.1016/j.isci.2018.04.009_bib40) 2011; 133 Guan (10.1016/j.isci.2018.04.009_bib11) 2016; 2 Peng (10.1016/j.isci.2018.04.009_bib25) 2012; 6 Angelomé (10.1016/j.isci.2018.04.009_bib2) 2007; 111 Liu (10.1016/j.isci.2018.04.009_bib22) 2015; 137 Su (10.1016/j.isci.2018.04.009_bib28) 2013; 7 Wang (10.1016/j.isci.2018.04.009_bib29) 2013; 52 Kaskhedikar (10.1016/j.isci.2018.04.009_bib15) 2009; 21 Peng (10.1016/j.isci.2018.04.009_bib26) 2016; 55 Yu (10.1016/j.isci.2018.04.009_bib36) 2017 Liu (10.1016/j.isci.2018.04.009_bib20) 2014; 114 Yao (10.1016/j.isci.2018.04.009_bib33) 2011; 5 Zhang (10.1016/j.isci.2018.04.009_bib39) 2014; 26 Gu (10.1016/j.isci.2018.04.009_bib10) 2015; 54 Kong (10.1016/j.isci.2018.04.009_bib18) 2016; 138 Liu (10.1016/j.isci.2018.04.009_bib21) 2015; 1 Wang (10.1016/j.isci.2018.04.009_bib30) 2015; 9 Zeng (10.1016/j.isci.2018.04.009_bib37) 2013; 1 Yu (10.1016/j.isci.2018.04.009_bib35) 2017; 50 Armand (10.1016/j.isci.2018.04.009_bib4) 2008; 451 Shan (10.1016/j.isci.2018.04.009_bib27) 2015; 137 Armstrong (10.1016/j.isci.2018.04.009_bib5) 2006; 18 Wang (10.1016/j.isci.2018.04.009_bib32) 2016; 26 Jeong (10.1016/j.isci.2018.04.009_bib14) 2013; 25 Huang (10.1016/j.isci.2018.04.009_bib13) 2016; 8 Larcher (10.1016/j.isci.2018.04.009_bib19) 2015; 7 Zhang (10.1016/j.isci.2018.04.009_bib38) 2012; 7 Aricò (10.1016/j.isci.2018.04.009_bib3) 2005; 4 Augustyn (10.1016/j.isci.2018.04.009_bib6) 2013; 12 |
References_xml | – volume: 133 start-page: 15148 year: 2011 end-page: 15156 ident: bib40 article-title: Free-standing mesoporous carbon thin films with highly ordered pore architectures for nanodevices publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 9385 year: 2016 end-page: 9390 ident: bib9 article-title: Synthesis of 2D-mesoporous-carbon/MoS publication-title: Adv. Mater. – volume: 137 start-page: 13161 year: 2015 end-page: 13166 ident: bib22 article-title: Graphitic carbon conformal coating of mesoporous TiO publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 7060 year: 2015 end-page: 7064 ident: bib10 article-title: Controllable synthesis of mesoporous peapod-like Co publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 4099 year: 2010 end-page: 4104 ident: bib16 article-title: Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO-TiO publication-title: Nano Lett. – volume: 7 start-page: 19 year: 2015 end-page: 29 ident: bib19 article-title: Towards greener and more sustainable batteries for electrical energy storage publication-title: Nat. Chem. – volume: 1 start-page: 4293 year: 2013 end-page: 4299 ident: bib37 article-title: Ordered mesoporous TiO publication-title: J. Mater. Chem. A – volume: 12 start-page: 518 year: 2013 end-page: 522 ident: bib6 article-title: High-rate electrochemical energy storage through Li publication-title: Nat. Mater. – volume: 18 start-page: 2597 year: 2006 end-page: 2600 ident: bib5 article-title: TiO publication-title: Adv. Mater. – volume: 7 start-page: 9115 year: 2013 end-page: 9121 ident: bib28 article-title: In situ transmission electron microscopy observation of the conversion mechanism of Fe publication-title: ACS Nano – volume: 19 start-page: 2301 year: 2007 end-page: 2306 ident: bib34 article-title: Ordered mesoporous nanocrystalline titanium-carbide/carbon composites from in situ carbothermal reduction publication-title: Adv. Mater. – volume: 4 start-page: 3818 year: 2012 end-page: 3828 ident: bib17 article-title: Enhanced Raman spectroscopy of molecules adsorbed on carbon-doped TiO publication-title: ACS Appl. Mater. Interfaces – volume: 55 start-page: 12990 year: 2016 end-page: 12995 ident: bib26 article-title: Enhanced electrochemical kinetics on conductive polar mediators for lithium–sulfur batteries publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: e1501554 year: 2016 ident: bib11 article-title: A universal cooperative assembly-directed method for coating of mesoporous TiO publication-title: Sci. Adv. – volume: 8 start-page: 10928 year: 2016 end-page: 10937 ident: bib13 article-title: Hierarchical TiO publication-title: Nanoscale – volume: 25 start-page: 80 year: 2016 end-page: 90 ident: bib23 article-title: Surfactant-templating strategy for ultrathin mesoporous TiO publication-title: Nano Energy – volume: 1 start-page: 400 year: 2015 end-page: 408 ident: bib21 article-title: Mesoporous TiO publication-title: ACS Cent. Sci. – volume: 55 start-page: 14668 year: 2016 end-page: 14672 ident: bib31 article-title: Formation of triple-shelled molybdenum–polydopamine hollow spheres and their conversion into MoO publication-title: Angew. Chem. Int. Ed. – year: 2017 ident: bib36 article-title: Complex hollow nanostructures: synthesis and energy-related applications publication-title: Adv. Mater. – volume: 6 start-page: 1074 year: 2012 end-page: 1081 ident: bib25 article-title: Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity publication-title: ACS Nano – volume: 22 start-page: 1760 year: 2010 end-page: 1767 ident: bib12 article-title: Direct synthesis of controllable microstructures of thermally stable and ordered mesoporous crystalline titanium oxides and carbide/carbon composites publication-title: Chem. Mater. – volume: 21 start-page: 2664 year: 2009 end-page: 2680 ident: bib15 article-title: Lithium storage in carbon nanostructures publication-title: Adv. Mater. – volume: 137 start-page: 11996 year: 2015 end-page: 12005 ident: bib27 article-title: NanoCOT: low-cost nanostructured electrode containing carbon, oxygen, and titanium for efficient oxygen evolution reaction publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 6749 year: 2014 end-page: 6755 ident: bib39 article-title: Highly reversible and large lithium storage in mesoporous Si/C nanocomposite anodes with silicon nanoparticles embedded in a carbon framework publication-title: Adv. Mater. – volume: 26 start-page: 3082 year: 2016 end-page: 3093 ident: bib32 article-title: A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode publication-title: Adv. Funct. Mater. – volume: 15 start-page: 738 year: 2014 end-page: 744 ident: bib7 article-title: Manganese oxide/carbon yolk–shell nanorod anodes for high capacity lithium batteries publication-title: Nano Lett. – volume: 9 start-page: 1775 year: 2015 end-page: 1781 ident: bib30 article-title: Template-free synthesis of hollow-structured Co publication-title: ACS Nano – volume: 3 start-page: 3891 year: 2015 end-page: 3900 ident: bib1 article-title: High-rate, high-density FeSb–TiC–C nanocomposite anodes for lithium-ion batteries publication-title: J. Mater. Chem. A – volume: 4 start-page: 366 year: 2005 end-page: 377 ident: bib3 article-title: Nanostructured materials for advanced energy conversion and storage devices publication-title: Nat. Mater. – volume: 111 start-page: 10886 year: 2007 end-page: 10893 ident: bib2 article-title: Mesoporous anatase TiO publication-title: J. Phys. Chem. C – volume: 50 start-page: 293 year: 2017 end-page: 301 ident: bib35 article-title: Self-templated formation of hollow structures for electrochemical energy applications publication-title: Acc. Chem. Res. – volume: 451 start-page: 652 year: 2008 end-page: 657 ident: bib4 article-title: Building better batteries publication-title: Nature – volume: 52 start-page: 6417 year: 2013 end-page: 6420 ident: bib29 article-title: Accurate control of multishelled Co publication-title: Angew. Chem. Int. Ed. – volume: 138 start-page: 16533 year: 2016 end-page: 16541 ident: bib18 article-title: Direct superassemblies of freestanding metal–carbon frameworks featuring reversible crystalline-phase transformation for electrochemical sodium storage publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 8346 year: 2011 end-page: 8351 ident: bib33 article-title: Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries publication-title: ACS Nano – volume: 7 start-page: 344 year: 2012 end-page: 366 ident: bib38 article-title: Mesoporous titania: from synthesis to application publication-title: Nano Today – volume: 114 start-page: 9890 year: 2014 end-page: 9918 ident: bib20 article-title: Titanium dioxide nanomaterials: self-structural modifications publication-title: Chem. Rev. – volume: 25 start-page: 6250 year: 2013 end-page: 6255 ident: bib14 article-title: Hierarchical hollow spheres of Fe publication-title: Adv. Mater. – volume: 135 start-page: 1524 year: 2013 end-page: 1530 ident: bib8 article-title: Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 13949 year: 2017 ident: bib24 article-title: 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery publication-title: Nat. Commun. – volume: 4 start-page: 3818 year: 2012 ident: 10.1016/j.isci.2018.04.009_bib17 article-title: Enhanced Raman spectroscopy of molecules adsorbed on carbon-doped TiO2 obtained from titanium carbide: a visible-light-assisted renewable substrate publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am300349k – volume: 19 start-page: 2301 year: 2007 ident: 10.1016/j.isci.2018.04.009_bib34 article-title: Ordered mesoporous nanocrystalline titanium-carbide/carbon composites from in situ carbothermal reduction publication-title: Adv. Mater. doi: 10.1002/adma.200700667 – volume: 5 start-page: 8346 year: 2011 ident: 10.1016/j.isci.2018.04.009_bib33 article-title: Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries publication-title: ACS Nano doi: 10.1021/nn2033693 – volume: 111 start-page: 10886 year: 2007 ident: 10.1016/j.isci.2018.04.009_bib2 article-title: Mesoporous anatase TiO2 films: use of Ti K XANES for the quantification of the nanocrystalline character and substrate effects in the photocatalysis behavior publication-title: J. Phys. Chem. C doi: 10.1021/jp069020z – volume: 1 start-page: 400 year: 2015 ident: 10.1016/j.isci.2018.04.009_bib21 article-title: Mesoporous TiO2 mesocrystals: remarkable defects-induced crystallite-interface reactivity and their in situ conversion to single crystals publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.5b00256 – volume: 137 start-page: 13161 year: 2015 ident: 10.1016/j.isci.2018.04.009_bib22 article-title: Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08743 – volume: 137 start-page: 11996 year: 2015 ident: 10.1016/j.isci.2018.04.009_bib27 article-title: NanoCOT: low-cost nanostructured electrode containing carbon, oxygen, and titanium for efficient oxygen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b05367 – volume: 12 start-page: 518 year: 2013 ident: 10.1016/j.isci.2018.04.009_bib6 article-title: High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance publication-title: Nat. Mater. doi: 10.1038/nmat3601 – volume: 133 start-page: 15148 year: 2011 ident: 10.1016/j.isci.2018.04.009_bib40 article-title: Free-standing mesoporous carbon thin films with highly ordered pore architectures for nanodevices publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2056227 – year: 2017 ident: 10.1016/j.isci.2018.04.009_bib36 article-title: Complex hollow nanostructures: synthesis and energy-related applications publication-title: Adv. Mater. – volume: 7 start-page: 344 year: 2012 ident: 10.1016/j.isci.2018.04.009_bib38 article-title: Mesoporous titania: from synthesis to application publication-title: Nano Today doi: 10.1016/j.nantod.2012.06.012 – volume: 54 start-page: 7060 year: 2015 ident: 10.1016/j.isci.2018.04.009_bib10 article-title: Controllable synthesis of mesoporous peapod-like Co3O4@carbon nanotube arrays for high-performance lithium-ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201501475 – volume: 22 start-page: 1760 year: 2010 ident: 10.1016/j.isci.2018.04.009_bib12 article-title: Direct synthesis of controllable microstructures of thermally stable and ordered mesoporous crystalline titanium oxides and carbide/carbon composites publication-title: Chem. Mater. doi: 10.1021/cm903207q – volume: 18 start-page: 2597 year: 2006 ident: 10.1016/j.isci.2018.04.009_bib5 article-title: TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte publication-title: Adv. Mater. doi: 10.1002/adma.200601232 – volume: 7 start-page: 19 year: 2015 ident: 10.1016/j.isci.2018.04.009_bib19 article-title: Towards greener and more sustainable batteries for electrical energy storage publication-title: Nat. Chem. doi: 10.1038/nchem.2085 – volume: 28 start-page: 9385 year: 2016 ident: 10.1016/j.isci.2018.04.009_bib9 article-title: Synthesis of 2D-mesoporous-carbon/MoS2 heterostructures with well-defined interfaces for high-performance lithium-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201602210 – volume: 21 start-page: 2664 year: 2009 ident: 10.1016/j.isci.2018.04.009_bib15 article-title: Lithium storage in carbon nanostructures publication-title: Adv. Mater. doi: 10.1002/adma.200901079 – volume: 26 start-page: 3082 year: 2016 ident: 10.1016/j.isci.2018.04.009_bib32 article-title: A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201505240 – volume: 138 start-page: 16533 year: 2016 ident: 10.1016/j.isci.2018.04.009_bib18 article-title: Direct superassemblies of freestanding metal–carbon frameworks featuring reversible crystalline-phase transformation for electrochemical sodium storage publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b10782 – volume: 8 start-page: 13949 year: 2017 ident: 10.1016/j.isci.2018.04.009_bib24 article-title: 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery publication-title: Nat. Commun. doi: 10.1038/ncomms13949 – volume: 55 start-page: 12990 year: 2016 ident: 10.1016/j.isci.2018.04.009_bib26 article-title: Enhanced electrochemical kinetics on conductive polar mediators for lithium–sulfur batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201605676 – volume: 7 start-page: 9115 year: 2013 ident: 10.1016/j.isci.2018.04.009_bib28 article-title: In situ transmission electron microscopy observation of the conversion mechanism of Fe2O3/graphene anode during lithiation–delithiation processes publication-title: ACS Nano doi: 10.1021/nn403720p – volume: 52 start-page: 6417 year: 2013 ident: 10.1016/j.isci.2018.04.009_bib29 article-title: Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201301622 – volume: 10 start-page: 4099 year: 2010 ident: 10.1016/j.isci.2018.04.009_bib16 article-title: Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO-TiO2 nanotube arrays publication-title: Nano Lett. doi: 10.1021/nl102203s – volume: 26 start-page: 6749 year: 2014 ident: 10.1016/j.isci.2018.04.009_bib39 article-title: Highly reversible and large lithium storage in mesoporous Si/C nanocomposite anodes with silicon nanoparticles embedded in a carbon framework publication-title: Adv. Mater. doi: 10.1002/adma.201402813 – volume: 15 start-page: 738 year: 2014 ident: 10.1016/j.isci.2018.04.009_bib7 article-title: Manganese oxide/carbon yolk–shell nanorod anodes for high capacity lithium batteries publication-title: Nano Lett. doi: 10.1021/nl504427d – volume: 2 start-page: e1501554 year: 2016 ident: 10.1016/j.isci.2018.04.009_bib11 article-title: A universal cooperative assembly-directed method for coating of mesoporous TiO2 nanoshells with enhanced lithium storage properties publication-title: Sci. Adv. doi: 10.1126/sciadv.1501554 – volume: 25 start-page: 80 year: 2016 ident: 10.1016/j.isci.2018.04.009_bib23 article-title: Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.04.028 – volume: 50 start-page: 293 year: 2017 ident: 10.1016/j.isci.2018.04.009_bib35 article-title: Self-templated formation of hollow structures for electrochemical energy applications publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00480 – volume: 3 start-page: 3891 year: 2015 ident: 10.1016/j.isci.2018.04.009_bib1 article-title: High-rate, high-density FeSb–TiC–C nanocomposite anodes for lithium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06869F – volume: 114 start-page: 9890 year: 2014 ident: 10.1016/j.isci.2018.04.009_bib20 article-title: Titanium dioxide nanomaterials: self-structural modifications publication-title: Chem. Rev. doi: 10.1021/cr400624r – volume: 6 start-page: 1074 year: 2012 ident: 10.1016/j.isci.2018.04.009_bib25 article-title: Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity publication-title: ACS Nano doi: 10.1021/nn202888d – volume: 8 start-page: 10928 year: 2016 ident: 10.1016/j.isci.2018.04.009_bib13 article-title: Hierarchical TiO2/C nanocomposite monoliths with a robust scaffolding architecture, mesopore–macropore network and TiO2–C heterostructure for high-performance lithium ion batteries publication-title: Nanoscale doi: 10.1039/C5NR09149G – volume: 451 start-page: 652 year: 2008 ident: 10.1016/j.isci.2018.04.009_bib4 article-title: Building better batteries publication-title: Nature doi: 10.1038/451652a – volume: 9 start-page: 1775 year: 2015 ident: 10.1016/j.isci.2018.04.009_bib30 article-title: Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries publication-title: ACS Nano doi: 10.1021/nn506624g – volume: 55 start-page: 14668 year: 2016 ident: 10.1016/j.isci.2018.04.009_bib31 article-title: Formation of triple-shelled molybdenum–polydopamine hollow spheres and their conversion into MoO2/carbon composite hollow spheres for lithium-ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201608410 – volume: 25 start-page: 6250 year: 2013 ident: 10.1016/j.isci.2018.04.009_bib14 article-title: Hierarchical hollow spheres of Fe2O3@ polyaniline for lithium ion battery anodes publication-title: Adv. Mater. doi: 10.1002/adma.201302710 – volume: 4 start-page: 366 year: 2005 ident: 10.1016/j.isci.2018.04.009_bib3 article-title: Nanostructured materials for advanced energy conversion and storage devices publication-title: Nat. Mater. doi: 10.1038/nmat1368 – volume: 135 start-page: 1524 year: 2013 ident: 10.1016/j.isci.2018.04.009_bib8 article-title: Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage publication-title: J. Am. Chem. Soc. doi: 10.1021/ja310849c – volume: 1 start-page: 4293 year: 2013 ident: 10.1016/j.isci.2018.04.009_bib37 article-title: Ordered mesoporous TiO2–C nanocomposite as an anode material for long-term performance lithium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/c3ta10275k |
SSID | ssj0002002496 |
Score | 2.264989 |
Snippet | Transition metal oxides/carbon (TMOs/C) composites are important for high-performance lithium-ion batteries (LIBs), but the development of interface-stable... |
SourceID | doaj pubmedcentral proquest crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 149 |
SubjectTerms | Composite Materials Energy Materials Nanomaterials |
Title | Mesoporous TiO2/TiC@C Composite Membranes with Stable TiO2-C Interface for Robust Lithium Storage |
URI | https://dx.doi.org/10.1016/j.isci.2018.04.009 https://www.proquest.com/docview/2133823296 https://pubmed.ncbi.nlm.nih.gov/PMC6137325 https://doaj.org/article/2decff1115954a2fbae1b430bddd2282 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhp15CSlu6aRsU6K2YyHrsyrekS0Io3RbKBnITek3rkOyGZvf_Z0b2BvuSXnoz9tiWZ0aeb6RPI8Y-C50CwnpV4QFUWvumanysKxsMRjcJqvG0dnjxY3p1rb_dmJvBVl_ECevKA3eKO5UpRwDskaYx2ksIPtdBKxFSShLzBfr7YswbJFO3ZXqNSuGVneUMcYLQNfsVMx25i1a8Eq_LljqnxEYcRKVSvH8UnAbgc0ydHMSiy0N20INIft41_jXby6s3zC_y4xrRNKbyfNn-lKfLdn4259ThiZiV-SLfY2qMvzZOg68cYWa4y0W0mvMyMgg-Zo4olv9ah-3jhn9HuXZ7j6LoKL_zW3Z9ebGcX1X9BgpV1I3dVCB98gpm0zpGYYMOKtReRKtAy1mSlP1aAJuEjiaVSVJIAALqYLKQ3qh3bH-1XuX3jKeIigdhPFilk_ZWBo9QLeWEgnqaJqzeKdDFvro4bXJx53Y0sltHSnekdCe0Q6VP2Jfnex662hovSn8luzxLUl3scgK9xfXe4v7lLRNmdlZ1PcTooAM-qn3x5Sc7F3DY_2hSBe2FBnWSknyEpc10wmYj3xi1dHxl1f4plbwRS82UNEf_49M-sFfUYGI2SPOR7W_-bvMnBEybcFz6xhP8lxUn |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mesoporous+TiO2%2FTiC%40C+Composite+Membranes+with+Stable+TiO2-C+Interface+for+Robust+Lithium+Storage&rft.jtitle=iScience&rft.au=Zhang%2C+Wei&rft.au=Zu%2C+Lianhai&rft.au=Kong%2C+Biao&rft.au=Chen%2C+Bingjie&rft.date=2018-05-25&rft.pub=Elsevier&rft.eissn=2589-0042&rft.volume=3&rft.spage=149&rft.epage=160&rft_id=info:doi/10.1016%2Fj.isci.2018.04.009&rft_id=info%3Apmid%2F30428317&rft.externalDocID=PMC6137325 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |