CD133 inhibition via autophagic degradation in pemetrexed-resistant lung cancer cells by GMI, a fungal immunomodulatory protein from Ganoderma microsporum
Background Adaptive drug resistance is an unfavourable prognostic factor in cancer therapy. Pemetrexed-resistant lung cancer cells possess high-metastatic ability via ERK–ZEB1 pathway-activated epithelial–mesenchymal transition. GMI is a fungal immunomodulatory protein that suppresses the survival o...
Saved in:
Published in | British journal of cancer Vol. 123; no. 3; pp. 449 - 458 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
04.08.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
Adaptive drug resistance is an unfavourable prognostic factor in cancer therapy. Pemetrexed-resistant lung cancer cells possess high-metastatic ability via ERK–ZEB1 pathway-activated epithelial–mesenchymal transition. GMI is a fungal immunomodulatory protein that suppresses the survival of several cancer cells.
Methods
Cell viability was analysed by MTT, clonogenic, tumour spheroid, and cancer stem cell sphere assays. Western blot assay was performed to detect the protein expression. Chemical inhibitors and ATG5 shRNA were used to inhibit autophagy. Tumour growth was investigated using xenograft mouse model.
Results
GMI decreased the viability with short- and long-term effects and induced autophagy but not apoptosis in A549/A400 cells. GMI downregulated the expression levels of CD133, CD44, NANOG and OCT4. GMI induces the protein degradation of CD133 via autophagy. CD133 silencing decreased the survival and proliferation of A549/A400 cells. GMI suppressed the growth and CD133 expression of A549/A400 xenograft tumour.
Conclusions
This study is the first to reveal the novel function of GMI in eliciting cytotoxic effect and inhibiting CD133 expression in pemetrexed-resistant lung cancer cells via autophagy. Our finding provides evidence that CD133 is a potential target for cancer therapy. |
---|---|
AbstractList | BackgroundAdaptive drug resistance is an unfavourable prognostic factor in cancer therapy. Pemetrexed-resistant lung cancer cells possess high-metastatic ability via ERK–ZEB1 pathway-activated epithelial–mesenchymal transition. GMI is a fungal immunomodulatory protein that suppresses the survival of several cancer cells.MethodsCell viability was analysed by MTT, clonogenic, tumour spheroid, and cancer stem cell sphere assays. Western blot assay was performed to detect the protein expression. Chemical inhibitors and ATG5 shRNA were used to inhibit autophagy. Tumour growth was investigated using xenograft mouse model.ResultsGMI decreased the viability with short- and long-term effects and induced autophagy but not apoptosis in A549/A400 cells. GMI downregulated the expression levels of CD133, CD44, NANOG and OCT4. GMI induces the protein degradation of CD133 via autophagy. CD133 silencing decreased the survival and proliferation of A549/A400 cells. GMI suppressed the growth and CD133 expression of A549/A400 xenograft tumour.ConclusionsThis study is the first to reveal the novel function of GMI in eliciting cytotoxic effect and inhibiting CD133 expression in pemetrexed-resistant lung cancer cells via autophagy. Our finding provides evidence that CD133 is a potential target for cancer therapy. Background Adaptive drug resistance is an unfavourable prognostic factor in cancer therapy. Pemetrexed-resistant lung cancer cells possess high-metastatic ability via ERK–ZEB1 pathway-activated epithelial–mesenchymal transition. GMI is a fungal immunomodulatory protein that suppresses the survival of several cancer cells. Methods Cell viability was analysed by MTT, clonogenic, tumour spheroid, and cancer stem cell sphere assays. Western blot assay was performed to detect the protein expression. Chemical inhibitors and ATG5 shRNA were used to inhibit autophagy. Tumour growth was investigated using xenograft mouse model. Results GMI decreased the viability with short- and long-term effects and induced autophagy but not apoptosis in A549/A400 cells. GMI downregulated the expression levels of CD133, CD44, NANOG and OCT4. GMI induces the protein degradation of CD133 via autophagy. CD133 silencing decreased the survival and proliferation of A549/A400 cells. GMI suppressed the growth and CD133 expression of A549/A400 xenograft tumour. Conclusions This study is the first to reveal the novel function of GMI in eliciting cytotoxic effect and inhibiting CD133 expression in pemetrexed-resistant lung cancer cells via autophagy. Our finding provides evidence that CD133 is a potential target for cancer therapy. Adaptive drug resistance is an unfavourable prognostic factor in cancer therapy. Pemetrexed-resistant lung cancer cells possess high-metastatic ability via ERK-ZEB1 pathway-activated epithelial-mesenchymal transition. GMI is a fungal immunomodulatory protein that suppresses the survival of several cancer cells. Cell viability was analysed by MTT, clonogenic, tumour spheroid, and cancer stem cell sphere assays. Western blot assay was performed to detect the protein expression. Chemical inhibitors and ATG5 shRNA were used to inhibit autophagy. Tumour growth was investigated using xenograft mouse model. GMI decreased the viability with short- and long-term effects and induced autophagy but not apoptosis in A549/A400 cells. GMI downregulated the expression levels of CD133, CD44, NANOG and OCT4. GMI induces the protein degradation of CD133 via autophagy. CD133 silencing decreased the survival and proliferation of A549/A400 cells. GMI suppressed the growth and CD133 expression of A549/A400 xenograft tumour. This study is the first to reveal the novel function of GMI in eliciting cytotoxic effect and inhibiting CD133 expression in pemetrexed-resistant lung cancer cells via autophagy. Our finding provides evidence that CD133 is a potential target for cancer therapy. Adaptive drug resistance is an unfavourable prognostic factor in cancer therapy. Pemetrexed-resistant lung cancer cells possess high-metastatic ability via ERK-ZEB1 pathway-activated epithelial-mesenchymal transition. GMI is a fungal immunomodulatory protein that suppresses the survival of several cancer cells.BACKGROUNDAdaptive drug resistance is an unfavourable prognostic factor in cancer therapy. Pemetrexed-resistant lung cancer cells possess high-metastatic ability via ERK-ZEB1 pathway-activated epithelial-mesenchymal transition. GMI is a fungal immunomodulatory protein that suppresses the survival of several cancer cells.Cell viability was analysed by MTT, clonogenic, tumour spheroid, and cancer stem cell sphere assays. Western blot assay was performed to detect the protein expression. Chemical inhibitors and ATG5 shRNA were used to inhibit autophagy. Tumour growth was investigated using xenograft mouse model.METHODSCell viability was analysed by MTT, clonogenic, tumour spheroid, and cancer stem cell sphere assays. Western blot assay was performed to detect the protein expression. Chemical inhibitors and ATG5 shRNA were used to inhibit autophagy. Tumour growth was investigated using xenograft mouse model.GMI decreased the viability with short- and long-term effects and induced autophagy but not apoptosis in A549/A400 cells. GMI downregulated the expression levels of CD133, CD44, NANOG and OCT4. GMI induces the protein degradation of CD133 via autophagy. CD133 silencing decreased the survival and proliferation of A549/A400 cells. GMI suppressed the growth and CD133 expression of A549/A400 xenograft tumour.RESULTSGMI decreased the viability with short- and long-term effects and induced autophagy but not apoptosis in A549/A400 cells. GMI downregulated the expression levels of CD133, CD44, NANOG and OCT4. GMI induces the protein degradation of CD133 via autophagy. CD133 silencing decreased the survival and proliferation of A549/A400 cells. GMI suppressed the growth and CD133 expression of A549/A400 xenograft tumour.This study is the first to reveal the novel function of GMI in eliciting cytotoxic effect and inhibiting CD133 expression in pemetrexed-resistant lung cancer cells via autophagy. Our finding provides evidence that CD133 is a potential target for cancer therapy.CONCLUSIONSThis study is the first to reveal the novel function of GMI in eliciting cytotoxic effect and inhibiting CD133 expression in pemetrexed-resistant lung cancer cells via autophagy. Our finding provides evidence that CD133 is a potential target for cancer therapy. |
Author | Wu, Wen-Jun Sheu, Gwo-Tarng Ko, Jiunn-Liang Chiu, Ling-Yen Ou, Chu-Chyn Hsin, I-Lun |
Author_xml | – sequence: 1 givenname: I-Lun surname: Hsin fullname: Hsin, I-Lun organization: Institute of Medicine, Chung Shan Medical University – sequence: 2 givenname: Ling-Yen surname: Chiu fullname: Chiu, Ling-Yen organization: Institute of Medicine, Chung Shan Medical University, Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital – sequence: 3 givenname: Chu-Chyn surname: Ou fullname: Ou, Chu-Chyn organization: School of Nutrition, Chung Shan Medical University – sequence: 4 givenname: Wen-Jun surname: Wu fullname: Wu, Wen-Jun organization: Institute of Medicine, Chung Shan Medical University – sequence: 5 givenname: Gwo-Tarng orcidid: 0000-0002-1299-3375 surname: Sheu fullname: Sheu, Gwo-Tarng email: gtsheu@csmu.edu.tw organization: Institute of Medicine, Chung Shan Medical University – sequence: 6 givenname: Jiunn-Liang surname: Ko fullname: Ko, Jiunn-Liang email: jlko@csmu.edu.tw organization: Institute of Medicine, Chung Shan Medical University, Division of Medical Oncology, Department of Internal Medicine, Chung Shan Medical University Hospital, School of Medicine, Chung Shan Medical University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32448867$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAUtFAR3RZ-ABdkiQsHArbjxM4FqVpgqVTEBc6W47zsuortYDsV_Sv8Wrzdlo9K9GRZb2Y0896coCMfPCD0nJI3lNTybeKU07YijFREyqaSj9CKNjWrqGTiCK0IIaIiHSPH6CSly_LtiBRP0HHNOJeyFSv0c_2e1jW2fmd7m23w-MpqrJcc5p3eWoMH2EY96JuR9XgGBznCDxiqCMmmrH3G0-K32GhvIGID05Rwf403n89fY43HMtMTts4tPrgwLJPOIV7jOYYMRXCMweGN9mGA6DR21sSQ5hAX9xQ9HvWU4Nnte4q-ffzwdf2puviyOV-fXVSGdzJXQITuGAxd08raCCblQFjJZCSrCZNs7MzIe2NgJHxsxw7KpqDvR0E7Klvd16fo3UF3XnoHgwGfo57UHK3T8VoFbdW_E293ahuulOCkpg0tAq9uBWL4vkDKytm034P2EJakGCdtIxrB6gJ9eQ96GZboS7yCEiVP0ZQPo0oozlvZFtSLv33_Nnx33AIQB8B-pSnCqIzNN5csMeykKFH7GqlDjVSpkdrXSO0N0HvMO_GHOOzASQXrtxD_mP4_6RcvLNwD |
CitedBy_id | crossref_primary_10_1002_jcp_31103 crossref_primary_10_1007_s10068_022_01233_6 crossref_primary_10_1016_j_toxrep_2022_05_013 crossref_primary_10_3389_fphar_2024_1446725 crossref_primary_10_3390_ijms241612626 crossref_primary_10_1016_j_phymed_2022_154215 crossref_primary_10_1016_j_lfs_2023_122255 crossref_primary_10_1016_j_phrs_2024_107163 crossref_primary_10_3390_ijms25074102 crossref_primary_10_1002_tox_24399 crossref_primary_10_1016_j_phymed_2020_153384 crossref_primary_10_1016_j_ijbiomac_2022_08_024 crossref_primary_10_1016_j_semcancer_2022_07_001 crossref_primary_10_1007_s12010_023_04609_4 crossref_primary_10_3390_cells10112916 crossref_primary_10_1007_s00253_022_11839_9 crossref_primary_10_1007_s00726_023_03361_7 crossref_primary_10_1007_s12272_021_01312_y crossref_primary_10_1016_j_cbi_2022_110177 |
Cites_doi | 10.3816/CLC.2004.s.003 10.4161/auto.7.3.14487 10.1146/annurev-biochem-061516-044908 10.1186/1741-7007-10-29 10.21037/tlcr.2016.02.01 10.1186/2162-3619-2-17 10.1371/journal.pone.0028053 10.4161/auto.7.8.15698 10.1016/j.semcancer.2017.03.003 10.1038/446745a 10.1021/mp500840z 10.18632/oncotarget.19711 10.1073/pnas.1217002110 10.1038/onc.2016.195 10.1371/journal.pone.0056878 10.1146/annurev-biochem-061516-044859 10.1038/s41418-019-0292-y 10.1002/stem.1317 10.1080/1061186X.2018.1479756 10.1158/0008-5472.CAN-10-2638 10.1016/j.phymed.2016.09.003 10.1016/j.semcancer.2010.04.002 10.1038/s41556-018-0201-5 10.1038/s41556-018-0037-z 10.1016/j.bbamcr.2013.06.031 10.1016/S1470-2045(09)70289-X 10.1111/j.1476-5381.2012.02073.x 10.1371/journal.pone.0160425 10.1371/journal.pone.0125774 10.1002/jcb.26616 10.1038/bjc.2011.129 10.1016/j.lungcan.2012.03.011 10.1172/JCI41004 10.1177/1534735419833795 10.1002/tox.22582 10.14348/molcells.2017.0115 10.3791/51639 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Cancer Research UK 2020 The Author(s), under exclusive licence to Cancer Research UK 2020. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Cancer Research UK 2020 – notice: The Author(s), under exclusive licence to Cancer Research UK 2020. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7TO 7U9 7X7 7XB 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AN0 AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI 7X8 5PM |
DOI | 10.1038/s41416-020-0885-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland British Nursing Database (Proquest) ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition British Nursing Index with Full Text ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student ProQuest Central Student MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1532-1827 |
EndPage | 458 |
ExternalDocumentID | PMC7403151 32448867 10_1038_s41416_020_0885_8 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 23N 36B 39C 4.4 406 53G 5GY 5RE 6J9 70F 7RV 7X7 88E 8AO 8C1 8FI 8FJ 8R4 8R5 AACDK AANZL AASML AATNV AAWTL AAYZH AAZLF ABAKF ABLJU ABOCM ABUWG ABZZP ACAOD ACGFO ACGFS ACKTT ACPRK ACRQY ACZOJ ADBBV ADFRT ADHDB AEFQL AEJRE AEMSY AENEX AEVLU AEXYK AFBBN AFKRA AFRAH AFSHS AGAYW AGHAI AGQEE AHMBA AHSBF AIGIU AILAN AJRNO ALFFA ALMA_UNASSIGNED_HOLDINGS AMYLF AN0 AOIJS ASPBG AVWKF AXYYD AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BKKNO BNQBC BPHCQ BVXVI C6C CCPQU CS3 DIK DNIVK DPUIP DU5 E3Z EAP EBLON EBS EE. EIOEI EMB ESX EX3 F5P FDQFY FEDTE FERAY FIGPU FRJ FSGXE FYUFA GX1 HCIFZ HMCUK HVGLF HYE HZ~ IH2 IWAJR JSO JZLTJ KQ8 M1P M7P NAO NAPCQ NQJWS O9- OK1 P2P PQQKQ PROAC PSQYO Q2X RNT RNTTT ROL RPM SNX SNYQT SOHCF SOJ SRMVM SWTZT TAOOD TBHMF TDRGL TR2 UKHRP W2D WH7 WOW ~02 AAFWJ AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT -Q- .55 .GJ 8WZ A6W ABAWZ ABDBF ACUHS AI. B0M CAG CGR COF CUY CVF EAD EAS EBC EBD ECM EIF EJD EMK EMOBN EPL FIZPM J5H M41 NPM SV3 TUS UDS VH1 X7M Y6R ZGI ~8M 3V. 7TO 7U9 7XB 8FE 8FH 8FK ABRTQ AZQEC DWQXO GNUQQ H94 K9. LK8 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-c498t-e07a92ed95683c7288d02133c8230282f9cf4bccef04f6f9e885ebbf719186ab3 |
IEDL.DBID | 7X7 |
ISSN | 0007-0920 1532-1827 |
IngestDate | Thu Aug 21 18:09:17 EDT 2025 Thu Jul 10 23:16:19 EDT 2025 Wed Aug 13 04:35:43 EDT 2025 Fri Jul 25 08:59:50 EDT 2025 Thu Apr 03 07:02:14 EDT 2025 Thu Apr 24 22:58:55 EDT 2025 Tue Jul 01 01:29:51 EDT 2025 Fri Feb 21 02:39:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Note This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c498t-e07a92ed95683c7288d02133c8230282f9cf4bccef04f6f9e885ebbf719186ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1299-3375 |
OpenAccessLink | https://www.nature.com/articles/s41416-020-0885-8 |
PMID | 32448867 |
PQID | 2430244686 |
PQPubID | 41855 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7403151 proquest_miscellaneous_2406575723 proquest_journals_2474987408 proquest_journals_2430244686 pubmed_primary_32448867 crossref_citationtrail_10_1038_s41416_020_0885_8 crossref_primary_10_1038_s41416_020_0885_8 springer_journals_10_1038_s41416_020_0885_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-04 |
PublicationDateYYYYMMDD | 2020-08-04 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | British journal of cancer |
PublicationTitleAbbrev | Br J Cancer |
PublicationTitleAlternate | Br J Cancer |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Chiou, Wang, Chou, Chen, Hong, Hsieh (CR29) 2010; 70 Chen, Wu, Huang, Lin, Chuang, Yu (CR10) 2011; 6 Huang, Chien, Hseu, Huang, Chiang, Huang (CR24) 2018; 119 Hsin, Wang, Li, Ciou, Wu, Wu (CR26) 2016; 23 Amm, Sommer, Wolf (CR2) 2014; 1843 Li, Ko, Ou, Lin, Yen, Hsu (CR23) 2019; 18 Barzegar Behrooz, Syahir, Ahmad (CR9) 2019; 27 Vinci, Gowan, Boxall, Patterson, Zimmermann, Court (CR27) 2012; 10 Johansen, Lamark (CR28) 2011; 7 Dikic (CR30) 2017; 86 Shackleton (CR6) 2010; 20 Li (CR35) 2013; 2 Hsin, Ou, Wu, Jan, Hsiao, Lin (CR20) 2015; 12 Takezawa, Okamoto, Okamoto, Takeda, Sakai, Tsukioka (CR16) 2011; 104 Hardavella, George, Sethi (CR8) 2016; 5 Vrouchou, Kandaswamy, George, Barnett (CR13) 2009; 10 Chiu, Hsin, Yang, Sung, Chi, Chang (CR15) 2017; 36 Hsin, Sheu, Jan, Sun, Wu, Chiu (CR18) 2012; 167 Wei, Jiang, Zou, Liu, Wang, Xu (CR37) 2013; 110 Wang, Yu, Hsieh, Liao, Yu, Chou (CR22) 2017; 8 Ahn, Yang, Liang, Kang, Xiu, Chen (CR12) 2012; 77 Doherty, Baehrecke (CR1) 2018; 20 Chiu, Hu, Yang, Hsin, Ko, Tsai (CR19) 2015; 10 Ji, Kwon (CR31) 2017; 40 Chen, Luo, Dong, Tan, Yang, Feng (CR39) 2013; 8 Varshavsky (CR3) 2017; 86 Levine (CR4) 2007; 446 Hsin, Ou, Wu, Jan, Wu, Chiu (CR17) 2011; 7 Frank, Schatton, Frank (CR5) 2010; 120 Adjei (CR11) 2004; 5 CR25 Gatica, Lahiri, Klionsky (CR32) 2018; 20 Brescia, Ortensi, Fornasari, Levi, Broggi, Pelicci (CR38) 2013; 31 Agliano, Calvo, Box (CR7) 2017; 44 Ricciardi, Tomao, de Marinis (CR14) 2009; 5 Yang, Yu, Li, Yuan, Wang, Yan (CR33) 2017; 11 Nazio, Bordi, Cianfanelli, Locatelli, Cecconi (CR34) 2019; 26 Zhou, Xu, Yang, Yang, Wickett, Andl (CR36) 2016; 11 Hsin, Hsu, Wu, Lu, Wu, Ko (CR21) 2018; 33 I Dikic (885_CR30) 2017; 86 AA Adjei (885_CR11) 2004; 5 M Shackleton (885_CR6) 2010; 20 CH Ji (885_CR31) 2017; 40 IL Hsin (885_CR21) 2018; 33 H Chen (885_CR39) 2013; 8 885_CR25 F Nazio (885_CR34) 2019; 26 MJ Ahn (885_CR12) 2012; 77 K Takezawa (885_CR16) 2011; 104 SY Huang (885_CR24) 2018; 119 J Doherty (885_CR1) 2018; 20 G Hardavella (885_CR8) 2016; 5 IL Hsin (885_CR17) 2011; 7 D Gatica (885_CR32) 2018; 20 Z Li (885_CR35) 2013; 2 A Varshavsky (885_CR3) 2017; 86 A Barzegar Behrooz (885_CR9) 2019; 27 LY Chiu (885_CR19) 2015; 10 A Agliano (885_CR7) 2017; 44 YS Chen (885_CR10) 2011; 6 IL Hsin (885_CR18) 2012; 167 IL Hsin (885_CR26) 2016; 23 T Johansen (885_CR28) 2011; 7 I Amm (885_CR2) 2014; 1843 Y Yang (885_CR33) 2017; 11 Y Wei (885_CR37) 2013; 110 M Vinci (885_CR27) 2012; 10 S Ricciardi (885_CR14) 2009; 5 TY Wang (885_CR22) 2017; 8 P Brescia (885_CR38) 2013; 31 LY Chiu (885_CR15) 2017; 36 L Zhou (885_CR36) 2016; 11 B Levine (885_CR4) 2007; 446 P Vrouchou (885_CR13) 2009; 10 CH Li (885_CR23) 2019; 18 SH Chiou (885_CR29) 2010; 70 NY Frank (885_CR5) 2010; 120 IL Hsin (885_CR20) 2015; 12 |
References_xml | – volume: 5 start-page: S51 issue: Suppl 2 year: 2004 end-page: S55 ident: CR11 article-title: Pharmacology and mechanism of action of pemetrexed publication-title: Clin. Lung Cancer doi: 10.3816/CLC.2004.s.003 – volume: 7 start-page: 279 year: 2011 end-page: 296 ident: CR28 article-title: Selective autophagy mediated by autophagic adapter proteins publication-title: Autophagy doi: 10.4161/auto.7.3.14487 – volume: 86 start-page: 193 year: 2017 end-page: 224 ident: CR30 article-title: Proteasomal and autophagic degradation systems publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-061516-044908 – volume: 10 year: 2012 ident: CR27 article-title: Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation publication-title: BMC Biol. doi: 10.1186/1741-7007-10-29 – volume: 5 start-page: 272 year: 2016 end-page: 279 ident: CR8 article-title: Lung cancer stem cells-characteristics, phenotype publication-title: Transl. Lung Cancer Res. doi: 10.21037/tlcr.2016.02.01 – volume: 2 start-page: 17 year: 2013 ident: CR35 article-title: CD133: a stem cell biomarker and beyond publication-title: Exp. Hematol. Oncol. doi: 10.1186/2162-3619-2-17 – volume: 6 start-page: e28053 year: 2011 ident: CR10 article-title: CD133/Src axis mediates tumor initiating property and epithelial-mesenchymal transition of head and neck cancer publication-title: PLoS ONE doi: 10.1371/journal.pone.0028053 – volume: 7 start-page: 873 year: 2011 end-page: 882 ident: CR17 article-title: GMI, an immunomodulatory protein from Ganoderma microsporum, induces autophagy in non-small cell lung cancer cells publication-title: Autophagy doi: 10.4161/auto.7.8.15698 – volume: 11 start-page: 71 year: 2017 end-page: 79 ident: CR33 article-title: Autophagy regulates the stemness of cervical cancer stem cells publication-title: Biologics – ident: CR25 – volume: 44 start-page: 25 year: 2017 end-page: 42 ident: CR7 article-title: The challenge of targeting cancer stem cells to halt metastasis publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2017.03.003 – volume: 446 start-page: 745 year: 2007 end-page: 747 ident: CR4 article-title: Cell biology: autophagy and cancer publication-title: Nature doi: 10.1038/446745a – volume: 12 start-page: 1534 year: 2015 end-page: 1543 ident: CR20 article-title: GMI, an immunomodulatory protein from Ganoderma microsporum, potentiates cisplatin-induced apoptosis via autophagy in lung cancer cells publication-title: Mol. Pharm. doi: 10.1021/mp500840z – volume: 8 start-page: 70422 year: 2017 end-page: 70430 ident: CR22 article-title: GMI ablates cancer stemness and cisplatin resistance in oral carcinomas stem cells through IL-6/Stat3 signaling inhibition publication-title: Oncotarget doi: 10.18632/oncotarget.19711 – volume: 110 start-page: 6829 year: 2013 end-page: 6834 ident: CR37 article-title: Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1217002110 – volume: 36 start-page: 242 year: 2017 end-page: 253 ident: CR15 article-title: The ERK-ZEB1 pathway mediates epithelial-mesenchymal transition in pemetrexed resistant lung cancer cells with suppression by vinca alkaloids publication-title: Oncogene doi: 10.1038/onc.2016.195 – volume: 8 start-page: e56878 year: 2013 ident: CR39 article-title: CD133/prominin-1-mediated autophagy and glucose uptake beneficial for hepatoma cell survival publication-title: PLoS ONE doi: 10.1371/journal.pone.0056878 – volume: 86 start-page: 123 year: 2017 end-page: 128 ident: CR3 article-title: The ubiquitin system, autophagy, and regulated protein degradation publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-061516-044859 – volume: 18 start-page: 1534735419833795 year: 2019 ident: CR23 article-title: The protective role of GMI, an immunomodulatory protein from Ganoderma microsporum, on 5-fluorouracil-induced oral and intestinal mucositis publication-title: Integr. Cancer Ther. – volume: 26 start-page: 690 year: 2019 end-page: 702 ident: CR34 article-title: Autophagy and cancer stem cells: molecular mechanisms and therapeutic applications publication-title: Cell Death Differ. doi: 10.1038/s41418-019-0292-y – volume: 31 start-page: 857 year: 2013 end-page: 869 ident: CR38 article-title: CD133 is essential for glioblastoma stem cell maintenance publication-title: Stem Cells doi: 10.1002/stem.1317 – volume: 27 start-page: 257 year: 2019 end-page: 269 ident: CR9 article-title: CD133: beyond a cancer stem cell biomarker publication-title: J. Drug Target doi: 10.1080/1061186X.2018.1479756 – volume: 70 start-page: 10433 year: 2010 end-page: 10444 ident: CR29 article-title: Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-2638 – volume: 23 start-page: 1566 year: 2016 end-page: 1573 ident: CR26 article-title: Immunomodulatory proteins FIP-gts and chloroquine induce caspase-independent cell death via autophagy for resensitizing cisplatin-resistant urothelial cancer cells publication-title: Phytomedicine doi: 10.1016/j.phymed.2016.09.003 – volume: 40 start-page: 441 year: 2017 end-page: 449 ident: CR31 article-title: Crosstalk and interplay between the ubiquitin-proteasome system and autophagy publication-title: Mol. Cells – volume: 20 start-page: 85 year: 2010 end-page: 92 ident: CR6 article-title: Normal stem cells and cancer stem cells: similar and different publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2010.04.002 – volume: 20 start-page: 1110 year: 2018 end-page: 1117 ident: CR1 article-title: Life, death and autophagy publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0201-5 – volume: 5 start-page: 781 year: 2009 end-page: 787 ident: CR14 article-title: Pemetrexed as first-line therapy for non-squamous non-small cell lung cancer publication-title: Ther. Clin. Risk Manag. – volume: 20 start-page: 233 year: 2018 end-page: 242 ident: CR32 article-title: Cargo recognition and degradation by selective autophagy publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0037-z – volume: 1843 start-page: 182 year: 2014 end-page: 196 ident: CR2 article-title: Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2013.06.031 – volume: 10 start-page: 1031 year: 2009 end-page: 1032 ident: CR13 article-title: Pemetrexed approved for the first-line treatment of non-small-cell lung cancer: summary of the NICE appraisal publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(09)70289-X – volume: 167 start-page: 1287 year: 2012 end-page: 1300 ident: CR18 article-title: Inhibition of lysosome degradation on autophagosome formation and responses to GMI, an immunomodulatory protein from Ganoderma microsporum publication-title: Br. J. Pharm. doi: 10.1111/j.1476-5381.2012.02073.x – volume: 11 start-page: e0160425 year: 2016 ident: CR36 article-title: Activation of beta-catenin signaling in CD133-positive dermal papilla cells drives postnatal hair growth publication-title: PLoS ONE doi: 10.1371/journal.pone.0160425 – volume: 10 start-page: e0125774 year: 2015 ident: CR19 article-title: Immunomodulatory protein from Ganoderma microsporum induces pro-death autophagy through Akt-mTOR-p70S6K pathway inhibition in multidrug resistant lung cancer cells publication-title: PLoS ONE doi: 10.1371/journal.pone.0125774 – volume: 119 start-page: 4592 year: 2018 end-page: 4606 ident: CR24 article-title: Ganoderma microsporum immunomodulatory protein induces apoptosis and potentiates mitomycin C-induced apoptosis in urinary bladder urothelial carcinoma cells publication-title: J. Cell Biochem. doi: 10.1002/jcb.26616 – volume: 104 start-page: 1594 year: 2011 end-page: 1601 ident: CR16 article-title: Thymidylate synthase as a determinant of pemetrexed sensitivity in non-small cell lung cancer publication-title: Br. J. Cancer doi: 10.1038/bjc.2011.129 – volume: 77 start-page: 346 year: 2012 end-page: 352 ident: CR12 article-title: Randomized phase II trial of first-line treatment with pemetrexed-cisplatin, followed sequentially by gefitinib or pemetrexed, in East Asian, never-smoker patients with advanced non-small cell lung cancer publication-title: Lung Cancer doi: 10.1016/j.lungcan.2012.03.011 – volume: 33 start-page: 955 year: 2018 end-page: 961 ident: CR21 article-title: GMI, a fungal immunomodulatory protein from Ganoderma microsporum, induce apoptosis via beta-catenin suppression in lung cancer cells publication-title: Environ. Toxicol. – volume: 120 start-page: 41 year: 2010 end-page: 50 ident: CR5 article-title: The therapeutic promise of the cancer stem cell concept publication-title: J. Clin. Invest. doi: 10.1172/JCI41004 – volume: 7 start-page: 873 year: 2011 ident: 885_CR17 publication-title: Autophagy doi: 10.4161/auto.7.8.15698 – volume: 167 start-page: 1287 year: 2012 ident: 885_CR18 publication-title: Br. J. Pharm. doi: 10.1111/j.1476-5381.2012.02073.x – volume: 6 start-page: e28053 year: 2011 ident: 885_CR10 publication-title: PLoS ONE doi: 10.1371/journal.pone.0028053 – volume: 120 start-page: 41 year: 2010 ident: 885_CR5 publication-title: J. Clin. Invest. doi: 10.1172/JCI41004 – volume: 8 start-page: 70422 year: 2017 ident: 885_CR22 publication-title: Oncotarget doi: 10.18632/oncotarget.19711 – volume: 10 start-page: e0125774 year: 2015 ident: 885_CR19 publication-title: PLoS ONE doi: 10.1371/journal.pone.0125774 – volume: 8 start-page: e56878 year: 2013 ident: 885_CR39 publication-title: PLoS ONE doi: 10.1371/journal.pone.0056878 – volume: 12 start-page: 1534 year: 2015 ident: 885_CR20 publication-title: Mol. Pharm. doi: 10.1021/mp500840z – volume: 26 start-page: 690 year: 2019 ident: 885_CR34 publication-title: Cell Death Differ. doi: 10.1038/s41418-019-0292-y – volume: 18 start-page: 153473541983379 year: 2019 ident: 885_CR23 publication-title: Integr. Cancer Ther. doi: 10.1177/1534735419833795 – volume: 2 start-page: 17 year: 2013 ident: 885_CR35 publication-title: Exp. Hematol. Oncol. doi: 10.1186/2162-3619-2-17 – volume: 36 start-page: 242 year: 2017 ident: 885_CR15 publication-title: Oncogene doi: 10.1038/onc.2016.195 – volume: 33 start-page: 955 year: 2018 ident: 885_CR21 publication-title: Environ. Toxicol. doi: 10.1002/tox.22582 – volume: 27 start-page: 257 year: 2019 ident: 885_CR9 publication-title: J. Drug Target doi: 10.1080/1061186X.2018.1479756 – volume: 11 start-page: 71 year: 2017 ident: 885_CR33 publication-title: Biologics – volume: 119 start-page: 4592 year: 2018 ident: 885_CR24 publication-title: J. Cell Biochem. doi: 10.1002/jcb.26616 – volume: 40 start-page: 441 year: 2017 ident: 885_CR31 publication-title: Mol. Cells doi: 10.14348/molcells.2017.0115 – volume: 86 start-page: 123 year: 2017 ident: 885_CR3 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-061516-044859 – volume: 446 start-page: 745 year: 2007 ident: 885_CR4 publication-title: Nature doi: 10.1038/446745a – volume: 5 start-page: 272 year: 2016 ident: 885_CR8 publication-title: Transl. Lung Cancer Res. doi: 10.21037/tlcr.2016.02.01 – volume: 110 start-page: 6829 year: 2013 ident: 885_CR37 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1217002110 – volume: 104 start-page: 1594 year: 2011 ident: 885_CR16 publication-title: Br. J. Cancer doi: 10.1038/bjc.2011.129 – ident: 885_CR25 doi: 10.3791/51639 – volume: 31 start-page: 857 year: 2013 ident: 885_CR38 publication-title: Stem Cells doi: 10.1002/stem.1317 – volume: 7 start-page: 279 year: 2011 ident: 885_CR28 publication-title: Autophagy doi: 10.4161/auto.7.3.14487 – volume: 86 start-page: 193 year: 2017 ident: 885_CR30 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-061516-044908 – volume: 10 year: 2012 ident: 885_CR27 publication-title: BMC Biol. doi: 10.1186/1741-7007-10-29 – volume: 20 start-page: 233 year: 2018 ident: 885_CR32 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0037-z – volume: 44 start-page: 25 year: 2017 ident: 885_CR7 publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2017.03.003 – volume: 20 start-page: 1110 year: 2018 ident: 885_CR1 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0201-5 – volume: 10 start-page: 1031 year: 2009 ident: 885_CR13 publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(09)70289-X – volume: 1843 start-page: 182 year: 2014 ident: 885_CR2 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2013.06.031 – volume: 5 start-page: S51 issue: Suppl 2 year: 2004 ident: 885_CR11 publication-title: Clin. Lung Cancer doi: 10.3816/CLC.2004.s.003 – volume: 11 start-page: e0160425 year: 2016 ident: 885_CR36 publication-title: PLoS ONE doi: 10.1371/journal.pone.0160425 – volume: 70 start-page: 10433 year: 2010 ident: 885_CR29 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-2638 – volume: 77 start-page: 346 year: 2012 ident: 885_CR12 publication-title: Lung Cancer doi: 10.1016/j.lungcan.2012.03.011 – volume: 5 start-page: 781 year: 2009 ident: 885_CR14 publication-title: Ther. Clin. Risk Manag. – volume: 23 start-page: 1566 year: 2016 ident: 885_CR26 publication-title: Phytomedicine doi: 10.1016/j.phymed.2016.09.003 – volume: 20 start-page: 85 year: 2010 ident: 885_CR6 publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2010.04.002 |
SSID | ssj0009087 |
Score | 2.4298108 |
Snippet | Background
Adaptive drug resistance is an unfavourable prognostic factor in cancer therapy. Pemetrexed-resistant lung cancer cells possess high-metastatic... Adaptive drug resistance is an unfavourable prognostic factor in cancer therapy. Pemetrexed-resistant lung cancer cells possess high-metastatic ability via... BackgroundAdaptive drug resistance is an unfavourable prognostic factor in cancer therapy. Pemetrexed-resistant lung cancer cells possess high-metastatic... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 449 |
SubjectTerms | 631/67/1059/153 631/67/1059/2326 631/80/474/1624 631/80/82/39/2346 A549 Cells AC133 Antigen - genetics AC133 Antigen - metabolism Animals Apoptosis Autophagy Autophagy-Related Protein 5 - antagonists & inhibitors Biodegradation Biomedical and Life Sciences Biomedicine Cancer Research Cancer therapies CD44 antigen Cell Line, Tumor Cell proliferation Cell Proliferation - drug effects Cell Survival - drug effects Cell viability Cytotoxicity Drug Resistance Drug Resistance, Neoplasm - drug effects Epidemiology Fungal Proteins - administration & dosage Fungal Proteins - pharmacology Ganoderma - metabolism Gene Expression Regulation, Neoplastic - drug effects Humans Immunologic Factors - administration & dosage Immunologic Factors - pharmacology Immunomodulation Immunomodulators Long-term effects Lung cancer Lung Neoplasms - drug therapy Lung Neoplasms - genetics Lung Neoplasms - metabolism Male Mesenchyme Metastases Mice Molecular Medicine Oct-4 protein Oncology Pemetrexed - administration & dosage Pemetrexed - pharmacology Phagocytosis Proteins Proteolysis Stem cells Tumors Xenograft Model Antitumor Assays Xenografts |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI_GkBAviO_dGChIPAERuSRt0kd0sA2k44lJe6uSNNUqre1010Pbv8Jfi51-TMdpSDzHbZPYTuza_pmQd0GXTsjEsTlYI0yBBjHLC8WMKdLgeMJ9LB9b_khPz9T38-R8j8zHWpiYtB8hLeMxPWaHfVqrOZgODJ0d0IuEmXvkPiK3o7-1SBe3OLvc9DCZ-AcuE1MgU5rdV2xfRTv25W6a5F-x0ngFHT8mjwbbkX7uZ_uE7IXmKXmwHKLjz8jvxRfwBWnVXFQuZmLRX5WldoPYARZOOFogMkTfRAmo6FWoQ7cK16Fg4HSjIdl09BK0n3qUhRXFv_pr6m7oyfLbR2opXIJwodAKa0raui2w9Ve7uqER7AFeiLUq9MQ22F-ttrTGZD90mzf1c3J2_PXn4pQNvReYV5npWODaZiIUWE0ovRbAO7AGpPQYmAM3rcx8qZz3oeSqTMsswI4G50oN_p9JrZMvyH7TNuGA0ASEwSXCiXkZlC7hVHMO3RTjvHVWyBnhIxtyPwCTY3-MyzwGyKXJe87lwLkcOZebGXk_PXLVo3L8i_ho5G0-KOg6FwqWAa6wSe8Y1rANWnF4-u00DJqHG2-b0G6QhmPUSuMKXvaSMk0GzFQ4GVM9I3pLhiYCRPXeHmmqi4juDR-VYIbNyIdR2m6ndecaD_-L-hV5KHo1YFwdkf1utQmvwbbq3JuoTX8A64AfYg priority: 102 providerName: Springer Nature |
Title | CD133 inhibition via autophagic degradation in pemetrexed-resistant lung cancer cells by GMI, a fungal immunomodulatory protein from Ganoderma microsporum |
URI | https://link.springer.com/article/10.1038/s41416-020-0885-8 https://www.ncbi.nlm.nih.gov/pubmed/32448867 https://www.proquest.com/docview/2430244686 https://www.proquest.com/docview/2474987408 https://www.proquest.com/docview/2406575723 https://pubmed.ncbi.nlm.nih.gov/PMC7403151 |
Volume | 123 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFBZbC2MvY_ela4MGe9omqliyJT-N1etlg5QxVsibkWSZGmo7TZyx_pX92p1jOw5ZaV8CQXJi6dzPkb5DyHuvchuI0LIJeCNMggQxwzPJtM4ib3nIXXt9bHoenV3I77Nw1ifclv2xyrVObBV1VjvMkR8GUoA5kZGOPs-vGXaNwupq30LjIdlF6DLkajVTG9BdrjvMTEzHxcFQ1RT6cCkn4IowDJ5AzkKmt-3SLWfz9pnJ_wqnrT06eUqe9I4k_dJR_hl54Kvn5NG0L5W_IH-TrxAY0qK6LGx7LIv-Lgw1KwQSMKDuaIYwEV1HJZhF5770zcL_8RmDCBy9yqqhV6AKqEPGWFBM8S-pvaGn02-fqKFgEcG60AIvmNRlnWEfsHpxQ1vkB_hBvLhCT02FzdZKQ0s8-Ycx9Kp8SS5Ojn8lZ6xvxMCcjHXDPFcmDnyGVwuFUwEQElwDIRxW6SBmy2OXS-ucz7nMozz2sKPe2lxBMKgjY8UrslPVlX9DaAicYcPABpPcS5WDirMWYxZtnbEmECPC12RIXY9Sjs0yrtK2Wi502lEuBcqlSLlUj8iH4ZF5B9Fx3-T9NW3TXlqX6Ya37hhWsA1Kcnj63TAMYogbbypfr3AOxxKWwhW87jhleBnwWUFNRmpE1BYPDRMQ4nt7pCouW6hv-FMBPtmIfFxz2-a17lzj3v1rfEseBx3fMy73yU6zWPkD8KwaO27FBz51MhmT3aPj8x8_4VsSJeM2DfYPOP8mVA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw1CpFAi4VaxkoYCS4AFYztpM4B4TQlHaGdnpqpd6C7ThqpCYZZinMr_ARfCPvZRsNVXvr2Y5j--1-GyHvXJgaLnzD-qCNMAkUxLSXSKZUEjjj-Z6t0sfGx8HwVH4_8882yN82FwbDKlueWDHqpLT4Rr7LpQBxIgMVfJn8ZNg1Cr2rbQuNGi0O3fIXmGyzz6M9gO97zve_nQyGrOkqwKyM1Jw5L9QRdwnmyQkbctgVyDkhLLqcwABJI5tKY61LPZkGaeSU8p0xaQiWjQq0EbDuHXJXCiBNzEwfrEJKIk_VNTrx-S_inRdVqN2Z7IPqw9BYA7r2mVqXg1eU26sxmv85aiv5t_-QbDWKK_1aY9ojsuGKx-TeuHHNPyF_BntwPJoV55mpwsDoZaapXmDhAg3slSZYlqLu4ASz6MTlbj51v13CwOJHLbaY0wtgPdQiIk4puhRm1CzpwXj0iWoKEhikGc0woaXMywT7jpXTJa0qTcCCmChDD3SBzd1yTXOMNESbfZE_Jae3AqJnZLMoC_ecUB8w0fjc8H7qZJgCSzUGbSRlrDaaix7xWjDEtqmKjs05LuLKOy9UXEMuBsjFCLlY9ciH7pNJXRLkpsk7LWzjhjvM4hUuXzMcwjWE0oOv33bDQPZ48bpw5QLneOgyC_EE2zWmdJsBHRnYchD2SLiGQ90ELCm-PlJk51VpcfipAB2wRz622Lba1rVnfHHzGd-Q-8OT8VF8NDo-fEke8JoGmCd3yOZ8unCvQKubm9cVKVHy47Zp9x-3y165 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbhMx1CpFqrggdgIFjAQXwMrE9ow9B4RQQtpQUnGgUm-D7fGokZqZkAXIr_ApfB3vzRaFqr31bI_H9tv9NkJeeZVZLkLLeqCNMAkUxEyQSqZ1GnkbhIEr08fGx9Hhifx8Gp7ukL9NLgyGVTY8sWTUaeHwjbzLpQBxIiMddbM6LOLrYPhh9oNhByn0tDbtNCoUOfLrX2C-Ld6PBgDr15wPP33rH7K6wwBzMtZL5gNlYu5TzJkTTnHYIcg8IRy6n8AYyWKXSeuczwKZRVnstQ69tZkCK0dHxgpY9wa5qYTSSGO6vwkviQNd1evEp8CYtx5VobsL2QM1iKHhBjQeMr0tEy8ouhfjNf9z2paycHiH3K6VWPqxwrq7ZMfn98jeuHbT3yd_-gM4Hp3kZxNbhoTRnxNDzQqLGBhgtTTFEhVVNyeYRWd-6pdz_9unDKx_1GjzJT0HNkQdIuWconthQe2aHoxH76ihII1BstEJJrcU0yLFHmTFfE3LqhOwICbN0AOTY6O3qaFTjDpE-301fUBOrgVED8luXuT-MaEhYKUNueW9zEuVAXu1Fu0lbZ2xhosOCRowJK6ukI6NOs6T0lMvdFJBLgHIJQi5RHfIm_aTWVUe5KrJ-w1sk5pTLJINXl8yrOAalAzg65ftMLAAvHiT-2KFcwJ0nyk8waMKU9rNgL4MLDpSHaK2cKidgOXFt0fyyVlZZhx-KkAf7JC3DbZttnXpGZ9cfcYXZA-oNvkyOj56Sm7xigRYIPfJ7nK-8s9AwVva5yUlUfL9ukn3HxsDYu8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CD133+inhibition+via+autophagic+degradation+in+pemetrexed-resistant+lung+cancer+cells+by+GMI%2C+a+fungal+immunomodulatory+protein+from+Ganoderma+microsporum&rft.jtitle=British+journal+of+cancer&rft.au=Hsin%2C+I-Lun&rft.au=Chiu%2C+Ling-Yen&rft.au=Ou%2C+Chu-Chyn&rft.au=Wu%2C+Wen-Jun&rft.date=2020-08-04&rft.issn=1532-1827&rft.eissn=1532-1827&rft.volume=123&rft.issue=3&rft.spage=449&rft_id=info:doi/10.1038%2Fs41416-020-0885-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-0920&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-0920&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-0920&client=summon |