Cadmium uptake, accumulation, and remobilization in iron plaque and rice tissues at different growth stages
Rice consumption is considered the main source of human dietary Cd intake in Southeast Asia. This study aimed to investigate Cd uptake, accumulation, and remobilization in iron plaque and rice (Oryza sativa L. cv. ‘Xiangwanxian 12′) tissues at different growth stages. A pot experiment was performed...
Saved in:
Published in | Ecotoxicology and environmental safety Vol. 152; pp. 91 - 97 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
15.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rice consumption is considered the main source of human dietary Cd intake in Southeast Asia. This study aimed to investigate Cd uptake, accumulation, and remobilization in iron plaque and rice (Oryza sativa L. cv. ‘Xiangwanxian 12′) tissues at different growth stages. A pot experiment was performed in two Cd-contaminated paddy soils. Cd concentrations in iron plaque and rice tissues at five different growth stages (tillering, booting, milky, dough, and maturing) were measured. Cd concentrations in iron plaque and rice tissues (roots, stems, leaves, spikelet, husks, and brown rice) varied with growth stage. Cd accumulation in rice plants increased with extending growth in both soils, reaching 15.3 and 35.4μg/pot, respectively, at the maturing stage. The amounts of Cd in brown rice increased from the milky to maturing stages, with the greatest percentage uptake during the maturing stage. Cd amount in iron plaque significantly affected the uptake and accumulation of Cd in roots and aerial parts of rice plants. Accumulated Cd in leaves was remobilized and transported during the booting to maturing stages, and the contributions of Cd transportation from leaves to brown rice were 30.0% and 22.5% in the two soils, respectively. A large amount of Cd accumulated in brown rice during the maturing stage. The transportation of remobilized Cd from leaves was also important for the accumulation of Cd in brown rice.
[Display omitted]
•The greatest percentage uptake of Cd in rice plant was booting stage and maturing stage.•Accumulated Cd in leaves was remobilized and transported during the booting to maturing stages.•The transportation of remobilized Cd from leaves was an important contribution for Cd accumulation in brown rice. |
---|---|
AbstractList | Rice consumption is considered the main source of human dietary Cd intake in Southeast Asia. This study aimed to investigate Cd uptake, accumulation, and remobilization in iron plaque and rice (Oryza sativa L. cv. 'Xiangwanxian 12') tissues at different growth stages. A pot experiment was performed in two Cd-contaminated paddy soils. Cd concentrations in iron plaque and rice tissues at five different growth stages (tillering, booting, milky, dough, and maturing) were measured. Cd concentrations in iron plaque and rice tissues (roots, stems, leaves, spikelet, husks, and brown rice) varied with growth stage. Cd accumulation in rice plants increased with extending growth in both soils, reaching 15.3 and 35.4μg/pot, respectively, at the maturing stage. The amounts of Cd in brown rice increased from the milky to maturing stages, with the greatest percentage uptake during the maturing stage. Cd amount in iron plaque significantly affected the uptake and accumulation of Cd in roots and aerial parts of rice plants. Accumulated Cd in leaves was remobilized and transported during the booting to maturing stages, and the contributions of Cd transportation from leaves to brown rice were 30.0% and 22.5% in the two soils, respectively. A large amount of Cd accumulated in brown rice during the maturing stage. The transportation of remobilized Cd from leaves was also important for the accumulation of Cd in brown rice.Rice consumption is considered the main source of human dietary Cd intake in Southeast Asia. This study aimed to investigate Cd uptake, accumulation, and remobilization in iron plaque and rice (Oryza sativa L. cv. 'Xiangwanxian 12') tissues at different growth stages. A pot experiment was performed in two Cd-contaminated paddy soils. Cd concentrations in iron plaque and rice tissues at five different growth stages (tillering, booting, milky, dough, and maturing) were measured. Cd concentrations in iron plaque and rice tissues (roots, stems, leaves, spikelet, husks, and brown rice) varied with growth stage. Cd accumulation in rice plants increased with extending growth in both soils, reaching 15.3 and 35.4μg/pot, respectively, at the maturing stage. The amounts of Cd in brown rice increased from the milky to maturing stages, with the greatest percentage uptake during the maturing stage. Cd amount in iron plaque significantly affected the uptake and accumulation of Cd in roots and aerial parts of rice plants. Accumulated Cd in leaves was remobilized and transported during the booting to maturing stages, and the contributions of Cd transportation from leaves to brown rice were 30.0% and 22.5% in the two soils, respectively. A large amount of Cd accumulated in brown rice during the maturing stage. The transportation of remobilized Cd from leaves was also important for the accumulation of Cd in brown rice. Rice consumption is considered the main source of human dietary Cd intake in Southeast Asia. This study aimed to investigate Cd uptake, accumulation, and remobilization in iron plaque and rice (Oryza sativa L. cv. 'Xiangwanxian 12') tissues at different growth stages. A pot experiment was performed in two Cd-contaminated paddy soils. Cd concentrations in iron plaque and rice tissues at five different growth stages (tillering, booting, milky, dough, and maturing) were measured. Cd concentrations in iron plaque and rice tissues (roots, stems, leaves, spikelet, husks, and brown rice) varied with growth stage. Cd accumulation in rice plants increased with extending growth in both soils, reaching 15.3 and 35.4μg/pot, respectively, at the maturing stage. The amounts of Cd in brown rice increased from the milky to maturing stages, with the greatest percentage uptake during the maturing stage. Cd amount in iron plaque significantly affected the uptake and accumulation of Cd in roots and aerial parts of rice plants. Accumulated Cd in leaves was remobilized and transported during the booting to maturing stages, and the contributions of Cd transportation from leaves to brown rice were 30.0% and 22.5% in the two soils, respectively. A large amount of Cd accumulated in brown rice during the maturing stage. The transportation of remobilized Cd from leaves was also important for the accumulation of Cd in brown rice. Rice consumption is considered the main source of human dietary Cd intake in Southeast Asia. This study aimed to investigate Cd uptake, accumulation, and remobilization in iron plaque and rice (Oryza sativa L. cv. ‘Xiangwanxian 12′) tissues at different growth stages. A pot experiment was performed in two Cd-contaminated paddy soils. Cd concentrations in iron plaque and rice tissues at five different growth stages (tillering, booting, milky, dough, and maturing) were measured. Cd concentrations in iron plaque and rice tissues (roots, stems, leaves, spikelet, husks, and brown rice) varied with growth stage. Cd accumulation in rice plants increased with extending growth in both soils, reaching 15.3 and 35.4μg/pot, respectively, at the maturing stage. The amounts of Cd in brown rice increased from the milky to maturing stages, with the greatest percentage uptake during the maturing stage. Cd amount in iron plaque significantly affected the uptake and accumulation of Cd in roots and aerial parts of rice plants. Accumulated Cd in leaves was remobilized and transported during the booting to maturing stages, and the contributions of Cd transportation from leaves to brown rice were 30.0% and 22.5% in the two soils, respectively. A large amount of Cd accumulated in brown rice during the maturing stage. The transportation of remobilized Cd from leaves was also important for the accumulation of Cd in brown rice. [Display omitted] •The greatest percentage uptake of Cd in rice plant was booting stage and maturing stage.•Accumulated Cd in leaves was remobilized and transported during the booting to maturing stages.•The transportation of remobilized Cd from leaves was an important contribution for Cd accumulation in brown rice. |
Author | Peng, Pei-Qin Du, Wen-Qi Yang, Wen-Tao Liao, Bo-Han Zhu, Wei Gao, Zi-Xiang Chen, Li-Wei Zhou, Hang Zhang, Ping Gu, Jiao-Feng |
Author_xml | – sequence: 1 givenname: Hang surname: Zhou fullname: Zhou, Hang – sequence: 2 givenname: Wei surname: Zhu fullname: Zhu, Wei – sequence: 3 givenname: Wen-Tao surname: Yang fullname: Yang, Wen-Tao – sequence: 4 givenname: Jiao-Feng surname: Gu fullname: Gu, Jiao-Feng – sequence: 5 givenname: Zi-Xiang surname: Gao fullname: Gao, Zi-Xiang – sequence: 6 givenname: Li-Wei surname: Chen fullname: Chen, Li-Wei – sequence: 7 givenname: Wen-Qi surname: Du fullname: Du, Wen-Qi – sequence: 8 givenname: Ping surname: Zhang fullname: Zhang, Ping – sequence: 9 givenname: Pei-Qin surname: Peng fullname: Peng, Pei-Qin – sequence: 10 givenname: Bo-Han surname: Liao fullname: Liao, Bo-Han email: liaobohan1020@163.com |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29407786$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1TAQhS1URG8L_wChLFmQMOM4ic0CqbriJVViA2tr4kyKb_O42E4R_HrSpt2woNJIo7G-c2SdcyZOpnliIV4iFAhYvz0U7GaebgoJqAvAAkp8InYIBnKpUJ2IHaBq8rrC8lScxXgAgBKq6pk4lUZB0-h6J6731I1-GbPlmOia32Tk3DIuAyU_T-s1dVngcW794P_cvWV-nbDu40A_F94I7zhLPsaFY0Yp63zfc-ApZVdh_pV-ZDHRFcfn4mlPQ-QX9_tcfP_44dv-c3759dOX_cVl7pTRKW9LIsK6aRFZSs2aTd84clUtXSdJOcC2Im6NpNpox6yqpkMylVZKAvTluXi9-R7DvH4xJjv66HgYaOJ5iVaCqnQpdd08iqIxBg3WUq_oq3t0aUfu7DH4kcJv-5DlCrzbABfmGAP31vl0l1kK5AeLYG-Lswe7FWdvi7OAdi1uFat_xA_-j8jebzJe87zxHGx0nifHnQ_sku1m_3-Dv4sQtUA |
CitedBy_id | crossref_primary_10_1016_j_ecoenv_2019_109640 crossref_primary_10_1007_s11356_020_09150_z crossref_primary_10_1016_j_jhazmat_2021_125668 crossref_primary_10_1088_1755_1315_1215_1_012009 crossref_primary_10_1039_D4EN00258J crossref_primary_10_1016_j_jhazmat_2021_128130 crossref_primary_10_1016_j_ecoenv_2020_110490 crossref_primary_10_1093_jxb_eraa385 crossref_primary_10_3390_toxics11020141 crossref_primary_10_1007_s42729_025_02252_y crossref_primary_10_3390_app12199718 crossref_primary_10_1007_s10653_024_02312_9 crossref_primary_10_1016_j_ecoenv_2021_112818 crossref_primary_10_1016_j_envpol_2023_122340 crossref_primary_10_1016_j_ecoenv_2021_112813 crossref_primary_10_1016_j_envpol_2023_121891 crossref_primary_10_1016_j_ecoenv_2022_113658 crossref_primary_10_3390_agronomy14010033 crossref_primary_10_1038_s41598_021_85648_x crossref_primary_10_1007_s10653_024_02099_9 crossref_primary_10_1016_j_plaphy_2024_109458 crossref_primary_10_1016_j_scitotenv_2022_157718 crossref_primary_10_1016_j_scitotenv_2024_172875 crossref_primary_10_1080_07352689_2020_1792179 crossref_primary_10_1371_journal_pone_0243174 crossref_primary_10_32615_ps_2022_020 crossref_primary_10_3389_fenvs_2021_716770 crossref_primary_10_1016_j_chemosphere_2022_135642 crossref_primary_10_1007_s11356_020_11812_x crossref_primary_10_1007_s42773_024_00346_x crossref_primary_10_1021_acs_jafc_4c04415 crossref_primary_10_1016_j_chemosphere_2023_138558 crossref_primary_10_1016_j_jhazmat_2019_121343 crossref_primary_10_17352_2455_815X_000085 crossref_primary_10_1016_j_plaphy_2025_109825 crossref_primary_10_1016_j_chemosphere_2021_132374 crossref_primary_10_1186_s13765_021_00660_z crossref_primary_10_3390_agronomy13081960 crossref_primary_10_1007_s11104_022_05414_4 crossref_primary_10_1016_j_chemosphere_2024_142784 crossref_primary_10_1007_s11356_022_24365_y crossref_primary_10_1155_2021_2166775 crossref_primary_10_1016_j_jenvman_2022_115123 crossref_primary_10_1016_j_scitotenv_2024_174265 crossref_primary_10_1016_j_scitotenv_2018_10_388 crossref_primary_10_1016_j_scitotenv_2023_161965 crossref_primary_10_1016_j_jhazmat_2022_129619 crossref_primary_10_1007_s11356_022_23995_6 crossref_primary_10_1007_s11783_021_1431_5 crossref_primary_10_1016_j_ecoenv_2020_110680 crossref_primary_10_1021_acsomega_3c08327 crossref_primary_10_1007_s11104_023_06306_x crossref_primary_10_1016_j_nantod_2024_102289 crossref_primary_10_1007_s11356_024_32839_4 crossref_primary_10_1007_s00128_021_03326_0 crossref_primary_10_17660_ActaHortic_2018_1218_29 crossref_primary_10_3390_plants12091902 crossref_primary_10_1016_j_chemosphere_2021_130212 crossref_primary_10_3390_foods12214026 crossref_primary_10_1016_j_envres_2024_118719 crossref_primary_10_1016_j_scitotenv_2022_155547 crossref_primary_10_1016_j_envpol_2022_119390 crossref_primary_10_1080_01904167_2022_2105713 crossref_primary_10_1016_j_scitotenv_2021_152296 crossref_primary_10_1007_s11368_022_03338_1 crossref_primary_10_1111_ejss_12794 crossref_primary_10_1016_j_scitotenv_2024_172861 crossref_primary_10_1186_s40538_023_00388_6 crossref_primary_10_1016_j_chemosphere_2019_125128 crossref_primary_10_1016_j_ecoenv_2019_109795 crossref_primary_10_1007_s42773_024_00313_6 crossref_primary_10_1016_j_jenvman_2020_111533 crossref_primary_10_3390_plants11020207 crossref_primary_10_1007_s11104_019_04094_x crossref_primary_10_3390_toxics12060431 crossref_primary_10_1007_s11356_020_08223_3 crossref_primary_10_1007_s11356_021_13266_1 crossref_primary_10_1016_j_ecoenv_2024_117094 crossref_primary_10_1016_j_envpol_2020_113970 crossref_primary_10_1016_j_ecoenv_2020_110908 crossref_primary_10_1080_15226514_2019_1686605 crossref_primary_10_1016_j_jcs_2024_104046 crossref_primary_10_1016_j_chemosphere_2019_124846 crossref_primary_10_1016_j_ecoenv_2023_115525 crossref_primary_10_2139_ssrn_4064358 crossref_primary_10_1016_j_scitotenv_2024_177680 crossref_primary_10_1016_j_ecoenv_2018_08_082 crossref_primary_10_1016_j_ecoenv_2020_111840 crossref_primary_10_1016_j_ecoenv_2021_111921 crossref_primary_10_32604_phyton_2023_027924 crossref_primary_10_1016_j_ecoenv_2019_109903 crossref_primary_10_1016_j_ecoenv_2021_112214 crossref_primary_10_1016_j_chemosphere_2023_138511 crossref_primary_10_1016_j_apgeochem_2020_104776 crossref_primary_10_1080_19393210_2023_2278805 crossref_primary_10_1016_j_envpol_2024_123436 crossref_primary_10_1016_j_jenvman_2022_115289 crossref_primary_10_1016_j_scitotenv_2022_158060 crossref_primary_10_1016_j_scitotenv_2020_143501 crossref_primary_10_1016_j_envpol_2024_124919 crossref_primary_10_1016_j_rsci_2021_12_007 crossref_primary_10_1016_j_scitotenv_2022_160421 crossref_primary_10_1016_j_envpol_2020_114289 crossref_primary_10_1016_j_jes_2024_04_033 crossref_primary_10_1016_j_ecoenv_2022_114244 crossref_primary_10_1007_s42729_023_01263_x crossref_primary_10_1016_j_envpol_2020_114681 crossref_primary_10_3390_plants13172457 |
Cites_doi | 10.1016/j.envexpbot.2008.01.004 10.1016/j.pbi.2013.03.012 10.1016/j.agee.2015.12.001 10.1007/s11104-011-0829-4 10.1021/es402739a 10.1016/j.envexpbot.2006.04.001 10.1021/es501127k 10.1186/1471-2229-9-8 10.1093/jxb/erq383 10.1016/j.plaphy.2015.10.024 10.1016/j.chemosphere.2016.10.114 10.1007/s12892-010-0045-4 10.1021/es5047099 10.1007/s11356-016-6822-y 10.1007/s11783-012-0394-y 10.1104/pp.109.151035 10.1016/j.envpol.2011.02.025 10.1016/S1001-0742(09)60218-7 10.1002/jpln.200700018 10.1016/j.jhazmat.2009.10.029 10.1016/j.scitotenv.2008.02.004 10.1007/s11104-015-2627-x 10.1007/s11104-005-6453-4 10.1139/b91-335 10.1007/s11368-013-0658-6 10.1016/j.jhazmat.2016.11.063 10.1021/es060800v 10.1016/j.scitotenv.2006.06.013 10.1016/j.envexpbot.2014.05.004 10.1016/j.ecoenv.2013.11.024 10.1016/j.biortech.2004.02.008 10.1016/j.jenvman.2013.02.026 10.1016/j.jhazmat.2010.12.066 10.1016/j.envres.2017.03.014 10.1007/s11104-014-2268-5 10.1186/1471-2229-13-103 10.1016/j.envpol.2016.01.004 10.1016/j.fct.2011.09.019 10.1021/jf100017e 10.1007/s11104-013-1945-0 10.1111/j.1747-0765.2010.00481.x 10.1016/j.jhazmat.2009.11.023 10.1016/j.chemosphere.2005.07.076 10.1186/1939-8433-5-5 10.1002/jsfa.3648 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018. Published by Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018. Published by Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.ecoenv.2018.01.031 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Ecology |
EISSN | 1090-2414 |
EndPage | 97 |
ExternalDocumentID | 29407786 10_1016_j_ecoenv_2018_01_031 S014765131830040X |
Genre | Journal Article |
GeographicLocations | South East Asia |
GeographicLocations_xml | – name: South East Asia |
GroupedDBID | --- --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ IHE J1W KCYFY KOM LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SDP SES SPCBC SSJ SSZ T5K ZU3 ~G- 29G 53G AAFWJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPKN AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF FEDTE FGOYB G-2 HMC HVGLF HZ~ H~9 OK1 R2- SEN SEW SSH VH1 WUQ XPP ZMT ZXP ~KM NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c498t-b3aaa167b11e228e8e9f7cac562cd2a4c01b5aeb92a698cee457d1a95844200f3 |
IEDL.DBID | .~1 |
ISSN | 0147-6513 1090-2414 |
IngestDate | Fri Jul 11 05:05:30 EDT 2025 Tue Aug 05 10:42:32 EDT 2025 Wed Feb 19 02:43:27 EST 2025 Thu Apr 24 23:00:05 EDT 2025 Tue Jul 01 03:59:54 EDT 2025 Fri Feb 23 02:28:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Translocation Rice (Oryza sativa L.) Soil Cadmium Iron plaque Growth stages |
Language | English |
License | Copyright © 2018. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c498t-b3aaa167b11e228e8e9f7cac562cd2a4c01b5aeb92a698cee457d1a95844200f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 29407786 |
PQID | 1999191628 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2045832867 proquest_miscellaneous_1999191628 pubmed_primary_29407786 crossref_citationtrail_10_1016_j_ecoenv_2018_01_031 crossref_primary_10_1016_j_ecoenv_2018_01_031 elsevier_sciencedirect_doi_10_1016_j_ecoenv_2018_01_031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-15 |
PublicationDateYYYYMMDD | 2018-05-15 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Ecotoxicology and environmental safety |
PublicationTitleAlternate | Ecotoxicol Environ Saf |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Liu, Zhu, Hu, Williams, Gault, Meharg, Charnock, Smith (bib15) 2006; 40 Suralta, Yamauchi (bib27) 2008; 64 Boularbah, Schwartz, Bitton, Aboudrar, Ouhammou, Morel (bib1) 2006; 63 Harris, Taylor (bib7) 2013; 13 Saifullah, Javed, Naeem, Rengel, Dahlawi (bib25) 2016; 23 Yoneyama, Gosho, Kato, Goto, Hayashi (bib43) 2010; 56 Rodda, Li, Reid (bib24) 2011; 347 Kashiwagi, Shindoh, Hirotsu, Ishimaru (bib12) 2009; 9 Huang, Hsu, Wang (bib9) 2011; 186 Yang, Huang, Duan, Tan, Zhang (bib42) 2009; 89 Cheng, Zhang, Yao, Tang (bib4) 2005; 12 Li, Zhao, Zhang, Liu, Xu, Li, Li, Gao, Chai (bib13) 2016; 398 Tavarez, Macri, Sankaran (bib28) 2015; 97 Yan, Choi, Kim, Lee (bib41) 2010; 132 Moreno-Jiménez, Fernández, Puschenreiter, Williams, Plaza (bib20) 2016; 219 Xin, Huang, Yang, Yuan, Dai, Qiu (bib38) 2010; 175 Wu, Liu, Xue, Pan, Zou, Hartley, Wong (bib36) 2017; 168 Uraguchi, Fujiwara (bib30) 2012; 5 Chen, Kong, He, Liu, Smith, Smith, Zhu (bib3) 2008; 171 Hu, Li, Yuan, Ouyang, Zhou, Huang, Wu (bib10) 2013; 13 Ding, Zhang, Wang, Zhou, Yang, Yin (bib5) 2013; 122 Yamaguchi, Ohkura, Takahashi, Maejima, Arao (bib40) 2014; 48 Zhu, Fan, Wang, Qu, Yao (bib48) 2011; 49 Zhao, Ma, Zhu, Tang, McGrath (bib46) 2014; 49 Zhang, Ge, Yao, Chen, Hu (bib45) 2012; 6 Wei, Li, Zhou, Srivastava, Chiu, Zhan, Sun (bib33) 2010; 176 Williams, Santner, Larsen, Lehto, Oburger, Wenzel, Zhang (bib34) 2014; 48 Uraguchi, Fujiwara (bib31) 2013; 16 Kahr, Madsen (bib11) 1995; 9 Zhou, Zeng, Zhou, Liao, Peng, Hu, Zou (bib47) 2015; 386 Wu, Lu, Yang, Feng, Wei, Hao, He (bib37) 2010; 58 Rahman, Rahman, Reichman, Lim, Naidu (bib23) 2014; 100 Liu, Cao, Wong, Zhang, Chai (bib18) 2010; 22 Wang, Chen, Wong, Qiu, Cheng, Ye (bib32) 2011; 159 Nelson, Sommers, Sparks, Page, Helmke, Loeppert, Sumner (bib21) 1996 Cheng, Wang, Wong, Ye (bib2) 2014; 375 Hseu (bib8) 2004; 95 Liu, Zhang, Zhang (bib16) 2007; 59 Yu, Wang, Fang, Yuan, Yang (bib44) 2006; 370 Fujimaki, Suzui, Ishioka, Kawachi, Ito, Chino, Nakamura (bib6) 2010; 152 Xue, Shi, Wu, Wu, Qin, Pan, Hartley, Cui (bib39) 2017; 156 Liu, Qu, Zhang, Dong, Li, Wang (bib19) 2014; 107 Liu, Zhang, Christie, Zhang (bib17) 2008; 394 Liu, Zhu, Smith (bib14) 2005; 277 Otte, Dekkers, Rozema, Broekman (bib22) 1991; 69 Shahid, Dumat, Khalid, Schreck Eva, Xiong, Niazi (bib26) 2017; 325 Ueno, Koyama, Yamaji, Ma (bib29) 2011; 62 Wu, Zou, Xue, Pan, Huang, Hartley, Mo, Wong (bib35) 2016; 212 Cheng (10.1016/j.ecoenv.2018.01.031_bib2) 2014; 375 Liu (10.1016/j.ecoenv.2018.01.031_bib18) 2010; 22 Fujimaki (10.1016/j.ecoenv.2018.01.031_bib6) 2010; 152 Yan (10.1016/j.ecoenv.2018.01.031_bib41) 2010; 132 Uraguchi (10.1016/j.ecoenv.2018.01.031_bib30) 2012; 5 Ding (10.1016/j.ecoenv.2018.01.031_bib5) 2013; 122 Wu (10.1016/j.ecoenv.2018.01.031_bib37) 2010; 58 Xue (10.1016/j.ecoenv.2018.01.031_bib39) 2017; 156 Zhou (10.1016/j.ecoenv.2018.01.031_bib47) 2015; 386 Kahr (10.1016/j.ecoenv.2018.01.031_bib11) 1995; 9 Wei (10.1016/j.ecoenv.2018.01.031_bib33) 2010; 176 Suralta (10.1016/j.ecoenv.2018.01.031_bib27) 2008; 64 Yamaguchi (10.1016/j.ecoenv.2018.01.031_bib40) 2014; 48 Xin (10.1016/j.ecoenv.2018.01.031_bib38) 2010; 175 Zhu (10.1016/j.ecoenv.2018.01.031_bib48) 2011; 49 Shahid (10.1016/j.ecoenv.2018.01.031_bib26) 2017; 325 Wu (10.1016/j.ecoenv.2018.01.031_bib35) 2016; 212 Liu (10.1016/j.ecoenv.2018.01.031_bib19) 2014; 107 Wu (10.1016/j.ecoenv.2018.01.031_bib36) 2017; 168 Hseu (10.1016/j.ecoenv.2018.01.031_bib8) 2004; 95 Yang (10.1016/j.ecoenv.2018.01.031_bib42) 2009; 89 Yoneyama (10.1016/j.ecoenv.2018.01.031_bib43) 2010; 56 Kashiwagi (10.1016/j.ecoenv.2018.01.031_bib12) 2009; 9 Wang (10.1016/j.ecoenv.2018.01.031_bib32) 2011; 159 Uraguchi (10.1016/j.ecoenv.2018.01.031_bib31) 2013; 16 Liu (10.1016/j.ecoenv.2018.01.031_bib14) 2005; 277 Williams (10.1016/j.ecoenv.2018.01.031_bib34) 2014; 48 Tavarez (10.1016/j.ecoenv.2018.01.031_bib28) 2015; 97 Harris (10.1016/j.ecoenv.2018.01.031_bib7) 2013; 13 Zhao (10.1016/j.ecoenv.2018.01.031_bib46) 2014; 49 Liu (10.1016/j.ecoenv.2018.01.031_bib16) 2007; 59 Nelson (10.1016/j.ecoenv.2018.01.031_bib21) 1996 Saifullah (10.1016/j.ecoenv.2018.01.031_bib25) 2016; 23 Otte (10.1016/j.ecoenv.2018.01.031_bib22) 1991; 69 Rahman (10.1016/j.ecoenv.2018.01.031_bib23) 2014; 100 Yu (10.1016/j.ecoenv.2018.01.031_bib44) 2006; 370 Li (10.1016/j.ecoenv.2018.01.031_bib13) 2016; 398 Liu (10.1016/j.ecoenv.2018.01.031_bib15) 2006; 40 Moreno-Jiménez (10.1016/j.ecoenv.2018.01.031_bib20) 2016; 219 Ueno (10.1016/j.ecoenv.2018.01.031_bib29) 2011; 62 Chen (10.1016/j.ecoenv.2018.01.031_bib3) 2008; 171 Cheng (10.1016/j.ecoenv.2018.01.031_bib4) 2005; 12 Boularbah (10.1016/j.ecoenv.2018.01.031_bib1) 2006; 63 Huang (10.1016/j.ecoenv.2018.01.031_bib9) 2011; 186 Hu (10.1016/j.ecoenv.2018.01.031_bib10) 2013; 13 Zhang (10.1016/j.ecoenv.2018.01.031_bib45) 2012; 6 Liu (10.1016/j.ecoenv.2018.01.031_bib17) 2008; 394 Rodda (10.1016/j.ecoenv.2018.01.031_bib24) 2011; 347 |
References_xml | – volume: 95 start-page: 53 year: 2004 end-page: 59 ident: bib8 article-title: Evaluating heavy metal contents in nine composts using four digestion methods publication-title: Bioresour. Technol. – volume: 63 start-page: 811 year: 2006 end-page: 817 ident: bib1 article-title: Heavy metal contamination from mining sites in South Morocco, 2. Assessment of metal accumulation and toxicity in plants publication-title: Chemosphere – volume: 219 start-page: 171 year: 2016 end-page: 178 ident: bib20 article-title: Availability and transfer to grain of As, Cd, Cu, Ni, Pb and Zn in a barley agri-system: impact of biochar, organic and mineral fertilizers publication-title: Agr. Ecosyst. Environ. – volume: 49 start-page: 750 year: 2014 end-page: 759 ident: bib46 article-title: Soil contamination in China, current status and mitigation strategies publication-title: Environ. Sci. Technol. – volume: 277 start-page: 127 year: 2005 end-page: 138 ident: bib14 article-title: Effects of iron and manganese plaques on arsenic uptake by rice seedlings ( publication-title: Plant Soil – volume: 40 start-page: 5730 year: 2006 end-page: 5736 ident: bib15 article-title: Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants ( publication-title: Environ. Sci. Technol. – volume: 186 start-page: 1801 year: 2011 end-page: 1807 ident: bib9 article-title: Effects of rice straw ash amendment on Cu solubility and distribution in flooded rice paddy soils publication-title: J. Hazard. Mater. – volume: 13 start-page: 916 year: 2013 end-page: 924 ident: bib10 article-title: Effect of water management on cadmium and arsenic accumulation by rice ( publication-title: J. Soil Sediment. – volume: 398 start-page: 87 year: 2016 end-page: 97 ident: bib13 article-title: The influence of iron plaque on the absorption, translocation and transformation of mercury in rice ( publication-title: Plant Soil – volume: 122 start-page: 8 year: 2013 end-page: 14 ident: bib5 article-title: Effects of soil type and genotype on lead concentration in rootstalk vegetables and the selection of cultivars for food safety publication-title: J. Environ. Manag. – volume: 171 start-page: 193 year: 2008 end-page: 199 ident: bib3 article-title: Do water regimes affect iron-plaque formation and microbial communities in the rhizosphere of paddy rice? publication-title: J. Plant Nutr. Soil Sci. – volume: 175 start-page: 468 year: 2010 end-page: 476 ident: bib38 article-title: Responses of different water spinach cultivars and their hybrid to Cd, Pb and Cd–Pb exposures publication-title: J. Hazard. Mater. – volume: 56 start-page: 445 year: 2010 end-page: 453 ident: bib43 article-title: Xylem and phloem transport of Cd, Zn and Fe into the grains of rice plants ( publication-title: Soil Sci. Plant Nutr. – start-page: 961 year: 1996 end-page: 1010 ident: bib21 article-title: Total carbon, organic carbon, and organic matter publication-title: Methods Soil Anal. Part 3 Chem. Methods – volume: 386 start-page: 317 year: 2015 end-page: 329 ident: bib47 article-title: Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice ( publication-title: Plant Soil – volume: 375 start-page: 137 year: 2014 end-page: 148 ident: bib2 article-title: Does radial oxygen loss and iron plaque formation on roots alter Cd and Pb uptake and distribution in rice plant tissues? publication-title: Plant Soil – volume: 64 start-page: 75 year: 2008 end-page: 82 ident: bib27 article-title: Root growth, aerenchyma development, and oxygen transport in rice genotypes subjected to drought and waterlogging publication-title: Environ. Exp. Bot. – volume: 49 start-page: 3081 year: 2011 end-page: 3085 ident: bib48 article-title: Health risk assessment of eight heavy metals in nine varieties of edible vegetable oils consumed in China publication-title: Food Chem. Toxicol. – volume: 69 start-page: 2670 year: 1991 end-page: 2677 ident: bib22 article-title: Uptake of arsenic by Aster tripolium in relation to rhizosphere oxidation publication-title: Can. J. Bot. – volume: 16 start-page: 328 year: 2013 end-page: 334 ident: bib31 article-title: Rice breaks ground for cadmium-free cereals publication-title: Curr. Opin. Plant Biol. – volume: 89 start-page: 1728 year: 2009 end-page: 1736 ident: bib42 article-title: Alternate wetting and moderate soil drying increases grain yield and reduces cadmium accumulation in rice grains publication-title: J. Sci. Food Agr. – volume: 9 start-page: 327 year: 1995 end-page: 336 ident: bib11 article-title: Determination of the cation exchange capacity and the surface area of bentonite, illite and kaolinite by methylene blue adsorption publication-title: Appl. Slay Sci. – volume: 100 start-page: 53 year: 2014 end-page: 60 ident: bib23 article-title: Heavy metals in Australian grown and imported rice and vegetables on sale in Australia, Health hazard publication-title: Ecotoxicol. Environ. Saf. – volume: 176 start-page: 269 year: 2010 end-page: 273 ident: bib33 article-title: Effect of fertilizer amendments on phytoremediation of Cd-contaminated soil by a newly discovered hyperaccumulator publication-title: J. Hazard. Mater. – volume: 6 start-page: 509 year: 2012 end-page: 517 ident: bib45 article-title: Iron oxidation-reduction and its impacts on cadmium bioavailability in paddy soils: a review publication-title: Front. Environ. Sci. Eng. – volume: 325 start-page: 36 year: 2017 end-page: 58 ident: bib26 article-title: Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake publication-title: J. Hazard. Mater. – volume: 48 start-page: 8498 year: 2014 end-page: 8506 ident: bib34 article-title: Localized flux maxima of arsenic, lead, and iron around root apices in flooded lowland rice publication-title: Environ. Sci. Technol. – volume: 59 start-page: 314 year: 2007 end-page: 320 ident: bib16 article-title: Role of iron plaque in Cd uptake by and translocation within rice ( publication-title: Environ. Exp. Bot. – volume: 48 start-page: 1549 year: 2014 end-page: 1556 ident: bib40 article-title: Arsenic distribution and speciation near rice roots influenced by iron plaques and redox conditions of the soil matrix publication-title: Environ. Sci. Technol. – volume: 13 start-page: 1 year: 2013 end-page: 16 ident: bib7 article-title: Cadmium uptake and partitioning in durum wheat during grain filling publication-title: BMC Plant Biol. – volume: 347 start-page: 105 year: 2011 end-page: 114 ident: bib24 article-title: The timing of grain Cd accumulation in rice plants, the relative importance of remobilisation within the plant and root Cd uptake post-flowering publication-title: Plant Soil. – volume: 168 start-page: 969 year: 2017 end-page: 975 ident: bib36 article-title: Oxic and anoxic conditions affect arsenic (As) accumulation and arsenite transporter expression in rice publication-title: Chemosphere – volume: 58 start-page: 6767 year: 2010 end-page: 6773 ident: bib37 article-title: Uptake, translocation, and remobilization of zinc absorbed at different growth stages by rice genotypes of different Zn densities publication-title: J. Agr. Food Chem. – volume: 23 start-page: 16432 year: 2016 end-page: 16439 ident: bib25 article-title: Timing of foliar Zn application plays a vital role in minimizing Cd accumulation in wheat publication-title: Environ. Sci. Pollut. Res. – volume: 62 start-page: 2265 year: 2011 end-page: 2272 ident: bib29 article-title: Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan publication-title: J. Exp. Bot. – volume: 394 start-page: 361 year: 2008 end-page: 368 ident: bib17 article-title: Influence of iron plaque on uptake and accumulation of Cd by rice ( publication-title: Sci. Total Environ. – volume: 370 start-page: 302 year: 2006 end-page: 309 ident: bib44 article-title: Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice publication-title: Sci. Total Environ. – volume: 22 start-page: 1067 year: 2010 end-page: 1072 ident: bib18 article-title: Variations between rice cultivars in iron and manganese plaque on roots and the relation with plant cadmium uptake publication-title: J. Environ. Sci. – volume: 152 start-page: 1796 year: 2010 end-page: 1806 ident: bib6 article-title: Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant publication-title: Plant Physiol. – volume: 212 start-page: 27 year: 2016 end-page: 33 ident: bib35 article-title: The effect of silicon on iron plaque formation and arsenic accumulation in rice genotypes with different radial oxygen loss (ROL) publication-title: Environ. Pollut. – volume: 12 start-page: 48 year: 2005 end-page: 56 ident: bib4 article-title: Effect of grain position within a panicle and variety on As, Cd, Cr, Ni, Pb concentrations in publication-title: Rice Sci. – volume: 107 start-page: 25 year: 2014 end-page: 31 ident: bib19 article-title: Variations among rice cultivars in subcellular distribution of Cd, the relationship between translocation and grain accumulation publication-title: Environ. Exp. Bot. – volume: 156 start-page: 23 year: 2017 end-page: 30 ident: bib39 article-title: Cadmium, lead, and arsenic contamination in paddy soils of a mining area and their exposure effects on human HEPG2 and keratinocyte cell-lines publication-title: Environ. Res. – volume: 9 start-page: 1 year: 2009 ident: bib12 article-title: Evidence for separate translocation pathways in determining cadmium accumulation in grain and aerial plant parts in rice publication-title: BMC Plant Biol. – volume: 5 start-page: 1 year: 2012 end-page: 8 ident: bib30 article-title: Cadmium transport and tolerance in rice, perspectives for reducing grain cadmium accumulation publication-title: Rice – volume: 132 start-page: 113 year: 2010 end-page: 119 ident: bib41 article-title: Absorption, translocation, and remobilization of cadmium supplied at different growth stages of rice publication-title: J. Crop Sci. Biotechnol. – volume: 97 start-page: 461 year: 2015 end-page: 469 ident: bib28 article-title: Cadmium and zinc partitioning and accumulation during grain filling in two near isogenic lines of durum wheat publication-title: Plant Physiol. Biochem. – volume: 159 start-page: 1730 year: 2011 end-page: 1736 ident: bib32 article-title: Cadmium accumulation in and tolerance of rice ( publication-title: Environ. Pollut. – volume: 64 start-page: 75 year: 2008 ident: 10.1016/j.ecoenv.2018.01.031_bib27 article-title: Root growth, aerenchyma development, and oxygen transport in rice genotypes subjected to drought and waterlogging publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2008.01.004 – volume: 9 start-page: 327 year: 1995 ident: 10.1016/j.ecoenv.2018.01.031_bib11 article-title: Determination of the cation exchange capacity and the surface area of bentonite, illite and kaolinite by methylene blue adsorption publication-title: Appl. Slay Sci. – volume: 12 start-page: 48 year: 2005 ident: 10.1016/j.ecoenv.2018.01.031_bib4 article-title: Effect of grain position within a panicle and variety on As, Cd, Cr, Ni, Pb concentrations in japonica rice publication-title: Rice Sci. – volume: 16 start-page: 328 year: 2013 ident: 10.1016/j.ecoenv.2018.01.031_bib31 article-title: Rice breaks ground for cadmium-free cereals publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2013.03.012 – volume: 219 start-page: 171 year: 2016 ident: 10.1016/j.ecoenv.2018.01.031_bib20 article-title: Availability and transfer to grain of As, Cd, Cu, Ni, Pb and Zn in a barley agri-system: impact of biochar, organic and mineral fertilizers publication-title: Agr. Ecosyst. Environ. doi: 10.1016/j.agee.2015.12.001 – volume: 347 start-page: 105 year: 2011 ident: 10.1016/j.ecoenv.2018.01.031_bib24 article-title: The timing of grain Cd accumulation in rice plants, the relative importance of remobilisation within the plant and root Cd uptake post-flowering publication-title: Plant Soil. doi: 10.1007/s11104-011-0829-4 – volume: 48 start-page: 1549 year: 2014 ident: 10.1016/j.ecoenv.2018.01.031_bib40 article-title: Arsenic distribution and speciation near rice roots influenced by iron plaques and redox conditions of the soil matrix publication-title: Environ. Sci. Technol. doi: 10.1021/es402739a – volume: 59 start-page: 314 year: 2007 ident: 10.1016/j.ecoenv.2018.01.031_bib16 article-title: Role of iron plaque in Cd uptake by and translocation within rice (Oryza sativa L.). seedlings grown in solution culture publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2006.04.001 – volume: 48 start-page: 8498 year: 2014 ident: 10.1016/j.ecoenv.2018.01.031_bib34 article-title: Localized flux maxima of arsenic, lead, and iron around root apices in flooded lowland rice publication-title: Environ. Sci. Technol. doi: 10.1021/es501127k – volume: 9 start-page: 1 year: 2009 ident: 10.1016/j.ecoenv.2018.01.031_bib12 article-title: Evidence for separate translocation pathways in determining cadmium accumulation in grain and aerial plant parts in rice publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-9-8 – volume: 62 start-page: 2265 year: 2011 ident: 10.1016/j.ecoenv.2018.01.031_bib29 article-title: Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq383 – volume: 97 start-page: 461 year: 2015 ident: 10.1016/j.ecoenv.2018.01.031_bib28 article-title: Cadmium and zinc partitioning and accumulation during grain filling in two near isogenic lines of durum wheat publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2015.10.024 – volume: 168 start-page: 969 year: 2017 ident: 10.1016/j.ecoenv.2018.01.031_bib36 article-title: Oxic and anoxic conditions affect arsenic (As) accumulation and arsenite transporter expression in rice publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.10.114 – volume: 132 start-page: 113 year: 2010 ident: 10.1016/j.ecoenv.2018.01.031_bib41 article-title: Absorption, translocation, and remobilization of cadmium supplied at different growth stages of rice publication-title: J. Crop Sci. Biotechnol. doi: 10.1007/s12892-010-0045-4 – volume: 49 start-page: 750 year: 2014 ident: 10.1016/j.ecoenv.2018.01.031_bib46 article-title: Soil contamination in China, current status and mitigation strategies publication-title: Environ. Sci. Technol. doi: 10.1021/es5047099 – volume: 23 start-page: 16432 year: 2016 ident: 10.1016/j.ecoenv.2018.01.031_bib25 article-title: Timing of foliar Zn application plays a vital role in minimizing Cd accumulation in wheat publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-016-6822-y – volume: 6 start-page: 509 year: 2012 ident: 10.1016/j.ecoenv.2018.01.031_bib45 article-title: Iron oxidation-reduction and its impacts on cadmium bioavailability in paddy soils: a review publication-title: Front. Environ. Sci. Eng. doi: 10.1007/s11783-012-0394-y – volume: 152 start-page: 1796 year: 2010 ident: 10.1016/j.ecoenv.2018.01.031_bib6 article-title: Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant publication-title: Plant Physiol. doi: 10.1104/pp.109.151035 – volume: 159 start-page: 1730 year: 2011 ident: 10.1016/j.ecoenv.2018.01.031_bib32 article-title: Cadmium accumulation in and tolerance of rice (Oryza sativa L.). varieties with different rates of radial oxygen loss publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2011.02.025 – volume: 22 start-page: 1067 year: 2010 ident: 10.1016/j.ecoenv.2018.01.031_bib18 article-title: Variations between rice cultivars in iron and manganese plaque on roots and the relation with plant cadmium uptake publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(09)60218-7 – volume: 171 start-page: 193 year: 2008 ident: 10.1016/j.ecoenv.2018.01.031_bib3 article-title: Do water regimes affect iron-plaque formation and microbial communities in the rhizosphere of paddy rice? publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.200700018 – volume: 175 start-page: 468 year: 2010 ident: 10.1016/j.ecoenv.2018.01.031_bib38 article-title: Responses of different water spinach cultivars and their hybrid to Cd, Pb and Cd–Pb exposures publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.10.029 – volume: 394 start-page: 361 year: 2008 ident: 10.1016/j.ecoenv.2018.01.031_bib17 article-title: Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.). seedlings grown in soil publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2008.02.004 – volume: 398 start-page: 87 year: 2016 ident: 10.1016/j.ecoenv.2018.01.031_bib13 article-title: The influence of iron plaque on the absorption, translocation and transformation of mercury in rice (Oryza sativa L.) seedlings exposed to different mercury species publication-title: Plant Soil doi: 10.1007/s11104-015-2627-x – volume: 277 start-page: 127 year: 2005 ident: 10.1016/j.ecoenv.2018.01.031_bib14 article-title: Effects of iron and manganese plaques on arsenic uptake by rice seedlings (Oryza sativa L.). grown in solution culture supplied with arsenate and arsenite publication-title: Plant Soil doi: 10.1007/s11104-005-6453-4 – volume: 69 start-page: 2670 year: 1991 ident: 10.1016/j.ecoenv.2018.01.031_bib22 article-title: Uptake of arsenic by Aster tripolium in relation to rhizosphere oxidation publication-title: Can. J. Bot. doi: 10.1139/b91-335 – volume: 13 start-page: 916 year: 2013 ident: 10.1016/j.ecoenv.2018.01.031_bib10 article-title: Effect of water management on cadmium and arsenic accumulation by rice (Oryza sativa L.). with different metal accumulation capacities publication-title: J. Soil Sediment. doi: 10.1007/s11368-013-0658-6 – volume: 325 start-page: 36 year: 2017 ident: 10.1016/j.ecoenv.2018.01.031_bib26 article-title: Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.11.063 – volume: 40 start-page: 5730 year: 2006 ident: 10.1016/j.ecoenv.2018.01.031_bib15 article-title: Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.) publication-title: Environ. Sci. Technol. doi: 10.1021/es060800v – volume: 370 start-page: 302 year: 2006 ident: 10.1016/j.ecoenv.2018.01.031_bib44 article-title: Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2006.06.013 – volume: 107 start-page: 25 year: 2014 ident: 10.1016/j.ecoenv.2018.01.031_bib19 article-title: Variations among rice cultivars in subcellular distribution of Cd, the relationship between translocation and grain accumulation publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2014.05.004 – volume: 100 start-page: 53 year: 2014 ident: 10.1016/j.ecoenv.2018.01.031_bib23 article-title: Heavy metals in Australian grown and imported rice and vegetables on sale in Australia, Health hazard publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2013.11.024 – volume: 95 start-page: 53 year: 2004 ident: 10.1016/j.ecoenv.2018.01.031_bib8 article-title: Evaluating heavy metal contents in nine composts using four digestion methods publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2004.02.008 – volume: 122 start-page: 8 year: 2013 ident: 10.1016/j.ecoenv.2018.01.031_bib5 article-title: Effects of soil type and genotype on lead concentration in rootstalk vegetables and the selection of cultivars for food safety publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2013.02.026 – volume: 186 start-page: 1801 year: 2011 ident: 10.1016/j.ecoenv.2018.01.031_bib9 article-title: Effects of rice straw ash amendment on Cu solubility and distribution in flooded rice paddy soils publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.12.066 – volume: 156 start-page: 23 year: 2017 ident: 10.1016/j.ecoenv.2018.01.031_bib39 article-title: Cadmium, lead, and arsenic contamination in paddy soils of a mining area and their exposure effects on human HEPG2 and keratinocyte cell-lines publication-title: Environ. Res. doi: 10.1016/j.envres.2017.03.014 – volume: 386 start-page: 317 year: 2015 ident: 10.1016/j.ecoenv.2018.01.031_bib47 article-title: Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice (Oryza sativa L.). cultivars publication-title: Plant Soil doi: 10.1007/s11104-014-2268-5 – volume: 13 start-page: 1 year: 2013 ident: 10.1016/j.ecoenv.2018.01.031_bib7 article-title: Cadmium uptake and partitioning in durum wheat during grain filling publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-13-103 – volume: 212 start-page: 27 year: 2016 ident: 10.1016/j.ecoenv.2018.01.031_bib35 article-title: The effect of silicon on iron plaque formation and arsenic accumulation in rice genotypes with different radial oxygen loss (ROL) publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.01.004 – volume: 49 start-page: 3081 year: 2011 ident: 10.1016/j.ecoenv.2018.01.031_bib48 article-title: Health risk assessment of eight heavy metals in nine varieties of edible vegetable oils consumed in China publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2011.09.019 – volume: 58 start-page: 6767 year: 2010 ident: 10.1016/j.ecoenv.2018.01.031_bib37 article-title: Uptake, translocation, and remobilization of zinc absorbed at different growth stages by rice genotypes of different Zn densities publication-title: J. Agr. Food Chem. doi: 10.1021/jf100017e – volume: 375 start-page: 137 year: 2014 ident: 10.1016/j.ecoenv.2018.01.031_bib2 article-title: Does radial oxygen loss and iron plaque formation on roots alter Cd and Pb uptake and distribution in rice plant tissues? publication-title: Plant Soil doi: 10.1007/s11104-013-1945-0 – start-page: 961 year: 1996 ident: 10.1016/j.ecoenv.2018.01.031_bib21 article-title: Total carbon, organic carbon, and organic matter publication-title: Methods Soil Anal. Part 3 Chem. Methods – volume: 56 start-page: 445 year: 2010 ident: 10.1016/j.ecoenv.2018.01.031_bib43 article-title: Xylem and phloem transport of Cd, Zn and Fe into the grains of rice plants (Oryza sativa L.). grown in continuously flooded Cd-contaminated soil publication-title: Soil Sci. Plant Nutr. doi: 10.1111/j.1747-0765.2010.00481.x – volume: 176 start-page: 269 year: 2010 ident: 10.1016/j.ecoenv.2018.01.031_bib33 article-title: Effect of fertilizer amendments on phytoremediation of Cd-contaminated soil by a newly discovered hyperaccumulator Solanum nigrum L publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.11.023 – volume: 63 start-page: 811 year: 2006 ident: 10.1016/j.ecoenv.2018.01.031_bib1 article-title: Heavy metal contamination from mining sites in South Morocco, 2. Assessment of metal accumulation and toxicity in plants publication-title: Chemosphere doi: 10.1016/j.chemosphere.2005.07.076 – volume: 5 start-page: 1 year: 2012 ident: 10.1016/j.ecoenv.2018.01.031_bib30 article-title: Cadmium transport and tolerance in rice, perspectives for reducing grain cadmium accumulation publication-title: Rice doi: 10.1186/1939-8433-5-5 – volume: 89 start-page: 1728 year: 2009 ident: 10.1016/j.ecoenv.2018.01.031_bib42 article-title: Alternate wetting and moderate soil drying increases grain yield and reduces cadmium accumulation in rice grains publication-title: J. Sci. Food Agr. doi: 10.1002/jsfa.3648 |
SSID | ssj0003055 |
Score | 2.5353367 |
Snippet | Rice consumption is considered the main source of human dietary Cd intake in Southeast Asia. This study aimed to investigate Cd uptake, accumulation, and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 91 |
SubjectTerms | aerial parts bioaccumulation brown rice Cadmium developmental stages Growth stages hulls humans inflorescences iron Iron plaque leaves Oryza sativa paddy soils Rice (Oryza sativa L.) roots Soil South East Asia stems tissues Translocation transportation |
Title | Cadmium uptake, accumulation, and remobilization in iron plaque and rice tissues at different growth stages |
URI | https://dx.doi.org/10.1016/j.ecoenv.2018.01.031 https://www.ncbi.nlm.nih.gov/pubmed/29407786 https://www.proquest.com/docview/1999191628 https://www.proquest.com/docview/2045832867 |
Volume | 152 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelZTAYo-2-sn6gwR7nJbJkS3osoSXdRhljhbwJfbnL2jghsQd76d_ek2S39CEUCgZhcTJCd7o7Wb-7Q-iz5c5RTWzGHGw3Zo3MRKVJZl1FGbMjJ2xEW1yUk0v2bVpMt9C4j4UJsMpO9yedHrV11zPsVnO4nM2GAZbEy4IEoQyiOA0R7NADMv319gHmETJaJRgjzwJ1Hz4XMV5wwvP1vwDwEjF5JyWbzNMm9zOaobNd9LrzH_FJmuIe2vL1PnpxGnNP_99Hr9JvOJyii96g67F281k7x-2y0df-C9bWtvOuZBe81Q6v_HwRELIpHhPP4FlBu7zRMJNEAcoEN5FDa6wb3BdVafAVHOKbPxg8zCu_fosuz05_jydZV18hs0yKJjNUa01KbgjxeS688LLiVltwiazLNXCKmEJ7I3NdSgHWlBXcES3BZ2GwuSr6Dm3Xi9p_QNgCg0e0sGDrKIt6QlJDXOUNl6ZwZIBov6zKdsnHQw2MG9WjzP6qxAwVmKFGRMFXBii7H7VMyTeeoOc9x9QjIVJgH54Y-alnsIL9FS5NdO0X7VqFNA1wpi1zsZkmj7fPuSj5AL1P0nE_31zCkZmL8uOz53aAXoa3AFkgxSHablatPwJPqDHHUdSP0c7J-NePn6E9_z65uAOn3QsQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6lLHBGFv30exTgz3OJLJlS3osoSVduzy1kDehL7dZGyckdmH__U6WHdhDKAwMxrZkDt_pPqzf3QF8t9y5TFObMIfLjVkjE1FqmlhXZozZsRO2RVvMiuk1-znP5wcw6XNhAqyy0_1Rp7faursz6r7maL1YjAIsiRc5DUIZRHH-BA5Ddap8AIcn5xfT2U4hh6JWEcnIkzChz6BrYV4Y5PnqIWC8RFu_M6P7LNQ-D7S1RGev4GXnQpKTSOVrOPDVETw9bctP_zmCF_FPHIkJRm_gbqLdctEsSbOu9Z3_QbS1zbLr2oVXlSMbv1wFkGxMySQLPDZ4Xt9rpCSOQH1C6pZJW6Jr0vdVqckNxvH1LUEn88Zv38L12enVZJp0LRYSy6SoE5NprWnBDaU-TYUXXpbcaotekXWpRmZRk2tvZKoLKdCgspw7qiW6LQzXV5m9g0G1qvwxEIs8Hme5RXOXsVZVyMxQV3rDpckdHULWf1Zlu_rjoQ3GveqBZr9VZIYKzFBjqvAtQ0h2s9ax_sYj43nPMfWPHCk0EY_M_NYzWOESC_smuvKrZqtCpQYMa4tU7B-TthvQqSj4EN5H6djRm0qMmrkoPvw3bV_h2fTq16W6PJ9dfITn4UlAMND8EwzqTeM_o2NUmy-d4P8FZIoMLA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cadmium+uptake%2C+accumulation%2C+and+remobilization+in+iron+plaque+and+rice+tissues+at+different+growth+stages&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Zhou%2C+Hang&rft.au=Zhu%2C+Wei&rft.au=Yang%2C+Wen-Tao&rft.au=Gu%2C+Jiao-Feng&rft.date=2018-05-15&rft.eissn=1090-2414&rft.volume=152&rft.spage=91&rft_id=info:doi/10.1016%2Fj.ecoenv.2018.01.031&rft_id=info%3Apmid%2F29407786&rft.externalDocID=29407786 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon |