Photoelectrocatalytic Reduction of CO2 to Paraffin Using p-n Heterojunctions
Nowadays, photoelectrocatalytic (PEC) reduction of CO2 represents a very promising solution for storing solar energy in value-added chemicals, but so far it has been hampered by the lack of highly efficient catalyst of photocathode. Enlightened by the Calvin cycle of plants, here we show that a seri...
Saved in:
Published in | iScience Vol. 23; no. 1; p. 100768 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
24.01.2020
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2589-0042 2589-0042 |
DOI | 10.1016/j.isci.2019.100768 |
Cover
Loading…
Abstract | Nowadays, photoelectrocatalytic (PEC) reduction of CO2 represents a very promising solution for storing solar energy in value-added chemicals, but so far it has been hampered by the lack of highly efficient catalyst of photocathode. Enlightened by the Calvin cycle of plants, here we show that a series of three-dimensional C/N-doped heterojunctions of Znx:Coy@Cu are successfully fabricated and applied as photocathodes in the PEC reduction of CO2 to generate paraffin product. These materials integrate semiconductors of p-type Co3O4 and n-type ZnO on Cu foam to construct fine heterojunctions with multiple active sites, which result in excellent C-C coupling control in reduction of CO2. The best catalyst of Zn0.2:Co1@Cu yields paraffin at a rate of 325 μg·h−1 under −0.4 V versus saturated calomel electrode without H2 release. The apparent quantum efficiency of PEC cell is up to 1.95%.
[Display omitted]
•Heterojunctions of Znx:Coy@Cu are applied in photoelectrocatalytic reduction of CO2•Multiple active sites result in excellent C-C coupling like natural photosynthesis•Photoelectrocatalytic system can tolerate the higher voltage without H2 emission•Paraffin product is reported for the first time in CO2 reduction
Catalysis; Electrochemical Materials Science; Materials Design |
---|---|
AbstractList | Nowadays, photoelectrocatalytic (PEC) reduction of CO2 represents a very promising solution for storing solar energy in value-added chemicals, but so far it has been hampered by the lack of highly efficient catalyst of photocathode. Enlightened by the Calvin cycle of plants, here we show that a series of three-dimensional C/N-doped heterojunctions of Znx:Coy@Cu are successfully fabricated and applied as photocathodes in the PEC reduction of CO2 to generate paraffin product. These materials integrate semiconductors of p-type Co3O4 and n-type ZnO on Cu foam to construct fine heterojunctions with multiple active sites, which result in excellent C-C coupling control in reduction of CO2. The best catalyst of Zn0.2:Co1@Cu yields paraffin at a rate of 325 μg·h-1 under -0.4 V versus saturated calomel electrode without H2 release. The apparent quantum efficiency of PEC cell is up to 1.95%.Nowadays, photoelectrocatalytic (PEC) reduction of CO2 represents a very promising solution for storing solar energy in value-added chemicals, but so far it has been hampered by the lack of highly efficient catalyst of photocathode. Enlightened by the Calvin cycle of plants, here we show that a series of three-dimensional C/N-doped heterojunctions of Znx:Coy@Cu are successfully fabricated and applied as photocathodes in the PEC reduction of CO2 to generate paraffin product. These materials integrate semiconductors of p-type Co3O4 and n-type ZnO on Cu foam to construct fine heterojunctions with multiple active sites, which result in excellent C-C coupling control in reduction of CO2. The best catalyst of Zn0.2:Co1@Cu yields paraffin at a rate of 325 μg·h-1 under -0.4 V versus saturated calomel electrode without H2 release. The apparent quantum efficiency of PEC cell is up to 1.95%. Nowadays, photoelectrocatalytic (PEC) reduction of CO2 represents a very promising solution for storing solar energy in value-added chemicals, but so far it has been hampered by the lack of highly efficient catalyst of photocathode. Enlightened by the Calvin cycle of plants, here we show that a series of three-dimensional C/N-doped heterojunctions of Znx:Coy@Cu are successfully fabricated and applied as photocathodes in the PEC reduction of CO2 to generate paraffin product. These materials integrate semiconductors of p-type Co3O4 and n-type ZnO on Cu foam to construct fine heterojunctions with multiple active sites, which result in excellent C-C coupling control in reduction of CO2. The best catalyst of Zn0.2:Co1@Cu yields paraffin at a rate of 325 μg·h−1 under −0.4 V versus saturated calomel electrode without H2 release. The apparent quantum efficiency of PEC cell is up to 1.95%. : Catalysis; Electrochemical Materials Science; Materials Design Subject Areas: Catalysis, Electrochemical Materials Science, Materials Design Nowadays, photoelectrocatalytic (PEC) reduction of CO2 represents a very promising solution for storing solar energy in value-added chemicals, but so far it has been hampered by the lack of highly efficient catalyst of photocathode. Enlightened by the Calvin cycle of plants, here we show that a series of three-dimensional C/N-doped heterojunctions of Znx:Coy@Cu are successfully fabricated and applied as photocathodes in the PEC reduction of CO2 to generate paraffin product. These materials integrate semiconductors of p-type Co3O4 and n-type ZnO on Cu foam to construct fine heterojunctions with multiple active sites, which result in excellent C-C coupling control in reduction of CO2. The best catalyst of Zn0.2:Co1@Cu yields paraffin at a rate of 325 μg·h−1 under −0.4 V versus saturated calomel electrode without H2 release. The apparent quantum efficiency of PEC cell is up to 1.95%. [Display omitted] •Heterojunctions of Znx:Coy@Cu are applied in photoelectrocatalytic reduction of CO2•Multiple active sites result in excellent C-C coupling like natural photosynthesis•Photoelectrocatalytic system can tolerate the higher voltage without H2 emission•Paraffin product is reported for the first time in CO2 reduction Catalysis; Electrochemical Materials Science; Materials Design Nowadays, photoelectrocatalytic (PEC) reduction of CO 2 represents a very promising solution for storing solar energy in value-added chemicals, but so far it has been hampered by the lack of highly efficient catalyst of photocathode. Enlightened by the Calvin cycle of plants, here we show that a series of three-dimensional C/N-doped heterojunctions of Zn x :Co y @Cu are successfully fabricated and applied as photocathodes in the PEC reduction of CO 2 to generate paraffin product. These materials integrate semiconductors of p-type Co 3 O 4 and n-type ZnO on Cu foam to construct fine heterojunctions with multiple active sites, which result in excellent C-C coupling control in reduction of CO 2 . The best catalyst of Zn 0.2 :Co 1 @Cu yields paraffin at a rate of 325 μg·h −1 under −0.4 V versus saturated calomel electrode without H 2 release. The apparent quantum efficiency of PEC cell is up to 1.95%. • Heterojunctions of Zn x :Co y @Cu are applied in photoelectrocatalytic reduction of CO 2 • Multiple active sites result in excellent C-C coupling like natural photosynthesis • Photoelectrocatalytic system can tolerate the higher voltage without H 2 emission • Paraffin product is reported for the first time in CO 2 reduction Catalysis; Electrochemical Materials Science; Materials Design |
ArticleNumber | 100768 |
Author | Wang, Jinyuan Jing, Huanwang Chen, Jiazang Hu, Bin Wang, Yilin Cao, Youzhi Guan, Yongji Yu, Xiaogang |
AuthorAffiliation | 2 State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China 3 Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Chinese Academy of Sciences, Beijing 100190, China 4 State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China 1 State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China |
AuthorAffiliation_xml | – name: 3 Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Chinese Academy of Sciences, Beijing 100190, China – name: 1 State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China – name: 4 State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China – name: 2 State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China |
Author_xml | – sequence: 1 givenname: Jinyuan surname: Wang fullname: Wang, Jinyuan organization: State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China – sequence: 2 givenname: Yongji surname: Guan fullname: Guan, Yongji organization: State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China – sequence: 3 givenname: Xiaogang surname: Yu fullname: Yu, Xiaogang organization: State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China – sequence: 4 givenname: Youzhi surname: Cao fullname: Cao, Youzhi organization: State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China – sequence: 5 givenname: Jiazang surname: Chen fullname: Chen, Jiazang organization: State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China – sequence: 6 givenname: Yilin surname: Wang fullname: Wang, Yilin organization: Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Chinese Academy of Sciences, Beijing 100190, China – sequence: 7 givenname: Bin surname: Hu fullname: Hu, Bin organization: State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China – sequence: 8 givenname: Huanwang orcidid: 0000-0001-9279-5610 surname: Jing fullname: Jing, Huanwang email: hwjing@lzu.edu.cn organization: State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China |
BookMark | eNp9kc1q3DAUhU1JadI0L9CVl914ql9LhlIoQ9oEBhJKsxayfDWR8UhTSQ7k7SvHKTRdBAQSV-ecK93vfXXig4eq-ojRBiPcfh43Lhm3IQh3pYBEK99UZ4TLrkGIkZN_zqfVRUojQoiUxbr2XXVKsZSi5eKs2t3ehxxgApNjMDrr6TE7U_-EYTbZBV8HW29vSJ1Dfaujttb5-i45v6-Pja-vIEMM4-yftOlD9dbqKcHF835e3X2__LW9anY3P66333aNYZ3MjaFM0KEXLZPc6paDkJSw3vTQd0YL3klhiAYMnHZ2KD0NCG6slBQ6zi2h59X1mjsEPapjdAcdH1XQTj0VQtwrHcs3JlAYMy3k4pI9I4R22DBmWyz7wSIplqyva9Zx7g8wGPA56ulF6Msb7-7VPjyotmN4Dfj0HBDD7xlSVodCBqZJewhzUoRS3BLaclqkcpWaGFKKYJVxWS-jK8luUhipha0a1cJWLWzVyrZYyX_Wvy981fRlNUGB8eAgqqIAb2BwsQAv03Kv2f8AjJC-YA |
CitedBy_id | crossref_primary_10_1002_advs_202105204 crossref_primary_10_1016_j_cej_2024_149707 crossref_primary_10_1002_cssc_202001290 crossref_primary_10_1039_D2TA09055D crossref_primary_10_1021_acs_energyfuels_2c01350 crossref_primary_10_1039_D3GC03371F crossref_primary_10_20517_cs_2024_03 crossref_primary_10_1002_EXP_20240014 crossref_primary_10_1039_D0CY02048F crossref_primary_10_1021_acs_energyfuels_1c00285 crossref_primary_10_1016_j_apsusc_2024_160192 crossref_primary_10_1016_j_gee_2020_11_015 crossref_primary_10_1002_smll_202000955 crossref_primary_10_1007_s12274_023_5795_7 crossref_primary_10_1002_smll_202004980 crossref_primary_10_1016_j_cej_2023_145150 crossref_primary_10_1002_cptc_202100030 crossref_primary_10_1016_j_isci_2022_104177 crossref_primary_10_1039_D3NR05664C crossref_primary_10_1039_D1RA03890G |
Cites_doi | 10.1002/adma.201804710 10.1038/275115a0 10.1126/science.aar8313 10.1038/nature03155 10.1039/C6TA10231J 10.1016/j.apcatb.2017.12.013 10.1021/ja01636a012 10.1002/anie.201601582 10.1023/B:PRES.0000030443.63979.e6 10.1021/jp077443a 10.1016/j.nanoen.2018.06.086 10.1038/s41560-019-0345-y 10.1039/C8EE01501E 10.1021/am100618h 10.1088/0022-3727/11/4/003 10.1021/nn501783n 10.1021/ja209001d 10.1103/PhysRevB.93.235305 10.1039/C4EE03454F 10.1021/jp063441z 10.1016/j.apcatb.2015.08.045 10.1021/ja0776327 10.1039/C2CP43408C 10.1007/s10562-008-9488-3 10.1039/C4TA06527A 10.1039/C4TA04526B 10.1016/j.jphotochemrev.2019.02.002 10.1038/s41557-019-0263-4 10.1126/science.1152516 10.1021/jacs.8b02173 10.1038/s41929-018-0084-7 10.1016/j.apt.2016.12.025 |
ContentType | Journal Article |
Copyright | 2019 The Author(s) Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. 2019 The Author(s) 2019 |
Copyright_xml | – notice: 2019 The Author(s) – notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2019 The Author(s) 2019 |
DBID | 6I. AAFTH AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1016/j.isci.2019.100768 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-0042 |
ExternalDocumentID | oai_doaj_org_article_114a7855f28b422391c44f618bdf0872 PMC6941872 10_1016_j_isci_2019_100768 S2589004219305139 |
GroupedDBID | 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION EJD 7X8 5PM |
ID | FETCH-LOGICAL-c498t-c3473db76485fa65e78324bcbeb9ca75987c2ae1e539fdaffce75cf883e955f23 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Tue Aug 26 23:45:52 EDT 2025 Thu Aug 21 14:11:29 EDT 2025 Fri Jul 11 02:08:43 EDT 2025 Tue Jul 01 01:03:27 EDT 2025 Thu Apr 24 23:01:41 EDT 2025 Tue Jul 25 20:58:07 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Materials Design Catalysis Electrochemical Materials Science |
Language | English |
License | This is an open access article under the CC BY license. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c498t-c3473db76485fa65e78324bcbeb9ca75987c2ae1e539fdaffce75cf883e955f23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact |
ORCID | 0000-0001-9279-5610 |
OpenAccessLink | https://doaj.org/article/114a7855f28b422391c44f618bdf0872 |
PMID | 31887657 |
PQID | 2331623653 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_114a7855f28b422391c44f618bdf0872 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6941872 proquest_miscellaneous_2331623653 crossref_citationtrail_10_1016_j_isci_2019_100768 crossref_primary_10_1016_j_isci_2019_100768 elsevier_sciencedirect_doi_10_1016_j_isci_2019_100768 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-24 |
PublicationDateYYYYMMDD | 2020-01-24 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-24 day: 24 |
PublicationDecade | 2020 |
PublicationTitle | iScience |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Halmann (bib8) 1978; 275 Jia, Xu, Nie, Chen, Zhu, Wang, Jing (bib9) 2017; 5 Zhang, Shao, Li, Wang, Zhang, Liu (bib31) 2010; 2 Govindjee, Krogmann (bib7) 2004; 80 Luo, Wang, Zhao, Zhao, Li, Zou (bib16) 2013; 15 Tak, Yong (bib25) 2008; 112 Banerjee, Phan, Wang, Knobler, Furukawa, Keeffe, Yaghi (bib1) 2008; 319 Tang, Liu, Wan, Hu, Fan (bib26) 2016; 181 Seabold, Choi (bib22) 2012; 134 Shibata, Moulijn, Mul (bib24) 2008; 123 Bassham, Benson, Kay, Harris, Wilson, Calvin (bib3) 1954; 76 Liu, Chen, Wang, Zhang, Zhu, Ling, Huang, Belmabkhout, Adil, Zhang (bib12) 2019; 11 Nürnberg, Morton, Santabarbara, Telfer, Joliot, Antonaru, Ruban, Cardona, Krausz, Boussac (bib19) 2018; 360 Barton, Rampulla, Bocarsly (bib2) 2008; 130 Rong, Zhao, Su, Yao, Li, Yang, Li (bib20) 2015; 3 Wang, He, Chen, Wang (bib27) 2019; 40 Cardon, Gomes (bib4) 1978; 11 Schreier, Gao, Mayer, Luo, Moehl, Nazeeruddin, Tilley, Grätzel (bib21) 2015; 8 Chang, Wang, Yang, Zhang, Gong (bib6) 2019; 31 Wu, Qian, Zhou, Wei, Lou, Ajayan (bib28) 2014; 8 Mohamed Reda, Fan, Tian (bib18) 2017; 28 Long, Cai, Cai, Zhou, Chai, Wu (bib14) 2006; 110 Lum, Ager (bib15) 2018; 11 Mao, Perez-losada, Wu, DelRosario, Tsunematsu, Nakayama, Brown, Bryson, Balmain (bib17) 2004; 432 Cardoso, Stulp, de Brito, Flor, Frem, Zanoni (bib5) 2018; 225 Yu, Zhuang, Xu, Zhu, Feng, Hu (bib30) 2015; 3 Loiudice, Lobaccaro, Kamali, Thao, Huang, Ager, Buonsanti (bib13) 2016; 55 Xu, Wang, Yang, Han, Nie, Wang, Wang, Jing (bib29) 2018; 51 Shan, Vanka, Li, Troian-Gautier, Brennaman, Mi, Meyer (bib23) 2019; 4 Liu, Mei, Tang, Azarov, Kuznetsov, Xue, Du (bib11) 2016; 93 Lee, Jung, Kim, Oh, Min, Hwang (bib10) 2018; 140 Zhuang, Liang, Seifitokaldani, Li, De Luna, Burdyny, Che, Meng, Min, Quintero-Bermudez (bib32) 2018; 1 Zhuang (10.1016/j.isci.2019.100768_bib32) 2018; 1 Schreier (10.1016/j.isci.2019.100768_bib21) 2015; 8 Wu (10.1016/j.isci.2019.100768_bib28) 2014; 8 Yu (10.1016/j.isci.2019.100768_bib30) 2015; 3 Lum (10.1016/j.isci.2019.100768_bib15) 2018; 11 Zhang (10.1016/j.isci.2019.100768_bib31) 2010; 2 Shan (10.1016/j.isci.2019.100768_bib23) 2019; 4 Govindjee (10.1016/j.isci.2019.100768_bib7) 2004; 80 Lee (10.1016/j.isci.2019.100768_bib10) 2018; 140 Luo (10.1016/j.isci.2019.100768_bib16) 2013; 15 Cardon (10.1016/j.isci.2019.100768_bib4) 1978; 11 Halmann (10.1016/j.isci.2019.100768_bib8) 1978; 275 Chang (10.1016/j.isci.2019.100768_bib6) 2019; 31 Banerjee (10.1016/j.isci.2019.100768_bib1) 2008; 319 Tang (10.1016/j.isci.2019.100768_bib26) 2016; 181 Cardoso (10.1016/j.isci.2019.100768_bib5) 2018; 225 Xu (10.1016/j.isci.2019.100768_bib29) 2018; 51 Jia (10.1016/j.isci.2019.100768_bib9) 2017; 5 Shibata (10.1016/j.isci.2019.100768_bib24) 2008; 123 Mao (10.1016/j.isci.2019.100768_bib17) 2004; 432 Tak (10.1016/j.isci.2019.100768_bib25) 2008; 112 Wang (10.1016/j.isci.2019.100768_bib27) 2019; 40 Barton (10.1016/j.isci.2019.100768_bib2) 2008; 130 Liu (10.1016/j.isci.2019.100768_bib12) 2019; 11 Bassham (10.1016/j.isci.2019.100768_bib3) 1954; 76 Liu (10.1016/j.isci.2019.100768_bib11) 2016; 93 Mohamed Reda (10.1016/j.isci.2019.100768_bib18) 2017; 28 Long (10.1016/j.isci.2019.100768_bib14) 2006; 110 Loiudice (10.1016/j.isci.2019.100768_bib13) 2016; 55 Nürnberg (10.1016/j.isci.2019.100768_bib19) 2018; 360 Seabold (10.1016/j.isci.2019.100768_bib22) 2012; 134 Rong (10.1016/j.isci.2019.100768_bib20) 2015; 3 |
References_xml | – volume: 275 start-page: 115 year: 1978 end-page: 116 ident: bib8 article-title: Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells publication-title: Nature – volume: 93 start-page: 235305 year: 2016 ident: bib11 article-title: Oxygen vacancies: the origin of n-type conductivity in ZnO publication-title: Phys. Rev. B – volume: 8 start-page: 855 year: 2015 end-page: 861 ident: bib21 article-title: Efficient and selective carbon dioxide reduction on low cost protected Cu publication-title: Energy Environ Sci – volume: 1 start-page: 421 year: 2018 end-page: 428 ident: bib32 article-title: Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols publication-title: Nat. Catal. – volume: 319 start-page: 939 year: 2008 ident: bib1 article-title: High-throughput synthesis of zeolitic imidazolate frameworks and application to CO publication-title: Science – volume: 76 start-page: 1760 year: 1954 end-page: 1770 ident: bib3 article-title: The path of carbon in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 953 year: 2017 end-page: 963 ident: bib18 article-title: Room-temperature solid state synthesis of Co publication-title: Adv. Powder Technol. – volume: 134 start-page: 2186 year: 2012 end-page: 2192 ident: bib22 article-title: Efficient and stable photo-oxidation of water by a Bismuth Vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 1006 year: 2013 end-page: 1013 ident: bib16 article-title: Formation energy and photoelectrochemical properties of BiVO publication-title: Phys. Chem. Chem. Phys. – volume: 432 start-page: 775 year: 2004 end-page: 779 ident: bib17 article-title: Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene publication-title: Nature – volume: 360 start-page: 1210 year: 2018 end-page: 1213 ident: bib19 article-title: Photochemistry beyond the red limit in chlorophyll f–containing photosystems publication-title: Science – volume: 11 start-page: L63 year: 1978 end-page: L67 ident: bib4 article-title: On the determination of the flat-band potential of a semiconductor in contact with a metal or an electrolyte from the Mott-Schottky plot publication-title: J. Phys. D Appl. Phys. – volume: 5 start-page: 5495 year: 2017 end-page: 5501 ident: bib9 article-title: Artificial photosynthesis of methanol from carbon dioxide and water via a Nile red-embedded TiO publication-title: J. Mater. Chem. A – volume: 112 start-page: 74 year: 2008 end-page: 79 ident: bib25 article-title: A novel heterostructure of Co publication-title: J. Phys. Chem. C – volume: 225 start-page: 563 year: 2018 end-page: 573 ident: bib5 article-title: MOFs based on ZIF-8 deposited on TiO publication-title: Appl. Catal. B – volume: 55 start-page: 5789 year: 2016 end-page: 5792 ident: bib13 article-title: Tailoring copper nanocrystals towards C2 products in electrochemical CO publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 2935 year: 2018 end-page: 2944 ident: bib15 article-title: Sequential catalysis controls selectivity in electrochemical CO publication-title: Energy Environ. Sci. – volume: 51 start-page: 442 year: 2018 end-page: 450 ident: bib29 article-title: In-situ grown nanocrystal TiO publication-title: Nano Energy – volume: 11 start-page: 622 year: 2019 end-page: 628 ident: bib12 article-title: Imaging defects and their evolution in a metal-organic framework at sub-unit-cell resolution publication-title: Nat. Chem. – volume: 80 start-page: 15 year: 2004 ident: bib7 article-title: Discoveries in oxygenic photosynthesis (1727–2003): a perspective publication-title: Photosynth. Res. – volume: 31 start-page: e1804710 year: 2019 ident: bib6 article-title: The development of cocatalysts for photoelectrochemical CO publication-title: Adv. Mater. – volume: 4 start-page: 290 year: 2019 end-page: 299 ident: bib23 article-title: Binary molecular-semiconductor p–n junctions for photoelectrocatalytic CO publication-title: Nat. Energy – volume: 8 start-page: 6297 year: 2014 end-page: 6303 ident: bib28 article-title: Porous spinel Zn publication-title: ACS Nano – volume: 3 start-page: 4010 year: 2015 end-page: 4017 ident: bib20 article-title: Zinc–cobalt oxides as efficient water oxidation catalysts: the promotion effect of ZnO publication-title: J. Mater. Chem. A – volume: 130 start-page: 6342 year: 2008 end-page: 6344 ident: bib2 article-title: Selective solar-driven reduction of CO publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 8681 year: 2018 end-page: 8689 ident: bib10 article-title: Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO publication-title: J. Am. Chem. Soc. – volume: 40 start-page: 117 year: 2019 end-page: 149 ident: bib27 article-title: Catalysts in electro-, photo- and photoelectrocatalytic CO publication-title: J. Photochem. Photobiol. C Photochem. Rev. – volume: 3 start-page: 1199 year: 2015 end-page: 1207 ident: bib30 article-title: Photogenerated electron reservoir in hetero-p–n CuO–ZnO nanocomposite device for visible-light-driven photocatalytic reduction of aqueous Cr(VI) publication-title: J. Mater. Chem. A – volume: 2 start-page: 2915 year: 2010 end-page: 2923 ident: bib31 article-title: Electrospun nanofibers of p-type NiO/n-Type ZnO heterojunctions with enhanced photocatalytic activity publication-title: ACS Appl. Mater. Interfaces – volume: 123 start-page: 186 year: 2008 ident: bib24 article-title: Enabling electrocatalytic Fischer–Tropsch synthesis from carbon dioxide over copper-based electrodes publication-title: Catal. Lett. – volume: 181 start-page: 707 year: 2016 end-page: 715 ident: bib26 article-title: Co publication-title: Appl. Catal. B – volume: 110 start-page: 20211 year: 2006 end-page: 20216 ident: bib14 article-title: Efficient photocatalytic degradation of phenol over Co publication-title: J. Phys. Chem. B – volume: 31 start-page: e1804710 year: 2019 ident: 10.1016/j.isci.2019.100768_bib6 article-title: The development of cocatalysts for photoelectrochemical CO2 reduction publication-title: Adv. Mater. doi: 10.1002/adma.201804710 – volume: 275 start-page: 115 year: 1978 ident: 10.1016/j.isci.2019.100768_bib8 article-title: Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells publication-title: Nature doi: 10.1038/275115a0 – volume: 360 start-page: 1210 year: 2018 ident: 10.1016/j.isci.2019.100768_bib19 article-title: Photochemistry beyond the red limit in chlorophyll f–containing photosystems publication-title: Science doi: 10.1126/science.aar8313 – volume: 432 start-page: 775 year: 2004 ident: 10.1016/j.isci.2019.100768_bib17 article-title: Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene publication-title: Nature doi: 10.1038/nature03155 – volume: 5 start-page: 5495 year: 2017 ident: 10.1016/j.isci.2019.100768_bib9 article-title: Artificial photosynthesis of methanol from carbon dioxide and water via a Nile red-embedded TiO2 photocathode publication-title: J. Mater. Chem. A doi: 10.1039/C6TA10231J – volume: 225 start-page: 563 year: 2018 ident: 10.1016/j.isci.2019.100768_bib5 article-title: MOFs based on ZIF-8 deposited on TiO2 nanotubes increase the surface adsorption of CO2 and its photoelectrocatalytic reduction to alcohols in aqueous media publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.12.013 – volume: 76 start-page: 1760 year: 1954 ident: 10.1016/j.isci.2019.100768_bib3 article-title: The path of carbon in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01636a012 – volume: 55 start-page: 5789 year: 2016 ident: 10.1016/j.isci.2019.100768_bib13 article-title: Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201601582 – volume: 80 start-page: 15 year: 2004 ident: 10.1016/j.isci.2019.100768_bib7 article-title: Discoveries in oxygenic photosynthesis (1727–2003): a perspective publication-title: Photosynth. Res. doi: 10.1023/B:PRES.0000030443.63979.e6 – volume: 112 start-page: 74 year: 2008 ident: 10.1016/j.isci.2019.100768_bib25 article-title: A novel heterostructure of Co3O4/ZnO nanowire array fabricated by photochemical coating method publication-title: J. Phys. Chem. C doi: 10.1021/jp077443a – volume: 51 start-page: 442 year: 2018 ident: 10.1016/j.isci.2019.100768_bib29 article-title: In-situ grown nanocrystal TiO2 on 2D Ti3C2 nanosheets for artificial photosynthesis of chemical fuels publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.086 – volume: 4 start-page: 290 year: 2019 ident: 10.1016/j.isci.2019.100768_bib23 article-title: Binary molecular-semiconductor p–n junctions for photoelectrocatalytic CO2 reduction publication-title: Nat. Energy doi: 10.1038/s41560-019-0345-y – volume: 11 start-page: 2935 year: 2018 ident: 10.1016/j.isci.2019.100768_bib15 article-title: Sequential catalysis controls selectivity in electrochemical CO2 reduction on Cu publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01501E – volume: 2 start-page: 2915 year: 2010 ident: 10.1016/j.isci.2019.100768_bib31 article-title: Electrospun nanofibers of p-type NiO/n-Type ZnO heterojunctions with enhanced photocatalytic activity publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am100618h – volume: 11 start-page: L63 year: 1978 ident: 10.1016/j.isci.2019.100768_bib4 article-title: On the determination of the flat-band potential of a semiconductor in contact with a metal or an electrolyte from the Mott-Schottky plot publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/11/4/003 – volume: 8 start-page: 6297 year: 2014 ident: 10.1016/j.isci.2019.100768_bib28 article-title: Porous spinel ZnxCo3–xO4 hollow polyhedra templated for high-rate lithium-ion batteries publication-title: ACS Nano doi: 10.1021/nn501783n – volume: 134 start-page: 2186 year: 2012 ident: 10.1016/j.isci.2019.100768_bib22 article-title: Efficient and stable photo-oxidation of water by a Bismuth Vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/ja209001d – volume: 93 start-page: 235305 year: 2016 ident: 10.1016/j.isci.2019.100768_bib11 article-title: Oxygen vacancies: the origin of n-type conductivity in ZnO publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.235305 – volume: 8 start-page: 855 year: 2015 ident: 10.1016/j.isci.2019.100768_bib21 article-title: Efficient and selective carbon dioxide reduction on low cost protected Cu2O photocathodes using a molecular catalyst publication-title: Energy Environ Sci doi: 10.1039/C4EE03454F – volume: 110 start-page: 20211 year: 2006 ident: 10.1016/j.isci.2019.100768_bib14 article-title: Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation publication-title: J. Phys. Chem. B doi: 10.1021/jp063441z – volume: 181 start-page: 707 year: 2016 ident: 10.1016/j.isci.2019.100768_bib26 article-title: Co3O4 nanoparticles decorated Ag3PO4 tetrapods as an efficient visible-light-driven heterojunction photocatalyst publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2015.08.045 – volume: 130 start-page: 6342 year: 2008 ident: 10.1016/j.isci.2019.100768_bib2 article-title: Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0776327 – volume: 15 start-page: 1006 year: 2013 ident: 10.1016/j.isci.2019.100768_bib16 article-title: Formation energy and photoelectrochemical properties of BiVO4 after doping at Bi3+ or V5+ sites with higher valence metal ions publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C2CP43408C – volume: 123 start-page: 186 year: 2008 ident: 10.1016/j.isci.2019.100768_bib24 article-title: Enabling electrocatalytic Fischer–Tropsch synthesis from carbon dioxide over copper-based electrodes publication-title: Catal. Lett. doi: 10.1007/s10562-008-9488-3 – volume: 3 start-page: 4010 year: 2015 ident: 10.1016/j.isci.2019.100768_bib20 article-title: Zinc–cobalt oxides as efficient water oxidation catalysts: the promotion effect of ZnO publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06527A – volume: 3 start-page: 1199 year: 2015 ident: 10.1016/j.isci.2019.100768_bib30 article-title: Photogenerated electron reservoir in hetero-p–n CuO–ZnO nanocomposite device for visible-light-driven photocatalytic reduction of aqueous Cr(VI) publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04526B – volume: 40 start-page: 117 year: 2019 ident: 10.1016/j.isci.2019.100768_bib27 article-title: Catalysts in electro-, photo- and photoelectrocatalytic CO2 reduction reactions publication-title: J. Photochem. Photobiol. C Photochem. Rev. doi: 10.1016/j.jphotochemrev.2019.02.002 – volume: 11 start-page: 622 year: 2019 ident: 10.1016/j.isci.2019.100768_bib12 article-title: Imaging defects and their evolution in a metal-organic framework at sub-unit-cell resolution publication-title: Nat. Chem. doi: 10.1038/s41557-019-0263-4 – volume: 319 start-page: 939 year: 2008 ident: 10.1016/j.isci.2019.100768_bib1 article-title: High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture publication-title: Science doi: 10.1126/science.1152516 – volume: 140 start-page: 8681 year: 2018 ident: 10.1016/j.isci.2019.100768_bib10 article-title: Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO2 reduction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02173 – volume: 1 start-page: 421 year: 2018 ident: 10.1016/j.isci.2019.100768_bib32 article-title: Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols publication-title: Nat. Catal. doi: 10.1038/s41929-018-0084-7 – volume: 28 start-page: 953 year: 2017 ident: 10.1016/j.isci.2019.100768_bib18 article-title: Room-temperature solid state synthesis of Co3O4/ZnO p–n heterostructure and its photocatalytic activity publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2016.12.025 |
SSID | ssj0002002496 |
Score | 2.2673209 |
Snippet | Nowadays, photoelectrocatalytic (PEC) reduction of CO2 represents a very promising solution for storing solar energy in value-added chemicals, but so far it... Nowadays, photoelectrocatalytic (PEC) reduction of CO 2 represents a very promising solution for storing solar energy in value-added chemicals, but so far it... |
SourceID | doaj pubmedcentral proquest crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 100768 |
SubjectTerms | Catalysis Electrochemical Materials Science Materials Design |
Title | Photoelectrocatalytic Reduction of CO2 to Paraffin Using p-n Heterojunctions |
URI | https://dx.doi.org/10.1016/j.isci.2019.100768 https://www.proquest.com/docview/2331623653 https://pubmed.ncbi.nlm.nih.gov/PMC6941872 https://doaj.org/article/114a7855f28b422391c44f618bdf0872 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQJy6ICqoubZGRequsJv6I7WNBoBWiLaqKxM2yvbbYVZUgGg7998w4WZRc6KXX2Imd8ThvHD-_IeRTNCrqymYmouBM6lwxiOMCU4C13mTpY0md8O17s7yVV3fqbpLqCzlhgzzwYLgvEK97bZTK3AQJWGbrKGVuahNWuTK6fH0B8yaLqU3ZXkMpvJJZTiEnCFxzPDEzkLvwxCvyumxhCaDO6gSVinj_DJwmweecOjnBossDsj8GkfTr0Pk3ZCe1h-T65r7ruzGtTfkr8xeK6U_UZkXr0y7T8x-c9h298Y8-53VLC2GAPrCWLpEW020A5YojHpHby4tf50s25kpgUVrTsyikRqnkRhqVfaOShqkqQwwp2Oi1skZH7lOdlLB5BW3EpFXMxohk0bjiLdltuza9I1TrxJPlqyrySobc-BX3EjAsKJ6ylfWC1FtbuTgKiWM-i99uyxjbOLSvQ_u6wb4L8vnlnodBRuPV2mc4BC81UQK7XADHcKNjuH85xoKo7QC6MZoYogR41PrVxk-3o-1gquH-iW9T9_THcSFqiBYbJRZEz9xg1tN5Sbu-L6LdeGAYenX8P17tPdnjuOyvasblB7LbPz6ljxAb9eGkTINnV9oKJQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoelectrocatalytic+Reduction+of+CO2+to+Paraffin+Using+p-n+Heterojunctions&rft.jtitle=iScience&rft.au=Wang%2C+Jinyuan&rft.au=Guan%2C+Yongji&rft.au=Yu%2C+Xiaogang&rft.au=Cao%2C+Youzhi&rft.date=2020-01-24&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=23&rft.issue=1&rft.spage=100768&rft_id=info:doi/10.1016%2Fj.isci.2019.100768&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isci_2019_100768 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |