3D regression neural network for the quantification of enlarged perivascular spaces in brain MRI

•A regression neural network to quantify enlarged perivascular spaces in brain MRI.•Successful network training based on only the number of lesions in a single slice.•Extensive evaluation on 400 images.•The correlation between automated and visual scores is close to intrarater agreement.•The correla...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 51; pp. 89 - 100
Main Authors Dubost, Florian, Adams, Hieab, Bortsova, Gerda, Ikram, M. Arfan, Niessen, Wiro, Vernooij, Meike, de Bruijne, Marleen
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8423
DOI10.1016/j.media.2018.10.008

Cover

Loading…
Abstract •A regression neural network to quantify enlarged perivascular spaces in brain MRI.•Successful network training based on only the number of lesions in a single slice.•Extensive evaluation on 400 images.•The correlation between automated and visual scores is close to intrarater agreement.•The correlation between automated scores and age is similar to that of visual scores. [Display omitted] Enlarged perivascular spaces (EPVS) in the brain are an emerging imaging marker for cerebral small vessel disease, and have been shown to be related to increased risk of various neurological diseases, including stroke and dementia. Automated quantification of EPVS would greatly help to advance research into its etiology and its potential as a risk indicator of disease. We propose a convolutional network regression method to quantify the extent of EPVS in the basal ganglia from 3D brain MRI. We first segment the basal ganglia and subsequently apply a 3D convolutional regression network designed for small object detection within this region of interest. The network takes an image as input, and outputs a quantification score of EPVS. The network has significantly more convolution operations than pooling ones and no final activation, allowing it to span the space of real numbers. We validated our approach using a dataset of 2000 brain MRI scans scored visually. Experiments with varying sizes of training and test sets showed that a good performance can be achieved with a training set of only 200 scans. With a training set of 1000 scans, the intraclass correlation coefficient (ICC) between our scoring method and the expert’s visual score was 0.74. Our method outperforms by a large margin - more than 0.10 - four more conventional automated approaches based on intensities, scale-invariant feature transform, and random forest. We show that the network learns the structures of interest and investigate the influence of hyper-parameters on the performance. We also evaluate the reproducibility of our network using a set of 60 subjects scanned twice (scan-rescan reproducibility). On this set our network achieves an ICC of 0.93, while the intrarater agreement reaches 0.80. Furthermore, the automated EPVS scoring correlates similarly to age as visual scoring.
AbstractList Enlarged perivascular spaces (EPVS) in the brain are an emerging imaging marker for cerebral small vessel disease, and have been shown to be related to increased risk of various neurological diseases, including stroke and dementia. Automated quantification of EPVS would greatly help to advance research into its etiology and its potential as a risk indicator of disease. We propose a convolutional network regression method to quantify the extent of EPVS in the basal ganglia from 3D brain MRI. We first segment the basal ganglia and subsequently apply a 3D convolutional regression network designed for small object detection within this region of interest. The network takes an image as input, and outputs a quantification score of EPVS. The network has significantly more convolution operations than pooling ones and no final activation, allowing it to span the space of real numbers. We validated our approach using a dataset of 2000 brain MRI scans scored visually. Experiments with varying sizes of training and test sets showed that a good performance can be achieved with a training set of only 200 scans. With a training set of 1000 scans, the intraclass correlation coefficient (ICC) between our scoring method and the expert's visual score was 0.74. Our method outperforms by a large margin - more than 0.10 - four more conventional automated approaches based on intensities, scale-invariant feature transform, and random forest. We show that the network learns the structures of interest and investigate the influence of hyper-parameters on the performance. We also evaluate the reproducibility of our network using a set of 60 subjects scanned twice (scan-rescan reproducibility). On this set our network achieves an ICC of 0.93, while the intrarater agreement reaches 0.80. Furthermore, the automated EPVS scoring correlates similarly to age as visual scoring.
•A regression neural network to quantify enlarged perivascular spaces in brain MRI.•Successful network training based on only the number of lesions in a single slice.•Extensive evaluation on 400 images.•The correlation between automated and visual scores is close to intrarater agreement.•The correlation between automated scores and age is similar to that of visual scores. [Display omitted] Enlarged perivascular spaces (EPVS) in the brain are an emerging imaging marker for cerebral small vessel disease, and have been shown to be related to increased risk of various neurological diseases, including stroke and dementia. Automated quantification of EPVS would greatly help to advance research into its etiology and its potential as a risk indicator of disease. We propose a convolutional network regression method to quantify the extent of EPVS in the basal ganglia from 3D brain MRI. We first segment the basal ganglia and subsequently apply a 3D convolutional regression network designed for small object detection within this region of interest. The network takes an image as input, and outputs a quantification score of EPVS. The network has significantly more convolution operations than pooling ones and no final activation, allowing it to span the space of real numbers. We validated our approach using a dataset of 2000 brain MRI scans scored visually. Experiments with varying sizes of training and test sets showed that a good performance can be achieved with a training set of only 200 scans. With a training set of 1000 scans, the intraclass correlation coefficient (ICC) between our scoring method and the expert’s visual score was 0.74. Our method outperforms by a large margin - more than 0.10 - four more conventional automated approaches based on intensities, scale-invariant feature transform, and random forest. We show that the network learns the structures of interest and investigate the influence of hyper-parameters on the performance. We also evaluate the reproducibility of our network using a set of 60 subjects scanned twice (scan-rescan reproducibility). On this set our network achieves an ICC of 0.93, while the intrarater agreement reaches 0.80. Furthermore, the automated EPVS scoring correlates similarly to age as visual scoring.
Enlarged perivascular spaces (EPVS) in the brain are an emerging imaging marker for cerebral small vessel disease, and have been shown to be related to increased risk of various neurological diseases, including stroke and dementia. Automated quantification of EPVS would greatly help to advance research into its etiology and its potential as a risk indicator of disease. We propose a convolutional network regression method to quantify the extent of EPVS in the basal ganglia from 3D brain MRI. We first segment the basal ganglia and subsequently apply a 3D convolutional regression network designed for small object detection within this region of interest. The network takes an image as input, and outputs a quantification score of EPVS. The network has significantly more convolution operations than pooling ones and no final activation, allowing it to span the space of real numbers. We validated our approach using a dataset of 2000 brain MRI scans scored visually. Experiments with varying sizes of training and test sets showed that a good performance can be achieved with a training set of only 200 scans. With a training set of 1000 scans, the intraclass correlation coefficient (ICC) between our scoring method and the expert's visual score was 0.74. Our method outperforms by a large margin - more than 0.10 - four more conventional automated approaches based on intensities, scale-invariant feature transform, and random forest. We show that the network learns the structures of interest and investigate the influence of hyper-parameters on the performance. We also evaluate the reproducibility of our network using a set of 60 subjects scanned twice (scan-rescan reproducibility). On this set our network achieves an ICC of 0.93, while the intrarater agreement reaches 0.80. Furthermore, the automated EPVS scoring correlates similarly to age as visual scoring.Enlarged perivascular spaces (EPVS) in the brain are an emerging imaging marker for cerebral small vessel disease, and have been shown to be related to increased risk of various neurological diseases, including stroke and dementia. Automated quantification of EPVS would greatly help to advance research into its etiology and its potential as a risk indicator of disease. We propose a convolutional network regression method to quantify the extent of EPVS in the basal ganglia from 3D brain MRI. We first segment the basal ganglia and subsequently apply a 3D convolutional regression network designed for small object detection within this region of interest. The network takes an image as input, and outputs a quantification score of EPVS. The network has significantly more convolution operations than pooling ones and no final activation, allowing it to span the space of real numbers. We validated our approach using a dataset of 2000 brain MRI scans scored visually. Experiments with varying sizes of training and test sets showed that a good performance can be achieved with a training set of only 200 scans. With a training set of 1000 scans, the intraclass correlation coefficient (ICC) between our scoring method and the expert's visual score was 0.74. Our method outperforms by a large margin - more than 0.10 - four more conventional automated approaches based on intensities, scale-invariant feature transform, and random forest. We show that the network learns the structures of interest and investigate the influence of hyper-parameters on the performance. We also evaluate the reproducibility of our network using a set of 60 subjects scanned twice (scan-rescan reproducibility). On this set our network achieves an ICC of 0.93, while the intrarater agreement reaches 0.80. Furthermore, the automated EPVS scoring correlates similarly to age as visual scoring.
Author Niessen, Wiro
Vernooij, Meike
de Bruijne, Marleen
Adams, Hieab
Dubost, Florian
Ikram, M. Arfan
Bortsova, Gerda
Author_xml – sequence: 1
  givenname: Florian
  orcidid: 0000-0002-7035-2680
  surname: Dubost
  fullname: Dubost, Florian
  email: floriandubost1@gmail.com, f.dubost@erasmusmc.nl
  organization: Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC - University Medical Center Rotterdam, The Netherland
– sequence: 2
  givenname: Hieab
  surname: Adams
  fullname: Adams, Hieab
  organization: Departments of Radiology and Epidemiology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
– sequence: 3
  givenname: Gerda
  surname: Bortsova
  fullname: Bortsova, Gerda
  organization: Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC - University Medical Center Rotterdam, The Netherland
– sequence: 4
  givenname: M. Arfan
  surname: Ikram
  fullname: Ikram, M. Arfan
  organization: Departments of Radiology, Epidemiology and Neurology. Erasmus MC - University Medical Center Rotterdam, The Netherlands
– sequence: 5
  givenname: Wiro
  surname: Niessen
  fullname: Niessen, Wiro
  organization: Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC - University Medical Center Rotterdam, The Netherland
– sequence: 6
  givenname: Meike
  surname: Vernooij
  fullname: Vernooij, Meike
  organization: Departments of Radiology and Epidemiology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
– sequence: 7
  givenname: Marleen
  orcidid: 0000-0002-6328-902X
  surname: de Bruijne
  fullname: de Bruijne, Marleen
  email: marleen.debruijne@erasmusmc.nl
  organization: Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC - University Medical Center Rotterdam, The Netherland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30390514$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtPJCEUhYlpM9rO_AKTCcls3HQLBVVFLWYx8Z1oTMy4RgpuOfRUQzdQbfz3Ura6cOGGx-U7N5dzpmjivAOEDimZU0Kr48V8CcaqeUGoyJU5IWIH7VNW0ZngBZt8nGm5h6YxLgghNefkG9pjhDWkpHwfPbBTHOAxQIzWO-xgCKrPW3ry4T_ufMDpH-D1oFyyndUqjZTvMLhehUcweAXBblTUQ77juFIaIrYOt0Hl9ebu6jva7VQf4cfbfoDuz8_-nlzOrm8vrk7-XM80b0SatdooQ6gWTFQd75o8IWdVoWgrTG10qapaA8lvpTIN10UliGlKU7dMM6hMzQ7Q0bbvKvj1ADHJpY0a-l458EOUBS2aktGyHtFfn9CFH4LL02VKFFxUDSeZ-vlGDW02Wq6CXarwLN-9y0CzBXTwMQbopLbp1aCUP99LSuSYk1zI15zkmNNYzDllLfukfW__ter3VgXZyI2FIKO24HQGA-gkjbdf6l8AsjKsjg
CitedBy_id crossref_primary_10_3389_fneur_2022_846957
crossref_primary_10_3389_fnins_2022_1021311
crossref_primary_10_1007_s10489_024_05916_x
crossref_primary_10_1016_j_patcog_2019_106997
crossref_primary_10_1038_s41598_021_04287_4
crossref_primary_10_3390_brainsci14020138
crossref_primary_10_1016_j_cmpb_2022_106714
crossref_primary_10_1016_j_media_2020_101767
crossref_primary_10_1002_jmri_28369
crossref_primary_10_1016_j_nbd_2023_106347
crossref_primary_10_3390_diagnostics13091571
crossref_primary_10_1016_j_neuroimage_2022_119528
crossref_primary_10_3389_fneur_2022_844938
crossref_primary_10_1007_s10654_023_01094_1
crossref_primary_10_1016_j_media_2022_102470
crossref_primary_10_1088_1361_6560_abcd17
crossref_primary_10_3389_fnagi_2021_689098
crossref_primary_10_2463_mrms_rev_2023_0175
crossref_primary_10_3389_fneur_2022_888511
crossref_primary_10_3390_jimaging10100239
crossref_primary_10_1016_j_neurad_2025_101322
crossref_primary_10_1016_j_mri_2022_07_016
crossref_primary_10_1016_j_neuroimage_2024_120685
crossref_primary_10_1016_j_nicl_2019_102120
crossref_primary_10_3389_fgene_2019_00214
crossref_primary_10_1002_brb3_3168
crossref_primary_10_1016_j_neurobiolaging_2020_12_014
crossref_primary_10_3348_jksr_2022_0049
crossref_primary_10_3390_s20185097
crossref_primary_10_1016_j_media_2019_101619
crossref_primary_10_1002_jmri_28977
crossref_primary_10_3390_app11209398
crossref_primary_10_1038_s41598_019_48910_x
crossref_primary_10_1016_j_neuroimage_2020_117316
crossref_primary_10_1001_jamanetworkopen_2023_9196
crossref_primary_10_1016_j_brain_2023_100089
crossref_primary_10_1186_s10194_024_01741_2
Cites_doi 10.1007/s10654-015-0105-7
10.1093/brain/awx003
10.1109/CVPRW.2015.7301276
10.1007/s10654-014-9890-7
10.1109/CVPR.2017.39
10.1109/TMI.2016.2528129
10.1016/j.neuroimage.2006.01.021
10.1371/journal.pmed.1001779
10.1016/j.neuroimage.2016.03.076
10.1007/978-3-319-46723-8_49
10.1042/CS20170051
10.1111/ijs.12054
10.1159/000375153
10.1002/mds.20083
10.1046/j.1469-7580.1997.19130337.x
10.1037/1040-3590.6.4.284
10.1023/B:VISI.0000029664.99615.94
10.1109/TMI.2009.2035616
10.1161/STROKEAHA.116.012949
10.1212/WNL.0000000000003746
10.1109/TMI.2016.2521800
10.1007/978-3-319-46475-6_41
10.1016/S1474-4422(13)70124-8
10.1007/s00330-008-1202-8
10.1259/bjr/79217686
10.1136/jnnp-2012-304080
10.1002/jmri.21049
10.1161/STROKEAHA.111.000620
10.3233/JAD-132528
10.1016/j.procs.2016.07.011
ContentType Journal Article
Copyright 2018
Copyright © 2018. Published by Elsevier B.V.
Copyright Elsevier BV Jan 2019
Copyright_xml – notice: 2018
– notice: Copyright © 2018. Published by Elsevier B.V.
– notice: Copyright Elsevier BV Jan 2019
DBID AAYXX
CITATION
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
DOI 10.1016/j.media.2018.10.008
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
EndPage 100
ExternalDocumentID 30390514
10_1016_j_media_2018_10_008
S1361841518308557
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
NPM
7QO
8FD
EFKBS
FR3
K9.
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c498t-bcdad01c8386f4f93034362a1b8d7dc5a67ce086f5ad94c2680d95d7b3c3e6d73
IEDL.DBID .~1
ISSN 1361-8415
1361-8423
IngestDate Fri Jul 11 00:04:52 EDT 2025
Sat Jul 26 03:25:01 EDT 2025
Wed Feb 19 02:35:15 EST 2025
Tue Jul 01 02:49:27 EDT 2025
Thu Apr 24 23:05:56 EDT 2025
Fri Feb 23 02:28:17 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Regression
Weak labels
Perivascular space
Virchow-Robin space
Dementia
Language English
License Copyright © 2018. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c498t-bcdad01c8386f4f93034362a1b8d7dc5a67ce086f5ad94c2680d95d7b3c3e6d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7035-2680
0000-0002-6328-902X
OpenAccessLink http://hdl.handle.net/1765/111798
PMID 30390514
PQID 2182486940
PQPubID 2045428
PageCount 12
ParticipantIDs proquest_miscellaneous_2129531577
proquest_journals_2182486940
pubmed_primary_30390514
crossref_citationtrail_10_1016_j_media_2018_10_008
crossref_primary_10_1016_j_media_2018_10_008
elsevier_sciencedirect_doi_10_1016_j_media_2018_10_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Desikan, Ségonne, Fischl, Quinn, Dickerson, Blacker, Buckner, Dale, Maguire, Hyman, Albert, Killiany (bib0012) 2006; 31
10.1109/CVPRW.2015.7301276
Banerjee, Kim, Fox, Jäger, Wilson, Charidimou, Na, Na, Seo, Werring (bib0006) 2017; 140
Klein, Staring, Murphy, Viergever, Pluim (bib0021) 2010; 29
Potter, Doubal, Jackson, Chappell, Sudlow, Dennis, Wardlaw (bib0031) 2015; 10
Mills, Cain, Purandare, Jackson (bib0026) 2007; 80
Miao, Wang, Liao (bib0025) 2016; 35
Cicek, O., Abdulkadir, A., Lienkamp, S. S., Brox, T., Ronneberger, O., 2016. 3D U-Net: learning dense volumetric segmentation from sparse annotation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9901 LNC, 424–432. arXiv
Adams, Hilal, Schwingenschuh, Wittfeld, van der Lee, DeCarli, Vernooij, Katschnig-Winter, Habes, Chen, Seshadri, van Duijn, Ikram, Grabe, Schmidt, Ikram (bib0003) 2015; 1
Pollock, Hutchings, Weller, Zhang (bib0029) 1997; 191
Potter, Chappell, Morris, Wardlaw (bib0030) 2015; 39
González-Castro, Hernández, Chappell, Armitage, Makin, Wardlaw (bib0017) 2017; 131
Adams, Cavalieri, Verhaaren, Bos, Van Der Lugt, Enzinger, Vernooij, Schmidt, Ikram (bib0002) 2013; 44
Dubost, Bortsova, Adams, Ikram, Niessen, Vernooij, De Bruijne (bib0014) 2017
Achiron, Faibel (bib0001) 2002; 23
Charidimou, Boulouis, Pasi, Auriel, Van Etten, Haley, Ayres, Schwab, Martinez-Ramirez, Goldstein, Rosand, Viswanathan, Greenberg, Gurol (bib0008) 2017; 88
Mnih, Heess, Graves (bib0027) 2014
Segui, S., Pujol, O., Vitria, J., 2015. Learning to count with deep object features.in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops 2015-October, 90–96. arXiv
Zijlmans, Daniel, Hughes, Révész, Lees (bib0043) 2004; 19
Simonyan, K., Zisserman, A., 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint abs/1409.1, 1–10. arXiv
Lowe (bib0023) 2004; 60
Ren, M., Zemel, R. S., 2016. End-to-End Instance Segmentation with Recurrent AttentionarXiv
Simonyan, Vedaldi, Zisserman (bib0036) 2014
Zeiler, M.D., 2012. ADADELTA: An Adaptive Learning Rate Method, CoRR, arXiv
Cicchetti (bib0010) 1994; 6
Bortsova, van Tulder, Dubost, Peng, Navab, van der Lugt, Bos, De Bruijne (bib0007) 2017
Maillard, Mitchell, Himali, Beiser, Tsao, Pase, Satizabal, Vasan, Seshadri, De Carli (bib0024) 2016; 47
Ikram, van der Lugt, Niessen, Koudstaal, Krestin, Hofman, Bos, Vernooij (bib0019) 2015; 30
Ghesu, Georgescu, Mansi, Neumann, Hornegger, Comaniciu (bib0015) 2016
.
Lempitsky, Zisserman (bib0022) 2010
Chen, Dou, Yu, Qin, Heng (bib0009) 2017
Walach, E., Wolf, L., 2016. Learning to count with CNN boosting. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9906 LNCS, 660–676. 10.1007/978-3-319-46475-6_41
Dou, Chen, Yu, Zhao, Qin, Wang, Mok, Shi, Heng (bib0013) 2016; 35
Sudlow, Gallacher, Allen, Beral, Burton, Danesh, Downey, Elliott, Green, Landray, Liu, Matthews, Ong, Pell, Silman, Young, Sprosen, Peakman, Collins (bib0038) 2015; 12
Selvarajah, Scott, Stivaros, Hulme, Georgiou, Rothwell, Tyrrell, Jackson (bib0035) 2009; 19
Wardlaw, Smith, Biessels, Cordonnier, Fazekas, Frayne, Lindley, O’Brien, Barkhof, Benavente, Black, Brayne, Breteler, Chabriat, DeCarli, de Leeuw, Doubal, Duering, Fox, Greenberg, Hachinski, Kilimann, Mok, van Oostenbrugge, Pantoni, Speck, Stephan, Teipel, Viswanathan, Werring, Chen, Smith, van Buchem, Norrving, Gorelick, Dichgans (bib0040) 2013; 12
Jack, Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, Britson, L Whitwell, Ward, Dale, Felmlee, Gunter, Hill, Killiany, Schuff, Fox-Bosetti, Lin, Studholme, DeCarli, Krueger, Ward, Metzger, Scott, Mallozzi, Blezek, Levy, Debbins, Fleisher, Albert, Green, Bartzokis, Glover, Mugler, Weiner (bib0020) 2008; 27
Xie, Noble, Zisserman (bib0041) 2016
10.1109/CVPR.2017.39
Park, Zong, Gao, Lin, Shen (bib0028) 2016; 134
Ahrens, Hoffmann, Jöckel, Kaaks, Gromer, Greiser, Linseisen, Schmidt, Wichmann, Weg-Remers (bib0004) 2014; 29
Hilal, Ikram, Saini, Tan, Catindig, Dong, Lim, Ting, Koo, Cheung, Qiu, Wong, Chen, Venketasubramanian (bib0018) 2013; 84
10.1016/j.infsof.2008.09.005
Ballerini, Lovreglio, Hernandez, Gonzalez-Castro, Maniega, Pellegrini, Bastin, Deary, Wardlaw (bib0005) 2016; 90
Ramirez, Berezuk, McNeely, Scott, Gao, Black (bib0032) 2015; 43
doi
González-Castro, Hernández, Armitage, Wardlaw (bib0016) 2016
Ikram (10.1016/j.media.2018.10.008_bib0019) 2015; 30
Banerjee (10.1016/j.media.2018.10.008_sbref0006) 2017; 140
Sudlow (10.1016/j.media.2018.10.008_bib0038) 2015; 12
Charidimou (10.1016/j.media.2018.10.008_bib0008) 2017; 88
Jack (10.1016/j.media.2018.10.008_bib0020) 2008; 27
Adams (10.1016/j.media.2018.10.008_bib0003) 2015; 1
Park (10.1016/j.media.2018.10.008_bib0028) 2016; 134
Mills (10.1016/j.media.2018.10.008_bib0026) 2007; 80
Chen (10.1016/j.media.2018.10.008_sbref0009) 2017
Lowe (10.1016/j.media.2018.10.008_sbref0022) 2004; 60
Miao (10.1016/j.media.2018.10.008_sbref0024) 2016; 35
Bortsova (10.1016/j.media.2018.10.008_bib0007) 2017
Simonyan (10.1016/j.media.2018.10.008_bib0036) 2014
10.1016/j.media.2018.10.008_bib0011
10.1016/j.media.2018.10.008_bib0033
Mnih (10.1016/j.media.2018.10.008_bib0027) 2014
10.1016/j.media.2018.10.008_bib0034
10.1016/j.media.2018.10.008_bib0039
Potter (10.1016/j.media.2018.10.008_bib0031) 2015; 10
10.1016/j.media.2018.10.008_bib0037
Xie (10.1016/j.media.2018.10.008_bib0041) 2016
Ahrens (10.1016/j.media.2018.10.008_bib0004) 2014; 29
Dou (10.1016/j.media.2018.10.008_bib0013) 2016; 35
Ramirez (10.1016/j.media.2018.10.008_bib0032) 2015; 43
Ballerini (10.1016/j.media.2018.10.008_bib0005) 2016; 90
Adams (10.1016/j.media.2018.10.008_bib0002) 2013; 44
Dubost (10.1016/j.media.2018.10.008_bib0014) 2017
Lempitsky (10.1016/j.media.2018.10.008_bib0022) 2010
Zijlmans (10.1016/j.media.2018.10.008_bib0043) 2004; 19
Hilal (10.1016/j.media.2018.10.008_bib0018) 2013; 84
González-Castro (10.1016/j.media.2018.10.008_bib0017) 2017; 131
Klein (10.1016/j.media.2018.10.008_bib0021) 2010; 29
Maillard (10.1016/j.media.2018.10.008_sbref0023) 2016; 47
Selvarajah (10.1016/j.media.2018.10.008_bib0035) 2009; 19
10.1016/j.media.2018.10.008_bib0042
Cicchetti (10.1016/j.media.2018.10.008_bib0010) 1994; 6
Wardlaw (10.1016/j.media.2018.10.008_bib0040) 2013; 12
Desikan (10.1016/j.media.2018.10.008_bib0012) 2006; 31
Achiron (10.1016/j.media.2018.10.008_bib0001) 2002; 23
Pollock (10.1016/j.media.2018.10.008_bib0029) 1997; 191
Ghesu (10.1016/j.media.2018.10.008_bib0015) 2016
González-Castro (10.1016/j.media.2018.10.008_bib0016) 2016
Potter (10.1016/j.media.2018.10.008_bib0030) 2015; 39
References_xml – volume: 140
  start-page: 1107
  year: 2017
  end-page: 1116
  ident: bib0006
  article-title: MRI-visible perivascular space location is associated with Alzheimer’s disease independently of amyloid burden
  publication-title: Brain
– reference: Walach, E., Wolf, L., 2016. Learning to count with CNN boosting. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9906 LNCS, 660–676. 10.1007/978-3-319-46475-6_41
– volume: 23
  start-page: 376
  year: 2002
  end-page: 380
  ident: bib0001
  article-title: Sandlike appearance of Virchow-Robin spaces in early multiple sclerosis: a novel neuroradiologic marker
  publication-title: Am. J. Neuroradiol.
– volume: 80
  start-page: S128
  year: 2007
  end-page: S145
  ident: bib0026
  article-title: Biomarkers of cerebrovascular disease in dementia
  publication-title: Br. J. Radiol.
– volume: 191
  start-page: 337
  year: 1997
  end-page: 346
  ident: bib0029
  article-title: Perivascular spaces in the basal ganglia of the human brain: their relationship to lacunes
  publication-title: J. Anat.
– volume: 43
  start-page: 415
  year: 2015
  end-page: 424
  ident: bib0032
  article-title: Visible Virchow-Robin spaces on magnetic resonance imaging of Alzheimer’s disease patients and normal elderly from the Sunnybrook dementia study
  publication-title: J. Alzheimers Dis.
– start-page: 1
  year: 2017
  end-page: 10
  ident: bib0009
  article-title: VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images
  publication-title: Neuroimage
– reference: . doi:
– year: 2014
  ident: bib0036
  article-title: Deep inside convolutional networks: Visualising image classification models and saliency maps
  publication-title: International Conference for Learning Representations Workshop
– volume: 84
  start-page: 686
  year: 2013
  end-page: 692
  ident: bib0018
  article-title: Prevalence of cognitive impairment in chinese: epidemiology of dementia in singapore study
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 44
  start-page: 1732
  year: 2013
  end-page: 1735
  ident: bib0002
  article-title: Rating method for dilated virchow-robin spaces on magnetic resonance imaging
  publication-title: Stroke
– start-page: 1324
  year: 2010
  end-page: 1332
  ident: bib0022
  article-title: Learning to count objects in images
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 1
  start-page: 513
  year: 2015
  end-page: 520
  ident: bib0003
  article-title: A priori collaboration in population imaging: the uniform neuro-imaging of Virchow-Robin spaces enlargement consortium
  publication-title: Alzheimer’s Dement. Diagn. Assess. Dis. Monit.
– volume: 35
  start-page: 1182
  year: 2016
  end-page: 1195
  ident: bib0013
  article-title: Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks
  publication-title: IEEE Trans. Med. Imaging
– reference: . 10.1016/j.infsof.2008.09.005
– volume: 29
  start-page: 196
  year: 2010
  end-page: 205
  ident: bib0021
  article-title: Elastix: a toolbox for intensity-based medical image registration
  publication-title: IEEE Trans. Med. Imaging
– start-page: 356
  year: 2017
  end-page: 364
  ident: bib0007
  article-title: Segmentation of Intracranial Arterial Calcification with Deeply Supervised Residual Dropout Networks
– volume: 47
  start-page: 1030
  year: 2016
  end-page: 1036
  ident: bib0024
  article-title: Effects of arterial stiffness on brain integrity in young adults from the framingham heart study
  publication-title: Stroke
– reference: Simonyan, K., Zisserman, A., 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint abs/1409.1, 1–10. arXiv:
– volume: 60
  start-page: 91
  year: 2004
  end-page: 11020042
  ident: bib0023
  article-title: Distinctive image features from scale invariant keypoints
  publication-title: Int. J. Comput. Vis.
– volume: 6
  start-page: 284
  year: 1994
  end-page: 290
  ident: bib0010
  article-title: Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology
  publication-title: Psychol. Assess.
– start-page: 2204
  year: 2014
  end-page: 2212
  ident: bib0027
  article-title: Recurrent models of visual attention
  publication-title: Proceedings of the Advances in Neural Information Processing Systems
– start-page: 229
  year: 2016
  end-page: 237
  ident: bib0015
  article-title: An artificial agent for anatomical landmark detection in medical images
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 131
  start-page: 1465
  year: 2017
  end-page: 1481
  ident: bib0017
  article-title: Reliability of an automatic classifier for brain enlarged perivascular spaces burden and comparison with human performance
  publication-title: Clin. Sci.
– reference: Cicek, O., Abdulkadir, A., Lienkamp, S. S., Brox, T., Ronneberger, O., 2016. 3D U-Net: learning dense volumetric segmentation from sparse annotation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9901 LNC, 424–432. arXiv:
– reference: Segui, S., Pujol, O., Vitria, J., 2015. Learning to count with deep object features.in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops 2015-October, 90–96. arXiv:
– volume: 12
  start-page: 822
  year: 2013
  end-page: 838
  ident: bib0040
  article-title: Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration
  publication-title: Lancet Neurol.
– volume: 10
  start-page: 376
  year: 2015
  end-page: 381
  ident: bib0031
  article-title: Enlarged perivascular spaces and cerebral small vessel disease
  publication-title: Int. J. Stroke
– reference: . 10.1109/CVPRW.2015.7301276
– volume: 88
  start-page: 1157
  year: 2017
  end-page: 1164
  ident: bib0008
  article-title: MRI-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy
  publication-title: Neurology
– reference: . 10.1109/CVPR.2017.39
– start-page: 214
  year: 2017
  end-page: 221
  ident: bib0014
  article-title: Gp-unet: lesion detection from weak labels with a 3d regression network
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 19
  start-page: 1011
  year: 2009
  end-page: 1018
  ident: bib0035
  article-title: Potential surrogate markers of cerebral microvascular angiopathy in asymptomatic subjects at risk of stroke
  publication-title: Eur. Radiol.
– start-page: 642
  year: 2016
  end-page: 649
  ident: bib0016
  article-title: Automatic rating of perivascular spaces in brain MRI using bag of visual words
  publication-title: Proceedings of the International Conference Image Analysis and Recognition
– volume: 19
  start-page: 630
  year: 2004
  end-page: 640
  ident: bib0043
  article-title: Clinicopathological investigation of vascular parkinsonism, including clinical criteria for diagnosis
  publication-title: Move. Disord.
– reference: Ren, M., Zemel, R. S., 2016. End-to-End Instance Segmentation with Recurrent AttentionarXiv:
– volume: 39
  start-page: 224
  year: 2015
  end-page: 231
  ident: bib0030
  article-title: Cerebral perivascular spaces visible on magnetic resonance imaging: development of a qualitative rating scale and its observer reliability
  publication-title: Cerebrovasc. Dis.
– volume: 90
  start-page: 61
  year: 2016
  end-page: 67
  ident: bib0005
  article-title: Application of the ordered logit model to optimising Frangi filter parameters for segmentation of perivascular spaces
  publication-title: Procedia Comput. Sci.
– volume: 12
  start-page: 1
  year: 2015
  end-page: 10
  ident: bib0038
  article-title: UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age
  publication-title: PLoS Med.
– reference: .
– volume: 30
  start-page: 1299
  year: 2015
  end-page: 1315
  ident: bib0019
  article-title: The Rotterdam scan study: design update 2016 and main findings
  publication-title: Eur. J. Epidemiol.
– reference: Zeiler, M.D., 2012. ADADELTA: An Adaptive Learning Rate Method, CoRR, arXiv:
– volume: 134
  start-page: 223
  year: 2016
  end-page: 235
  ident: bib0028
  article-title: Segmentation of perivascular spaces in 7 T MR image using auto-context model with orientation-normalized features
  publication-title: Neuroimage
– volume: 31
  start-page: 968
  year: 2006
  end-page: 980
  ident: bib0012
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
– volume: 27
  start-page: 685
  year: 2008
  end-page: 691
  ident: bib0020
  article-title: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging
– volume: 35
  year: 2016
  ident: bib0025
  article-title: A CNN regression approach for real-time 2D/3D registration
  publication-title: IEEE Trans. Med. Imaging
– start-page: 1
  year: 2016
  end-page: 10
  ident: bib0041
  article-title: Microscopy cell counting and detection with fully convolutional regression networks
  publication-title: Comput. Methods Biomech. Biomed. Eng. Imaging Vis.
– volume: 29
  start-page: 371
  year: 2014
  end-page: 382
  ident: bib0004
  article-title: The German National Cohort: aims, study des
  publication-title: Eur. J. Epidemiol.
– volume: 30
  start-page: 1299
  issue: 12
  year: 2015
  ident: 10.1016/j.media.2018.10.008_bib0019
  article-title: The Rotterdam scan study: design update 2016 and main findings
  publication-title: Eur. J. Epidemiol.
  doi: 10.1007/s10654-015-0105-7
– volume: 140
  start-page: 1107
  issue: 4
  year: 2017
  ident: 10.1016/j.media.2018.10.008_sbref0006
  article-title: MRI-visible perivascular space location is associated with Alzheimer’s disease independently of amyloid burden
  publication-title: Brain
  doi: 10.1093/brain/awx003
– ident: 10.1016/j.media.2018.10.008_bib0034
  doi: 10.1109/CVPRW.2015.7301276
– volume: 23
  start-page: 376
  issue: 3
  year: 2002
  ident: 10.1016/j.media.2018.10.008_bib0001
  article-title: Sandlike appearance of Virchow-Robin spaces in early multiple sclerosis: a novel neuroradiologic marker
  publication-title: Am. J. Neuroradiol.
– volume: 29
  start-page: 371
  issue: 5
  year: 2014
  ident: 10.1016/j.media.2018.10.008_bib0004
  article-title: The German National Cohort: aims, study des
  publication-title: Eur. J. Epidemiol.
  doi: 10.1007/s10654-014-9890-7
– ident: 10.1016/j.media.2018.10.008_bib0042
– start-page: 356
  year: 2017
  ident: 10.1016/j.media.2018.10.008_bib0007
– ident: 10.1016/j.media.2018.10.008_bib0033
  doi: 10.1109/CVPR.2017.39
– volume: 35
  start-page: 1182
  issue: 5
  year: 2016
  ident: 10.1016/j.media.2018.10.008_bib0013
  article-title: Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528129
– volume: 31
  start-page: 968
  issue: 3
  year: 2006
  ident: 10.1016/j.media.2018.10.008_bib0012
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.021
– volume: 12
  start-page: 1
  issue: 3
  year: 2015
  ident: 10.1016/j.media.2018.10.008_bib0038
  article-title: UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1001779
– start-page: 214
  year: 2017
  ident: 10.1016/j.media.2018.10.008_bib0014
  article-title: Gp-unet: lesion detection from weak labels with a 3d regression network
– volume: 134
  start-page: 223
  year: 2016
  ident: 10.1016/j.media.2018.10.008_bib0028
  article-title: Segmentation of perivascular spaces in 7 T MR image using auto-context model with orientation-normalized features
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.03.076
– ident: 10.1016/j.media.2018.10.008_bib0011
  doi: 10.1007/978-3-319-46723-8_49
– volume: 131
  start-page: 1465
  issue: 13
  year: 2017
  ident: 10.1016/j.media.2018.10.008_bib0017
  article-title: Reliability of an automatic classifier for brain enlarged perivascular spaces burden and comparison with human performance
  publication-title: Clin. Sci.
  doi: 10.1042/CS20170051
– volume: 10
  start-page: 376
  issue: 3
  year: 2015
  ident: 10.1016/j.media.2018.10.008_bib0031
  article-title: Enlarged perivascular spaces and cerebral small vessel disease
  publication-title: Int. J. Stroke
  doi: 10.1111/ijs.12054
– start-page: 2204
  year: 2014
  ident: 10.1016/j.media.2018.10.008_bib0027
  article-title: Recurrent models of visual attention
– volume: 39
  start-page: 224
  issue: 3–4
  year: 2015
  ident: 10.1016/j.media.2018.10.008_bib0030
  article-title: Cerebral perivascular spaces visible on magnetic resonance imaging: development of a qualitative rating scale and its observer reliability
  publication-title: Cerebrovasc. Dis.
  doi: 10.1159/000375153
– volume: 19
  start-page: 630
  issue: 6
  year: 2004
  ident: 10.1016/j.media.2018.10.008_bib0043
  article-title: Clinicopathological investigation of vascular parkinsonism, including clinical criteria for diagnosis
  publication-title: Move. Disord.
  doi: 10.1002/mds.20083
– start-page: 642
  year: 2016
  ident: 10.1016/j.media.2018.10.008_bib0016
  article-title: Automatic rating of perivascular spaces in brain MRI using bag of visual words
– start-page: 229
  year: 2016
  ident: 10.1016/j.media.2018.10.008_bib0015
  article-title: An artificial agent for anatomical landmark detection in medical images
– volume: 191
  start-page: 337
  issue: 3
  year: 1997
  ident: 10.1016/j.media.2018.10.008_bib0029
  article-title: Perivascular spaces in the basal ganglia of the human brain: their relationship to lacunes
  publication-title: J. Anat.
  doi: 10.1046/j.1469-7580.1997.19130337.x
– volume: 6
  start-page: 284
  issue: 4
  year: 1994
  ident: 10.1016/j.media.2018.10.008_bib0010
  article-title: Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology
  publication-title: Psychol. Assess.
  doi: 10.1037/1040-3590.6.4.284
– ident: 10.1016/j.media.2018.10.008_bib0037
– volume: 60
  start-page: 91
  year: 2004
  ident: 10.1016/j.media.2018.10.008_sbref0022
  article-title: Distinctive image features from scale invariant keypoints
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 29
  start-page: 196
  issue: 1
  year: 2010
  ident: 10.1016/j.media.2018.10.008_bib0021
  article-title: Elastix: a toolbox for intensity-based medical image registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2035616
– volume: 47
  start-page: 1030
  issue: 4
  year: 2016
  ident: 10.1016/j.media.2018.10.008_sbref0023
  article-title: Effects of arterial stiffness on brain integrity in young adults from the framingham heart study
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.116.012949
– volume: 88
  start-page: 1157
  issue: 12
  year: 2017
  ident: 10.1016/j.media.2018.10.008_bib0008
  article-title: MRI-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000003746
– volume: 35
  issue: 5
  year: 2016
  ident: 10.1016/j.media.2018.10.008_sbref0024
  article-title: A CNN regression approach for real-time 2D/3D registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2521800
– ident: 10.1016/j.media.2018.10.008_bib0039
  doi: 10.1007/978-3-319-46475-6_41
– volume: 12
  start-page: 822
  issue: 8
  year: 2013
  ident: 10.1016/j.media.2018.10.008_bib0040
  article-title: Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(13)70124-8
– volume: 1
  start-page: 513
  issue: 4
  year: 2015
  ident: 10.1016/j.media.2018.10.008_bib0003
  article-title: A priori collaboration in population imaging: the uniform neuro-imaging of Virchow-Robin spaces enlargement consortium
  publication-title: Alzheimer’s Dement. Diagn. Assess. Dis. Monit.
– volume: 19
  start-page: 1011
  issue: 4
  year: 2009
  ident: 10.1016/j.media.2018.10.008_bib0035
  article-title: Potential surrogate markers of cerebral microvascular angiopathy in asymptomatic subjects at risk of stroke
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-008-1202-8
– start-page: 1
  year: 2016
  ident: 10.1016/j.media.2018.10.008_bib0041
  article-title: Microscopy cell counting and detection with fully convolutional regression networks
  publication-title: Comput. Methods Biomech. Biomed. Eng. Imaging Vis.
– volume: 80
  start-page: S128
  issue: special_issue_2
  year: 2007
  ident: 10.1016/j.media.2018.10.008_bib0026
  article-title: Biomarkers of cerebrovascular disease in dementia
  publication-title: Br. J. Radiol.
  doi: 10.1259/bjr/79217686
– volume: 84
  start-page: 686
  issue: 6
  year: 2013
  ident: 10.1016/j.media.2018.10.008_bib0018
  article-title: Prevalence of cognitive impairment in chinese: epidemiology of dementia in singapore study
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp-2012-304080
– volume: 27
  start-page: 685
  issue: 4
  year: 2008
  ident: 10.1016/j.media.2018.10.008_bib0020
  article-title: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.21049
– volume: 44
  start-page: 1732
  issue: 6
  year: 2013
  ident: 10.1016/j.media.2018.10.008_bib0002
  article-title: Rating method for dilated virchow-robin spaces on magnetic resonance imaging
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.111.000620
– start-page: 1
  year: 2017
  ident: 10.1016/j.media.2018.10.008_sbref0009
  article-title: VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images
  publication-title: Neuroimage
– year: 2014
  ident: 10.1016/j.media.2018.10.008_bib0036
  article-title: Deep inside convolutional networks: Visualising image classification models and saliency maps
– start-page: 1324
  year: 2010
  ident: 10.1016/j.media.2018.10.008_bib0022
  article-title: Learning to count objects in images
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 43
  start-page: 415
  issue: 2
  year: 2015
  ident: 10.1016/j.media.2018.10.008_bib0032
  article-title: Visible Virchow-Robin spaces on magnetic resonance imaging of Alzheimer’s disease patients and normal elderly from the Sunnybrook dementia study
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-132528
– volume: 90
  start-page: 61
  year: 2016
  ident: 10.1016/j.media.2018.10.008_bib0005
  article-title: Application of the ordered logit model to optimising Frangi filter parameters for segmentation of perivascular spaces
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.07.011
SSID ssj0007440
Score 2.4448965
Snippet •A regression neural network to quantify enlarged perivascular spaces in brain MRI.•Successful network training based on only the number of lesions in a single...
Enlarged perivascular spaces (EPVS) in the brain are an emerging imaging marker for cerebral small vessel disease, and have been shown to be related to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 89
SubjectTerms Artificial neural networks
Automation
Basal ganglia
Brain
Convolution
Correlation analysis
Correlation coefficient
Correlation coefficients
Deep learning
Dementia
Dementia disorders
Etiology
Ganglia
Health risks
Image detection
Image processing
Magnetic resonance imaging
Neural networks
Neuroimaging
Neurological diseases
Object recognition
Perivascular space
Real numbers
Regression
Reproducibility
Test sets
Training
Vascular diseases
Virchow-Robin space
Weak labels
Title 3D regression neural network for the quantification of enlarged perivascular spaces in brain MRI
URI https://dx.doi.org/10.1016/j.media.2018.10.008
https://www.ncbi.nlm.nih.gov/pubmed/30390514
https://www.proquest.com/docview/2182486940
https://www.proquest.com/docview/2129531577
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hkKr2gCh9LVBkpB4bNrt2HPu4pYWFdjm0peKWxq9qEcry2L3y25mxk205wKGnKIktOTPjmXH8zWeADxYXskUY8ixIn2fC1HmmvQ00rwrtvHU2EmlPTuX4TJycF-crcNDVwhCssvX9yadHb90-6bfS7F9Np_0fA06HlWDEUpzAVlRRTux1aNP7d39hHkSAl2qvBhm17piHIsYrVmcQvkvtR4iXeiw6PZZ9xih0uAHrbfrIRmmEL2HFN5vw4h9SwU14Nmm3y1_Bb_6Z3fg_CeraMOKuxM5NQn4zTFcZpn_selEnxFBUEpsF5ptLAog7RjTIHVaVoe9Bp8KmDTN0rgSbfD9-DWeHX34ejLP2SIXMCq3mmbGudvnAKq5kEEFjABMYwuqBUa50tqhlaT2uckJROy3sUKrc6cKVhlvupSv5G1htZo1_B6xAJfPSKGlkKbTIjapt4Lj6sdLlRoQeDDtRVrblG6djLy6rDlh2UUX5VyR_eojy78HHZaerRLfxdHPZ6ah6YDUVBoSnO-50Gq3aSXtbEZm9UBK_pQd7y9c43WgPpW78bEFthhrdVlGWPXibLGE5UBQmsZ2Jrf8d1TY8xzud_vDswOr8ZuHfY84zN7vRqHdhbXT8dXyK16NP336N7gE4OAFL
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VVIJyQFBegQJG4siSTez141gVqoQ2OUAr9WbWLxRUbdqS_H9m1rsRHNoDV9sjeWfsmfH68zcAHzweZKs04UWSsSyEq8vCRJ9oX1UmRB98S6Q9X8jpufh6UV3swFH_FoZglZ3vzz699dZdy6jT5uhquRx9H3MqVoIRS3MCW6l7sEvsVGIAu4ezk-li65CJAy8_vxoXJNCTD7Uwr_aBBkG89KcW5aVvC1C3JaBtIDp-DI-6DJId5kk-gZ3Y7MPDv3gF9-H-vLsxfwo_-Gd2E39mtGvDiL4ShZsM_maYsTLMANn1ps6godZObJVYbC4JIx4YMSH3cFWG7gf9Cls2zFFpCTb_NnsG58dfzo6mRVdVofDC6HXhfKhDOfaaa5lEMhjDBEaxeux0UMFXtVQ-4kEnVXUwwk-kLoOpgnLc8yiD4s9h0Kya-BJYhXbmymnppBJGlE7XPnE8AHkZSifSECa9Kq3vKMep8sWl7bFlv2yrf0v6p0bU_xA-boWuMuPG3cNlbyP7z8KxGBPuFjzoLWq7ffvbEp-90BK_ZQjvt9244-gapW7iakNjJgY9V6XUEF7klbCdKCqTCM_Eq_-d1Tt4MD2bn9rT2eLkNexhj8k_fA5gsL7ZxDeYAq3d226J_wH28AJt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+regression+neural+network+for+the+quantification+of+enlarged+perivascular+spaces+in+brain+MRI&rft.jtitle=Medical+image+analysis&rft.au=Dubost%2C+Florian&rft.au=Adams%2C+Hieab&rft.au=Bortsova%2C+Gerda&rft.au=Ikram%2C+M.+Arfan&rft.date=2019-01-01&rft.pub=Elsevier+B.V&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=51&rft.spage=89&rft.epage=100&rft_id=info:doi/10.1016%2Fj.media.2018.10.008&rft.externalDocID=S1361841518308557
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon