Learning to Rank for Blind Image Quality Assessment

Blind image quality assessment (BIQA) aims to predict perceptual image quality scores without access to reference images. State-of-the-art BIQA methods typically require subjects to score a large number of images to train a robust model. However, subjective quality scores are imprecise, biased, and...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 26; no. 10; pp. 2275 - 2290
Main Authors Gao, Fei, Tao, Dacheng, Gao, Xinbo, Li, Xuelong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2014.2377181

Cover

Loading…
Abstract Blind image quality assessment (BIQA) aims to predict perceptual image quality scores without access to reference images. State-of-the-art BIQA methods typically require subjects to score a large number of images to train a robust model. However, subjective quality scores are imprecise, biased, and inconsistent, and it is challenging to obtain a large-scale database, or to extend existing databases, because of the inconvenience of collecting images, training the subjects, conducting subjective experiments, and realigning human quality evaluations. To combat these limitations, this paper explores and exploits preference image pairs (PIPs) such as the quality of image <inline-formula> <tex-math notation="LaTeX">{\boldsymbol {I}}_{\boldsymbol {a}} </tex-math></inline-formula> is better than that of image <inline-formula> <tex-math notation="LaTeX">{\boldsymbol {I}}_{\boldsymbol {b}} </tex-math></inline-formula> for training a robust BIQA model. The preference label, representing the relative quality of two images, is generally precise and consistent, and is not sensitive to image content, distortion type, or subject identity; such PIPs can be generated at a very low cost. The proposed BIQA method is one of learning to rank. We first formulate the problem of learning the mapping from the image features to the preference label as one of classification. In particular, we investigate the utilization of a multiple kernel learning algorithm based on group lasso to provide a solution. A simple but effective strategy to estimate perceptual image quality scores is then presented. Experiments show that the proposed BIQA method is highly effective and achieves a performance comparable with that of state-of-the-art BIQA algorithms. Moreover, the proposed method can be easily extended to new distortion categories.
AbstractList Blind image quality assessment (BIQA) aims to predict perceptual image quality scores without access to reference images. State-of-the-art BIQA methods typically require subjects to score a large number of images to train a robust model. However, subjective quality scores are imprecise, biased, and inconsistent, and it is challenging to obtain a large-scale database, or to extend existing databases, because of the inconvenience of collecting images, training the subjects, conducting subjective experiments, and realigning human quality evaluations. To combat these limitations, this paper explores and exploits preference image pairs (PIPs) such as the quality of image Ia is better than that of image Ib for training a robust BIQA model. The preference label, representing the relative quality of two images, is generally precise and consistent, and is not sensitive to image content, distortion type, or subject identity; such PIPs can be generated at a very low cost. The proposed BIQA method is one of learning to rank. We first formulate the problem of learning the mapping from the image features to the preference label as one of classification. In particular, we investigate the utilization of a multiple kernel learning algorithm based on group lasso to provide a solution. A simple but effective strategy to estimate perceptual image quality scores is then presented. Experiments show that the proposed BIQA method is highly effective and achieves a performance comparable with that of state-of-the-art BIQA algorithms. Moreover, the proposed method can be easily extended to new distortion categories.
Blind image quality assessment (BIQA) aims to predict perceptual image quality scores without access to reference images. State-of-the-art BIQA methods typically require subjects to score a large number of images to train a robust model. However, subjective quality scores are imprecise, biased, and inconsistent, and it is challenging to obtain a large-scale database, or to extend existing databases, because of the inconvenience of collecting images, training the subjects, conducting subjective experiments, and realigning human quality evaluations. To combat these limitations, this paper explores and exploits preference image pairs (PIPs) such as the quality of image ${\boldsymbol {I}}_{\boldsymbol {a}}$ is better than that of image ${\boldsymbol {I}}_{\boldsymbol {b}}$ for training a robust BIQA model. The preference label, representing the relative quality of two images, is generally precise and consistent, and is not sensitive to image content, distortion type, or subject identity; such PIPs can be generated at a very low cost. The proposed BIQA method is one of learning to rank. We first formulate the problem of learning the mapping from the image features to the preference label as one of classification. In particular, we investigate the utilization of a multiple kernel learning algorithm based on group lasso to provide a solution. A simple but effective strategy to estimate perceptual image quality scores is then presented. Experiments show that the proposed BIQA method is highly effective and achieves a performance comparable with that of state-of-the-art BIQA algorithms. Moreover, the proposed method can be easily extended to new distortion categories.
Blind image quality assessment (BIQA) aims to predict perceptual image quality scores without access to reference images. State-of-the-art BIQA methods typically require subjects to score a large number of images to train a robust model. However, subjective quality scores are imprecise, biased, and inconsistent, and it is challenging to obtain a large-scale database, or to extend existing databases, because of the inconvenience of collecting images, training the subjects, conducting subjective experiments, and realigning human quality evaluations. To combat these limitations, this paper explores and exploits preference image pairs (PIPs) such as the quality of image [Formula Omitted] is better than that of image [Formula Omitted] for training a robust BIQA model. The preference label, representing the relative quality of two images, is generally precise and consistent, and is not sensitive to image content, distortion type, or subject identity; such PIPs can be generated at a very low cost. The proposed BIQA method is one of learning to rank. We first formulate the problem of learning the mapping from the image features to the preference label as one of classification. In particular, we investigate the utilization of a multiple kernel learning algorithm based on group lasso to provide a solution. A simple but effective strategy to estimate perceptual image quality scores is then presented. Experiments show that the proposed BIQA method is highly effective and achieves a performance comparable with that of state-of-the-art BIQA algorithms. Moreover, the proposed method can be easily extended to new distortion categories.
Blind image quality assessment (BIQA) aims to predict perceptual image quality scores without access to reference images. State-of-the-art BIQA methods typically require subjects to score a large number of images to train a robust model. However, subjective quality scores are imprecise, biased, and inconsistent, and it is challenging to obtain a large-scale database, or to extend existing databases, because of the inconvenience of collecting images, training the subjects, conducting subjective experiments, and realigning human quality evaluations. To combat these limitations, this paper explores and exploits preference image pairs (PIPs) such as the quality of image <inline-formula> <tex-math notation="LaTeX">{\boldsymbol {I}}_{\boldsymbol {a}} </tex-math></inline-formula> is better than that of image <inline-formula> <tex-math notation="LaTeX">{\boldsymbol {I}}_{\boldsymbol {b}} </tex-math></inline-formula> for training a robust BIQA model. The preference label, representing the relative quality of two images, is generally precise and consistent, and is not sensitive to image content, distortion type, or subject identity; such PIPs can be generated at a very low cost. The proposed BIQA method is one of learning to rank. We first formulate the problem of learning the mapping from the image features to the preference label as one of classification. In particular, we investigate the utilization of a multiple kernel learning algorithm based on group lasso to provide a solution. A simple but effective strategy to estimate perceptual image quality scores is then presented. Experiments show that the proposed BIQA method is highly effective and achieves a performance comparable with that of state-of-the-art BIQA algorithms. Moreover, the proposed method can be easily extended to new distortion categories.
Blind image quality assessment (BIQA) aims to predict perceptual image quality scores without access to reference images. State-of-the-art BIQA methods typically require subjects to score a large number of images to train a robust model. However, subjective quality scores are imprecise, biased, and inconsistent, and it is challenging to obtain a large-scale database, or to extend existing databases, because of the inconvenience of collecting images, training the subjects, conducting subjective experiments, and realigning human quality evaluations. To combat these limitations, this paper explores and exploits preference image pairs (PIPs) such as the quality of image Ia is better than that of image Ib for training a robust BIQA model. The preference label, representing the relative quality of two images, is generally precise and consistent, and is not sensitive to image content, distortion type, or subject identity; such PIPs can be generated at a very low cost. The proposed BIQA method is one of learning to rank. We first formulate the problem of learning the mapping from the image features to the preference label as one of classification. In particular, we investigate the utilization of a multiple kernel learning algorithm based on group lasso to provide a solution. A simple but effective strategy to estimate perceptual image quality scores is then presented. Experiments show that the proposed BIQA method is highly effective and achieves a performance comparable with that of state-of-the-art BIQA algorithms. Moreover, the proposed method can be easily extended to new distortion categories.Blind image quality assessment (BIQA) aims to predict perceptual image quality scores without access to reference images. State-of-the-art BIQA methods typically require subjects to score a large number of images to train a robust model. However, subjective quality scores are imprecise, biased, and inconsistent, and it is challenging to obtain a large-scale database, or to extend existing databases, because of the inconvenience of collecting images, training the subjects, conducting subjective experiments, and realigning human quality evaluations. To combat these limitations, this paper explores and exploits preference image pairs (PIPs) such as the quality of image Ia is better than that of image Ib for training a robust BIQA model. The preference label, representing the relative quality of two images, is generally precise and consistent, and is not sensitive to image content, distortion type, or subject identity; such PIPs can be generated at a very low cost. The proposed BIQA method is one of learning to rank. We first formulate the problem of learning the mapping from the image features to the preference label as one of classification. In particular, we investigate the utilization of a multiple kernel learning algorithm based on group lasso to provide a solution. A simple but effective strategy to estimate perceptual image quality scores is then presented. Experiments show that the proposed BIQA method is highly effective and achieves a performance comparable with that of state-of-the-art BIQA algorithms. Moreover, the proposed method can be easily extended to new distortion categories.
Author Li, Xuelong
Tao, Dacheng
Gao, Fei
Gao, Xinbo
Author_xml – sequence: 1
  givenname: Fei
  surname: Gao
  fullname: Gao, Fei
  email: gaofeihifly@gmail.com
  organization: Video and Image Processing System Laboratory, School of Electronic Engineering, Xidian University, Xi'an, P. R. China
– sequence: 2
  givenname: Dacheng
  surname: Tao
  fullname: Tao, Dacheng
  email: dacheng.tao@uts.edu.au
  organization: Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology, Sydney, 235 Jones Street, Ultimo, Australia
– sequence: 3
  givenname: Xinbo
  surname: Gao
  fullname: Gao, Xinbo
  email: xbgao@ieee.org
  organization: State Key Laboratory of Integrated Services Networks, School of Electronic Engineering, Xidian University, Xi'an, China
– sequence: 4
  givenname: Xuelong
  surname: Li
  fullname: Li, Xuelong
  email: xuelong_li@opt.ac.cn
  organization: Center for OPTical IMagery Analysis and Learning (OPTIMAL), State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, P. R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25616080$$D View this record in MEDLINE/PubMed
BookMark eNqN0U1LwzAABuAgEzfn_oCCFLx46cxnkx51-DEYE3WCt5K26chs05m0h_17Uzd32EHMIQnkeRPa9xT0TG0UAOcIjhGC8c1iPp-9jTFEdIwJ50igIzDAKMIhJkL09nv-0Qcj51bQjwiyiMYnoI9ZhCIo4ACQmZLWaLMMmjp4leYzKGob3JXa5MG0kksVvLSy1M0muHVOOVcp05yB40KWTo126xC8P9wvJk_h7PlxOrmdhRmNRRNKQSUTMUolzXNGIk5kSuOswAznOJU8FTCFPMOE-tmfoYIRzihnAlIqYk6G4Hp779rWX61yTVJpl6mylEbVrUsQ5x2FJPoHxV56Tzy9OqCrurXGf0inYoxohGOvLneqTSuVJ2urK2k3ye-f8wBvQWZr56wq9gTBpGso-Wko6RpKdg35kDgIZbqRja5NY6Uu_45ebKNaKbV_i3uCGSffUJiZiw
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_JSTSP_2016_2632422
crossref_primary_10_1049_iet_ipr_2018_6485
crossref_primary_10_1109_TIP_2018_2869688
crossref_primary_10_1146_annurev_vision_100419_120301
crossref_primary_10_1109_ACCESS_2020_3033122
crossref_primary_10_1016_j_neucom_2021_08_048
crossref_primary_10_1016_j_sigpro_2016_01_019
crossref_primary_10_1016_j_neucom_2023_126437
crossref_primary_10_1109_TIP_2019_2942514
crossref_primary_10_1016_j_patrec_2018_10_012
crossref_primary_10_1109_TNNLS_2015_2511069
crossref_primary_10_1016_j_optcom_2017_06_102
crossref_primary_10_1109_TNNLS_2021_3127720
crossref_primary_10_1016_j_jvcir_2015_09_009
crossref_primary_10_1109_TIP_2017_2708503
crossref_primary_10_1109_TMM_2019_2894958
crossref_primary_10_1007_s11432_019_2757_1
crossref_primary_10_1109_TIP_2017_2718185
crossref_primary_10_1109_TMM_2022_3190700
crossref_primary_10_1016_j_sigpro_2018_09_002
crossref_primary_10_1109_TIP_2021_3061932
crossref_primary_10_1109_TVCG_2018_2805355
crossref_primary_10_1109_ACCESS_2017_2656878
crossref_primary_10_1109_TIM_2023_3307754
crossref_primary_10_1109_TNNLS_2018_2890017
crossref_primary_10_1007_s11751_018_0318_x
crossref_primary_10_1109_LSP_2022_3232289
crossref_primary_10_1109_TNNLS_2019_2933590
crossref_primary_10_1007_s11263_024_02001_1
crossref_primary_10_1016_j_image_2021_116444
crossref_primary_10_1109_TBC_2016_2638620
crossref_primary_10_1109_TCYB_2017_2664499
crossref_primary_10_1007_s11042_018_6186_z
crossref_primary_10_1109_ACCESS_2018_2832722
crossref_primary_10_1007_s11042_022_14225_9
crossref_primary_10_1016_j_future_2020_12_023
crossref_primary_10_1109_TSMC_2015_2455020
crossref_primary_10_1016_j_patcog_2018_04_016
crossref_primary_10_1109_ACCESS_2018_2815608
crossref_primary_10_1016_j_displa_2016_06_002
crossref_primary_10_1109_ACCESS_2025_3531416
crossref_primary_10_1109_TBC_2024_3464418
crossref_primary_10_1109_TGRS_2019_2891679
crossref_primary_10_1109_TNNLS_2017_2649101
crossref_primary_10_1049_iet_ipr_2019_0809
crossref_primary_10_1109_TCYB_2019_2924589
crossref_primary_10_1109_TIP_2021_3092822
crossref_primary_10_1109_TMM_2021_3114551
crossref_primary_10_1007_s10994_021_06122_3
crossref_primary_10_1109_TIP_2016_2538462
crossref_primary_10_1007_s10489_020_01787_0
crossref_primary_10_1016_j_cag_2025_104176
crossref_primary_10_1016_j_neucom_2017_01_054
crossref_primary_10_1016_j_patrec_2017_07_015
crossref_primary_10_1016_j_neucom_2020_04_011
crossref_primary_10_1109_TMM_2023_3284988
crossref_primary_10_1007_s10489_021_02904_3
crossref_primary_10_1109_TIP_2019_2910666
crossref_primary_10_1109_TCSVT_2021_3093483
crossref_primary_10_1109_TIP_2020_2988437
crossref_primary_10_1109_TPAMI_2019_2899857
crossref_primary_10_1109_TCSVT_2016_2543099
crossref_primary_10_1109_ACCESS_2018_2889992
crossref_primary_10_1109_TIP_2020_3016502
crossref_primary_10_1109_LGRS_2020_3047789
crossref_primary_10_1109_TMM_2018_2794262
crossref_primary_10_1007_s00371_024_03441_z
crossref_primary_10_1016_j_ins_2017_10_053
crossref_primary_10_1016_j_neucom_2016_06_070
crossref_primary_10_1109_TCSVT_2022_3231041
crossref_primary_10_1016_j_jvcir_2018_12_005
crossref_primary_10_1007_s11042_016_3519_7
crossref_primary_10_1109_TIP_2016_2631888
crossref_primary_10_1109_TBDATA_2019_2895605
crossref_primary_10_1016_j_dsp_2020_102834
crossref_primary_10_1109_ACCESS_2019_2931012
crossref_primary_10_1016_j_knosys_2025_113027
crossref_primary_10_1371_journal_pone_0176632
crossref_primary_10_1117_1_OE_58_7_073101
crossref_primary_10_5005_jp_journals_10080_1446
crossref_primary_10_1007_s11042_018_6524_1
crossref_primary_10_1109_ACCESS_2019_2901063
crossref_primary_10_1016_j_sigpro_2017_07_020
crossref_primary_10_1109_TCSVT_2020_3030895
crossref_primary_10_1109_TIP_2019_2922072
crossref_primary_10_1145_3129505
Cites_doi 10.1109/TIP.2012.2190086
10.1109/LSP.2011.2179293
10.1587/transinf.E94.D.1854
10.1016/j.patcog.2014.05.002
10.1037/0033-295X.101.2.266
10.1109/ICIP.1996.559637
10.1109/CVPR.2013.133
10.1109/TSMCB.2012.2217957
10.1109/TIP.2006.881959
10.1109/TNNLS.2013.2291772
10.1109/TNN.2011.2120620
10.1145/1961189.1961199
10.1117/1.3267105
10.1109/TIP.2011.2147325
10.1145/1273496.1273513
10.1007/s11432-011-4421-6
10.1007/s11263-013-0645-9
10.1016/j.artint.2008.08.002
10.1109/TIP.2012.2214050
10.1109/LSP.2012.2227726
10.1093/biomet/39.3-4.324
10.1109/TNNLS.2013.2271356
10.1109/TIP.2005.859378
10.1109/ACSSC.2012.6489326
10.1016/j.neucom.2014.06.029
10.1109/CVPR.2011.5995446
10.1109/ACSSC.2012.6489321
10.1007/s11432-012-4678-4
10.1023/A:1021889010444
10.1109/TIP.2014.2311377
10.1007/s10791-009-9109-9
10.1109/TCYB.2013.2264285
10.1109/CVPR.2013.132
10.1109/TNNLS.2013.2258174
10.1109/TNNLS.2013.2253798
10.1093/bioinformatics/bth294
10.1109/TNN.2011.2160875
10.1109/TNNLS.2014.2336852
10.1037/0096-1523.12.4.496
10.1109/TNNLS.2012.2237183
10.1117/12.845389
10.1109/TIP.2012.2191563
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2014.2377181
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
Technology Research Database
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 2290
ExternalDocumentID 3855538131
25616080
10_1109_TNNLS_2014_2377181
7014257
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61125106; 61125204; 61432014; 61172146
  funderid: 10.13039/501100001809
– fundername: Shaanxi Innovative Research Team for Key Science and Technology
  grantid: 2012KCT-02
– fundername: Key Research Program of the Chinese Academy of Sciences
  grantid: KGZD-EW-T03
– fundername: Fundamental Research Funds for the Central Universities
  grantid: K5051202048; BDZ021403; JB149901
– fundername: Microsoft Research Asia Project based Funding
  grantid: FY13-RES-OPP-034
– fundername: Australian Research Council Projects
  grantid: DP-140102164; FT-130101457; LP-140100569
– fundername: Program for Changjiang Scholars and Innovative Research Team in University of China
  grantid: IRT13088
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c498t-a84a5891ba4dd53673ab49cf252d2ba7b80b07c23407c3ab1f537547580448973
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 12:20:00 EDT 2025
Fri Jul 11 06:10:13 EDT 2025
Mon Jun 30 07:14:24 EDT 2025
Mon Jul 21 06:02:15 EDT 2025
Tue Jul 01 00:27:19 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
Wed Aug 27 02:19:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 10
Keywords Image quality assessment (IQA)
learning preferences
universal blind IQA (BIQA)
learning to rank
multiple kernel learning (MKL)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c498t-a84a5891ba4dd53673ab49cf252d2ba7b80b07c23407c3ab1f537547580448973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://ir.opt.ac.cn/handle/181661/25482
PMID 25616080
PQID 1729214629
PQPubID 85436
PageCount 16
ParticipantIDs crossref_primary_10_1109_TNNLS_2014_2377181
proquest_miscellaneous_1778044036
proquest_journals_1729214629
ieee_primary_7014257
crossref_citationtrail_10_1109_TNNLS_2014_2377181
pubmed_primary_25616080
proquest_miscellaneous_1720447783
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
yu (ref36) 2014
ref59
ref58
ref14
rakotomamonjy (ref46) 2008; 9
(ref51) 2000
ref53
ref52
ref54
ref10
zheng (ref43) 2007
ref18
he (ref7) 2012
gao (ref11) 2013; 24
ref50
li (ref55) 2014; pp
ref45
ref48
ref47
ref41
ref44
ponomarenko (ref19) 2009; 10
hou (ref12) 2014; pp
sheikh (ref15) 2005
halonen (ref30) 2011; 7867
gönen (ref49) 2011; 12
ref9
ref4
ref3
ref6
ponomarenko (ref16) 2013
ref5
ref40
ref35
ref34
ref37
ref31
ref33
ref1
ref39
ref38
xu (ref32) 2010
tsukida (ref21) 2011
ye (ref8) 2012
ref24
herbrich (ref42) 1999
(ref23) 2012
ref26
ref25
ref20
ref22
ref28
ref27
ref29
li (ref2) 2011; 22
larson (ref17) 2010; 19
References_xml – ident: ref10
  doi: 10.1109/TIP.2012.2190086
– ident: ref27
  doi: 10.1109/LSP.2011.2179293
– ident: ref31
  doi: 10.1587/transinf.E94.D.1854
– ident: ref59
  doi: 10.1016/j.patcog.2014.05.002
– start-page: 106
  year: 2013
  ident: ref16
  article-title: Color image database TID2013: Peculiarities and preliminary results
  publication-title: Proc 4th Eur Workshop Vis Inf Process (EUVIP)
– ident: ref20
  doi: 10.1037/0033-295X.101.2.266
– ident: ref24
  doi: 10.1109/ICIP.1996.559637
– ident: ref26
  doi: 10.1109/CVPR.2013.133
– ident: ref33
  doi: 10.1109/TSMCB.2012.2217957
– ident: ref14
  doi: 10.1109/TIP.2006.881959
– volume: 7867
  start-page: 78670z-1
  year: 2011
  ident: ref30
  article-title: Naturalness and interestingness of test images for visual quality evaluation
  publication-title: Proc SPIE Image Qual Syst Perform VIII
– ident: ref48
  doi: 10.1109/TNNLS.2013.2291772
– year: 2012
  ident: ref23
  publication-title: Methodology for the Subjective Assessment of the Quality of Television Pictures
– volume: 22
  start-page: 793
  year: 2011
  ident: ref2
  article-title: Blind image quality assessment using a general regression neural network
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2120620
– year: 2005
  ident: ref15
  publication-title: LIVE Image Quality Assessment Database Release 2
– volume: 10
  start-page: 30
  year: 2009
  ident: ref19
  article-title: TID2008-A database for evaluation of full-reference visual quality assessment metrics
  publication-title: Adv Modern Radioelectron
– ident: ref50
  doi: 10.1145/1961189.1961199
– volume: 19
  start-page: 11006
  year: 2010
  ident: ref17
  article-title: Most apparent distortion: Full-reference image quality assessment and the role of strategy
  publication-title: J Electron Imag
  doi: 10.1117/1.3267105
– ident: ref3
  doi: 10.1109/TIP.2011.2147325
– ident: ref38
  doi: 10.1145/1273496.1273513
– ident: ref58
  doi: 10.1007/s11432-011-4421-6
– ident: ref53
  doi: 10.1007/s11263-013-0645-9
– ident: ref41
  doi: 10.1016/j.artint.2008.08.002
– ident: ref4
  doi: 10.1109/TIP.2012.2214050
– ident: ref28
  doi: 10.1109/LSP.2012.2227726
– start-page: 1697
  year: 2007
  ident: ref43
  article-title: A general boosting method and its application to learning ranking functions for web search
  publication-title: Advances in Neural Information Processing Systems 20
– ident: ref29
  doi: 10.1093/biomet/39.3-4.324
– year: 2000
  ident: ref51
  publication-title: Final report from the video quality experts group on the validation of objective models of video quality assessment
– start-page: 115
  year: 1999
  ident: ref42
  article-title: Large margin rank boundaries for ordinal regression
  publication-title: Advances in neural information processing systems
– year: 2011
  ident: ref21
  article-title: How to analyze paired comparison data
– start-page: 1098
  year: 2012
  ident: ref8
  article-title: Unsupervised feature learning framework for no-reference image quality assessment
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– volume: 9
  start-page: 2491
  year: 2008
  ident: ref46
  article-title: SimpleMKL
  publication-title: J Mach Learn Res
– volume: 24
  start-page: 2013
  year: 2013
  ident: ref11
  article-title: Universal blind image quality assessment metrics via natural scene statistics and multiple kernel learning
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2271356
– ident: ref52
  doi: 10.1109/TIP.2005.859378
– volume: pp
  start-page: 1
  year: 2014
  ident: ref55
  article-title: Scene parsing from an MAP perspective
  publication-title: IEEE Trans Cybern
– ident: ref6
  doi: 10.1109/ACSSC.2012.6489326
– ident: ref56
  doi: 10.1016/j.neucom.2014.06.029
– ident: ref5
  doi: 10.1109/CVPR.2011.5995446
– ident: ref18
  doi: 10.1109/ACSSC.2012.6489321
– ident: ref57
  doi: 10.1007/s11432-012-4678-4
– ident: ref44
  doi: 10.1023/A:1021889010444
– year: 2014
  ident: ref36
  article-title: Learning to rank using user clicks and visual features for image retrieval
  publication-title: IEEE Trans Cybern
– ident: ref35
  doi: 10.1109/TIP.2014.2311377
– ident: ref40
  doi: 10.1007/s10791-009-9109-9
– start-page: 1175
  year: 2010
  ident: ref32
  article-title: Simple and efficient multiple kernel learning by group lasso
  publication-title: Proc 27th Int Conf Mach Learn (ICML)
– ident: ref34
  doi: 10.1109/TCYB.2013.2264285
– ident: ref9
  doi: 10.1109/CVPR.2013.132
– ident: ref54
  doi: 10.1109/TNNLS.2013.2258174
– ident: ref37
  doi: 10.1109/TNNLS.2013.2253798
– start-page: 1146
  year: 2012
  ident: ref7
  article-title: Sparse representation for blind image quality assessment
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– ident: ref45
  doi: 10.1093/bioinformatics/bth294
– ident: ref39
  doi: 10.1109/TNN.2011.2160875
– ident: ref13
  doi: 10.1109/TNNLS.2014.2336852
– volume: pp
  start-page: 1
  year: 2014
  ident: ref12
  article-title: Saliency-guided deep framework for image quality assessment
  publication-title: IEEE Trans Multimedia
– ident: ref25
  doi: 10.1037/0096-1523.12.4.496
– ident: ref47
  doi: 10.1109/TNNLS.2012.2237183
– ident: ref22
  doi: 10.1117/12.845389
– ident: ref1
  doi: 10.1109/TIP.2012.2191563
– volume: 12
  start-page: 2211
  year: 2011
  ident: ref49
  article-title: Multiple kernel learning algorithms
  publication-title: J Mach Learn Res
SSID ssj0000605649
Score 2.5051305
Snippet Blind image quality assessment (BIQA) aims to predict perceptual image quality scores without access to reference images. State-of-the-art BIQA methods...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2275
SubjectTerms Algorithms
Assessments
Blinds
Customer satisfaction
Feature extraction
Image coding
Image quality
Image quality assessment (IQA)
Learning
learning preferences
learning to rank
Mathematical models
multiple kernel learning (MKL)
Noise
Observers
Quality of service
Training
Transform coding
universal blind IQA (BIQA)
Title Learning to Rank for Blind Image Quality Assessment
URI https://ieeexplore.ieee.org/document/7014257
https://www.ncbi.nlm.nih.gov/pubmed/25616080
https://www.proquest.com/docview/1729214629
https://www.proquest.com/docview/1720447783
https://www.proquest.com/docview/1778044036
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4tnHopj4USXnKl3kqWxHZi-wgIBKi7h3aR9hbZjsMBmq3a7KH99Yydh1AFiFskO4ntGdvf2DPfAHyRVZUqXWaxpI7F3GRJrKymMbOIJUyZMWV9vPN0ll_f8dtFthjByRAL45wLzmdu4h_DXX65tCt_VHYqEM-jiq3BGhpubazWcJ6SIC7PA9qlaU5jysSij5FJ1Ol8Nvv2wzty8QmW4HrsM8Tgbp_mgRDy2ZYUcqy8DjfDtnO1AdO-wa23ycNk1ZiJ_fcfl-N7e7QJHzv8Sc5ahdmCkau3YaPP7UC6qT4G1hGv3pNmSb7r-oEguiXnCEpLcvMTFyHSsm_8JWcDt-cO3F1dzi-u4y7BQmy5kk2sJdc-q6DRvESx5IJpw5WtaEZLarQwMjGJsJSh1WexLK0ynzEXTYwErTol2C6s18va7QHJFXXOJo6mrOK8SqVh-BUqMy1LLlgVQdqPcWE79nGfBOOxCFZIooogosKLqOhEFMHX4Z1fLffGm7XHfnyHmt3QRnDYi7LopuefAlGb8hnNqYrg81CME8vflujaLVehDvZSCMnequP5mziigAg-tWoy_L_Xrv2X23UAH7D1WesXeAjrze-VO0J805jjoNhPPF_wHQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoBLW1qggQKu1Btkm_gR28cWtdrC7h7KVtpbZDsOh0IWQfYAv56x8xBCUPUWyU5ie8b2N_bMNwAnqq5zbSqRKupZyq3IUu0MTZlDLGErwbQL8c7zRTG94R9WYrUF78ZYGO99dD7zk_AY7_KrtduEo7JTiXgeVewBPBQhGLeL1hpPVDJE5kXEuzQvaEqZXA1RMpk-XS4Ws0_BlYtPsARX5JAjBvf7vIiUkH9sSjHLyv8BZ9x4LndhPjS58ze5nWxaO3G__mJzvG-f9mCnR6DkrFOZJ7Dlm33YHbI7kH6yHwDrqVc_k3ZNrk1zSxDfknOEpRW5-orLEOn4N36Ss5Hd8yncXF4s30_TPsVC6rhWbWoUNyGvoDW8QsEUkhnLtaupoBW1RlqV2Uw6ytDuc1iW1yLkzEUjI0O7Tkv2DLabdeMPgRSaeu8yT3NWc17nyjL8ClXCqIpLVieQD2Ncup5_PKTB-FJGOyTTZRRRGURU9iJK4O34zreOfePO2gdhfMea_dAmcDSIsuwn6I8ScZsOOc2pTuB4LMapFe5LTOPXm1gHeymlYnfVCQxOHHFAAs87NRn_P2jXi3-36w08mi7ns3J2tfj4Eh5jT0TnJXgE2-33jX-FaKe1r6OS_wbr3vNl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+Rank+for+Blind+Image+Quality+Assessment&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Gao%2C+Fei&rft.au=Tao%2C+Dacheng&rft.au=Gao%2C+Xinbo&rft.au=Li%2C+Xuelong&rft.date=2015-10-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=26&rft.issue=10&rft.spage=2275&rft.epage=2290&rft_id=info:doi/10.1109%2FTNNLS.2014.2377181&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon