CD133 inhibition via autophagic degradation in pemetrexed-resistant lung cancer cells by GMI, a fungal immunomodulatory protein from Ganoderma microsporum

Background Adaptive drug resistance is an unfavourable prognostic factor in cancer therapy. Pemetrexed-resistant lung cancer cells possess high-metastatic ability via ERK–ZEB1 pathway-activated epithelial–mesenchymal transition. GMI is a fungal immunomodulatory protein that suppresses the survival o...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of cancer Vol. 123; no. 3; pp. 449 - 458
Main Authors Hsin, I-Lun, Chiu, Ling-Yen, Ou, Chu-Chyn, Wu, Wen-Jun, Sheu, Gwo-Tarng, Ko, Jiunn-Liang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 04.08.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Adaptive drug resistance is an unfavourable prognostic factor in cancer therapy. Pemetrexed-resistant lung cancer cells possess high-metastatic ability via ERK–ZEB1 pathway-activated epithelial–mesenchymal transition. GMI is a fungal immunomodulatory protein that suppresses the survival of several cancer cells. Methods Cell viability was analysed by MTT, clonogenic, tumour spheroid, and cancer stem cell sphere assays. Western blot assay was performed to detect the protein expression. Chemical inhibitors and ATG5 shRNA were used to inhibit autophagy. Tumour growth was investigated using xenograft mouse model. Results GMI decreased the viability with short- and long-term effects and induced autophagy but not apoptosis in A549/A400 cells. GMI downregulated the expression levels of CD133, CD44, NANOG and OCT4. GMI induces the protein degradation of CD133 via autophagy. CD133 silencing decreased the survival and proliferation of A549/A400 cells. GMI suppressed the growth and CD133 expression of A549/A400 xenograft tumour. Conclusions This study is the first to reveal the novel function of GMI in eliciting cytotoxic effect and inhibiting CD133 expression in pemetrexed-resistant lung cancer cells via autophagy. Our finding provides evidence that CD133 is a potential target for cancer therapy.
AbstractList BackgroundAdaptive drug resistance is an unfavourable prognostic factor in cancer therapy. Pemetrexed-resistant lung cancer cells possess high-metastatic ability via ERK–ZEB1 pathway-activated epithelial–mesenchymal transition. GMI is a fungal immunomodulatory protein that suppresses the survival of several cancer cells.MethodsCell viability was analysed by MTT, clonogenic, tumour spheroid, and cancer stem cell sphere assays. Western blot assay was performed to detect the protein expression. Chemical inhibitors and ATG5 shRNA were used to inhibit autophagy. Tumour growth was investigated using xenograft mouse model.ResultsGMI decreased the viability with short- and long-term effects and induced autophagy but not apoptosis in A549/A400 cells. GMI downregulated the expression levels of CD133, CD44, NANOG and OCT4. GMI induces the protein degradation of CD133 via autophagy. CD133 silencing decreased the survival and proliferation of A549/A400 cells. GMI suppressed the growth and CD133 expression of A549/A400 xenograft tumour.ConclusionsThis study is the first to reveal the novel function of GMI in eliciting cytotoxic effect and inhibiting CD133 expression in pemetrexed-resistant lung cancer cells via autophagy. Our finding provides evidence that CD133 is a potential target for cancer therapy.
Background Adaptive drug resistance is an unfavourable prognostic factor in cancer therapy. Pemetrexed-resistant lung cancer cells possess high-metastatic ability via ERK–ZEB1 pathway-activated epithelial–mesenchymal transition. GMI is a fungal immunomodulatory protein that suppresses the survival of several cancer cells. Methods Cell viability was analysed by MTT, clonogenic, tumour spheroid, and cancer stem cell sphere assays. Western blot assay was performed to detect the protein expression. Chemical inhibitors and ATG5 shRNA were used to inhibit autophagy. Tumour growth was investigated using xenograft mouse model. Results GMI decreased the viability with short- and long-term effects and induced autophagy but not apoptosis in A549/A400 cells. GMI downregulated the expression levels of CD133, CD44, NANOG and OCT4. GMI induces the protein degradation of CD133 via autophagy. CD133 silencing decreased the survival and proliferation of A549/A400 cells. GMI suppressed the growth and CD133 expression of A549/A400 xenograft tumour. Conclusions This study is the first to reveal the novel function of GMI in eliciting cytotoxic effect and inhibiting CD133 expression in pemetrexed-resistant lung cancer cells via autophagy. Our finding provides evidence that CD133 is a potential target for cancer therapy.
Adaptive drug resistance is an unfavourable prognostic factor in cancer therapy. Pemetrexed-resistant lung cancer cells possess high-metastatic ability via ERK-ZEB1 pathway-activated epithelial-mesenchymal transition. GMI is a fungal immunomodulatory protein that suppresses the survival of several cancer cells. Cell viability was analysed by MTT, clonogenic, tumour spheroid, and cancer stem cell sphere assays. Western blot assay was performed to detect the protein expression. Chemical inhibitors and ATG5 shRNA were used to inhibit autophagy. Tumour growth was investigated using xenograft mouse model. GMI decreased the viability with short- and long-term effects and induced autophagy but not apoptosis in A549/A400 cells. GMI downregulated the expression levels of CD133, CD44, NANOG and OCT4. GMI induces the protein degradation of CD133 via autophagy. CD133 silencing decreased the survival and proliferation of A549/A400 cells. GMI suppressed the growth and CD133 expression of A549/A400 xenograft tumour. This study is the first to reveal the novel function of GMI in eliciting cytotoxic effect and inhibiting CD133 expression in pemetrexed-resistant lung cancer cells via autophagy. Our finding provides evidence that CD133 is a potential target for cancer therapy.
Adaptive drug resistance is an unfavourable prognostic factor in cancer therapy. Pemetrexed-resistant lung cancer cells possess high-metastatic ability via ERK-ZEB1 pathway-activated epithelial-mesenchymal transition. GMI is a fungal immunomodulatory protein that suppresses the survival of several cancer cells.BACKGROUNDAdaptive drug resistance is an unfavourable prognostic factor in cancer therapy. Pemetrexed-resistant lung cancer cells possess high-metastatic ability via ERK-ZEB1 pathway-activated epithelial-mesenchymal transition. GMI is a fungal immunomodulatory protein that suppresses the survival of several cancer cells.Cell viability was analysed by MTT, clonogenic, tumour spheroid, and cancer stem cell sphere assays. Western blot assay was performed to detect the protein expression. Chemical inhibitors and ATG5 shRNA were used to inhibit autophagy. Tumour growth was investigated using xenograft mouse model.METHODSCell viability was analysed by MTT, clonogenic, tumour spheroid, and cancer stem cell sphere assays. Western blot assay was performed to detect the protein expression. Chemical inhibitors and ATG5 shRNA were used to inhibit autophagy. Tumour growth was investigated using xenograft mouse model.GMI decreased the viability with short- and long-term effects and induced autophagy but not apoptosis in A549/A400 cells. GMI downregulated the expression levels of CD133, CD44, NANOG and OCT4. GMI induces the protein degradation of CD133 via autophagy. CD133 silencing decreased the survival and proliferation of A549/A400 cells. GMI suppressed the growth and CD133 expression of A549/A400 xenograft tumour.RESULTSGMI decreased the viability with short- and long-term effects and induced autophagy but not apoptosis in A549/A400 cells. GMI downregulated the expression levels of CD133, CD44, NANOG and OCT4. GMI induces the protein degradation of CD133 via autophagy. CD133 silencing decreased the survival and proliferation of A549/A400 cells. GMI suppressed the growth and CD133 expression of A549/A400 xenograft tumour.This study is the first to reveal the novel function of GMI in eliciting cytotoxic effect and inhibiting CD133 expression in pemetrexed-resistant lung cancer cells via autophagy. Our finding provides evidence that CD133 is a potential target for cancer therapy.CONCLUSIONSThis study is the first to reveal the novel function of GMI in eliciting cytotoxic effect and inhibiting CD133 expression in pemetrexed-resistant lung cancer cells via autophagy. Our finding provides evidence that CD133 is a potential target for cancer therapy.
Author Wu, Wen-Jun
Sheu, Gwo-Tarng
Ko, Jiunn-Liang
Chiu, Ling-Yen
Ou, Chu-Chyn
Hsin, I-Lun
Author_xml – sequence: 1
  givenname: I-Lun
  surname: Hsin
  fullname: Hsin, I-Lun
  organization: Institute of Medicine, Chung Shan Medical University
– sequence: 2
  givenname: Ling-Yen
  surname: Chiu
  fullname: Chiu, Ling-Yen
  organization: Institute of Medicine, Chung Shan Medical University, Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital
– sequence: 3
  givenname: Chu-Chyn
  surname: Ou
  fullname: Ou, Chu-Chyn
  organization: School of Nutrition, Chung Shan Medical University
– sequence: 4
  givenname: Wen-Jun
  surname: Wu
  fullname: Wu, Wen-Jun
  organization: Institute of Medicine, Chung Shan Medical University
– sequence: 5
  givenname: Gwo-Tarng
  orcidid: 0000-0002-1299-3375
  surname: Sheu
  fullname: Sheu, Gwo-Tarng
  email: gtsheu@csmu.edu.tw
  organization: Institute of Medicine, Chung Shan Medical University
– sequence: 6
  givenname: Jiunn-Liang
  surname: Ko
  fullname: Ko, Jiunn-Liang
  email: jlko@csmu.edu.tw
  organization: Institute of Medicine, Chung Shan Medical University, Division of Medical Oncology, Department of Internal Medicine, Chung Shan Medical University Hospital, School of Medicine, Chung Shan Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32448867$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUtFAR3RZ-ABdkiQsHArbjxM4FqVpgqVTEBc6W47zsuortYDsV_Sv8Wrzdlo9K9GRZb2Y0896coCMfPCD0nJI3lNTybeKU07YijFREyqaSj9CKNjWrqGTiCK0IIaIiHSPH6CSly_LtiBRP0HHNOJeyFSv0c_2e1jW2fmd7m23w-MpqrJcc5p3eWoMH2EY96JuR9XgGBznCDxiqCMmmrH3G0-K32GhvIGID05Rwf403n89fY43HMtMTts4tPrgwLJPOIV7jOYYMRXCMweGN9mGA6DR21sSQ5hAX9xQ9HvWU4Nnte4q-ffzwdf2puviyOV-fXVSGdzJXQITuGAxd08raCCblQFjJZCSrCZNs7MzIe2NgJHxsxw7KpqDvR0E7Klvd16fo3UF3XnoHgwGfo57UHK3T8VoFbdW_E293ahuulOCkpg0tAq9uBWL4vkDKytm034P2EJakGCdtIxrB6gJ9eQ96GZboS7yCEiVP0ZQPo0oozlvZFtSLv33_Nnx33AIQB8B-pSnCqIzNN5csMeykKFH7GqlDjVSpkdrXSO0N0HvMO_GHOOzASQXrtxD_mP4_6RcvLNwD
CitedBy_id crossref_primary_10_1002_jcp_31103
crossref_primary_10_1007_s10068_022_01233_6
crossref_primary_10_1016_j_toxrep_2022_05_013
crossref_primary_10_3389_fphar_2024_1446725
crossref_primary_10_3390_ijms241612626
crossref_primary_10_1016_j_phymed_2022_154215
crossref_primary_10_1016_j_lfs_2023_122255
crossref_primary_10_1016_j_phrs_2024_107163
crossref_primary_10_3390_ijms25074102
crossref_primary_10_1002_tox_24399
crossref_primary_10_1016_j_phymed_2020_153384
crossref_primary_10_1016_j_ijbiomac_2022_08_024
crossref_primary_10_1016_j_semcancer_2022_07_001
crossref_primary_10_1007_s12010_023_04609_4
crossref_primary_10_3390_cells10112916
crossref_primary_10_1007_s00253_022_11839_9
crossref_primary_10_1007_s00726_023_03361_7
crossref_primary_10_1007_s12272_021_01312_y
crossref_primary_10_1016_j_cbi_2022_110177
Cites_doi 10.3816/CLC.2004.s.003
10.4161/auto.7.3.14487
10.1146/annurev-biochem-061516-044908
10.1186/1741-7007-10-29
10.21037/tlcr.2016.02.01
10.1186/2162-3619-2-17
10.1371/journal.pone.0028053
10.4161/auto.7.8.15698
10.1016/j.semcancer.2017.03.003
10.1038/446745a
10.1021/mp500840z
10.18632/oncotarget.19711
10.1073/pnas.1217002110
10.1038/onc.2016.195
10.1371/journal.pone.0056878
10.1146/annurev-biochem-061516-044859
10.1038/s41418-019-0292-y
10.1002/stem.1317
10.1080/1061186X.2018.1479756
10.1158/0008-5472.CAN-10-2638
10.1016/j.phymed.2016.09.003
10.1016/j.semcancer.2010.04.002
10.1038/s41556-018-0201-5
10.1038/s41556-018-0037-z
10.1016/j.bbamcr.2013.06.031
10.1016/S1470-2045(09)70289-X
10.1111/j.1476-5381.2012.02073.x
10.1371/journal.pone.0160425
10.1371/journal.pone.0125774
10.1002/jcb.26616
10.1038/bjc.2011.129
10.1016/j.lungcan.2012.03.011
10.1172/JCI41004
10.1177/1534735419833795
10.1002/tox.22582
10.14348/molcells.2017.0115
10.3791/51639
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Cancer Research UK 2020
The Author(s), under exclusive licence to Cancer Research UK 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Cancer Research UK 2020
– notice: The Author(s), under exclusive licence to Cancer Research UK 2020.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7TO
7U9
7X7
7XB
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AN0
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOI 10.1038/s41416-020-0885-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
British Nursing Database (Proquest)
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
British Nursing Index with Full Text
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student

ProQuest Central Student
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1532-1827
EndPage 458
ExternalDocumentID PMC7403151
32448867
10_1038_s41416_020_0885_8
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
23N
36B
39C
4.4
406
53G
5GY
5RE
6J9
70F
7RV
7X7
88E
8AO
8C1
8FI
8FJ
8R4
8R5
AACDK
AANZL
AASML
AATNV
AAWTL
AAYZH
AAZLF
ABAKF
ABLJU
ABOCM
ABUWG
ABZZP
ACAOD
ACGFO
ACGFS
ACKTT
ACPRK
ACRQY
ACZOJ
ADBBV
ADFRT
ADHDB
AEFQL
AEJRE
AEMSY
AENEX
AEVLU
AEXYK
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGHAI
AGQEE
AHMBA
AHSBF
AIGIU
AILAN
AJRNO
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMYLF
AN0
AOIJS
ASPBG
AVWKF
AXYYD
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BNQBC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DNIVK
DPUIP
DU5
E3Z
EAP
EBLON
EBS
EE.
EIOEI
EMB
ESX
EX3
F5P
FDQFY
FEDTE
FERAY
FIGPU
FRJ
FSGXE
FYUFA
GX1
HCIFZ
HMCUK
HVGLF
HYE
HZ~
IH2
IWAJR
JSO
JZLTJ
KQ8
M1P
M7P
NAO
NAPCQ
NQJWS
O9-
OK1
P2P
PQQKQ
PROAC
PSQYO
Q2X
RNT
RNTTT
ROL
RPM
SNX
SNYQT
SOHCF
SOJ
SRMVM
SWTZT
TAOOD
TBHMF
TDRGL
TR2
UKHRP
W2D
WH7
WOW
~02
AAFWJ
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
-Q-
.55
.GJ
8WZ
A6W
ABAWZ
ABDBF
ACUHS
AI.
B0M
CAG
CGR
COF
CUY
CVF
EAD
EAS
EBC
EBD
ECM
EIF
EJD
EMK
EMOBN
EPL
FIZPM
J5H
M41
NPM
SV3
TUS
UDS
VH1
X7M
Y6R
ZGI
~8M
3V.
7TO
7U9
7XB
8FE
8FH
8FK
ABRTQ
AZQEC
DWQXO
GNUQQ
H94
K9.
LK8
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c498t-e07a92ed95683c7288d02133c8230282f9cf4bccef04f6f9e885ebbf719186ab3
IEDL.DBID 7X7
ISSN 0007-0920
1532-1827
IngestDate Thu Aug 21 18:09:17 EDT 2025
Thu Jul 10 23:16:19 EDT 2025
Wed Aug 13 04:35:43 EDT 2025
Fri Jul 25 08:59:50 EDT 2025
Thu Apr 03 07:02:14 EDT 2025
Thu Apr 24 22:58:55 EDT 2025
Tue Jul 01 01:29:51 EDT 2025
Fri Feb 21 02:39:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Note This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c498t-e07a92ed95683c7288d02133c8230282f9cf4bccef04f6f9e885ebbf719186ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1299-3375
OpenAccessLink https://www.nature.com/articles/s41416-020-0885-8
PMID 32448867
PQID 2430244686
PQPubID 41855
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7403151
proquest_miscellaneous_2406575723
proquest_journals_2474987408
proquest_journals_2430244686
pubmed_primary_32448867
crossref_citationtrail_10_1038_s41416_020_0885_8
crossref_primary_10_1038_s41416_020_0885_8
springer_journals_10_1038_s41416_020_0885_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-04
PublicationDateYYYYMMDD 2020-08-04
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-04
  day: 04
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle British journal of cancer
PublicationTitleAbbrev Br J Cancer
PublicationTitleAlternate Br J Cancer
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Chiou, Wang, Chou, Chen, Hong, Hsieh (CR29) 2010; 70
Chen, Wu, Huang, Lin, Chuang, Yu (CR10) 2011; 6
Huang, Chien, Hseu, Huang, Chiang, Huang (CR24) 2018; 119
Hsin, Wang, Li, Ciou, Wu, Wu (CR26) 2016; 23
Amm, Sommer, Wolf (CR2) 2014; 1843
Li, Ko, Ou, Lin, Yen, Hsu (CR23) 2019; 18
Barzegar Behrooz, Syahir, Ahmad (CR9) 2019; 27
Vinci, Gowan, Boxall, Patterson, Zimmermann, Court (CR27) 2012; 10
Johansen, Lamark (CR28) 2011; 7
Dikic (CR30) 2017; 86
Shackleton (CR6) 2010; 20
Li (CR35) 2013; 2
Hsin, Ou, Wu, Jan, Hsiao, Lin (CR20) 2015; 12
Takezawa, Okamoto, Okamoto, Takeda, Sakai, Tsukioka (CR16) 2011; 104
Hardavella, George, Sethi (CR8) 2016; 5
Vrouchou, Kandaswamy, George, Barnett (CR13) 2009; 10
Chiu, Hsin, Yang, Sung, Chi, Chang (CR15) 2017; 36
Hsin, Sheu, Jan, Sun, Wu, Chiu (CR18) 2012; 167
Wei, Jiang, Zou, Liu, Wang, Xu (CR37) 2013; 110
Wang, Yu, Hsieh, Liao, Yu, Chou (CR22) 2017; 8
Ahn, Yang, Liang, Kang, Xiu, Chen (CR12) 2012; 77
Doherty, Baehrecke (CR1) 2018; 20
Chiu, Hu, Yang, Hsin, Ko, Tsai (CR19) 2015; 10
Ji, Kwon (CR31) 2017; 40
Chen, Luo, Dong, Tan, Yang, Feng (CR39) 2013; 8
Varshavsky (CR3) 2017; 86
Levine (CR4) 2007; 446
Hsin, Ou, Wu, Jan, Wu, Chiu (CR17) 2011; 7
Frank, Schatton, Frank (CR5) 2010; 120
Adjei (CR11) 2004; 5
CR25
Gatica, Lahiri, Klionsky (CR32) 2018; 20
Brescia, Ortensi, Fornasari, Levi, Broggi, Pelicci (CR38) 2013; 31
Agliano, Calvo, Box (CR7) 2017; 44
Ricciardi, Tomao, de Marinis (CR14) 2009; 5
Yang, Yu, Li, Yuan, Wang, Yan (CR33) 2017; 11
Nazio, Bordi, Cianfanelli, Locatelli, Cecconi (CR34) 2019; 26
Zhou, Xu, Yang, Yang, Wickett, Andl (CR36) 2016; 11
Hsin, Hsu, Wu, Lu, Wu, Ko (CR21) 2018; 33
I Dikic (885_CR30) 2017; 86
AA Adjei (885_CR11) 2004; 5
M Shackleton (885_CR6) 2010; 20
CH Ji (885_CR31) 2017; 40
IL Hsin (885_CR21) 2018; 33
H Chen (885_CR39) 2013; 8
885_CR25
F Nazio (885_CR34) 2019; 26
MJ Ahn (885_CR12) 2012; 77
K Takezawa (885_CR16) 2011; 104
SY Huang (885_CR24) 2018; 119
J Doherty (885_CR1) 2018; 20
G Hardavella (885_CR8) 2016; 5
IL Hsin (885_CR17) 2011; 7
D Gatica (885_CR32) 2018; 20
Z Li (885_CR35) 2013; 2
A Varshavsky (885_CR3) 2017; 86
A Barzegar Behrooz (885_CR9) 2019; 27
LY Chiu (885_CR19) 2015; 10
A Agliano (885_CR7) 2017; 44
YS Chen (885_CR10) 2011; 6
IL Hsin (885_CR18) 2012; 167
IL Hsin (885_CR26) 2016; 23
T Johansen (885_CR28) 2011; 7
I Amm (885_CR2) 2014; 1843
Y Yang (885_CR33) 2017; 11
Y Wei (885_CR37) 2013; 110
M Vinci (885_CR27) 2012; 10
S Ricciardi (885_CR14) 2009; 5
TY Wang (885_CR22) 2017; 8
P Brescia (885_CR38) 2013; 31
LY Chiu (885_CR15) 2017; 36
L Zhou (885_CR36) 2016; 11
B Levine (885_CR4) 2007; 446
P Vrouchou (885_CR13) 2009; 10
CH Li (885_CR23) 2019; 18
SH Chiou (885_CR29) 2010; 70
NY Frank (885_CR5) 2010; 120
IL Hsin (885_CR20) 2015; 12
References_xml – volume: 5
  start-page: S51
  issue: Suppl 2
  year: 2004
  end-page: S55
  ident: CR11
  article-title: Pharmacology and mechanism of action of pemetrexed
  publication-title: Clin. Lung Cancer
  doi: 10.3816/CLC.2004.s.003
– volume: 7
  start-page: 279
  year: 2011
  end-page: 296
  ident: CR28
  article-title: Selective autophagy mediated by autophagic adapter proteins
  publication-title: Autophagy
  doi: 10.4161/auto.7.3.14487
– volume: 86
  start-page: 193
  year: 2017
  end-page: 224
  ident: CR30
  article-title: Proteasomal and autophagic degradation systems
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-061516-044908
– volume: 10
  year: 2012
  ident: CR27
  article-title: Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation
  publication-title: BMC Biol.
  doi: 10.1186/1741-7007-10-29
– volume: 5
  start-page: 272
  year: 2016
  end-page: 279
  ident: CR8
  article-title: Lung cancer stem cells-characteristics, phenotype
  publication-title: Transl. Lung Cancer Res.
  doi: 10.21037/tlcr.2016.02.01
– volume: 2
  start-page: 17
  year: 2013
  ident: CR35
  article-title: CD133: a stem cell biomarker and beyond
  publication-title: Exp. Hematol. Oncol.
  doi: 10.1186/2162-3619-2-17
– volume: 6
  start-page: e28053
  year: 2011
  ident: CR10
  article-title: CD133/Src axis mediates tumor initiating property and epithelial-mesenchymal transition of head and neck cancer
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0028053
– volume: 7
  start-page: 873
  year: 2011
  end-page: 882
  ident: CR17
  article-title: GMI, an immunomodulatory protein from Ganoderma microsporum, induces autophagy in non-small cell lung cancer cells
  publication-title: Autophagy
  doi: 10.4161/auto.7.8.15698
– volume: 11
  start-page: 71
  year: 2017
  end-page: 79
  ident: CR33
  article-title: Autophagy regulates the stemness of cervical cancer stem cells
  publication-title: Biologics
– ident: CR25
– volume: 44
  start-page: 25
  year: 2017
  end-page: 42
  ident: CR7
  article-title: The challenge of targeting cancer stem cells to halt metastasis
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2017.03.003
– volume: 446
  start-page: 745
  year: 2007
  end-page: 747
  ident: CR4
  article-title: Cell biology: autophagy and cancer
  publication-title: Nature
  doi: 10.1038/446745a
– volume: 12
  start-page: 1534
  year: 2015
  end-page: 1543
  ident: CR20
  article-title: GMI, an immunomodulatory protein from Ganoderma microsporum, potentiates cisplatin-induced apoptosis via autophagy in lung cancer cells
  publication-title: Mol. Pharm.
  doi: 10.1021/mp500840z
– volume: 8
  start-page: 70422
  year: 2017
  end-page: 70430
  ident: CR22
  article-title: GMI ablates cancer stemness and cisplatin resistance in oral carcinomas stem cells through IL-6/Stat3 signaling inhibition
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.19711
– volume: 110
  start-page: 6829
  year: 2013
  end-page: 6834
  ident: CR37
  article-title: Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1217002110
– volume: 36
  start-page: 242
  year: 2017
  end-page: 253
  ident: CR15
  article-title: The ERK-ZEB1 pathway mediates epithelial-mesenchymal transition in pemetrexed resistant lung cancer cells with suppression by vinca alkaloids
  publication-title: Oncogene
  doi: 10.1038/onc.2016.195
– volume: 8
  start-page: e56878
  year: 2013
  ident: CR39
  article-title: CD133/prominin-1-mediated autophagy and glucose uptake beneficial for hepatoma cell survival
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0056878
– volume: 86
  start-page: 123
  year: 2017
  end-page: 128
  ident: CR3
  article-title: The ubiquitin system, autophagy, and regulated protein degradation
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-061516-044859
– volume: 18
  start-page: 1534735419833795
  year: 2019
  ident: CR23
  article-title: The protective role of GMI, an immunomodulatory protein from Ganoderma microsporum, on 5-fluorouracil-induced oral and intestinal mucositis
  publication-title: Integr. Cancer Ther.
– volume: 26
  start-page: 690
  year: 2019
  end-page: 702
  ident: CR34
  article-title: Autophagy and cancer stem cells: molecular mechanisms and therapeutic applications
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-019-0292-y
– volume: 31
  start-page: 857
  year: 2013
  end-page: 869
  ident: CR38
  article-title: CD133 is essential for glioblastoma stem cell maintenance
  publication-title: Stem Cells
  doi: 10.1002/stem.1317
– volume: 27
  start-page: 257
  year: 2019
  end-page: 269
  ident: CR9
  article-title: CD133: beyond a cancer stem cell biomarker
  publication-title: J. Drug Target
  doi: 10.1080/1061186X.2018.1479756
– volume: 70
  start-page: 10433
  year: 2010
  end-page: 10444
  ident: CR29
  article-title: Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-2638
– volume: 23
  start-page: 1566
  year: 2016
  end-page: 1573
  ident: CR26
  article-title: Immunomodulatory proteins FIP-gts and chloroquine induce caspase-independent cell death via autophagy for resensitizing cisplatin-resistant urothelial cancer cells
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2016.09.003
– volume: 40
  start-page: 441
  year: 2017
  end-page: 449
  ident: CR31
  article-title: Crosstalk and interplay between the ubiquitin-proteasome system and autophagy
  publication-title: Mol. Cells
– volume: 20
  start-page: 85
  year: 2010
  end-page: 92
  ident: CR6
  article-title: Normal stem cells and cancer stem cells: similar and different
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2010.04.002
– volume: 20
  start-page: 1110
  year: 2018
  end-page: 1117
  ident: CR1
  article-title: Life, death and autophagy
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0201-5
– volume: 5
  start-page: 781
  year: 2009
  end-page: 787
  ident: CR14
  article-title: Pemetrexed as first-line therapy for non-squamous non-small cell lung cancer
  publication-title: Ther. Clin. Risk Manag.
– volume: 20
  start-page: 233
  year: 2018
  end-page: 242
  ident: CR32
  article-title: Cargo recognition and degradation by selective autophagy
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0037-z
– volume: 1843
  start-page: 182
  year: 2014
  end-page: 196
  ident: CR2
  article-title: Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2013.06.031
– volume: 10
  start-page: 1031
  year: 2009
  end-page: 1032
  ident: CR13
  article-title: Pemetrexed approved for the first-line treatment of non-small-cell lung cancer: summary of the NICE appraisal
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(09)70289-X
– volume: 167
  start-page: 1287
  year: 2012
  end-page: 1300
  ident: CR18
  article-title: Inhibition of lysosome degradation on autophagosome formation and responses to GMI, an immunomodulatory protein from Ganoderma microsporum
  publication-title: Br. J. Pharm.
  doi: 10.1111/j.1476-5381.2012.02073.x
– volume: 11
  start-page: e0160425
  year: 2016
  ident: CR36
  article-title: Activation of beta-catenin signaling in CD133-positive dermal papilla cells drives postnatal hair growth
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0160425
– volume: 10
  start-page: e0125774
  year: 2015
  ident: CR19
  article-title: Immunomodulatory protein from Ganoderma microsporum induces pro-death autophagy through Akt-mTOR-p70S6K pathway inhibition in multidrug resistant lung cancer cells
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0125774
– volume: 119
  start-page: 4592
  year: 2018
  end-page: 4606
  ident: CR24
  article-title: Ganoderma microsporum immunomodulatory protein induces apoptosis and potentiates mitomycin C-induced apoptosis in urinary bladder urothelial carcinoma cells
  publication-title: J. Cell Biochem.
  doi: 10.1002/jcb.26616
– volume: 104
  start-page: 1594
  year: 2011
  end-page: 1601
  ident: CR16
  article-title: Thymidylate synthase as a determinant of pemetrexed sensitivity in non-small cell lung cancer
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.2011.129
– volume: 77
  start-page: 346
  year: 2012
  end-page: 352
  ident: CR12
  article-title: Randomized phase II trial of first-line treatment with pemetrexed-cisplatin, followed sequentially by gefitinib or pemetrexed, in East Asian, never-smoker patients with advanced non-small cell lung cancer
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2012.03.011
– volume: 33
  start-page: 955
  year: 2018
  end-page: 961
  ident: CR21
  article-title: GMI, a fungal immunomodulatory protein from Ganoderma microsporum, induce apoptosis via beta-catenin suppression in lung cancer cells
  publication-title: Environ. Toxicol.
– volume: 120
  start-page: 41
  year: 2010
  end-page: 50
  ident: CR5
  article-title: The therapeutic promise of the cancer stem cell concept
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI41004
– volume: 7
  start-page: 873
  year: 2011
  ident: 885_CR17
  publication-title: Autophagy
  doi: 10.4161/auto.7.8.15698
– volume: 167
  start-page: 1287
  year: 2012
  ident: 885_CR18
  publication-title: Br. J. Pharm.
  doi: 10.1111/j.1476-5381.2012.02073.x
– volume: 6
  start-page: e28053
  year: 2011
  ident: 885_CR10
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0028053
– volume: 120
  start-page: 41
  year: 2010
  ident: 885_CR5
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI41004
– volume: 8
  start-page: 70422
  year: 2017
  ident: 885_CR22
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.19711
– volume: 10
  start-page: e0125774
  year: 2015
  ident: 885_CR19
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0125774
– volume: 8
  start-page: e56878
  year: 2013
  ident: 885_CR39
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0056878
– volume: 12
  start-page: 1534
  year: 2015
  ident: 885_CR20
  publication-title: Mol. Pharm.
  doi: 10.1021/mp500840z
– volume: 26
  start-page: 690
  year: 2019
  ident: 885_CR34
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-019-0292-y
– volume: 18
  start-page: 153473541983379
  year: 2019
  ident: 885_CR23
  publication-title: Integr. Cancer Ther.
  doi: 10.1177/1534735419833795
– volume: 2
  start-page: 17
  year: 2013
  ident: 885_CR35
  publication-title: Exp. Hematol. Oncol.
  doi: 10.1186/2162-3619-2-17
– volume: 36
  start-page: 242
  year: 2017
  ident: 885_CR15
  publication-title: Oncogene
  doi: 10.1038/onc.2016.195
– volume: 33
  start-page: 955
  year: 2018
  ident: 885_CR21
  publication-title: Environ. Toxicol.
  doi: 10.1002/tox.22582
– volume: 27
  start-page: 257
  year: 2019
  ident: 885_CR9
  publication-title: J. Drug Target
  doi: 10.1080/1061186X.2018.1479756
– volume: 11
  start-page: 71
  year: 2017
  ident: 885_CR33
  publication-title: Biologics
– volume: 119
  start-page: 4592
  year: 2018
  ident: 885_CR24
  publication-title: J. Cell Biochem.
  doi: 10.1002/jcb.26616
– volume: 40
  start-page: 441
  year: 2017
  ident: 885_CR31
  publication-title: Mol. Cells
  doi: 10.14348/molcells.2017.0115
– volume: 86
  start-page: 123
  year: 2017
  ident: 885_CR3
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-061516-044859
– volume: 446
  start-page: 745
  year: 2007
  ident: 885_CR4
  publication-title: Nature
  doi: 10.1038/446745a
– volume: 5
  start-page: 272
  year: 2016
  ident: 885_CR8
  publication-title: Transl. Lung Cancer Res.
  doi: 10.21037/tlcr.2016.02.01
– volume: 110
  start-page: 6829
  year: 2013
  ident: 885_CR37
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1217002110
– volume: 104
  start-page: 1594
  year: 2011
  ident: 885_CR16
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.2011.129
– ident: 885_CR25
  doi: 10.3791/51639
– volume: 31
  start-page: 857
  year: 2013
  ident: 885_CR38
  publication-title: Stem Cells
  doi: 10.1002/stem.1317
– volume: 7
  start-page: 279
  year: 2011
  ident: 885_CR28
  publication-title: Autophagy
  doi: 10.4161/auto.7.3.14487
– volume: 86
  start-page: 193
  year: 2017
  ident: 885_CR30
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-061516-044908
– volume: 10
  year: 2012
  ident: 885_CR27
  publication-title: BMC Biol.
  doi: 10.1186/1741-7007-10-29
– volume: 20
  start-page: 233
  year: 2018
  ident: 885_CR32
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0037-z
– volume: 44
  start-page: 25
  year: 2017
  ident: 885_CR7
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2017.03.003
– volume: 20
  start-page: 1110
  year: 2018
  ident: 885_CR1
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0201-5
– volume: 10
  start-page: 1031
  year: 2009
  ident: 885_CR13
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(09)70289-X
– volume: 1843
  start-page: 182
  year: 2014
  ident: 885_CR2
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2013.06.031
– volume: 5
  start-page: S51
  issue: Suppl 2
  year: 2004
  ident: 885_CR11
  publication-title: Clin. Lung Cancer
  doi: 10.3816/CLC.2004.s.003
– volume: 11
  start-page: e0160425
  year: 2016
  ident: 885_CR36
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0160425
– volume: 70
  start-page: 10433
  year: 2010
  ident: 885_CR29
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-2638
– volume: 77
  start-page: 346
  year: 2012
  ident: 885_CR12
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2012.03.011
– volume: 5
  start-page: 781
  year: 2009
  ident: 885_CR14
  publication-title: Ther. Clin. Risk Manag.
– volume: 23
  start-page: 1566
  year: 2016
  ident: 885_CR26
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2016.09.003
– volume: 20
  start-page: 85
  year: 2010
  ident: 885_CR6
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2010.04.002
SSID ssj0009087
Score 2.4298108
Snippet Background Adaptive drug resistance is an unfavourable prognostic factor in cancer therapy. Pemetrexed-resistant lung cancer cells possess high-metastatic...
Adaptive drug resistance is an unfavourable prognostic factor in cancer therapy. Pemetrexed-resistant lung cancer cells possess high-metastatic ability via...
BackgroundAdaptive drug resistance is an unfavourable prognostic factor in cancer therapy. Pemetrexed-resistant lung cancer cells possess high-metastatic...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 449
SubjectTerms 631/67/1059/153
631/67/1059/2326
631/80/474/1624
631/80/82/39/2346
A549 Cells
AC133 Antigen - genetics
AC133 Antigen - metabolism
Animals
Apoptosis
Autophagy
Autophagy-Related Protein 5 - antagonists & inhibitors
Biodegradation
Biomedical and Life Sciences
Biomedicine
Cancer Research
Cancer therapies
CD44 antigen
Cell Line, Tumor
Cell proliferation
Cell Proliferation - drug effects
Cell Survival - drug effects
Cell viability
Cytotoxicity
Drug Resistance
Drug Resistance, Neoplasm - drug effects
Epidemiology
Fungal Proteins - administration & dosage
Fungal Proteins - pharmacology
Ganoderma - metabolism
Gene Expression Regulation, Neoplastic - drug effects
Humans
Immunologic Factors - administration & dosage
Immunologic Factors - pharmacology
Immunomodulation
Immunomodulators
Long-term effects
Lung cancer
Lung Neoplasms - drug therapy
Lung Neoplasms - genetics
Lung Neoplasms - metabolism
Male
Mesenchyme
Metastases
Mice
Molecular Medicine
Oct-4 protein
Oncology
Pemetrexed - administration & dosage
Pemetrexed - pharmacology
Phagocytosis
Proteins
Proteolysis
Stem cells
Tumors
Xenograft Model Antitumor Assays
Xenografts
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI_GkBAviO_dGChIPAERuSRt0kd0sA2k44lJe6uSNNUqre1010Pbv8Jfi51-TMdpSDzHbZPYTuza_pmQd0GXTsjEsTlYI0yBBjHLC8WMKdLgeMJ9LB9b_khPz9T38-R8j8zHWpiYtB8hLeMxPWaHfVqrOZgODJ0d0IuEmXvkPiK3o7-1SBe3OLvc9DCZ-AcuE1MgU5rdV2xfRTv25W6a5F-x0ngFHT8mjwbbkX7uZ_uE7IXmKXmwHKLjz8jvxRfwBWnVXFQuZmLRX5WldoPYARZOOFogMkTfRAmo6FWoQ7cK16Fg4HSjIdl09BK0n3qUhRXFv_pr6m7oyfLbR2opXIJwodAKa0raui2w9Ve7uqER7AFeiLUq9MQ22F-ttrTGZD90mzf1c3J2_PXn4pQNvReYV5npWODaZiIUWE0ovRbAO7AGpPQYmAM3rcx8qZz3oeSqTMsswI4G50oN_p9JrZMvyH7TNuGA0ASEwSXCiXkZlC7hVHMO3RTjvHVWyBnhIxtyPwCTY3-MyzwGyKXJe87lwLkcOZebGXk_PXLVo3L8i_ho5G0-KOg6FwqWAa6wSe8Y1rANWnF4-u00DJqHG2-b0G6QhmPUSuMKXvaSMk0GzFQ4GVM9I3pLhiYCRPXeHmmqi4juDR-VYIbNyIdR2m6ndecaD_-L-hV5KHo1YFwdkf1utQmvwbbq3JuoTX8A64AfYg
  priority: 102
  providerName: Springer Nature
Title CD133 inhibition via autophagic degradation in pemetrexed-resistant lung cancer cells by GMI, a fungal immunomodulatory protein from Ganoderma microsporum
URI https://link.springer.com/article/10.1038/s41416-020-0885-8
https://www.ncbi.nlm.nih.gov/pubmed/32448867
https://www.proquest.com/docview/2430244686
https://www.proquest.com/docview/2474987408
https://www.proquest.com/docview/2406575723
https://pubmed.ncbi.nlm.nih.gov/PMC7403151
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFBZbC2MvY_ela4MGe9omqliyJT-N1etlg5QxVsibkWSZGmo7TZyx_pX92p1jOw5ZaV8CQXJi6dzPkb5DyHuvchuI0LIJeCNMggQxwzPJtM4ib3nIXXt9bHoenV3I77Nw1ifclv2xyrVObBV1VjvMkR8GUoA5kZGOPs-vGXaNwupq30LjIdlF6DLkajVTG9BdrjvMTEzHxcFQ1RT6cCkn4IowDJ5AzkKmt-3SLWfz9pnJ_wqnrT06eUqe9I4k_dJR_hl54Kvn5NG0L5W_IH-TrxAY0qK6LGx7LIv-Lgw1KwQSMKDuaIYwEV1HJZhF5770zcL_8RmDCBy9yqqhV6AKqEPGWFBM8S-pvaGn02-fqKFgEcG60AIvmNRlnWEfsHpxQ1vkB_hBvLhCT02FzdZKQ0s8-Ycx9Kp8SS5Ojn8lZ6xvxMCcjHXDPFcmDnyGVwuFUwEQElwDIRxW6SBmy2OXS-ucz7nMozz2sKPe2lxBMKgjY8UrslPVlX9DaAicYcPABpPcS5WDirMWYxZtnbEmECPC12RIXY9Sjs0yrtK2Wi502lEuBcqlSLlUj8iH4ZF5B9Fx3-T9NW3TXlqX6Ya37hhWsA1Kcnj63TAMYogbbypfr3AOxxKWwhW87jhleBnwWUFNRmpE1BYPDRMQ4nt7pCouW6hv-FMBPtmIfFxz2-a17lzj3v1rfEseBx3fMy73yU6zWPkD8KwaO27FBz51MhmT3aPj8x8_4VsSJeM2DfYPOP8mVA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw1CpFAi4VaxkoYCS4AFYztpM4B4TQlHaGdnpqpd6C7ThqpCYZZinMr_ARfCPvZRsNVXvr2Y5j--1-GyHvXJgaLnzD-qCNMAkUxLSXSKZUEjjj-Z6t0sfGx8HwVH4_8882yN82FwbDKlueWDHqpLT4Rr7LpQBxIgMVfJn8ZNg1Cr2rbQuNGi0O3fIXmGyzz6M9gO97zve_nQyGrOkqwKyM1Jw5L9QRdwnmyQkbctgVyDkhLLqcwABJI5tKY61LPZkGaeSU8p0xaQiWjQq0EbDuHXJXCiBNzEwfrEJKIk_VNTrx-S_inRdVqN2Z7IPqw9BYA7r2mVqXg1eU26sxmv85aiv5t_-QbDWKK_1aY9ojsuGKx-TeuHHNPyF_BntwPJoV55mpwsDoZaapXmDhAg3slSZYlqLu4ASz6MTlbj51v13CwOJHLbaY0wtgPdQiIk4puhRm1CzpwXj0iWoKEhikGc0woaXMywT7jpXTJa0qTcCCmChDD3SBzd1yTXOMNESbfZE_Jae3AqJnZLMoC_ecUB8w0fjc8H7qZJgCSzUGbSRlrDaaix7xWjDEtqmKjs05LuLKOy9UXEMuBsjFCLlY9ciH7pNJXRLkpsk7LWzjhjvM4hUuXzMcwjWE0oOv33bDQPZ48bpw5QLneOgyC_EE2zWmdJsBHRnYchD2SLiGQ90ELCm-PlJk51VpcfipAB2wRz622Lba1rVnfHHzGd-Q-8OT8VF8NDo-fEke8JoGmCd3yOZ8unCvQKubm9cVKVHy47Zp9x-3y165
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbhMx1CpFqrggdgIFjAQXwMrE9ow9B4RQQtpQUnGgUm-D7fGokZqZkAXIr_ApfB3vzRaFqr31bI_H9tv9NkJeeZVZLkLLeqCNMAkUxEyQSqZ1GnkbhIEr08fGx9Hhifx8Gp7ukL9NLgyGVTY8sWTUaeHwjbzLpQBxIiMddbM6LOLrYPhh9oNhByn0tDbtNCoUOfLrX2C-Ld6PBgDr15wPP33rH7K6wwBzMtZL5gNlYu5TzJkTTnHYIcg8IRy6n8AYyWKXSeuczwKZRVnstQ69tZkCK0dHxgpY9wa5qYTSSGO6vwkviQNd1evEp8CYtx5VobsL2QM1iKHhBjQeMr0tEy8ouhfjNf9z2paycHiH3K6VWPqxwrq7ZMfn98jeuHbT3yd_-gM4Hp3kZxNbhoTRnxNDzQqLGBhgtTTFEhVVNyeYRWd-6pdz_9unDKx_1GjzJT0HNkQdIuWconthQe2aHoxH76ihII1BstEJJrcU0yLFHmTFfE3LqhOwICbN0AOTY6O3qaFTjDpE-301fUBOrgVED8luXuT-MaEhYKUNueW9zEuVAXu1Fu0lbZ2xhosOCRowJK6ukI6NOs6T0lMvdFJBLgHIJQi5RHfIm_aTWVUe5KrJ-w1sk5pTLJINXl8yrOAalAzg65ftMLAAvHiT-2KFcwJ0nyk8waMKU9rNgL4MLDpSHaK2cKidgOXFt0fyyVlZZhx-KkAf7JC3DbZttnXpGZ9cfcYXZA-oNvkyOj56Sm7xigRYIPfJ7nK-8s9AwVva5yUlUfL9ukn3HxsDYu8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CD133+inhibition+via+autophagic+degradation+in+pemetrexed-resistant+lung+cancer+cells+by+GMI%2C+a+fungal+immunomodulatory+protein+from+Ganoderma+microsporum&rft.jtitle=British+journal+of+cancer&rft.au=Hsin%2C+I-Lun&rft.au=Chiu%2C+Ling-Yen&rft.au=Ou%2C+Chu-Chyn&rft.au=Wu%2C+Wen-Jun&rft.date=2020-08-04&rft.issn=1532-1827&rft.eissn=1532-1827&rft.volume=123&rft.issue=3&rft.spage=449&rft_id=info:doi/10.1038%2Fs41416-020-0885-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-0920&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-0920&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-0920&client=summon