Cadmium uptake, accumulation, and remobilization in iron plaque and rice tissues at different growth stages

Rice consumption is considered the main source of human dietary Cd intake in Southeast Asia. This study aimed to investigate Cd uptake, accumulation, and remobilization in iron plaque and rice (Oryza sativa L. cv. ‘Xiangwanxian 12′) tissues at different growth stages. A pot experiment was performed...

Full description

Saved in:
Bibliographic Details
Published inEcotoxicology and environmental safety Vol. 152; pp. 91 - 97
Main Authors Zhou, Hang, Zhu, Wei, Yang, Wen-Tao, Gu, Jiao-Feng, Gao, Zi-Xiang, Chen, Li-Wei, Du, Wen-Qi, Zhang, Ping, Peng, Pei-Qin, Liao, Bo-Han
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 15.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rice consumption is considered the main source of human dietary Cd intake in Southeast Asia. This study aimed to investigate Cd uptake, accumulation, and remobilization in iron plaque and rice (Oryza sativa L. cv. ‘Xiangwanxian 12′) tissues at different growth stages. A pot experiment was performed in two Cd-contaminated paddy soils. Cd concentrations in iron plaque and rice tissues at five different growth stages (tillering, booting, milky, dough, and maturing) were measured. Cd concentrations in iron plaque and rice tissues (roots, stems, leaves, spikelet, husks, and brown rice) varied with growth stage. Cd accumulation in rice plants increased with extending growth in both soils, reaching 15.3 and 35.4μg/pot, respectively, at the maturing stage. The amounts of Cd in brown rice increased from the milky to maturing stages, with the greatest percentage uptake during the maturing stage. Cd amount in iron plaque significantly affected the uptake and accumulation of Cd in roots and aerial parts of rice plants. Accumulated Cd in leaves was remobilized and transported during the booting to maturing stages, and the contributions of Cd transportation from leaves to brown rice were 30.0% and 22.5% in the two soils, respectively. A large amount of Cd accumulated in brown rice during the maturing stage. The transportation of remobilized Cd from leaves was also important for the accumulation of Cd in brown rice. [Display omitted] •The greatest percentage uptake of Cd in rice plant was booting stage and maturing stage.•Accumulated Cd in leaves was remobilized and transported during the booting to maturing stages.•The transportation of remobilized Cd from leaves was an important contribution for Cd accumulation in brown rice.
AbstractList Rice consumption is considered the main source of human dietary Cd intake in Southeast Asia. This study aimed to investigate Cd uptake, accumulation, and remobilization in iron plaque and rice (Oryza sativa L. cv. 'Xiangwanxian 12') tissues at different growth stages. A pot experiment was performed in two Cd-contaminated paddy soils. Cd concentrations in iron plaque and rice tissues at five different growth stages (tillering, booting, milky, dough, and maturing) were measured. Cd concentrations in iron plaque and rice tissues (roots, stems, leaves, spikelet, husks, and brown rice) varied with growth stage. Cd accumulation in rice plants increased with extending growth in both soils, reaching 15.3 and 35.4μg/pot, respectively, at the maturing stage. The amounts of Cd in brown rice increased from the milky to maturing stages, with the greatest percentage uptake during the maturing stage. Cd amount in iron plaque significantly affected the uptake and accumulation of Cd in roots and aerial parts of rice plants. Accumulated Cd in leaves was remobilized and transported during the booting to maturing stages, and the contributions of Cd transportation from leaves to brown rice were 30.0% and 22.5% in the two soils, respectively. A large amount of Cd accumulated in brown rice during the maturing stage. The transportation of remobilized Cd from leaves was also important for the accumulation of Cd in brown rice.Rice consumption is considered the main source of human dietary Cd intake in Southeast Asia. This study aimed to investigate Cd uptake, accumulation, and remobilization in iron plaque and rice (Oryza sativa L. cv. 'Xiangwanxian 12') tissues at different growth stages. A pot experiment was performed in two Cd-contaminated paddy soils. Cd concentrations in iron plaque and rice tissues at five different growth stages (tillering, booting, milky, dough, and maturing) were measured. Cd concentrations in iron plaque and rice tissues (roots, stems, leaves, spikelet, husks, and brown rice) varied with growth stage. Cd accumulation in rice plants increased with extending growth in both soils, reaching 15.3 and 35.4μg/pot, respectively, at the maturing stage. The amounts of Cd in brown rice increased from the milky to maturing stages, with the greatest percentage uptake during the maturing stage. Cd amount in iron plaque significantly affected the uptake and accumulation of Cd in roots and aerial parts of rice plants. Accumulated Cd in leaves was remobilized and transported during the booting to maturing stages, and the contributions of Cd transportation from leaves to brown rice were 30.0% and 22.5% in the two soils, respectively. A large amount of Cd accumulated in brown rice during the maturing stage. The transportation of remobilized Cd from leaves was also important for the accumulation of Cd in brown rice.
Rice consumption is considered the main source of human dietary Cd intake in Southeast Asia. This study aimed to investigate Cd uptake, accumulation, and remobilization in iron plaque and rice (Oryza sativa L. cv. 'Xiangwanxian 12') tissues at different growth stages. A pot experiment was performed in two Cd-contaminated paddy soils. Cd concentrations in iron plaque and rice tissues at five different growth stages (tillering, booting, milky, dough, and maturing) were measured. Cd concentrations in iron plaque and rice tissues (roots, stems, leaves, spikelet, husks, and brown rice) varied with growth stage. Cd accumulation in rice plants increased with extending growth in both soils, reaching 15.3 and 35.4μg/pot, respectively, at the maturing stage. The amounts of Cd in brown rice increased from the milky to maturing stages, with the greatest percentage uptake during the maturing stage. Cd amount in iron plaque significantly affected the uptake and accumulation of Cd in roots and aerial parts of rice plants. Accumulated Cd in leaves was remobilized and transported during the booting to maturing stages, and the contributions of Cd transportation from leaves to brown rice were 30.0% and 22.5% in the two soils, respectively. A large amount of Cd accumulated in brown rice during the maturing stage. The transportation of remobilized Cd from leaves was also important for the accumulation of Cd in brown rice.
Rice consumption is considered the main source of human dietary Cd intake in Southeast Asia. This study aimed to investigate Cd uptake, accumulation, and remobilization in iron plaque and rice (Oryza sativa L. cv. ‘Xiangwanxian 12′) tissues at different growth stages. A pot experiment was performed in two Cd-contaminated paddy soils. Cd concentrations in iron plaque and rice tissues at five different growth stages (tillering, booting, milky, dough, and maturing) were measured. Cd concentrations in iron plaque and rice tissues (roots, stems, leaves, spikelet, husks, and brown rice) varied with growth stage. Cd accumulation in rice plants increased with extending growth in both soils, reaching 15.3 and 35.4μg/pot, respectively, at the maturing stage. The amounts of Cd in brown rice increased from the milky to maturing stages, with the greatest percentage uptake during the maturing stage. Cd amount in iron plaque significantly affected the uptake and accumulation of Cd in roots and aerial parts of rice plants. Accumulated Cd in leaves was remobilized and transported during the booting to maturing stages, and the contributions of Cd transportation from leaves to brown rice were 30.0% and 22.5% in the two soils, respectively. A large amount of Cd accumulated in brown rice during the maturing stage. The transportation of remobilized Cd from leaves was also important for the accumulation of Cd in brown rice. [Display omitted] •The greatest percentage uptake of Cd in rice plant was booting stage and maturing stage.•Accumulated Cd in leaves was remobilized and transported during the booting to maturing stages.•The transportation of remobilized Cd from leaves was an important contribution for Cd accumulation in brown rice.
Author Peng, Pei-Qin
Du, Wen-Qi
Yang, Wen-Tao
Liao, Bo-Han
Zhu, Wei
Gao, Zi-Xiang
Chen, Li-Wei
Zhou, Hang
Zhang, Ping
Gu, Jiao-Feng
Author_xml – sequence: 1
  givenname: Hang
  surname: Zhou
  fullname: Zhou, Hang
– sequence: 2
  givenname: Wei
  surname: Zhu
  fullname: Zhu, Wei
– sequence: 3
  givenname: Wen-Tao
  surname: Yang
  fullname: Yang, Wen-Tao
– sequence: 4
  givenname: Jiao-Feng
  surname: Gu
  fullname: Gu, Jiao-Feng
– sequence: 5
  givenname: Zi-Xiang
  surname: Gao
  fullname: Gao, Zi-Xiang
– sequence: 6
  givenname: Li-Wei
  surname: Chen
  fullname: Chen, Li-Wei
– sequence: 7
  givenname: Wen-Qi
  surname: Du
  fullname: Du, Wen-Qi
– sequence: 8
  givenname: Ping
  surname: Zhang
  fullname: Zhang, Ping
– sequence: 9
  givenname: Pei-Qin
  surname: Peng
  fullname: Peng, Pei-Qin
– sequence: 10
  givenname: Bo-Han
  surname: Liao
  fullname: Liao, Bo-Han
  email: liaobohan1020@163.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29407786$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1TAQhS1URG8L_wChLFmQMOM4ic0CqbriJVViA2tr4kyKb_O42E4R_HrSpt2woNJIo7G-c2SdcyZOpnliIV4iFAhYvz0U7GaebgoJqAvAAkp8InYIBnKpUJ2IHaBq8rrC8lScxXgAgBKq6pk4lUZB0-h6J6731I1-GbPlmOia32Tk3DIuAyU_T-s1dVngcW794P_cvWV-nbDu40A_F94I7zhLPsaFY0Yp63zfc-ApZVdh_pV-ZDHRFcfn4mlPQ-QX9_tcfP_44dv-c3759dOX_cVl7pTRKW9LIsK6aRFZSs2aTd84clUtXSdJOcC2Im6NpNpox6yqpkMylVZKAvTluXi9-R7DvH4xJjv66HgYaOJ5iVaCqnQpdd08iqIxBg3WUq_oq3t0aUfu7DH4kcJv-5DlCrzbABfmGAP31vl0l1kK5AeLYG-Lswe7FWdvi7OAdi1uFat_xA_-j8jebzJe87zxHGx0nifHnQ_sku1m_3-Dv4sQtUA
CitedBy_id crossref_primary_10_1016_j_ecoenv_2019_109640
crossref_primary_10_1007_s11356_020_09150_z
crossref_primary_10_1016_j_jhazmat_2021_125668
crossref_primary_10_1088_1755_1315_1215_1_012009
crossref_primary_10_1039_D4EN00258J
crossref_primary_10_1016_j_jhazmat_2021_128130
crossref_primary_10_1016_j_ecoenv_2020_110490
crossref_primary_10_1093_jxb_eraa385
crossref_primary_10_3390_toxics11020141
crossref_primary_10_1007_s42729_025_02252_y
crossref_primary_10_3390_app12199718
crossref_primary_10_1007_s10653_024_02312_9
crossref_primary_10_1016_j_ecoenv_2021_112818
crossref_primary_10_1016_j_envpol_2023_122340
crossref_primary_10_1016_j_ecoenv_2021_112813
crossref_primary_10_1016_j_envpol_2023_121891
crossref_primary_10_1016_j_ecoenv_2022_113658
crossref_primary_10_3390_agronomy14010033
crossref_primary_10_1038_s41598_021_85648_x
crossref_primary_10_1007_s10653_024_02099_9
crossref_primary_10_1016_j_plaphy_2024_109458
crossref_primary_10_1016_j_scitotenv_2022_157718
crossref_primary_10_1016_j_scitotenv_2024_172875
crossref_primary_10_1080_07352689_2020_1792179
crossref_primary_10_1371_journal_pone_0243174
crossref_primary_10_32615_ps_2022_020
crossref_primary_10_3389_fenvs_2021_716770
crossref_primary_10_1016_j_chemosphere_2022_135642
crossref_primary_10_1007_s11356_020_11812_x
crossref_primary_10_1007_s42773_024_00346_x
crossref_primary_10_1021_acs_jafc_4c04415
crossref_primary_10_1016_j_chemosphere_2023_138558
crossref_primary_10_1016_j_jhazmat_2019_121343
crossref_primary_10_17352_2455_815X_000085
crossref_primary_10_1016_j_plaphy_2025_109825
crossref_primary_10_1016_j_chemosphere_2021_132374
crossref_primary_10_1186_s13765_021_00660_z
crossref_primary_10_3390_agronomy13081960
crossref_primary_10_1007_s11104_022_05414_4
crossref_primary_10_1016_j_chemosphere_2024_142784
crossref_primary_10_1007_s11356_022_24365_y
crossref_primary_10_1155_2021_2166775
crossref_primary_10_1016_j_jenvman_2022_115123
crossref_primary_10_1016_j_scitotenv_2024_174265
crossref_primary_10_1016_j_scitotenv_2018_10_388
crossref_primary_10_1016_j_scitotenv_2023_161965
crossref_primary_10_1016_j_jhazmat_2022_129619
crossref_primary_10_1007_s11356_022_23995_6
crossref_primary_10_1007_s11783_021_1431_5
crossref_primary_10_1016_j_ecoenv_2020_110680
crossref_primary_10_1021_acsomega_3c08327
crossref_primary_10_1007_s11104_023_06306_x
crossref_primary_10_1016_j_nantod_2024_102289
crossref_primary_10_1007_s11356_024_32839_4
crossref_primary_10_1007_s00128_021_03326_0
crossref_primary_10_17660_ActaHortic_2018_1218_29
crossref_primary_10_3390_plants12091902
crossref_primary_10_1016_j_chemosphere_2021_130212
crossref_primary_10_3390_foods12214026
crossref_primary_10_1016_j_envres_2024_118719
crossref_primary_10_1016_j_scitotenv_2022_155547
crossref_primary_10_1016_j_envpol_2022_119390
crossref_primary_10_1080_01904167_2022_2105713
crossref_primary_10_1016_j_scitotenv_2021_152296
crossref_primary_10_1007_s11368_022_03338_1
crossref_primary_10_1111_ejss_12794
crossref_primary_10_1016_j_scitotenv_2024_172861
crossref_primary_10_1186_s40538_023_00388_6
crossref_primary_10_1016_j_chemosphere_2019_125128
crossref_primary_10_1016_j_ecoenv_2019_109795
crossref_primary_10_1007_s42773_024_00313_6
crossref_primary_10_1016_j_jenvman_2020_111533
crossref_primary_10_3390_plants11020207
crossref_primary_10_1007_s11104_019_04094_x
crossref_primary_10_3390_toxics12060431
crossref_primary_10_1007_s11356_020_08223_3
crossref_primary_10_1007_s11356_021_13266_1
crossref_primary_10_1016_j_ecoenv_2024_117094
crossref_primary_10_1016_j_envpol_2020_113970
crossref_primary_10_1016_j_ecoenv_2020_110908
crossref_primary_10_1080_15226514_2019_1686605
crossref_primary_10_1016_j_jcs_2024_104046
crossref_primary_10_1016_j_chemosphere_2019_124846
crossref_primary_10_1016_j_ecoenv_2023_115525
crossref_primary_10_2139_ssrn_4064358
crossref_primary_10_1016_j_scitotenv_2024_177680
crossref_primary_10_1016_j_ecoenv_2018_08_082
crossref_primary_10_1016_j_ecoenv_2020_111840
crossref_primary_10_1016_j_ecoenv_2021_111921
crossref_primary_10_32604_phyton_2023_027924
crossref_primary_10_1016_j_ecoenv_2019_109903
crossref_primary_10_1016_j_ecoenv_2021_112214
crossref_primary_10_1016_j_chemosphere_2023_138511
crossref_primary_10_1016_j_apgeochem_2020_104776
crossref_primary_10_1080_19393210_2023_2278805
crossref_primary_10_1016_j_envpol_2024_123436
crossref_primary_10_1016_j_jenvman_2022_115289
crossref_primary_10_1016_j_scitotenv_2022_158060
crossref_primary_10_1016_j_scitotenv_2020_143501
crossref_primary_10_1016_j_envpol_2024_124919
crossref_primary_10_1016_j_rsci_2021_12_007
crossref_primary_10_1016_j_scitotenv_2022_160421
crossref_primary_10_1016_j_envpol_2020_114289
crossref_primary_10_1016_j_jes_2024_04_033
crossref_primary_10_1016_j_ecoenv_2022_114244
crossref_primary_10_1007_s42729_023_01263_x
crossref_primary_10_1016_j_envpol_2020_114681
crossref_primary_10_3390_plants13172457
Cites_doi 10.1016/j.envexpbot.2008.01.004
10.1016/j.pbi.2013.03.012
10.1016/j.agee.2015.12.001
10.1007/s11104-011-0829-4
10.1021/es402739a
10.1016/j.envexpbot.2006.04.001
10.1021/es501127k
10.1186/1471-2229-9-8
10.1093/jxb/erq383
10.1016/j.plaphy.2015.10.024
10.1016/j.chemosphere.2016.10.114
10.1007/s12892-010-0045-4
10.1021/es5047099
10.1007/s11356-016-6822-y
10.1007/s11783-012-0394-y
10.1104/pp.109.151035
10.1016/j.envpol.2011.02.025
10.1016/S1001-0742(09)60218-7
10.1002/jpln.200700018
10.1016/j.jhazmat.2009.10.029
10.1016/j.scitotenv.2008.02.004
10.1007/s11104-015-2627-x
10.1007/s11104-005-6453-4
10.1139/b91-335
10.1007/s11368-013-0658-6
10.1016/j.jhazmat.2016.11.063
10.1021/es060800v
10.1016/j.scitotenv.2006.06.013
10.1016/j.envexpbot.2014.05.004
10.1016/j.ecoenv.2013.11.024
10.1016/j.biortech.2004.02.008
10.1016/j.jenvman.2013.02.026
10.1016/j.jhazmat.2010.12.066
10.1016/j.envres.2017.03.014
10.1007/s11104-014-2268-5
10.1186/1471-2229-13-103
10.1016/j.envpol.2016.01.004
10.1016/j.fct.2011.09.019
10.1021/jf100017e
10.1007/s11104-013-1945-0
10.1111/j.1747-0765.2010.00481.x
10.1016/j.jhazmat.2009.11.023
10.1016/j.chemosphere.2005.07.076
10.1186/1939-8433-5-5
10.1002/jsfa.3648
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018. Published by Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018. Published by Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.ecoenv.2018.01.031
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Ecology
EISSN 1090-2414
EndPage 97
ExternalDocumentID 29407786
10_1016_j_ecoenv_2018_01_031
S014765131830040X
Genre Journal Article
GeographicLocations South East Asia
GeographicLocations_xml – name: South East Asia
GroupedDBID ---
--K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
IHE
J1W
KCYFY
KOM
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
ZU3
~G-
29G
53G
AAFWJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPKN
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
H~9
OK1
R2-
SEN
SEW
SSH
VH1
WUQ
XPP
ZMT
ZXP
~KM
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c498t-b3aaa167b11e228e8e9f7cac562cd2a4c01b5aeb92a698cee457d1a95844200f3
IEDL.DBID .~1
ISSN 0147-6513
1090-2414
IngestDate Fri Jul 11 05:05:30 EDT 2025
Tue Aug 05 10:42:32 EDT 2025
Wed Feb 19 02:43:27 EST 2025
Thu Apr 24 23:00:05 EDT 2025
Tue Jul 01 03:59:54 EDT 2025
Fri Feb 23 02:28:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Translocation
Rice (Oryza sativa L.)
Soil
Cadmium
Iron plaque
Growth stages
Language English
License Copyright © 2018. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c498t-b3aaa167b11e228e8e9f7cac562cd2a4c01b5aeb92a698cee457d1a95844200f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29407786
PQID 1999191628
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2045832867
proquest_miscellaneous_1999191628
pubmed_primary_29407786
crossref_citationtrail_10_1016_j_ecoenv_2018_01_031
crossref_primary_10_1016_j_ecoenv_2018_01_031
elsevier_sciencedirect_doi_10_1016_j_ecoenv_2018_01_031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-15
PublicationDateYYYYMMDD 2018-05-15
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-15
  day: 15
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Ecotoxicology and environmental safety
PublicationTitleAlternate Ecotoxicol Environ Saf
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Liu, Zhu, Hu, Williams, Gault, Meharg, Charnock, Smith (bib15) 2006; 40
Suralta, Yamauchi (bib27) 2008; 64
Boularbah, Schwartz, Bitton, Aboudrar, Ouhammou, Morel (bib1) 2006; 63
Harris, Taylor (bib7) 2013; 13
Saifullah, Javed, Naeem, Rengel, Dahlawi (bib25) 2016; 23
Yoneyama, Gosho, Kato, Goto, Hayashi (bib43) 2010; 56
Rodda, Li, Reid (bib24) 2011; 347
Kashiwagi, Shindoh, Hirotsu, Ishimaru (bib12) 2009; 9
Huang, Hsu, Wang (bib9) 2011; 186
Yang, Huang, Duan, Tan, Zhang (bib42) 2009; 89
Cheng, Zhang, Yao, Tang (bib4) 2005; 12
Li, Zhao, Zhang, Liu, Xu, Li, Li, Gao, Chai (bib13) 2016; 398
Tavarez, Macri, Sankaran (bib28) 2015; 97
Yan, Choi, Kim, Lee (bib41) 2010; 132
Moreno-Jiménez, Fernández, Puschenreiter, Williams, Plaza (bib20) 2016; 219
Xin, Huang, Yang, Yuan, Dai, Qiu (bib38) 2010; 175
Wu, Liu, Xue, Pan, Zou, Hartley, Wong (bib36) 2017; 168
Uraguchi, Fujiwara (bib30) 2012; 5
Chen, Kong, He, Liu, Smith, Smith, Zhu (bib3) 2008; 171
Hu, Li, Yuan, Ouyang, Zhou, Huang, Wu (bib10) 2013; 13
Ding, Zhang, Wang, Zhou, Yang, Yin (bib5) 2013; 122
Yamaguchi, Ohkura, Takahashi, Maejima, Arao (bib40) 2014; 48
Zhu, Fan, Wang, Qu, Yao (bib48) 2011; 49
Zhao, Ma, Zhu, Tang, McGrath (bib46) 2014; 49
Zhang, Ge, Yao, Chen, Hu (bib45) 2012; 6
Wei, Li, Zhou, Srivastava, Chiu, Zhan, Sun (bib33) 2010; 176
Williams, Santner, Larsen, Lehto, Oburger, Wenzel, Zhang (bib34) 2014; 48
Uraguchi, Fujiwara (bib31) 2013; 16
Kahr, Madsen (bib11) 1995; 9
Zhou, Zeng, Zhou, Liao, Peng, Hu, Zou (bib47) 2015; 386
Wu, Lu, Yang, Feng, Wei, Hao, He (bib37) 2010; 58
Rahman, Rahman, Reichman, Lim, Naidu (bib23) 2014; 100
Liu, Cao, Wong, Zhang, Chai (bib18) 2010; 22
Wang, Chen, Wong, Qiu, Cheng, Ye (bib32) 2011; 159
Nelson, Sommers, Sparks, Page, Helmke, Loeppert, Sumner (bib21) 1996
Cheng, Wang, Wong, Ye (bib2) 2014; 375
Hseu (bib8) 2004; 95
Liu, Zhang, Zhang (bib16) 2007; 59
Yu, Wang, Fang, Yuan, Yang (bib44) 2006; 370
Fujimaki, Suzui, Ishioka, Kawachi, Ito, Chino, Nakamura (bib6) 2010; 152
Xue, Shi, Wu, Wu, Qin, Pan, Hartley, Cui (bib39) 2017; 156
Liu, Qu, Zhang, Dong, Li, Wang (bib19) 2014; 107
Liu, Zhang, Christie, Zhang (bib17) 2008; 394
Liu, Zhu, Smith (bib14) 2005; 277
Otte, Dekkers, Rozema, Broekman (bib22) 1991; 69
Shahid, Dumat, Khalid, Schreck Eva, Xiong, Niazi (bib26) 2017; 325
Ueno, Koyama, Yamaji, Ma (bib29) 2011; 62
Wu, Zou, Xue, Pan, Huang, Hartley, Mo, Wong (bib35) 2016; 212
Cheng (10.1016/j.ecoenv.2018.01.031_bib2) 2014; 375
Liu (10.1016/j.ecoenv.2018.01.031_bib18) 2010; 22
Fujimaki (10.1016/j.ecoenv.2018.01.031_bib6) 2010; 152
Yan (10.1016/j.ecoenv.2018.01.031_bib41) 2010; 132
Uraguchi (10.1016/j.ecoenv.2018.01.031_bib30) 2012; 5
Ding (10.1016/j.ecoenv.2018.01.031_bib5) 2013; 122
Wu (10.1016/j.ecoenv.2018.01.031_bib37) 2010; 58
Xue (10.1016/j.ecoenv.2018.01.031_bib39) 2017; 156
Zhou (10.1016/j.ecoenv.2018.01.031_bib47) 2015; 386
Kahr (10.1016/j.ecoenv.2018.01.031_bib11) 1995; 9
Wei (10.1016/j.ecoenv.2018.01.031_bib33) 2010; 176
Suralta (10.1016/j.ecoenv.2018.01.031_bib27) 2008; 64
Yamaguchi (10.1016/j.ecoenv.2018.01.031_bib40) 2014; 48
Xin (10.1016/j.ecoenv.2018.01.031_bib38) 2010; 175
Zhu (10.1016/j.ecoenv.2018.01.031_bib48) 2011; 49
Shahid (10.1016/j.ecoenv.2018.01.031_bib26) 2017; 325
Wu (10.1016/j.ecoenv.2018.01.031_bib35) 2016; 212
Liu (10.1016/j.ecoenv.2018.01.031_bib19) 2014; 107
Wu (10.1016/j.ecoenv.2018.01.031_bib36) 2017; 168
Hseu (10.1016/j.ecoenv.2018.01.031_bib8) 2004; 95
Yang (10.1016/j.ecoenv.2018.01.031_bib42) 2009; 89
Yoneyama (10.1016/j.ecoenv.2018.01.031_bib43) 2010; 56
Kashiwagi (10.1016/j.ecoenv.2018.01.031_bib12) 2009; 9
Wang (10.1016/j.ecoenv.2018.01.031_bib32) 2011; 159
Uraguchi (10.1016/j.ecoenv.2018.01.031_bib31) 2013; 16
Liu (10.1016/j.ecoenv.2018.01.031_bib14) 2005; 277
Williams (10.1016/j.ecoenv.2018.01.031_bib34) 2014; 48
Tavarez (10.1016/j.ecoenv.2018.01.031_bib28) 2015; 97
Harris (10.1016/j.ecoenv.2018.01.031_bib7) 2013; 13
Zhao (10.1016/j.ecoenv.2018.01.031_bib46) 2014; 49
Liu (10.1016/j.ecoenv.2018.01.031_bib16) 2007; 59
Nelson (10.1016/j.ecoenv.2018.01.031_bib21) 1996
Saifullah (10.1016/j.ecoenv.2018.01.031_bib25) 2016; 23
Otte (10.1016/j.ecoenv.2018.01.031_bib22) 1991; 69
Rahman (10.1016/j.ecoenv.2018.01.031_bib23) 2014; 100
Yu (10.1016/j.ecoenv.2018.01.031_bib44) 2006; 370
Li (10.1016/j.ecoenv.2018.01.031_bib13) 2016; 398
Liu (10.1016/j.ecoenv.2018.01.031_bib15) 2006; 40
Moreno-Jiménez (10.1016/j.ecoenv.2018.01.031_bib20) 2016; 219
Ueno (10.1016/j.ecoenv.2018.01.031_bib29) 2011; 62
Chen (10.1016/j.ecoenv.2018.01.031_bib3) 2008; 171
Cheng (10.1016/j.ecoenv.2018.01.031_bib4) 2005; 12
Boularbah (10.1016/j.ecoenv.2018.01.031_bib1) 2006; 63
Huang (10.1016/j.ecoenv.2018.01.031_bib9) 2011; 186
Hu (10.1016/j.ecoenv.2018.01.031_bib10) 2013; 13
Zhang (10.1016/j.ecoenv.2018.01.031_bib45) 2012; 6
Liu (10.1016/j.ecoenv.2018.01.031_bib17) 2008; 394
Rodda (10.1016/j.ecoenv.2018.01.031_bib24) 2011; 347
References_xml – volume: 95
  start-page: 53
  year: 2004
  end-page: 59
  ident: bib8
  article-title: Evaluating heavy metal contents in nine composts using four digestion methods
  publication-title: Bioresour. Technol.
– volume: 63
  start-page: 811
  year: 2006
  end-page: 817
  ident: bib1
  article-title: Heavy metal contamination from mining sites in South Morocco, 2. Assessment of metal accumulation and toxicity in plants
  publication-title: Chemosphere
– volume: 219
  start-page: 171
  year: 2016
  end-page: 178
  ident: bib20
  article-title: Availability and transfer to grain of As, Cd, Cu, Ni, Pb and Zn in a barley agri-system: impact of biochar, organic and mineral fertilizers
  publication-title: Agr. Ecosyst. Environ.
– volume: 49
  start-page: 750
  year: 2014
  end-page: 759
  ident: bib46
  article-title: Soil contamination in China, current status and mitigation strategies
  publication-title: Environ. Sci. Technol.
– volume: 277
  start-page: 127
  year: 2005
  end-page: 138
  ident: bib14
  article-title: Effects of iron and manganese plaques on arsenic uptake by rice seedlings (
  publication-title: Plant Soil
– volume: 40
  start-page: 5730
  year: 2006
  end-page: 5736
  ident: bib15
  article-title: Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (
  publication-title: Environ. Sci. Technol.
– volume: 186
  start-page: 1801
  year: 2011
  end-page: 1807
  ident: bib9
  article-title: Effects of rice straw ash amendment on Cu solubility and distribution in flooded rice paddy soils
  publication-title: J. Hazard. Mater.
– volume: 13
  start-page: 916
  year: 2013
  end-page: 924
  ident: bib10
  article-title: Effect of water management on cadmium and arsenic accumulation by rice (
  publication-title: J. Soil Sediment.
– volume: 398
  start-page: 87
  year: 2016
  end-page: 97
  ident: bib13
  article-title: The influence of iron plaque on the absorption, translocation and transformation of mercury in rice (
  publication-title: Plant Soil
– volume: 122
  start-page: 8
  year: 2013
  end-page: 14
  ident: bib5
  article-title: Effects of soil type and genotype on lead concentration in rootstalk vegetables and the selection of cultivars for food safety
  publication-title: J. Environ. Manag.
– volume: 171
  start-page: 193
  year: 2008
  end-page: 199
  ident: bib3
  article-title: Do water regimes affect iron-plaque formation and microbial communities in the rhizosphere of paddy rice?
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 175
  start-page: 468
  year: 2010
  end-page: 476
  ident: bib38
  article-title: Responses of different water spinach cultivars and their hybrid to Cd, Pb and Cd–Pb exposures
  publication-title: J. Hazard. Mater.
– volume: 56
  start-page: 445
  year: 2010
  end-page: 453
  ident: bib43
  article-title: Xylem and phloem transport of Cd, Zn and Fe into the grains of rice plants (
  publication-title: Soil Sci. Plant Nutr.
– start-page: 961
  year: 1996
  end-page: 1010
  ident: bib21
  article-title: Total carbon, organic carbon, and organic matter
  publication-title: Methods Soil Anal. Part 3 Chem. Methods
– volume: 386
  start-page: 317
  year: 2015
  end-page: 329
  ident: bib47
  article-title: Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice (
  publication-title: Plant Soil
– volume: 375
  start-page: 137
  year: 2014
  end-page: 148
  ident: bib2
  article-title: Does radial oxygen loss and iron plaque formation on roots alter Cd and Pb uptake and distribution in rice plant tissues?
  publication-title: Plant Soil
– volume: 64
  start-page: 75
  year: 2008
  end-page: 82
  ident: bib27
  article-title: Root growth, aerenchyma development, and oxygen transport in rice genotypes subjected to drought and waterlogging
  publication-title: Environ. Exp. Bot.
– volume: 49
  start-page: 3081
  year: 2011
  end-page: 3085
  ident: bib48
  article-title: Health risk assessment of eight heavy metals in nine varieties of edible vegetable oils consumed in China
  publication-title: Food Chem. Toxicol.
– volume: 69
  start-page: 2670
  year: 1991
  end-page: 2677
  ident: bib22
  article-title: Uptake of arsenic by Aster tripolium in relation to rhizosphere oxidation
  publication-title: Can. J. Bot.
– volume: 16
  start-page: 328
  year: 2013
  end-page: 334
  ident: bib31
  article-title: Rice breaks ground for cadmium-free cereals
  publication-title: Curr. Opin. Plant Biol.
– volume: 89
  start-page: 1728
  year: 2009
  end-page: 1736
  ident: bib42
  article-title: Alternate wetting and moderate soil drying increases grain yield and reduces cadmium accumulation in rice grains
  publication-title: J. Sci. Food Agr.
– volume: 9
  start-page: 327
  year: 1995
  end-page: 336
  ident: bib11
  article-title: Determination of the cation exchange capacity and the surface area of bentonite, illite and kaolinite by methylene blue adsorption
  publication-title: Appl. Slay Sci.
– volume: 100
  start-page: 53
  year: 2014
  end-page: 60
  ident: bib23
  article-title: Heavy metals in Australian grown and imported rice and vegetables on sale in Australia, Health hazard
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 176
  start-page: 269
  year: 2010
  end-page: 273
  ident: bib33
  article-title: Effect of fertilizer amendments on phytoremediation of Cd-contaminated soil by a newly discovered hyperaccumulator
  publication-title: J. Hazard. Mater.
– volume: 6
  start-page: 509
  year: 2012
  end-page: 517
  ident: bib45
  article-title: Iron oxidation-reduction and its impacts on cadmium bioavailability in paddy soils: a review
  publication-title: Front. Environ. Sci. Eng.
– volume: 325
  start-page: 36
  year: 2017
  end-page: 58
  ident: bib26
  article-title: Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake
  publication-title: J. Hazard. Mater.
– volume: 48
  start-page: 8498
  year: 2014
  end-page: 8506
  ident: bib34
  article-title: Localized flux maxima of arsenic, lead, and iron around root apices in flooded lowland rice
  publication-title: Environ. Sci. Technol.
– volume: 59
  start-page: 314
  year: 2007
  end-page: 320
  ident: bib16
  article-title: Role of iron plaque in Cd uptake by and translocation within rice (
  publication-title: Environ. Exp. Bot.
– volume: 48
  start-page: 1549
  year: 2014
  end-page: 1556
  ident: bib40
  article-title: Arsenic distribution and speciation near rice roots influenced by iron plaques and redox conditions of the soil matrix
  publication-title: Environ. Sci. Technol.
– volume: 13
  start-page: 1
  year: 2013
  end-page: 16
  ident: bib7
  article-title: Cadmium uptake and partitioning in durum wheat during grain filling
  publication-title: BMC Plant Biol.
– volume: 347
  start-page: 105
  year: 2011
  end-page: 114
  ident: bib24
  article-title: The timing of grain Cd accumulation in rice plants, the relative importance of remobilisation within the plant and root Cd uptake post-flowering
  publication-title: Plant Soil.
– volume: 168
  start-page: 969
  year: 2017
  end-page: 975
  ident: bib36
  article-title: Oxic and anoxic conditions affect arsenic (As) accumulation and arsenite transporter expression in rice
  publication-title: Chemosphere
– volume: 58
  start-page: 6767
  year: 2010
  end-page: 6773
  ident: bib37
  article-title: Uptake, translocation, and remobilization of zinc absorbed at different growth stages by rice genotypes of different Zn densities
  publication-title: J. Agr. Food Chem.
– volume: 23
  start-page: 16432
  year: 2016
  end-page: 16439
  ident: bib25
  article-title: Timing of foliar Zn application plays a vital role in minimizing Cd accumulation in wheat
  publication-title: Environ. Sci. Pollut. Res.
– volume: 62
  start-page: 2265
  year: 2011
  end-page: 2272
  ident: bib29
  article-title: Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan
  publication-title: J. Exp. Bot.
– volume: 394
  start-page: 361
  year: 2008
  end-page: 368
  ident: bib17
  article-title: Influence of iron plaque on uptake and accumulation of Cd by rice (
  publication-title: Sci. Total Environ.
– volume: 370
  start-page: 302
  year: 2006
  end-page: 309
  ident: bib44
  article-title: Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice
  publication-title: Sci. Total Environ.
– volume: 22
  start-page: 1067
  year: 2010
  end-page: 1072
  ident: bib18
  article-title: Variations between rice cultivars in iron and manganese plaque on roots and the relation with plant cadmium uptake
  publication-title: J. Environ. Sci.
– volume: 152
  start-page: 1796
  year: 2010
  end-page: 1806
  ident: bib6
  article-title: Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant
  publication-title: Plant Physiol.
– volume: 212
  start-page: 27
  year: 2016
  end-page: 33
  ident: bib35
  article-title: The effect of silicon on iron plaque formation and arsenic accumulation in rice genotypes with different radial oxygen loss (ROL)
  publication-title: Environ. Pollut.
– volume: 12
  start-page: 48
  year: 2005
  end-page: 56
  ident: bib4
  article-title: Effect of grain position within a panicle and variety on As, Cd, Cr, Ni, Pb concentrations in
  publication-title: Rice Sci.
– volume: 107
  start-page: 25
  year: 2014
  end-page: 31
  ident: bib19
  article-title: Variations among rice cultivars in subcellular distribution of Cd, the relationship between translocation and grain accumulation
  publication-title: Environ. Exp. Bot.
– volume: 156
  start-page: 23
  year: 2017
  end-page: 30
  ident: bib39
  article-title: Cadmium, lead, and arsenic contamination in paddy soils of a mining area and their exposure effects on human HEPG2 and keratinocyte cell-lines
  publication-title: Environ. Res.
– volume: 9
  start-page: 1
  year: 2009
  ident: bib12
  article-title: Evidence for separate translocation pathways in determining cadmium accumulation in grain and aerial plant parts in rice
  publication-title: BMC Plant Biol.
– volume: 5
  start-page: 1
  year: 2012
  end-page: 8
  ident: bib30
  article-title: Cadmium transport and tolerance in rice, perspectives for reducing grain cadmium accumulation
  publication-title: Rice
– volume: 132
  start-page: 113
  year: 2010
  end-page: 119
  ident: bib41
  article-title: Absorption, translocation, and remobilization of cadmium supplied at different growth stages of rice
  publication-title: J. Crop Sci. Biotechnol.
– volume: 97
  start-page: 461
  year: 2015
  end-page: 469
  ident: bib28
  article-title: Cadmium and zinc partitioning and accumulation during grain filling in two near isogenic lines of durum wheat
  publication-title: Plant Physiol. Biochem.
– volume: 159
  start-page: 1730
  year: 2011
  end-page: 1736
  ident: bib32
  article-title: Cadmium accumulation in and tolerance of rice (
  publication-title: Environ. Pollut.
– volume: 64
  start-page: 75
  year: 2008
  ident: 10.1016/j.ecoenv.2018.01.031_bib27
  article-title: Root growth, aerenchyma development, and oxygen transport in rice genotypes subjected to drought and waterlogging
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2008.01.004
– volume: 9
  start-page: 327
  year: 1995
  ident: 10.1016/j.ecoenv.2018.01.031_bib11
  article-title: Determination of the cation exchange capacity and the surface area of bentonite, illite and kaolinite by methylene blue adsorption
  publication-title: Appl. Slay Sci.
– volume: 12
  start-page: 48
  year: 2005
  ident: 10.1016/j.ecoenv.2018.01.031_bib4
  article-title: Effect of grain position within a panicle and variety on As, Cd, Cr, Ni, Pb concentrations in japonica rice
  publication-title: Rice Sci.
– volume: 16
  start-page: 328
  year: 2013
  ident: 10.1016/j.ecoenv.2018.01.031_bib31
  article-title: Rice breaks ground for cadmium-free cereals
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2013.03.012
– volume: 219
  start-page: 171
  year: 2016
  ident: 10.1016/j.ecoenv.2018.01.031_bib20
  article-title: Availability and transfer to grain of As, Cd, Cu, Ni, Pb and Zn in a barley agri-system: impact of biochar, organic and mineral fertilizers
  publication-title: Agr. Ecosyst. Environ.
  doi: 10.1016/j.agee.2015.12.001
– volume: 347
  start-page: 105
  year: 2011
  ident: 10.1016/j.ecoenv.2018.01.031_bib24
  article-title: The timing of grain Cd accumulation in rice plants, the relative importance of remobilisation within the plant and root Cd uptake post-flowering
  publication-title: Plant Soil.
  doi: 10.1007/s11104-011-0829-4
– volume: 48
  start-page: 1549
  year: 2014
  ident: 10.1016/j.ecoenv.2018.01.031_bib40
  article-title: Arsenic distribution and speciation near rice roots influenced by iron plaques and redox conditions of the soil matrix
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es402739a
– volume: 59
  start-page: 314
  year: 2007
  ident: 10.1016/j.ecoenv.2018.01.031_bib16
  article-title: Role of iron plaque in Cd uptake by and translocation within rice (Oryza sativa L.). seedlings grown in solution culture
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2006.04.001
– volume: 48
  start-page: 8498
  year: 2014
  ident: 10.1016/j.ecoenv.2018.01.031_bib34
  article-title: Localized flux maxima of arsenic, lead, and iron around root apices in flooded lowland rice
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es501127k
– volume: 9
  start-page: 1
  year: 2009
  ident: 10.1016/j.ecoenv.2018.01.031_bib12
  article-title: Evidence for separate translocation pathways in determining cadmium accumulation in grain and aerial plant parts in rice
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-9-8
– volume: 62
  start-page: 2265
  year: 2011
  ident: 10.1016/j.ecoenv.2018.01.031_bib29
  article-title: Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erq383
– volume: 97
  start-page: 461
  year: 2015
  ident: 10.1016/j.ecoenv.2018.01.031_bib28
  article-title: Cadmium and zinc partitioning and accumulation during grain filling in two near isogenic lines of durum wheat
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2015.10.024
– volume: 168
  start-page: 969
  year: 2017
  ident: 10.1016/j.ecoenv.2018.01.031_bib36
  article-title: Oxic and anoxic conditions affect arsenic (As) accumulation and arsenite transporter expression in rice
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.10.114
– volume: 132
  start-page: 113
  year: 2010
  ident: 10.1016/j.ecoenv.2018.01.031_bib41
  article-title: Absorption, translocation, and remobilization of cadmium supplied at different growth stages of rice
  publication-title: J. Crop Sci. Biotechnol.
  doi: 10.1007/s12892-010-0045-4
– volume: 49
  start-page: 750
  year: 2014
  ident: 10.1016/j.ecoenv.2018.01.031_bib46
  article-title: Soil contamination in China, current status and mitigation strategies
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5047099
– volume: 23
  start-page: 16432
  year: 2016
  ident: 10.1016/j.ecoenv.2018.01.031_bib25
  article-title: Timing of foliar Zn application plays a vital role in minimizing Cd accumulation in wheat
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-016-6822-y
– volume: 6
  start-page: 509
  year: 2012
  ident: 10.1016/j.ecoenv.2018.01.031_bib45
  article-title: Iron oxidation-reduction and its impacts on cadmium bioavailability in paddy soils: a review
  publication-title: Front. Environ. Sci. Eng.
  doi: 10.1007/s11783-012-0394-y
– volume: 152
  start-page: 1796
  year: 2010
  ident: 10.1016/j.ecoenv.2018.01.031_bib6
  article-title: Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.151035
– volume: 159
  start-page: 1730
  year: 2011
  ident: 10.1016/j.ecoenv.2018.01.031_bib32
  article-title: Cadmium accumulation in and tolerance of rice (Oryza sativa L.). varieties with different rates of radial oxygen loss
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2011.02.025
– volume: 22
  start-page: 1067
  year: 2010
  ident: 10.1016/j.ecoenv.2018.01.031_bib18
  article-title: Variations between rice cultivars in iron and manganese plaque on roots and the relation with plant cadmium uptake
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(09)60218-7
– volume: 171
  start-page: 193
  year: 2008
  ident: 10.1016/j.ecoenv.2018.01.031_bib3
  article-title: Do water regimes affect iron-plaque formation and microbial communities in the rhizosphere of paddy rice?
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.200700018
– volume: 175
  start-page: 468
  year: 2010
  ident: 10.1016/j.ecoenv.2018.01.031_bib38
  article-title: Responses of different water spinach cultivars and their hybrid to Cd, Pb and Cd–Pb exposures
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.10.029
– volume: 394
  start-page: 361
  year: 2008
  ident: 10.1016/j.ecoenv.2018.01.031_bib17
  article-title: Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.). seedlings grown in soil
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2008.02.004
– volume: 398
  start-page: 87
  year: 2016
  ident: 10.1016/j.ecoenv.2018.01.031_bib13
  article-title: The influence of iron plaque on the absorption, translocation and transformation of mercury in rice (Oryza sativa L.) seedlings exposed to different mercury species
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2627-x
– volume: 277
  start-page: 127
  year: 2005
  ident: 10.1016/j.ecoenv.2018.01.031_bib14
  article-title: Effects of iron and manganese plaques on arsenic uptake by rice seedlings (Oryza sativa L.). grown in solution culture supplied with arsenate and arsenite
  publication-title: Plant Soil
  doi: 10.1007/s11104-005-6453-4
– volume: 69
  start-page: 2670
  year: 1991
  ident: 10.1016/j.ecoenv.2018.01.031_bib22
  article-title: Uptake of arsenic by Aster tripolium in relation to rhizosphere oxidation
  publication-title: Can. J. Bot.
  doi: 10.1139/b91-335
– volume: 13
  start-page: 916
  year: 2013
  ident: 10.1016/j.ecoenv.2018.01.031_bib10
  article-title: Effect of water management on cadmium and arsenic accumulation by rice (Oryza sativa L.). with different metal accumulation capacities
  publication-title: J. Soil Sediment.
  doi: 10.1007/s11368-013-0658-6
– volume: 325
  start-page: 36
  year: 2017
  ident: 10.1016/j.ecoenv.2018.01.031_bib26
  article-title: Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.11.063
– volume: 40
  start-page: 5730
  year: 2006
  ident: 10.1016/j.ecoenv.2018.01.031_bib15
  article-title: Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es060800v
– volume: 370
  start-page: 302
  year: 2006
  ident: 10.1016/j.ecoenv.2018.01.031_bib44
  article-title: Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2006.06.013
– volume: 107
  start-page: 25
  year: 2014
  ident: 10.1016/j.ecoenv.2018.01.031_bib19
  article-title: Variations among rice cultivars in subcellular distribution of Cd, the relationship between translocation and grain accumulation
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2014.05.004
– volume: 100
  start-page: 53
  year: 2014
  ident: 10.1016/j.ecoenv.2018.01.031_bib23
  article-title: Heavy metals in Australian grown and imported rice and vegetables on sale in Australia, Health hazard
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2013.11.024
– volume: 95
  start-page: 53
  year: 2004
  ident: 10.1016/j.ecoenv.2018.01.031_bib8
  article-title: Evaluating heavy metal contents in nine composts using four digestion methods
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2004.02.008
– volume: 122
  start-page: 8
  year: 2013
  ident: 10.1016/j.ecoenv.2018.01.031_bib5
  article-title: Effects of soil type and genotype on lead concentration in rootstalk vegetables and the selection of cultivars for food safety
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2013.02.026
– volume: 186
  start-page: 1801
  year: 2011
  ident: 10.1016/j.ecoenv.2018.01.031_bib9
  article-title: Effects of rice straw ash amendment on Cu solubility and distribution in flooded rice paddy soils
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.12.066
– volume: 156
  start-page: 23
  year: 2017
  ident: 10.1016/j.ecoenv.2018.01.031_bib39
  article-title: Cadmium, lead, and arsenic contamination in paddy soils of a mining area and their exposure effects on human HEPG2 and keratinocyte cell-lines
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2017.03.014
– volume: 386
  start-page: 317
  year: 2015
  ident: 10.1016/j.ecoenv.2018.01.031_bib47
  article-title: Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice (Oryza sativa L.). cultivars
  publication-title: Plant Soil
  doi: 10.1007/s11104-014-2268-5
– volume: 13
  start-page: 1
  year: 2013
  ident: 10.1016/j.ecoenv.2018.01.031_bib7
  article-title: Cadmium uptake and partitioning in durum wheat during grain filling
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-13-103
– volume: 212
  start-page: 27
  year: 2016
  ident: 10.1016/j.ecoenv.2018.01.031_bib35
  article-title: The effect of silicon on iron plaque formation and arsenic accumulation in rice genotypes with different radial oxygen loss (ROL)
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.01.004
– volume: 49
  start-page: 3081
  year: 2011
  ident: 10.1016/j.ecoenv.2018.01.031_bib48
  article-title: Health risk assessment of eight heavy metals in nine varieties of edible vegetable oils consumed in China
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2011.09.019
– volume: 58
  start-page: 6767
  year: 2010
  ident: 10.1016/j.ecoenv.2018.01.031_bib37
  article-title: Uptake, translocation, and remobilization of zinc absorbed at different growth stages by rice genotypes of different Zn densities
  publication-title: J. Agr. Food Chem.
  doi: 10.1021/jf100017e
– volume: 375
  start-page: 137
  year: 2014
  ident: 10.1016/j.ecoenv.2018.01.031_bib2
  article-title: Does radial oxygen loss and iron plaque formation on roots alter Cd and Pb uptake and distribution in rice plant tissues?
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1945-0
– start-page: 961
  year: 1996
  ident: 10.1016/j.ecoenv.2018.01.031_bib21
  article-title: Total carbon, organic carbon, and organic matter
  publication-title: Methods Soil Anal. Part 3 Chem. Methods
– volume: 56
  start-page: 445
  year: 2010
  ident: 10.1016/j.ecoenv.2018.01.031_bib43
  article-title: Xylem and phloem transport of Cd, Zn and Fe into the grains of rice plants (Oryza sativa L.). grown in continuously flooded Cd-contaminated soil
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1111/j.1747-0765.2010.00481.x
– volume: 176
  start-page: 269
  year: 2010
  ident: 10.1016/j.ecoenv.2018.01.031_bib33
  article-title: Effect of fertilizer amendments on phytoremediation of Cd-contaminated soil by a newly discovered hyperaccumulator Solanum nigrum L
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.11.023
– volume: 63
  start-page: 811
  year: 2006
  ident: 10.1016/j.ecoenv.2018.01.031_bib1
  article-title: Heavy metal contamination from mining sites in South Morocco, 2. Assessment of metal accumulation and toxicity in plants
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2005.07.076
– volume: 5
  start-page: 1
  year: 2012
  ident: 10.1016/j.ecoenv.2018.01.031_bib30
  article-title: Cadmium transport and tolerance in rice, perspectives for reducing grain cadmium accumulation
  publication-title: Rice
  doi: 10.1186/1939-8433-5-5
– volume: 89
  start-page: 1728
  year: 2009
  ident: 10.1016/j.ecoenv.2018.01.031_bib42
  article-title: Alternate wetting and moderate soil drying increases grain yield and reduces cadmium accumulation in rice grains
  publication-title: J. Sci. Food Agr.
  doi: 10.1002/jsfa.3648
SSID ssj0003055
Score 2.5353367
Snippet Rice consumption is considered the main source of human dietary Cd intake in Southeast Asia. This study aimed to investigate Cd uptake, accumulation, and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 91
SubjectTerms aerial parts
bioaccumulation
brown rice
Cadmium
developmental stages
Growth stages
hulls
humans
inflorescences
iron
Iron plaque
leaves
Oryza sativa
paddy soils
Rice (Oryza sativa L.)
roots
Soil
South East Asia
stems
tissues
Translocation
transportation
Title Cadmium uptake, accumulation, and remobilization in iron plaque and rice tissues at different growth stages
URI https://dx.doi.org/10.1016/j.ecoenv.2018.01.031
https://www.ncbi.nlm.nih.gov/pubmed/29407786
https://www.proquest.com/docview/1999191628
https://www.proquest.com/docview/2045832867
Volume 152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelZTAYo-2-sn6gwR7nJbJkS3osoSXdRhljhbwJfbnL2jghsQd76d_ek2S39CEUCgZhcTJCd7o7Wb-7Q-iz5c5RTWzGHGw3Zo3MRKVJZl1FGbMjJ2xEW1yUk0v2bVpMt9C4j4UJsMpO9yedHrV11zPsVnO4nM2GAZbEy4IEoQyiOA0R7NADMv319gHmETJaJRgjzwJ1Hz4XMV5wwvP1vwDwEjF5JyWbzNMm9zOaobNd9LrzH_FJmuIe2vL1PnpxGnNP_99Hr9JvOJyii96g67F281k7x-2y0df-C9bWtvOuZBe81Q6v_HwRELIpHhPP4FlBu7zRMJNEAcoEN5FDa6wb3BdVafAVHOKbPxg8zCu_fosuz05_jydZV18hs0yKJjNUa01KbgjxeS688LLiVltwiazLNXCKmEJ7I3NdSgHWlBXcES3BZ2GwuSr6Dm3Xi9p_QNgCg0e0sGDrKIt6QlJDXOUNl6ZwZIBov6zKdsnHQw2MG9WjzP6qxAwVmKFGRMFXBii7H7VMyTeeoOc9x9QjIVJgH54Y-alnsIL9FS5NdO0X7VqFNA1wpi1zsZkmj7fPuSj5AL1P0nE_31zCkZmL8uOz53aAXoa3AFkgxSHablatPwJPqDHHUdSP0c7J-NePn6E9_z65uAOn3QsQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6lLHBGFv30exTgz3OJLJlS3osoSVduzy1kDehL7dZGyckdmH__U6WHdhDKAwMxrZkDt_pPqzf3QF8t9y5TFObMIfLjVkjE1FqmlhXZozZsRO2RVvMiuk1-znP5wcw6XNhAqyy0_1Rp7faursz6r7maL1YjAIsiRc5DUIZRHH-BA5Ddap8AIcn5xfT2U4hh6JWEcnIkzChz6BrYV4Y5PnqIWC8RFu_M6P7LNQ-D7S1RGev4GXnQpKTSOVrOPDVETw9bctP_zmCF_FPHIkJRm_gbqLdctEsSbOu9Z3_QbS1zbLr2oVXlSMbv1wFkGxMySQLPDZ4Xt9rpCSOQH1C6pZJW6Jr0vdVqckNxvH1LUEn88Zv38L12enVZJp0LRYSy6SoE5NprWnBDaU-TYUXXpbcaotekXWpRmZRk2tvZKoLKdCgspw7qiW6LQzXV5m9g0G1qvwxEIs8Hme5RXOXsVZVyMxQV3rDpckdHULWf1Zlu_rjoQ3GveqBZr9VZIYKzFBjqvAtQ0h2s9ax_sYj43nPMfWPHCk0EY_M_NYzWOESC_smuvKrZqtCpQYMa4tU7B-TthvQqSj4EN5H6djRm0qMmrkoPvw3bV_h2fTq16W6PJ9dfITn4UlAMND8EwzqTeM_o2NUmy-d4P8FZIoMLA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cadmium+uptake%2C+accumulation%2C+and+remobilization+in+iron+plaque+and+rice+tissues+at+different+growth+stages&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Zhou%2C+Hang&rft.au=Zhu%2C+Wei&rft.au=Yang%2C+Wen-Tao&rft.au=Gu%2C+Jiao-Feng&rft.date=2018-05-15&rft.eissn=1090-2414&rft.volume=152&rft.spage=91&rft_id=info:doi/10.1016%2Fj.ecoenv.2018.01.031&rft_id=info%3Apmid%2F29407786&rft.externalDocID=29407786
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon