3D regression neural network for the quantification of enlarged perivascular spaces in brain MRI
•A regression neural network to quantify enlarged perivascular spaces in brain MRI.•Successful network training based on only the number of lesions in a single slice.•Extensive evaluation on 400 images.•The correlation between automated and visual scores is close to intrarater agreement.•The correla...
Saved in:
Published in | Medical image analysis Vol. 51; pp. 89 - 100 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 1361-8415 1361-8423 1361-8423 |
DOI | 10.1016/j.media.2018.10.008 |
Cover
Loading…
Abstract | •A regression neural network to quantify enlarged perivascular spaces in brain MRI.•Successful network training based on only the number of lesions in a single slice.•Extensive evaluation on 400 images.•The correlation between automated and visual scores is close to intrarater agreement.•The correlation between automated scores and age is similar to that of visual scores.
[Display omitted]
Enlarged perivascular spaces (EPVS) in the brain are an emerging imaging marker for cerebral small vessel disease, and have been shown to be related to increased risk of various neurological diseases, including stroke and dementia. Automated quantification of EPVS would greatly help to advance research into its etiology and its potential as a risk indicator of disease. We propose a convolutional network regression method to quantify the extent of EPVS in the basal ganglia from 3D brain MRI. We first segment the basal ganglia and subsequently apply a 3D convolutional regression network designed for small object detection within this region of interest. The network takes an image as input, and outputs a quantification score of EPVS. The network has significantly more convolution operations than pooling ones and no final activation, allowing it to span the space of real numbers. We validated our approach using a dataset of 2000 brain MRI scans scored visually. Experiments with varying sizes of training and test sets showed that a good performance can be achieved with a training set of only 200 scans. With a training set of 1000 scans, the intraclass correlation coefficient (ICC) between our scoring method and the expert’s visual score was 0.74. Our method outperforms by a large margin - more than 0.10 - four more conventional automated approaches based on intensities, scale-invariant feature transform, and random forest. We show that the network learns the structures of interest and investigate the influence of hyper-parameters on the performance. We also evaluate the reproducibility of our network using a set of 60 subjects scanned twice (scan-rescan reproducibility). On this set our network achieves an ICC of 0.93, while the intrarater agreement reaches 0.80. Furthermore, the automated EPVS scoring correlates similarly to age as visual scoring. |
---|---|
AbstractList | Enlarged perivascular spaces (EPVS) in the brain are an emerging imaging marker for cerebral small vessel disease, and have been shown to be related to increased risk of various neurological diseases, including stroke and dementia. Automated quantification of EPVS would greatly help to advance research into its etiology and its potential as a risk indicator of disease. We propose a convolutional network regression method to quantify the extent of EPVS in the basal ganglia from 3D brain MRI. We first segment the basal ganglia and subsequently apply a 3D convolutional regression network designed for small object detection within this region of interest. The network takes an image as input, and outputs a quantification score of EPVS. The network has significantly more convolution operations than pooling ones and no final activation, allowing it to span the space of real numbers. We validated our approach using a dataset of 2000 brain MRI scans scored visually. Experiments with varying sizes of training and test sets showed that a good performance can be achieved with a training set of only 200 scans. With a training set of 1000 scans, the intraclass correlation coefficient (ICC) between our scoring method and the expert's visual score was 0.74. Our method outperforms by a large margin - more than 0.10 - four more conventional automated approaches based on intensities, scale-invariant feature transform, and random forest. We show that the network learns the structures of interest and investigate the influence of hyper-parameters on the performance. We also evaluate the reproducibility of our network using a set of 60 subjects scanned twice (scan-rescan reproducibility). On this set our network achieves an ICC of 0.93, while the intrarater agreement reaches 0.80. Furthermore, the automated EPVS scoring correlates similarly to age as visual scoring. •A regression neural network to quantify enlarged perivascular spaces in brain MRI.•Successful network training based on only the number of lesions in a single slice.•Extensive evaluation on 400 images.•The correlation between automated and visual scores is close to intrarater agreement.•The correlation between automated scores and age is similar to that of visual scores. [Display omitted] Enlarged perivascular spaces (EPVS) in the brain are an emerging imaging marker for cerebral small vessel disease, and have been shown to be related to increased risk of various neurological diseases, including stroke and dementia. Automated quantification of EPVS would greatly help to advance research into its etiology and its potential as a risk indicator of disease. We propose a convolutional network regression method to quantify the extent of EPVS in the basal ganglia from 3D brain MRI. We first segment the basal ganglia and subsequently apply a 3D convolutional regression network designed for small object detection within this region of interest. The network takes an image as input, and outputs a quantification score of EPVS. The network has significantly more convolution operations than pooling ones and no final activation, allowing it to span the space of real numbers. We validated our approach using a dataset of 2000 brain MRI scans scored visually. Experiments with varying sizes of training and test sets showed that a good performance can be achieved with a training set of only 200 scans. With a training set of 1000 scans, the intraclass correlation coefficient (ICC) between our scoring method and the expert’s visual score was 0.74. Our method outperforms by a large margin - more than 0.10 - four more conventional automated approaches based on intensities, scale-invariant feature transform, and random forest. We show that the network learns the structures of interest and investigate the influence of hyper-parameters on the performance. We also evaluate the reproducibility of our network using a set of 60 subjects scanned twice (scan-rescan reproducibility). On this set our network achieves an ICC of 0.93, while the intrarater agreement reaches 0.80. Furthermore, the automated EPVS scoring correlates similarly to age as visual scoring. Enlarged perivascular spaces (EPVS) in the brain are an emerging imaging marker for cerebral small vessel disease, and have been shown to be related to increased risk of various neurological diseases, including stroke and dementia. Automated quantification of EPVS would greatly help to advance research into its etiology and its potential as a risk indicator of disease. We propose a convolutional network regression method to quantify the extent of EPVS in the basal ganglia from 3D brain MRI. We first segment the basal ganglia and subsequently apply a 3D convolutional regression network designed for small object detection within this region of interest. The network takes an image as input, and outputs a quantification score of EPVS. The network has significantly more convolution operations than pooling ones and no final activation, allowing it to span the space of real numbers. We validated our approach using a dataset of 2000 brain MRI scans scored visually. Experiments with varying sizes of training and test sets showed that a good performance can be achieved with a training set of only 200 scans. With a training set of 1000 scans, the intraclass correlation coefficient (ICC) between our scoring method and the expert's visual score was 0.74. Our method outperforms by a large margin - more than 0.10 - four more conventional automated approaches based on intensities, scale-invariant feature transform, and random forest. We show that the network learns the structures of interest and investigate the influence of hyper-parameters on the performance. We also evaluate the reproducibility of our network using a set of 60 subjects scanned twice (scan-rescan reproducibility). On this set our network achieves an ICC of 0.93, while the intrarater agreement reaches 0.80. Furthermore, the automated EPVS scoring correlates similarly to age as visual scoring.Enlarged perivascular spaces (EPVS) in the brain are an emerging imaging marker for cerebral small vessel disease, and have been shown to be related to increased risk of various neurological diseases, including stroke and dementia. Automated quantification of EPVS would greatly help to advance research into its etiology and its potential as a risk indicator of disease. We propose a convolutional network regression method to quantify the extent of EPVS in the basal ganglia from 3D brain MRI. We first segment the basal ganglia and subsequently apply a 3D convolutional regression network designed for small object detection within this region of interest. The network takes an image as input, and outputs a quantification score of EPVS. The network has significantly more convolution operations than pooling ones and no final activation, allowing it to span the space of real numbers. We validated our approach using a dataset of 2000 brain MRI scans scored visually. Experiments with varying sizes of training and test sets showed that a good performance can be achieved with a training set of only 200 scans. With a training set of 1000 scans, the intraclass correlation coefficient (ICC) between our scoring method and the expert's visual score was 0.74. Our method outperforms by a large margin - more than 0.10 - four more conventional automated approaches based on intensities, scale-invariant feature transform, and random forest. We show that the network learns the structures of interest and investigate the influence of hyper-parameters on the performance. We also evaluate the reproducibility of our network using a set of 60 subjects scanned twice (scan-rescan reproducibility). On this set our network achieves an ICC of 0.93, while the intrarater agreement reaches 0.80. Furthermore, the automated EPVS scoring correlates similarly to age as visual scoring. |
Author | Niessen, Wiro Vernooij, Meike de Bruijne, Marleen Adams, Hieab Dubost, Florian Ikram, M. Arfan Bortsova, Gerda |
Author_xml | – sequence: 1 givenname: Florian orcidid: 0000-0002-7035-2680 surname: Dubost fullname: Dubost, Florian email: floriandubost1@gmail.com, f.dubost@erasmusmc.nl organization: Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC - University Medical Center Rotterdam, The Netherland – sequence: 2 givenname: Hieab surname: Adams fullname: Adams, Hieab organization: Departments of Radiology and Epidemiology, Erasmus MC - University Medical Center Rotterdam, The Netherlands – sequence: 3 givenname: Gerda surname: Bortsova fullname: Bortsova, Gerda organization: Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC - University Medical Center Rotterdam, The Netherland – sequence: 4 givenname: M. Arfan surname: Ikram fullname: Ikram, M. Arfan organization: Departments of Radiology, Epidemiology and Neurology. Erasmus MC - University Medical Center Rotterdam, The Netherlands – sequence: 5 givenname: Wiro surname: Niessen fullname: Niessen, Wiro organization: Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC - University Medical Center Rotterdam, The Netherland – sequence: 6 givenname: Meike surname: Vernooij fullname: Vernooij, Meike organization: Departments of Radiology and Epidemiology, Erasmus MC - University Medical Center Rotterdam, The Netherlands – sequence: 7 givenname: Marleen orcidid: 0000-0002-6328-902X surname: de Bruijne fullname: de Bruijne, Marleen email: marleen.debruijne@erasmusmc.nl organization: Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC - University Medical Center Rotterdam, The Netherland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30390514$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtPJCEUhYlpM9rO_AKTCcls3HQLBVVFLWYx8Z1oTMy4RgpuOfRUQzdQbfz3Ura6cOGGx-U7N5dzpmjivAOEDimZU0Kr48V8CcaqeUGoyJU5IWIH7VNW0ZngBZt8nGm5h6YxLgghNefkG9pjhDWkpHwfPbBTHOAxQIzWO-xgCKrPW3ry4T_ufMDpH-D1oFyyndUqjZTvMLhehUcweAXBblTUQ77juFIaIrYOt0Hl9ebu6jva7VQf4cfbfoDuz8_-nlzOrm8vrk7-XM80b0SatdooQ6gWTFQd75o8IWdVoWgrTG10qapaA8lvpTIN10UliGlKU7dMM6hMzQ7Q0bbvKvj1ADHJpY0a-l458EOUBS2aktGyHtFfn9CFH4LL02VKFFxUDSeZ-vlGDW02Wq6CXarwLN-9y0CzBXTwMQbopLbp1aCUP99LSuSYk1zI15zkmNNYzDllLfukfW__ter3VgXZyI2FIKO24HQGA-gkjbdf6l8AsjKsjg |
CitedBy_id | crossref_primary_10_3389_fneur_2022_846957 crossref_primary_10_3389_fnins_2022_1021311 crossref_primary_10_1007_s10489_024_05916_x crossref_primary_10_1016_j_patcog_2019_106997 crossref_primary_10_1038_s41598_021_04287_4 crossref_primary_10_3390_brainsci14020138 crossref_primary_10_1016_j_cmpb_2022_106714 crossref_primary_10_1016_j_media_2020_101767 crossref_primary_10_1002_jmri_28369 crossref_primary_10_1016_j_nbd_2023_106347 crossref_primary_10_3390_diagnostics13091571 crossref_primary_10_1016_j_neuroimage_2022_119528 crossref_primary_10_3389_fneur_2022_844938 crossref_primary_10_1007_s10654_023_01094_1 crossref_primary_10_1016_j_media_2022_102470 crossref_primary_10_1088_1361_6560_abcd17 crossref_primary_10_3389_fnagi_2021_689098 crossref_primary_10_2463_mrms_rev_2023_0175 crossref_primary_10_3389_fneur_2022_888511 crossref_primary_10_3390_jimaging10100239 crossref_primary_10_1016_j_neurad_2025_101322 crossref_primary_10_1016_j_mri_2022_07_016 crossref_primary_10_1016_j_neuroimage_2024_120685 crossref_primary_10_1016_j_nicl_2019_102120 crossref_primary_10_3389_fgene_2019_00214 crossref_primary_10_1002_brb3_3168 crossref_primary_10_1016_j_neurobiolaging_2020_12_014 crossref_primary_10_3348_jksr_2022_0049 crossref_primary_10_3390_s20185097 crossref_primary_10_1016_j_media_2019_101619 crossref_primary_10_1002_jmri_28977 crossref_primary_10_3390_app11209398 crossref_primary_10_1038_s41598_019_48910_x crossref_primary_10_1016_j_neuroimage_2020_117316 crossref_primary_10_1001_jamanetworkopen_2023_9196 crossref_primary_10_1016_j_brain_2023_100089 crossref_primary_10_1186_s10194_024_01741_2 |
Cites_doi | 10.1007/s10654-015-0105-7 10.1093/brain/awx003 10.1109/CVPRW.2015.7301276 10.1007/s10654-014-9890-7 10.1109/CVPR.2017.39 10.1109/TMI.2016.2528129 10.1016/j.neuroimage.2006.01.021 10.1371/journal.pmed.1001779 10.1016/j.neuroimage.2016.03.076 10.1007/978-3-319-46723-8_49 10.1042/CS20170051 10.1111/ijs.12054 10.1159/000375153 10.1002/mds.20083 10.1046/j.1469-7580.1997.19130337.x 10.1037/1040-3590.6.4.284 10.1023/B:VISI.0000029664.99615.94 10.1109/TMI.2009.2035616 10.1161/STROKEAHA.116.012949 10.1212/WNL.0000000000003746 10.1109/TMI.2016.2521800 10.1007/978-3-319-46475-6_41 10.1016/S1474-4422(13)70124-8 10.1007/s00330-008-1202-8 10.1259/bjr/79217686 10.1136/jnnp-2012-304080 10.1002/jmri.21049 10.1161/STROKEAHA.111.000620 10.3233/JAD-132528 10.1016/j.procs.2016.07.011 |
ContentType | Journal Article |
Copyright | 2018 Copyright © 2018. Published by Elsevier B.V. Copyright Elsevier BV Jan 2019 |
Copyright_xml | – notice: 2018 – notice: Copyright © 2018. Published by Elsevier B.V. – notice: Copyright Elsevier BV Jan 2019 |
DBID | AAYXX CITATION NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 |
DOI | 10.1016/j.media.2018.10.008 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1361-8423 |
EndPage | 100 |
ExternalDocumentID | 30390514 10_1016_j_media_2018_10_008 S1361841518308557 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION NPM 7QO 8FD EFKBS FR3 K9. NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c498t-bcdad01c8386f4f93034362a1b8d7dc5a67ce086f5ad94c2680d95d7b3c3e6d73 |
IEDL.DBID | .~1 |
ISSN | 1361-8415 1361-8423 |
IngestDate | Fri Jul 11 00:04:52 EDT 2025 Sat Jul 26 03:25:01 EDT 2025 Wed Feb 19 02:35:15 EST 2025 Tue Jul 01 02:49:27 EDT 2025 Thu Apr 24 23:05:56 EDT 2025 Fri Feb 23 02:28:17 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Regression Weak labels Perivascular space Virchow-Robin space Dementia |
Language | English |
License | Copyright © 2018. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c498t-bcdad01c8386f4f93034362a1b8d7dc5a67ce086f5ad94c2680d95d7b3c3e6d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7035-2680 0000-0002-6328-902X |
OpenAccessLink | http://hdl.handle.net/1765/111798 |
PMID | 30390514 |
PQID | 2182486940 |
PQPubID | 2045428 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2129531577 proquest_journals_2182486940 pubmed_primary_30390514 crossref_citationtrail_10_1016_j_media_2018_10_008 crossref_primary_10_1016_j_media_2018_10_008 elsevier_sciencedirect_doi_10_1016_j_media_2018_10_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2019 2019-01-00 20190101 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
PublicationTitle | Medical image analysis |
PublicationTitleAlternate | Med Image Anal |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Desikan, Ségonne, Fischl, Quinn, Dickerson, Blacker, Buckner, Dale, Maguire, Hyman, Albert, Killiany (bib0012) 2006; 31 10.1109/CVPRW.2015.7301276 Banerjee, Kim, Fox, Jäger, Wilson, Charidimou, Na, Na, Seo, Werring (bib0006) 2017; 140 Klein, Staring, Murphy, Viergever, Pluim (bib0021) 2010; 29 Potter, Doubal, Jackson, Chappell, Sudlow, Dennis, Wardlaw (bib0031) 2015; 10 Mills, Cain, Purandare, Jackson (bib0026) 2007; 80 Miao, Wang, Liao (bib0025) 2016; 35 Cicek, O., Abdulkadir, A., Lienkamp, S. S., Brox, T., Ronneberger, O., 2016. 3D U-Net: learning dense volumetric segmentation from sparse annotation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9901 LNC, 424–432. arXiv Adams, Hilal, Schwingenschuh, Wittfeld, van der Lee, DeCarli, Vernooij, Katschnig-Winter, Habes, Chen, Seshadri, van Duijn, Ikram, Grabe, Schmidt, Ikram (bib0003) 2015; 1 Pollock, Hutchings, Weller, Zhang (bib0029) 1997; 191 Potter, Chappell, Morris, Wardlaw (bib0030) 2015; 39 González-Castro, Hernández, Chappell, Armitage, Makin, Wardlaw (bib0017) 2017; 131 Adams, Cavalieri, Verhaaren, Bos, Van Der Lugt, Enzinger, Vernooij, Schmidt, Ikram (bib0002) 2013; 44 Dubost, Bortsova, Adams, Ikram, Niessen, Vernooij, De Bruijne (bib0014) 2017 Achiron, Faibel (bib0001) 2002; 23 Charidimou, Boulouis, Pasi, Auriel, Van Etten, Haley, Ayres, Schwab, Martinez-Ramirez, Goldstein, Rosand, Viswanathan, Greenberg, Gurol (bib0008) 2017; 88 Mnih, Heess, Graves (bib0027) 2014 Segui, S., Pujol, O., Vitria, J., 2015. Learning to count with deep object features.in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops 2015-October, 90–96. arXiv Zijlmans, Daniel, Hughes, Révész, Lees (bib0043) 2004; 19 Simonyan, K., Zisserman, A., 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint abs/1409.1, 1–10. arXiv Lowe (bib0023) 2004; 60 Ren, M., Zemel, R. S., 2016. End-to-End Instance Segmentation with Recurrent AttentionarXiv Simonyan, Vedaldi, Zisserman (bib0036) 2014 Zeiler, M.D., 2012. ADADELTA: An Adaptive Learning Rate Method, CoRR, arXiv Cicchetti (bib0010) 1994; 6 Bortsova, van Tulder, Dubost, Peng, Navab, van der Lugt, Bos, De Bruijne (bib0007) 2017 Maillard, Mitchell, Himali, Beiser, Tsao, Pase, Satizabal, Vasan, Seshadri, De Carli (bib0024) 2016; 47 Ikram, van der Lugt, Niessen, Koudstaal, Krestin, Hofman, Bos, Vernooij (bib0019) 2015; 30 Ghesu, Georgescu, Mansi, Neumann, Hornegger, Comaniciu (bib0015) 2016 . Lempitsky, Zisserman (bib0022) 2010 Chen, Dou, Yu, Qin, Heng (bib0009) 2017 Walach, E., Wolf, L., 2016. Learning to count with CNN boosting. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9906 LNCS, 660–676. 10.1007/978-3-319-46475-6_41 Dou, Chen, Yu, Zhao, Qin, Wang, Mok, Shi, Heng (bib0013) 2016; 35 Sudlow, Gallacher, Allen, Beral, Burton, Danesh, Downey, Elliott, Green, Landray, Liu, Matthews, Ong, Pell, Silman, Young, Sprosen, Peakman, Collins (bib0038) 2015; 12 Selvarajah, Scott, Stivaros, Hulme, Georgiou, Rothwell, Tyrrell, Jackson (bib0035) 2009; 19 Wardlaw, Smith, Biessels, Cordonnier, Fazekas, Frayne, Lindley, O’Brien, Barkhof, Benavente, Black, Brayne, Breteler, Chabriat, DeCarli, de Leeuw, Doubal, Duering, Fox, Greenberg, Hachinski, Kilimann, Mok, van Oostenbrugge, Pantoni, Speck, Stephan, Teipel, Viswanathan, Werring, Chen, Smith, van Buchem, Norrving, Gorelick, Dichgans (bib0040) 2013; 12 Jack, Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, Britson, L Whitwell, Ward, Dale, Felmlee, Gunter, Hill, Killiany, Schuff, Fox-Bosetti, Lin, Studholme, DeCarli, Krueger, Ward, Metzger, Scott, Mallozzi, Blezek, Levy, Debbins, Fleisher, Albert, Green, Bartzokis, Glover, Mugler, Weiner (bib0020) 2008; 27 Xie, Noble, Zisserman (bib0041) 2016 10.1109/CVPR.2017.39 Park, Zong, Gao, Lin, Shen (bib0028) 2016; 134 Ahrens, Hoffmann, Jöckel, Kaaks, Gromer, Greiser, Linseisen, Schmidt, Wichmann, Weg-Remers (bib0004) 2014; 29 Hilal, Ikram, Saini, Tan, Catindig, Dong, Lim, Ting, Koo, Cheung, Qiu, Wong, Chen, Venketasubramanian (bib0018) 2013; 84 10.1016/j.infsof.2008.09.005 Ballerini, Lovreglio, Hernandez, Gonzalez-Castro, Maniega, Pellegrini, Bastin, Deary, Wardlaw (bib0005) 2016; 90 Ramirez, Berezuk, McNeely, Scott, Gao, Black (bib0032) 2015; 43 doi González-Castro, Hernández, Armitage, Wardlaw (bib0016) 2016 Ikram (10.1016/j.media.2018.10.008_bib0019) 2015; 30 Banerjee (10.1016/j.media.2018.10.008_sbref0006) 2017; 140 Sudlow (10.1016/j.media.2018.10.008_bib0038) 2015; 12 Charidimou (10.1016/j.media.2018.10.008_bib0008) 2017; 88 Jack (10.1016/j.media.2018.10.008_bib0020) 2008; 27 Adams (10.1016/j.media.2018.10.008_bib0003) 2015; 1 Park (10.1016/j.media.2018.10.008_bib0028) 2016; 134 Mills (10.1016/j.media.2018.10.008_bib0026) 2007; 80 Chen (10.1016/j.media.2018.10.008_sbref0009) 2017 Lowe (10.1016/j.media.2018.10.008_sbref0022) 2004; 60 Miao (10.1016/j.media.2018.10.008_sbref0024) 2016; 35 Bortsova (10.1016/j.media.2018.10.008_bib0007) 2017 Simonyan (10.1016/j.media.2018.10.008_bib0036) 2014 10.1016/j.media.2018.10.008_bib0011 10.1016/j.media.2018.10.008_bib0033 Mnih (10.1016/j.media.2018.10.008_bib0027) 2014 10.1016/j.media.2018.10.008_bib0034 10.1016/j.media.2018.10.008_bib0039 Potter (10.1016/j.media.2018.10.008_bib0031) 2015; 10 10.1016/j.media.2018.10.008_bib0037 Xie (10.1016/j.media.2018.10.008_bib0041) 2016 Ahrens (10.1016/j.media.2018.10.008_bib0004) 2014; 29 Dou (10.1016/j.media.2018.10.008_bib0013) 2016; 35 Ramirez (10.1016/j.media.2018.10.008_bib0032) 2015; 43 Ballerini (10.1016/j.media.2018.10.008_bib0005) 2016; 90 Adams (10.1016/j.media.2018.10.008_bib0002) 2013; 44 Dubost (10.1016/j.media.2018.10.008_bib0014) 2017 Lempitsky (10.1016/j.media.2018.10.008_bib0022) 2010 Zijlmans (10.1016/j.media.2018.10.008_bib0043) 2004; 19 Hilal (10.1016/j.media.2018.10.008_bib0018) 2013; 84 González-Castro (10.1016/j.media.2018.10.008_bib0017) 2017; 131 Klein (10.1016/j.media.2018.10.008_bib0021) 2010; 29 Maillard (10.1016/j.media.2018.10.008_sbref0023) 2016; 47 Selvarajah (10.1016/j.media.2018.10.008_bib0035) 2009; 19 10.1016/j.media.2018.10.008_bib0042 Cicchetti (10.1016/j.media.2018.10.008_bib0010) 1994; 6 Wardlaw (10.1016/j.media.2018.10.008_bib0040) 2013; 12 Desikan (10.1016/j.media.2018.10.008_bib0012) 2006; 31 Achiron (10.1016/j.media.2018.10.008_bib0001) 2002; 23 Pollock (10.1016/j.media.2018.10.008_bib0029) 1997; 191 Ghesu (10.1016/j.media.2018.10.008_bib0015) 2016 González-Castro (10.1016/j.media.2018.10.008_bib0016) 2016 Potter (10.1016/j.media.2018.10.008_bib0030) 2015; 39 |
References_xml | – volume: 140 start-page: 1107 year: 2017 end-page: 1116 ident: bib0006 article-title: MRI-visible perivascular space location is associated with Alzheimer’s disease independently of amyloid burden publication-title: Brain – reference: Walach, E., Wolf, L., 2016. Learning to count with CNN boosting. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9906 LNCS, 660–676. 10.1007/978-3-319-46475-6_41 – volume: 23 start-page: 376 year: 2002 end-page: 380 ident: bib0001 article-title: Sandlike appearance of Virchow-Robin spaces in early multiple sclerosis: a novel neuroradiologic marker publication-title: Am. J. Neuroradiol. – volume: 80 start-page: S128 year: 2007 end-page: S145 ident: bib0026 article-title: Biomarkers of cerebrovascular disease in dementia publication-title: Br. J. Radiol. – volume: 191 start-page: 337 year: 1997 end-page: 346 ident: bib0029 article-title: Perivascular spaces in the basal ganglia of the human brain: their relationship to lacunes publication-title: J. Anat. – volume: 43 start-page: 415 year: 2015 end-page: 424 ident: bib0032 article-title: Visible Virchow-Robin spaces on magnetic resonance imaging of Alzheimer’s disease patients and normal elderly from the Sunnybrook dementia study publication-title: J. Alzheimers Dis. – start-page: 1 year: 2017 end-page: 10 ident: bib0009 article-title: VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images publication-title: Neuroimage – reference: . doi: – year: 2014 ident: bib0036 article-title: Deep inside convolutional networks: Visualising image classification models and saliency maps publication-title: International Conference for Learning Representations Workshop – volume: 84 start-page: 686 year: 2013 end-page: 692 ident: bib0018 article-title: Prevalence of cognitive impairment in chinese: epidemiology of dementia in singapore study publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 44 start-page: 1732 year: 2013 end-page: 1735 ident: bib0002 article-title: Rating method for dilated virchow-robin spaces on magnetic resonance imaging publication-title: Stroke – start-page: 1324 year: 2010 end-page: 1332 ident: bib0022 article-title: Learning to count objects in images publication-title: Adv. Neural. Inf. Process. Syst. – volume: 1 start-page: 513 year: 2015 end-page: 520 ident: bib0003 article-title: A priori collaboration in population imaging: the uniform neuro-imaging of Virchow-Robin spaces enlargement consortium publication-title: Alzheimer’s Dement. Diagn. Assess. Dis. Monit. – volume: 35 start-page: 1182 year: 2016 end-page: 1195 ident: bib0013 article-title: Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks publication-title: IEEE Trans. Med. Imaging – reference: . 10.1016/j.infsof.2008.09.005 – volume: 29 start-page: 196 year: 2010 end-page: 205 ident: bib0021 article-title: Elastix: a toolbox for intensity-based medical image registration publication-title: IEEE Trans. Med. Imaging – start-page: 356 year: 2017 end-page: 364 ident: bib0007 article-title: Segmentation of Intracranial Arterial Calcification with Deeply Supervised Residual Dropout Networks – volume: 47 start-page: 1030 year: 2016 end-page: 1036 ident: bib0024 article-title: Effects of arterial stiffness on brain integrity in young adults from the framingham heart study publication-title: Stroke – reference: Simonyan, K., Zisserman, A., 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint abs/1409.1, 1–10. arXiv: – volume: 60 start-page: 91 year: 2004 end-page: 11020042 ident: bib0023 article-title: Distinctive image features from scale invariant keypoints publication-title: Int. J. Comput. Vis. – volume: 6 start-page: 284 year: 1994 end-page: 290 ident: bib0010 article-title: Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology publication-title: Psychol. Assess. – start-page: 2204 year: 2014 end-page: 2212 ident: bib0027 article-title: Recurrent models of visual attention publication-title: Proceedings of the Advances in Neural Information Processing Systems – start-page: 229 year: 2016 end-page: 237 ident: bib0015 article-title: An artificial agent for anatomical landmark detection in medical images publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 131 start-page: 1465 year: 2017 end-page: 1481 ident: bib0017 article-title: Reliability of an automatic classifier for brain enlarged perivascular spaces burden and comparison with human performance publication-title: Clin. Sci. – reference: Cicek, O., Abdulkadir, A., Lienkamp, S. S., Brox, T., Ronneberger, O., 2016. 3D U-Net: learning dense volumetric segmentation from sparse annotation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9901 LNC, 424–432. arXiv: – reference: Segui, S., Pujol, O., Vitria, J., 2015. Learning to count with deep object features.in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops 2015-October, 90–96. arXiv: – volume: 12 start-page: 822 year: 2013 end-page: 838 ident: bib0040 article-title: Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration publication-title: Lancet Neurol. – volume: 10 start-page: 376 year: 2015 end-page: 381 ident: bib0031 article-title: Enlarged perivascular spaces and cerebral small vessel disease publication-title: Int. J. Stroke – reference: . 10.1109/CVPRW.2015.7301276 – volume: 88 start-page: 1157 year: 2017 end-page: 1164 ident: bib0008 article-title: MRI-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy publication-title: Neurology – reference: . 10.1109/CVPR.2017.39 – start-page: 214 year: 2017 end-page: 221 ident: bib0014 article-title: Gp-unet: lesion detection from weak labels with a 3d regression network publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 19 start-page: 1011 year: 2009 end-page: 1018 ident: bib0035 article-title: Potential surrogate markers of cerebral microvascular angiopathy in asymptomatic subjects at risk of stroke publication-title: Eur. Radiol. – start-page: 642 year: 2016 end-page: 649 ident: bib0016 article-title: Automatic rating of perivascular spaces in brain MRI using bag of visual words publication-title: Proceedings of the International Conference Image Analysis and Recognition – volume: 19 start-page: 630 year: 2004 end-page: 640 ident: bib0043 article-title: Clinicopathological investigation of vascular parkinsonism, including clinical criteria for diagnosis publication-title: Move. Disord. – reference: Ren, M., Zemel, R. S., 2016. End-to-End Instance Segmentation with Recurrent AttentionarXiv: – volume: 39 start-page: 224 year: 2015 end-page: 231 ident: bib0030 article-title: Cerebral perivascular spaces visible on magnetic resonance imaging: development of a qualitative rating scale and its observer reliability publication-title: Cerebrovasc. Dis. – volume: 90 start-page: 61 year: 2016 end-page: 67 ident: bib0005 article-title: Application of the ordered logit model to optimising Frangi filter parameters for segmentation of perivascular spaces publication-title: Procedia Comput. Sci. – volume: 12 start-page: 1 year: 2015 end-page: 10 ident: bib0038 article-title: UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age publication-title: PLoS Med. – reference: . – volume: 30 start-page: 1299 year: 2015 end-page: 1315 ident: bib0019 article-title: The Rotterdam scan study: design update 2016 and main findings publication-title: Eur. J. Epidemiol. – reference: Zeiler, M.D., 2012. ADADELTA: An Adaptive Learning Rate Method, CoRR, arXiv: – volume: 134 start-page: 223 year: 2016 end-page: 235 ident: bib0028 article-title: Segmentation of perivascular spaces in 7 T MR image using auto-context model with orientation-normalized features publication-title: Neuroimage – volume: 31 start-page: 968 year: 2006 end-page: 980 ident: bib0012 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: Neuroimage – volume: 27 start-page: 685 year: 2008 end-page: 691 ident: bib0020 article-title: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imaging – volume: 35 year: 2016 ident: bib0025 article-title: A CNN regression approach for real-time 2D/3D registration publication-title: IEEE Trans. Med. Imaging – start-page: 1 year: 2016 end-page: 10 ident: bib0041 article-title: Microscopy cell counting and detection with fully convolutional regression networks publication-title: Comput. Methods Biomech. Biomed. Eng. Imaging Vis. – volume: 29 start-page: 371 year: 2014 end-page: 382 ident: bib0004 article-title: The German National Cohort: aims, study des publication-title: Eur. J. Epidemiol. – volume: 30 start-page: 1299 issue: 12 year: 2015 ident: 10.1016/j.media.2018.10.008_bib0019 article-title: The Rotterdam scan study: design update 2016 and main findings publication-title: Eur. J. Epidemiol. doi: 10.1007/s10654-015-0105-7 – volume: 140 start-page: 1107 issue: 4 year: 2017 ident: 10.1016/j.media.2018.10.008_sbref0006 article-title: MRI-visible perivascular space location is associated with Alzheimer’s disease independently of amyloid burden publication-title: Brain doi: 10.1093/brain/awx003 – ident: 10.1016/j.media.2018.10.008_bib0034 doi: 10.1109/CVPRW.2015.7301276 – volume: 23 start-page: 376 issue: 3 year: 2002 ident: 10.1016/j.media.2018.10.008_bib0001 article-title: Sandlike appearance of Virchow-Robin spaces in early multiple sclerosis: a novel neuroradiologic marker publication-title: Am. J. Neuroradiol. – volume: 29 start-page: 371 issue: 5 year: 2014 ident: 10.1016/j.media.2018.10.008_bib0004 article-title: The German National Cohort: aims, study des publication-title: Eur. J. Epidemiol. doi: 10.1007/s10654-014-9890-7 – ident: 10.1016/j.media.2018.10.008_bib0042 – start-page: 356 year: 2017 ident: 10.1016/j.media.2018.10.008_bib0007 – ident: 10.1016/j.media.2018.10.008_bib0033 doi: 10.1109/CVPR.2017.39 – volume: 35 start-page: 1182 issue: 5 year: 2016 ident: 10.1016/j.media.2018.10.008_bib0013 article-title: Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2528129 – volume: 31 start-page: 968 issue: 3 year: 2006 ident: 10.1016/j.media.2018.10.008_bib0012 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.021 – volume: 12 start-page: 1 issue: 3 year: 2015 ident: 10.1016/j.media.2018.10.008_bib0038 article-title: UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age publication-title: PLoS Med. doi: 10.1371/journal.pmed.1001779 – start-page: 214 year: 2017 ident: 10.1016/j.media.2018.10.008_bib0014 article-title: Gp-unet: lesion detection from weak labels with a 3d regression network – volume: 134 start-page: 223 year: 2016 ident: 10.1016/j.media.2018.10.008_bib0028 article-title: Segmentation of perivascular spaces in 7 T MR image using auto-context model with orientation-normalized features publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.03.076 – ident: 10.1016/j.media.2018.10.008_bib0011 doi: 10.1007/978-3-319-46723-8_49 – volume: 131 start-page: 1465 issue: 13 year: 2017 ident: 10.1016/j.media.2018.10.008_bib0017 article-title: Reliability of an automatic classifier for brain enlarged perivascular spaces burden and comparison with human performance publication-title: Clin. Sci. doi: 10.1042/CS20170051 – volume: 10 start-page: 376 issue: 3 year: 2015 ident: 10.1016/j.media.2018.10.008_bib0031 article-title: Enlarged perivascular spaces and cerebral small vessel disease publication-title: Int. J. Stroke doi: 10.1111/ijs.12054 – start-page: 2204 year: 2014 ident: 10.1016/j.media.2018.10.008_bib0027 article-title: Recurrent models of visual attention – volume: 39 start-page: 224 issue: 3–4 year: 2015 ident: 10.1016/j.media.2018.10.008_bib0030 article-title: Cerebral perivascular spaces visible on magnetic resonance imaging: development of a qualitative rating scale and its observer reliability publication-title: Cerebrovasc. Dis. doi: 10.1159/000375153 – volume: 19 start-page: 630 issue: 6 year: 2004 ident: 10.1016/j.media.2018.10.008_bib0043 article-title: Clinicopathological investigation of vascular parkinsonism, including clinical criteria for diagnosis publication-title: Move. Disord. doi: 10.1002/mds.20083 – start-page: 642 year: 2016 ident: 10.1016/j.media.2018.10.008_bib0016 article-title: Automatic rating of perivascular spaces in brain MRI using bag of visual words – start-page: 229 year: 2016 ident: 10.1016/j.media.2018.10.008_bib0015 article-title: An artificial agent for anatomical landmark detection in medical images – volume: 191 start-page: 337 issue: 3 year: 1997 ident: 10.1016/j.media.2018.10.008_bib0029 article-title: Perivascular spaces in the basal ganglia of the human brain: their relationship to lacunes publication-title: J. Anat. doi: 10.1046/j.1469-7580.1997.19130337.x – volume: 6 start-page: 284 issue: 4 year: 1994 ident: 10.1016/j.media.2018.10.008_bib0010 article-title: Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology publication-title: Psychol. Assess. doi: 10.1037/1040-3590.6.4.284 – ident: 10.1016/j.media.2018.10.008_bib0037 – volume: 60 start-page: 91 year: 2004 ident: 10.1016/j.media.2018.10.008_sbref0022 article-title: Distinctive image features from scale invariant keypoints publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 29 start-page: 196 issue: 1 year: 2010 ident: 10.1016/j.media.2018.10.008_bib0021 article-title: Elastix: a toolbox for intensity-based medical image registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2035616 – volume: 47 start-page: 1030 issue: 4 year: 2016 ident: 10.1016/j.media.2018.10.008_sbref0023 article-title: Effects of arterial stiffness on brain integrity in young adults from the framingham heart study publication-title: Stroke doi: 10.1161/STROKEAHA.116.012949 – volume: 88 start-page: 1157 issue: 12 year: 2017 ident: 10.1016/j.media.2018.10.008_bib0008 article-title: MRI-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy publication-title: Neurology doi: 10.1212/WNL.0000000000003746 – volume: 35 issue: 5 year: 2016 ident: 10.1016/j.media.2018.10.008_sbref0024 article-title: A CNN regression approach for real-time 2D/3D registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2521800 – ident: 10.1016/j.media.2018.10.008_bib0039 doi: 10.1007/978-3-319-46475-6_41 – volume: 12 start-page: 822 issue: 8 year: 2013 ident: 10.1016/j.media.2018.10.008_bib0040 article-title: Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(13)70124-8 – volume: 1 start-page: 513 issue: 4 year: 2015 ident: 10.1016/j.media.2018.10.008_bib0003 article-title: A priori collaboration in population imaging: the uniform neuro-imaging of Virchow-Robin spaces enlargement consortium publication-title: Alzheimer’s Dement. Diagn. Assess. Dis. Monit. – volume: 19 start-page: 1011 issue: 4 year: 2009 ident: 10.1016/j.media.2018.10.008_bib0035 article-title: Potential surrogate markers of cerebral microvascular angiopathy in asymptomatic subjects at risk of stroke publication-title: Eur. Radiol. doi: 10.1007/s00330-008-1202-8 – start-page: 1 year: 2016 ident: 10.1016/j.media.2018.10.008_bib0041 article-title: Microscopy cell counting and detection with fully convolutional regression networks publication-title: Comput. Methods Biomech. Biomed. Eng. Imaging Vis. – volume: 80 start-page: S128 issue: special_issue_2 year: 2007 ident: 10.1016/j.media.2018.10.008_bib0026 article-title: Biomarkers of cerebrovascular disease in dementia publication-title: Br. J. Radiol. doi: 10.1259/bjr/79217686 – volume: 84 start-page: 686 issue: 6 year: 2013 ident: 10.1016/j.media.2018.10.008_bib0018 article-title: Prevalence of cognitive impairment in chinese: epidemiology of dementia in singapore study publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp-2012-304080 – volume: 27 start-page: 685 issue: 4 year: 2008 ident: 10.1016/j.media.2018.10.008_bib0020 article-title: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.21049 – volume: 44 start-page: 1732 issue: 6 year: 2013 ident: 10.1016/j.media.2018.10.008_bib0002 article-title: Rating method for dilated virchow-robin spaces on magnetic resonance imaging publication-title: Stroke doi: 10.1161/STROKEAHA.111.000620 – start-page: 1 year: 2017 ident: 10.1016/j.media.2018.10.008_sbref0009 article-title: VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images publication-title: Neuroimage – year: 2014 ident: 10.1016/j.media.2018.10.008_bib0036 article-title: Deep inside convolutional networks: Visualising image classification models and saliency maps – start-page: 1324 year: 2010 ident: 10.1016/j.media.2018.10.008_bib0022 article-title: Learning to count objects in images publication-title: Adv. Neural. Inf. Process. Syst. – volume: 43 start-page: 415 issue: 2 year: 2015 ident: 10.1016/j.media.2018.10.008_bib0032 article-title: Visible Virchow-Robin spaces on magnetic resonance imaging of Alzheimer’s disease patients and normal elderly from the Sunnybrook dementia study publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-132528 – volume: 90 start-page: 61 year: 2016 ident: 10.1016/j.media.2018.10.008_bib0005 article-title: Application of the ordered logit model to optimising Frangi filter parameters for segmentation of perivascular spaces publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.07.011 |
SSID | ssj0007440 |
Score | 2.4448965 |
Snippet | •A regression neural network to quantify enlarged perivascular spaces in brain MRI.•Successful network training based on only the number of lesions in a single... Enlarged perivascular spaces (EPVS) in the brain are an emerging imaging marker for cerebral small vessel disease, and have been shown to be related to... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 89 |
SubjectTerms | Artificial neural networks Automation Basal ganglia Brain Convolution Correlation analysis Correlation coefficient Correlation coefficients Deep learning Dementia Dementia disorders Etiology Ganglia Health risks Image detection Image processing Magnetic resonance imaging Neural networks Neuroimaging Neurological diseases Object recognition Perivascular space Real numbers Regression Reproducibility Test sets Training Vascular diseases Virchow-Robin space Weak labels |
Title | 3D regression neural network for the quantification of enlarged perivascular spaces in brain MRI |
URI | https://dx.doi.org/10.1016/j.media.2018.10.008 https://www.ncbi.nlm.nih.gov/pubmed/30390514 https://www.proquest.com/docview/2182486940 https://www.proquest.com/docview/2129531577 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hkKr2gCh9LVBkpB4bNrt2HPu4pYWFdjm0peKWxq9qEcry2L3y25mxk205wKGnKIktOTPjmXH8zWeADxYXskUY8ixIn2fC1HmmvQ00rwrtvHU2EmlPTuX4TJycF-crcNDVwhCssvX9yadHb90-6bfS7F9Np_0fA06HlWDEUpzAVlRRTux1aNP7d39hHkSAl2qvBhm17piHIsYrVmcQvkvtR4iXeiw6PZZ9xih0uAHrbfrIRmmEL2HFN5vw4h9SwU14Nmm3y1_Bb_6Z3fg_CeraMOKuxM5NQn4zTFcZpn_selEnxFBUEpsF5ptLAog7RjTIHVaVoe9Bp8KmDTN0rgSbfD9-DWeHX34ejLP2SIXMCq3mmbGudvnAKq5kEEFjABMYwuqBUa50tqhlaT2uckJROy3sUKrc6cKVhlvupSv5G1htZo1_B6xAJfPSKGlkKbTIjapt4Lj6sdLlRoQeDDtRVrblG6djLy6rDlh2UUX5VyR_eojy78HHZaerRLfxdHPZ6ah6YDUVBoSnO-50Gq3aSXtbEZm9UBK_pQd7y9c43WgPpW78bEFthhrdVlGWPXibLGE5UBQmsZ2Jrf8d1TY8xzud_vDswOr8ZuHfY84zN7vRqHdhbXT8dXyK16NP336N7gE4OAFL |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VVIJyQFBegQJG4siSTez141gVqoQ2OUAr9WbWLxRUbdqS_H9m1rsRHNoDV9sjeWfsmfH68zcAHzweZKs04UWSsSyEq8vCRJ9oX1UmRB98S6Q9X8jpufh6UV3swFH_FoZglZ3vzz699dZdy6jT5uhquRx9H3MqVoIRS3MCW6l7sEvsVGIAu4ezk-li65CJAy8_vxoXJNCTD7Uwr_aBBkG89KcW5aVvC1C3JaBtIDp-DI-6DJId5kk-gZ3Y7MPDv3gF9-H-vLsxfwo_-Gd2E39mtGvDiL4ShZsM_maYsTLMANn1ps6godZObJVYbC4JIx4YMSH3cFWG7gf9Cls2zFFpCTb_NnsG58dfzo6mRVdVofDC6HXhfKhDOfaaa5lEMhjDBEaxeux0UMFXtVQ-4kEnVXUwwk-kLoOpgnLc8yiD4s9h0Kya-BJYhXbmymnppBJGlE7XPnE8AHkZSifSECa9Kq3vKMep8sWl7bFlv2yrf0v6p0bU_xA-boWuMuPG3cNlbyP7z8KxGBPuFjzoLWq7ffvbEp-90BK_ZQjvt9244-gapW7iakNjJgY9V6XUEF7klbCdKCqTCM_Eq_-d1Tt4MD2bn9rT2eLkNexhj8k_fA5gsL7ZxDeYAq3d226J_wH28AJt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+regression+neural+network+for+the+quantification+of+enlarged+perivascular+spaces+in+brain+MRI&rft.jtitle=Medical+image+analysis&rft.au=Dubost%2C+Florian&rft.au=Adams%2C+Hieab&rft.au=Bortsova%2C+Gerda&rft.au=Ikram%2C+M.+Arfan&rft.date=2019-01-01&rft.pub=Elsevier+B.V&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=51&rft.spage=89&rft.epage=100&rft_id=info:doi/10.1016%2Fj.media.2018.10.008&rft.externalDocID=S1361841518308557 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |