Changes in EEG signals during the cognitive activity at varying air temperature and relative humidity
In this study, we examined changes in EEG signals during the cognitive activity at different air temperatures and relative humidities (RH). Thirty-two healthy young people acclimatized to the subtropical climate of Changsha, China, were recruited as subjects. They experienced four air temperature le...
Saved in:
Published in | Journal of exposure science & environmental epidemiology Vol. 30; no. 2; pp. 285 - 298 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.03.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1559-0631 1559-064X 1559-064X |
DOI | 10.1038/s41370-019-0154-1 |
Cover
Loading…
Abstract | In this study, we examined changes in EEG signals during the cognitive activity at different air temperatures and relative humidities (RH). Thirty-two healthy young people acclimatized to the subtropical climate of Changsha, China, were recruited as subjects. They experienced four air temperature levels (26, 30, 33, and 37 °C) and two relative humidity levels (50 and 70%) in a climate chamber. During 175 min-long exposures to each thermal condition, they performed cognitive tasks and their EEG signals were measured. Relative humidity of 70% and increased temperature at this relative humidity significantly increased the relative power of δ-band and significantly decreased relative power of θ-band, α-band, and β-band. This may suggest that subjects were more sleepy but less drowsy, and it was more difficult for them to think clearly. At the same time, subjective evaluations indicated that they could be less alert and it was harder for them to think. However, no changes in performance of tasks measuring cognitive abilities were observed. It remains therefore unclear whether EEG can be a credible marker of changes in cognitive activity as a result of changes in indoor environmental quality in buildings and the future experiments should closely examine this issue. |
---|---|
AbstractList | In this study, we examined changes in EEG signals during the cognitive activity at different air temperatures and relative humidities (RH). Thirty-two healthy young people acclimatized to the subtropical climate of Changsha, China, were recruited as subjects. They experienced four air temperature levels (26, 30, 33, and 37 °C) and two relative humidity levels (50 and 70%) in a climate chamber. During 175 min-long exposures to each thermal condition, they performed cognitive tasks and their EEG signals were measured. Relative humidity of 70% and increased temperature at this relative humidity significantly increased the relative power of δ-band and significantly decreased relative power of θ-band, α-band, and β-band. This may suggest that subjects were more sleepy but less drowsy, and it was more difficult for them to think clearly. At the same time, subjective evaluations indicated that they could be less alert and it was harder for them to think. However, no changes in performance of tasks measuring cognitive abilities were observed. It remains therefore unclear whether EEG can be a credible marker of changes in cognitive activity as a result of changes in indoor environmental quality in buildings and the future experiments should closely examine this issue. In this study, we examined changes in EEG signals during the cognitive activity at different air temperatures and relative humidities (RH). Thirty-two healthy young people acclimatized to the subtropical climate of Changsha, China, were recruited as subjects. They experienced four air temperature levels (26, 30, 33, and 37 °C) and two relative humidity levels (50 and 70%) in a climate chamber. During 175 min-long exposures to each thermal condition, they performed cognitive tasks and their EEG signals were measured. Relative humidity of 70% and increased temperature at this relative humidity significantly increased the relative power of [delta]-band and significantly decreased relative power of [theta]-band, [alpha]-band, and [beta]-band. This may suggest that subjects were more sleepy but less drowsy, and it was more difficult for them to think clearly. At the same time, subjective evaluations indicated that they could be less alert and it was harder for them to think. However, no changes in performance of tasks measuring cognitive abilities were observed. It remains therefore unclear whether EEG can be a credible marker of changes in cognitive activity as a result of changes in indoor environmental quality in buildings and the future experiments should closely examine this issue. In this study, we examined changes in EEG signals during the cognitive activity at different air temperatures and relative humidities (RH). Thirty-two healthy young people acclimatized to the subtropical climate of Changsha, China, were recruited as subjects. They experienced four air temperature levels (26, 30, 33, and 37 °C) and two relative humidity levels (50 and 70%) in a climate chamber. During 175 min-long exposures to each thermal condition, they performed cognitive tasks and their EEG signals were measured. Relative humidity of 70% and increased temperature at this relative humidity significantly increased the relative power of δ-band and significantly decreased relative power of θ-band, α-band, and β-band. This may suggest that subjects were more sleepy but less drowsy, and it was more difficult for them to think clearly. At the same time, subjective evaluations indicated that they could be less alert and it was harder for them to think. However, no changes in performance of tasks measuring cognitive abilities were observed. It remains therefore unclear whether EEG can be a credible marker of changes in cognitive activity as a result of changes in indoor environmental quality in buildings and the future experiments should closely examine this issue.In this study, we examined changes in EEG signals during the cognitive activity at different air temperatures and relative humidities (RH). Thirty-two healthy young people acclimatized to the subtropical climate of Changsha, China, were recruited as subjects. They experienced four air temperature levels (26, 30, 33, and 37 °C) and two relative humidity levels (50 and 70%) in a climate chamber. During 175 min-long exposures to each thermal condition, they performed cognitive tasks and their EEG signals were measured. Relative humidity of 70% and increased temperature at this relative humidity significantly increased the relative power of δ-band and significantly decreased relative power of θ-band, α-band, and β-band. This may suggest that subjects were more sleepy but less drowsy, and it was more difficult for them to think clearly. At the same time, subjective evaluations indicated that they could be less alert and it was harder for them to think. However, no changes in performance of tasks measuring cognitive abilities were observed. It remains therefore unclear whether EEG can be a credible marker of changes in cognitive activity as a result of changes in indoor environmental quality in buildings and the future experiments should closely examine this issue. |
Audience | Academic |
Author | Liu, Weiwei Zhu, Minghui Wargocki, Pawel |
Author_xml | – sequence: 1 givenname: Minghui surname: Zhu fullname: Zhu, Minghui organization: School of Energy Science & Engineering, Central South University – sequence: 2 givenname: Weiwei surname: Liu fullname: Liu, Weiwei email: wliu@csu.edu.cn organization: School of Energy Science & Engineering, Central South University – sequence: 3 givenname: Pawel surname: Wargocki fullname: Wargocki, Pawel organization: Technical University of Denmark |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31235789$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kt1r1jAUh4NM3If-Ad5IQBBvOvPd9nK8vG7CwBsF70KanrYZbfqapIP990t9t7kNHaWkLc9zkp7zO0YHfvaA0HtKTinh1ZcoKC9JQWidbykK-godUSnzmxK_Dh6eOT1ExzFeESJEqcgbdMgp47Ks6iMEm8H4HiJ2Hm-35zi63psx4nYJzvc4DYDt3HuX3DVgY_Pi0g02CV-bcLMSxgWcYNpBMGkJmfEtDjCaP8KwTK7Nwlv0ustV4d3deoJ-ft3-2FwUl9_Pv23OLgsr6ioVRlWGc0OErGnHCYG6FqxUnaGcNB1vmqYitmNCcKqMkralDTCQJRFNXXVS8hP0eV93F-bfC8SkJxctjKPxMC9RMyZUnZvDeEY_PkOv5iWs_67zlpKxmpTkRYorxghRuZUPVG9G0M53cwrGrlvrM0UlFYQTkanTf1D5amFyNk-2c_n7E-HTI2EAM6YhzuOS3OzjU_DD3SmXZoJW74Kb8nj0_ZgzUO4BG-YYA3TaumTWOvkIbtSU6DVQeh8onQOl10Bpmk36zLwv_pLD9k7crSGC8Ldp_5duAVRk2B8 |
CitedBy_id | crossref_primary_10_1007_s11042_023_15653_x crossref_primary_10_1016_j_enbuild_2024_113919 crossref_primary_10_1016_j_buildenv_2025_112575 crossref_primary_10_1111_ina_12941 crossref_primary_10_1016_j_measurement_2021_109872 crossref_primary_10_9715_KILA_2025_53_1_094 crossref_primary_10_1080_00038628_2024_2360910 crossref_primary_10_1016_j_enbuild_2021_111092 crossref_primary_10_1016_j_buildenv_2022_109761 crossref_primary_10_1080_00038628_2020_1867818 crossref_primary_10_1016_j_buildenv_2024_112456 crossref_primary_10_1109_JIOT_2021_3074740 crossref_primary_10_1016_j_enbuild_2025_115371 crossref_primary_10_1038_s41598_021_85210_9 crossref_primary_10_1016_j_jobe_2024_108646 crossref_primary_10_1016_j_enbuild_2020_110086 crossref_primary_10_1007_s11042_022_13464_0 crossref_primary_10_3390_app11010097 crossref_primary_10_1016_j_jobe_2022_104540 crossref_primary_10_1016_j_buildenv_2020_107486 crossref_primary_10_1111_ina_12755 crossref_primary_10_3390_buildings13020467 crossref_primary_10_1007_s11356_022_22350_z crossref_primary_10_1016_j_buildenv_2022_109494 crossref_primary_10_1016_j_buildenv_2024_111533 crossref_primary_10_1016_j_enbuild_2025_115486 crossref_primary_10_1016_j_buildenv_2024_111375 crossref_primary_10_1016_j_buildenv_2023_110540 crossref_primary_10_1177_1420326X211030325 crossref_primary_10_1016_j_jobe_2023_107305 crossref_primary_10_1016_j_trf_2025_02_027 crossref_primary_10_1177_1420326X241268162 crossref_primary_10_1177_1420326X241284031 crossref_primary_10_1016_j_jobe_2024_110170 crossref_primary_10_3390_ijerph18115981 crossref_primary_10_1080_00140139_2023_2243407 crossref_primary_10_3390_ijerph20064897 crossref_primary_10_1016_j_buildenv_2022_108891 crossref_primary_10_1016_j_buildenv_2023_110212 crossref_primary_10_2139_ssrn_3929398 crossref_primary_10_1016_j_buildenv_2024_111346 crossref_primary_10_1016_j_energy_2023_126722 crossref_primary_10_1016_j_jtherbio_2022_103422 crossref_primary_10_1016_j_enbuild_2025_115559 crossref_primary_10_3390_ijerph17113995 crossref_primary_10_1038_s41370_023_00609_y crossref_primary_10_1016_j_jobe_2024_108707 crossref_primary_10_1051_sm_2021002 crossref_primary_10_1016_j_bios_2022_114292 crossref_primary_10_1051_e3sconf_202346502002 crossref_primary_10_1186_s40101_022_00289_x crossref_primary_10_1016_j_buildenv_2021_107647 crossref_primary_10_1080_00038628_2024_2424861 crossref_primary_10_1016_j_measurement_2023_113047 crossref_primary_10_3390_su15021673 crossref_primary_10_1016_j_buildenv_2025_112700 crossref_primary_10_1016_j_buildenv_2024_111826 crossref_primary_10_3390_f13020335 crossref_primary_10_1016_j_buildenv_2024_111555 crossref_primary_10_1111_ina_12739 crossref_primary_10_1016_j_buildenv_2024_111631 crossref_primary_10_1016_j_compag_2024_109265 crossref_primary_10_3390_ijerph19095484 crossref_primary_10_1016_j_buildenv_2021_108688 crossref_primary_10_1016_j_measurement_2025_117378 |
Cites_doi | 10.1016/j.buildenv.2016.12.028 10.1016/j.scitotenv.2019.01.062 10.1016/j.enbuild.2019.02.027 10.1016/j.apergo.2010.04.003 10.1016/j.buildenv.2019.05.012 10.1016/j.physbeh.2007.09.012 10.1016/j.ijpsycho.2012.07.002 10.1016/j.enbuild.2007.02.014 10.5271/sjweh.1823 10.1038/72131 10.1016/j.enbuild.2010.09.001 10.1111/j.1600-0668.2011.00714.x 10.1016/j.ijpsycho.2017.01.003 10.1080/10789669.2007.10390951 10.1007/s11357-015-9783-z 10.1111/ina.12501 10.1016/j.buildenv.2008.10.004 10.1016/j.buildenv.2010.05.024 10.1001/jama.2013.281053 10.1016/j.buildenv.2019.04.012 10.1016/j.jneumeth.2003.10.009 10.1016/0013-4694(87)90206-9 10.1177/1420326X07084291 10.1177/1420326X18820089 10.1016/j.enbuild.2018.12.030 10.1016/j.jtherbio.2013.06.006 10.1177/1420326X12447614 10.1016/j.buildenv.2009.02.001 10.1016/j.solener.2004.07.006 10.1111/j.1600-0668.2004.00276.x 10.1007/s004240100515 10.1016/j.ijpsycho.2015.02.003 10.1073/pnas.97.20.11125 10.1016/S0010-9452(79)80067-2 10.1111/j.1469-8986.2010.01061.x 10.1080/0265673021000054630 10.1038/sj.jcbfm.9600416 10.3357/ASEM.3787.2014 10.1016/j.enbuild.2019.05.044 10.1002/(SICI)1522-2594(199905)41:5<1044::AID-MRM25>3.0.CO;2-M 10.1016/j.enbuild.2018.10.040 10.1111/ina.12523 10.1152/jn.1998.80.3.1533 10.1177/1420326X14527975 10.1109/BIOCAS.2008.4696927 10.2307/j.ctv1kz4gwm 10.1016/j.buildenv.2017.12.004 10.1016/j.buildenv.2016.12.020 10.1007/978-3-642-35139-6_17 10.1016/S0166-2236(97)01128-4 10.1016/j.buildenv.2017.06.048 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2019 COPYRIGHT 2020 Nature Publishing Group 2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019 The Author(s), under exclusive licence to Springer Nature America, Inc. 2019. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2019 – notice: COPYRIGHT 2020 Nature Publishing Group – notice: 2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019 – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2019. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7ST 7T2 7U7 7X7 7XB 88E 88I 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M1P M2P M7P M7S P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI 7X8 |
DOI | 10.1038/s41370-019-0154-1 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Environment Abstracts Health and Safety Science Abstracts (Full archive) Toxicology Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database (ProQuest) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection ProQuest Central Database Suite (ProQuest) ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database (ProQuest) Biological Science Database (ProQuest) Engineering Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Agricultural & Environmental Science Collection Health & Safety Science Abstracts ProQuest Public Health ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student ProQuest Central Student MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health |
EISSN | 1559-064X |
EndPage | 298 |
ExternalDocumentID | A615140304 31235789 10_1038_s41370_019_0154_1 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China Germany |
GeographicLocations_xml | – name: China – name: Germany |
GroupedDBID | --- 0R~ 29K 36B 39C 4.4 406 53G 5GY 70F 7X7 7XC 88E 88I 8AO 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AACDK AANZL AASML AATNV AAYZH AAZLF ABAKF ABJCF ABJNI ABUWG ABZZP ACAOD ACGFO ACGFS ACGOD ACIWK ACKTT ACPRK ACRQY ACZOJ ADBBV ADHDB AEFQL AEJRE AEMSY AENEX AEUYN AEVLU AEXYK AFBBN AFKRA AFRAH AFSHS AGAYW AGHAI AGQEE AHMBA AHSBF AIGIU AILAN AJRNO ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMYLF ATCPS AXYYD AZQEC BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D-I DNIVK DPUIP DU5 DWQXO E3Z EAP EBLON EBS EE. EIOEI EMB ESX F5P FDQFY FERAY FIGPU FSGXE FYUFA GNUQQ HCIFZ HMCUK HZ~ IAO IEP IGS IHR IHW INH INR ITC IWAJR JSO JZLTJ KQ8 L6V M1P M2P M7P M7S NQJWS O9- PATMY PQQKQ PROAC PSQYO PTHSS PYCSY Q2X RNT RNTTT ROL SNX SNYQT SOHCF SOJ SRMVM SWTZT TSG UKHRP -Q- AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 2WC 3V. ABDBF ACUHS B0M CAG CGR COF CUY CVF EAD EBC EBD ECM EIF EJD EMK EMOBN EPL FIZPM NAO NPM OVD RNS SV3 TEORI TR2 TUS ~8M AEIIB PMFND 7QO 7ST 7T2 7U7 7XB 8FD 8FK ABRTQ C1K FR3 K9. LK8 P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS PUEGO Q9U SOI 7X8 |
ID | FETCH-LOGICAL-c498t-a68a33a04591f300e994276fa130bf3bbb80cf244316a65cd1be2e5704b98f553 |
IEDL.DBID | 8FG |
ISSN | 1559-0631 1559-064X |
IngestDate | Thu Sep 04 17:15:30 EDT 2025 Sat Aug 23 12:43:27 EDT 2025 Sat Aug 23 14:25:28 EDT 2025 Tue Jun 17 21:27:44 EDT 2025 Tue Jun 10 20:41:47 EDT 2025 Thu May 22 21:18:28 EDT 2025 Wed Feb 19 02:25:22 EST 2025 Thu Apr 24 22:52:18 EDT 2025 Tue Jul 01 02:36:16 EDT 2025 Fri Feb 21 02:39:57 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Relative humidity Electroencephalogram (EEG) Performance Air temperature |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c498t-a68a33a04591f300e994276fa130bf3bbb80cf244316a65cd1be2e5704b98f553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 31235789 |
PQID | 2362200612 |
PQPubID | 29347 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2246906423 proquest_journals_2765229070 proquest_journals_2362200612 gale_infotracmisc_A615140304 gale_infotracacademiconefile_A615140304 gale_healthsolutions_A615140304 pubmed_primary_31235789 crossref_citationtrail_10_1038_s41370_019_0154_1 crossref_primary_10_1038_s41370_019_0154_1 springer_journals_10_1038_s41370_019_0154_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200301 2020-03-01 2020-03-00 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 3 year: 2020 text: 20200301 day: 1 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Tuxedo |
PublicationSubtitle | Official journal of the International Society of Exposure Science |
PublicationTitle | Journal of exposure science & environmental epidemiology |
PublicationTitleAbbrev | J Expo Sci Environ Epidemiol |
PublicationTitleAlternate | J Expo Sci Environ Epidemiol |
PublicationYear | 2020 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | HomanRWHermanJPurdyPCerebral location of international 10–20 system electrode placementElectroencephalogr Clin Neurophysiol198766376821:STN:280:DyaL2s7mtFGguw%3D%3D10.1016/0013-4694(87)90206-9 Seppanen O, Fisk WJ, Lei QH. Effect of temperature on task performance in office environment. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA, USA; 2006. No. LBNL-60946. Liu J. Study on the indoor thermal environment and human thermal comfort in natural ventilation building in summer‐hot and winter‐cold zone. Master Thesis, Chongqing: Chongqing University. (In Chinese). 2007. MognonAJovicichJBruzzoneLBuiattiMADJUST: an automatic EEG artifact detector based on the joint use of spatial and temporal featuresPsychophysiology2011482294010.1111/j.1469-8986.2010.01061.x Changeux JP. The physiology of truth: neuroscience and human knowledge. Harvard University Press: Cambridge, Massachusetts, USA, 2009. WheelerMEPetersenSEBucknerRLMemory’s echo: vivid remembering reactivates sensory-specific cortexProc Natl Acad Sci USA2000971112591:CAS:528:DC%2BD3cXnt1aht7c%3D10.1073/pnas.97.20.11125 Fountain M, Arens EA, Xu T, Bauman F, Oguru M. An investigation of thermal comfort at high humidities. ASHRAE Transactions. 1999;105(Part 2):94–103. Wang X, Li D, Menassa CC, Kamat VR. Investigating the effect of indoor thermal environment on occupants’ mental workload and task performance using electroencephalogram. Building and Environment. 2019;158:120–32. Gargiulo G, Bifulco P, Calvo RA, Cesarelli M, Jin C, Van Schaik A. A mobile EEG system with dry electrodes. In 2008 IEEE biomedical circuits and systems conference. IEEE; 2008. p. 273–6. Basar E. Brain function and oscillations: volume I: brain oscillations. Principles and approaches. Springer Science & Business Media: Berlin, Heidelberg, Germany, 2012. YinZQShangCJLiuYRSongKCaiJThermal comfort in naturally ventilated buildings in hot humid area in summer—take Haikou for exampleBuild Sci201531176182(In Chinese). RasmussenPDawsonEANyboLVan LieshoutJJSecherNHGjeddeACapillary-oxygenation-level-dependent near-infrared spectrometry in frontal lobe of humansJ Cereb Blood Flow Metab2007271082931:CAS:528:DC%2BD2sXlvVSkt7Y%3D10.1038/sj.jcbfm.9600416 LanLLianZPanLThe effects of air temperature on office workers’ well-being, workload and productivity-evaluated with subjective ratingsAppl Ergon201042293610.1016/j.apergo.2010.04.003 Ministry of Housing and Urban‐Rural Development of the People’s Republic of China. Design code for heating ventilation and air conditioning of civil buildings: GB50736. Beijing, China: China Architecture & Building Press; 2012. (In Chinese). GuytonACHallJETextbook of medical physiology.2006Philadelphia, PAElsevier Saunders Press FusterJMNetwork memoryTrends Neurosci199720451451:CAS:528:DyaK2sXmsFKjsb8%3D10.1016/S0166-2236(97)01128-4 LaiDayiChenCComparison of the linear regression, multinomial logit, and ordered probability models for predicting the distribution of thermal sensationEnergy Build2019188-1892697710.1016/j.enbuild.2019.02.027 Niedermeyer E, da Silva FL, editors. Electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005. HancockPAVasmatzidisIEffects of heat stress on cognitive performance: the current state of knowledgeInt J Hyperth200319.33557210.1080/0265673021000054630 Chanjuan S, Zhiwei L, Li L. Work performance in relation to lighting environment in office buildings. Indoor Built Environ. 2018. https://doi.org/10.1177/1420326X18820089. ASHRAE. Environment indices in thermal comfort (chapter 8). Atlanta, GA: American Society of Heating, Refrigerating and Air‐Conditioning Engineers; 2001. China Meteorological Administration. Measures for the release and dissemination of meteorological disaster warning signals. [Chinese government website]. 12 Jun 2007. http://www.gov.cn/zhengce/2007-06/28/content_2602977.htm. Accessed 28 Jun 2007. LiuWWLianZWDengQHUse of mean skin temperature in evaluation of individual thermal comfort for a person in a sleeping posture under steady thermal environmentIndoor Built Environ2015244894991:CAS:528:DC%2BC2MXhtlKktL8%3D10.1177/1420326X14527975 CraigADChenKBandyDReimanEMThermosensory activation of insular cortexNat Neurosci20003184901:CAS:528:DC%2BD3cXhslKls7s%3D10.1038/72131 TrezzaBMApolinarioDde OliveiraRSBusseALGonçalvesFLTSaldivaPHNEnvironmental heat exposure and cognitive performance in older adults: a controlled trialAge2015374310.1007/s11357-015-9783-z YamtraipatNKhedariJHirunlabhJThermal comfort standards for air conditioned buildings in hot and humid Thailand considering additional factors of acclimatization and education levelSol Energy2005785041710.1016/j.solener.2004.07.006 XiongJMaTLianZde DearRPerceptual and physiological responses of elderly subjects to moderate temperaturesBuild Environ20191561172210.1016/j.buildenv.2019.04.012 HumphreysMAHancockMDo people like to feel ‘neutral’?: Exploring the variation of the desired thermal sensation on the ASHRAE scaleEnergy Build2007398677410.1016/j.enbuild.2007.02.014 LiuYWangLLiuJDiYA study of human skin and surface temperatures in stable and unstable thermal environmentsJ Therm Biol201338440810.1016/j.jtherbio.2013.06.006 YaoYLianZLiuWShenQExperimental study on physiological responses and thermal comfort under various ambient temperaturesPhysiol Behav200893310211:CAS:528:DC%2BD1cXlsVSrtA%3D%3D10.1016/j.physbeh.2007.09.012 LanLWargockiPLianZQuantitative measurement of productivity loss due to thermal discomfortEnergy Build20114310576210.1016/j.enbuild.2010.09.001 Başar E. Brain function and oscillations: volume II: integrative brain function. Neurophysiology and cognitive processes. Springer Science & Business Media: Berlin, Heidelberg, Germany, 2012. ISO 10551. Ergonomics of the thermal environment. Assessment of the influence of the thermal environment using subjective judgment scales. International Organization for Standardization. 1995. DelormeAMakeigSEEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysisJ Neurosci Methods200413492110.1016/j.jneumeth.2003.10.009 State Administration of Work Safety. Measures for the administration of heatstroke prevention measures. [Chinese government website]. 29 Jun 2012. http://www.nhfpc.gov.cn/jkj/s5897/201207/55314.shtml. Accessed 5 Jul 2012. LvBSuCYangLWuTEffects of stimulus mode and ambient temperature on cerebral responses to local thermal stimulation: An EEG studyInt J Psychophysiol2017113172210.1016/j.ijpsycho.2017.01.003 HancockPAWarmJSA dynamic model of stress and sustained attention. Human performance in extreme environments: the journal of the Society for Human Performance in ExtremeEnvironments200371528 TeplanMFundamentals of EEG measurementMeas Sci Rev20022111 HeManchenLianZhiweiChenPinEvaluation on the performance of quilts based on young people’s sleep quality and thermal comfort in winterEnergy Build20191831748310.1016/j.enbuild.2018.10.040 FangLWyonDPClausenGFangerPOImpact of indoor air temperature and humidity in an office on perceived air quality, SBS symptoms and performanceIndoor Air200414748110.1111/j.1600-0668.2004.00276.x BaşarEA review of alpha activity in integrative brain function: fundamental physiology, sensory coding, cognition and pathologyInt J Psychophysiol20128612410.1016/j.ijpsycho.2012.07.002 Ramirez R, Vamvakousis Z. Detecting emotion from EEG signals using the emotive epoc device. International conference on brain informatics. Springer, Berlin, Heidelberg; 2012. p. 175–84. ShanXYangEHZhouJChangVWCHuman-building interaction under various indoor temperatures through neural-signal electroencephalogram (EEG) methodsBuild Environ2018129465310.1016/j.buildenv.2017.12.004 Fuster JM. Memory in the cerebral cortex: an empirical approach to neural networks in the human and nonhuman primate. MIT press: Cambridge, Massachusetts, USA, 1999. HerrmannCSStrüberDHelfrichRFEngelAKEEG oscillations: from correlation to causalityInt J Psychophysiol2016103122110.1016/j.ijpsycho.2015.02.003 LanLLianZUse of neurobehavioral tests to evaluate the effects of indoor environment quality on productivityBuild Environ20094422081710.1016/j.buildenv.2009.02.001 WargockiPDelewskiMHanedaMPhysiological effects of thermal environment on office workHealthy Build200921270 Bauman F, Arens EA, Huizenga C, Xu T, Zhang H, Akimoto T, et al. The impact of humidity standards on energy efficient cooling in California. 1996. Porras‐SalazarJAWyonDPPiderit‐MorenoBContreras‐EspinozaSWargockiPReducing classroom temperature in a tropical climate improved the thermal comfort and the performance of elementary school pupilsIndoor Air20182889290410.1111/ina.12501 Tao M, Yang D, Liu W. Learning effect and its prediction for cognitive tests used in studies on indoor environmental quality. Energy and Buildings. 2019;197:87–98. WangHOlesenBWKazanciOBUsing thermostats for indoor climate control in offices: the effect on thermal comfort and heating/cooling energy useEnergy Build2019188–189718310.1016/j.enbuild.2018.12.030 JinLZhangYFZhangZJHuman responses to high humidity in elevated temperatures for people in hot‐humid climatesBuild Environ201711425726610.1016/j.buildenv.2016.12.028 LiuWZhongWWargockiPPerformance, acute health symptoms and physiological responses during exposure to high air temperature and carbon dioxide concentrationBuild Environ20171149610510.1016/j.buildenv.2016.12.020 FanXLiuWWargockiPPhysiological and psychological reactions of sub‐tropically acclimatized subjects exposed to different indoor temperatures at a relative humidity of 70%Indoor Air.2019292153010.1111/ina.12523 LanLWargockiPWyonDPLianZEffects of thermal discomfort in an office on perceived air quality, SBS symptoms, physiological responses, and human performanceIndoor Air201121376901:CAS:528:DC%2BC3MXhtlans77M10.1111/j.1600-0668.2011.00714.x LaiDLiuWGanTLiuKChenQA review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spacesSci T PA Hancock (154_CR16) 2003; 7 154_CR30 154_CR71 ZQ Yin (154_CR43) 2015; 31 154_CR72 L Jin (154_CR39) 2017; 114 154_CR34 B Nielsen (154_CR56) 2001; 442 P Rasmussen (154_CR70) 2007; 27 AE Enander (154_CR17) 1990; 16 154_CR32 L Lan (154_CR46) 2009; 44 Y Liu (154_CR22) 2013; 38 M Teplan (154_CR28) 2002; 2 WW Liu (154_CR36) 2015; 24 Dayi Lai (154_CR14) 2019; 188-189 S Jing (154_CR59) 2013; 22 World Medical Association. (154_CR50) 2013; 310 Y Yao (154_CR9) 2008; 93 154_CR26 154_CR27 X Fan (154_CR31) 2019; 29 154_CR24 LR Becerra (154_CR5) 1999; 41 A Kertesz (154_CR58) 1979; 15 RW Homan (154_CR44) 1987; 66 F Zhang (154_CR67) 2017; 123 NE Moyen (154_CR68) 2014; 85 154_CR29 154_CR40 L Lan (154_CR61) 2010; 42 154_CR41 P Wargocki (154_CR19) 2009; 2 AD Craig (154_CR6) 2000; 3 H Wang (154_CR13) 2019; 188–189 Manchen He (154_CR3) 2019; 183 L Lan (154_CR10) 2011; 21 E Başar (154_CR25) 2012; 86 PA Hancock (154_CR15) 2003; 19.3 ME Wheeler (154_CR57) 2000; 97 154_CR37 154_CR35 Y Yao (154_CR21) 2007; 16 KD Davis (154_CR7) 1998; 80 X Shan (154_CR2) 2018; 129 BM Trezza (154_CR69) 2015; 37 154_CR53 154_CR54 MA Humphreys (154_CR49) 2007; 39 AC Guyton (154_CR33) 2006 L Lan (154_CR47) 2009; 44 CS Herrmann (154_CR4) 2016; 103 J Xiong (154_CR20) 2019; 156 154_CR48 N Yamtraipat (154_CR38) 2005; 78 L Fang (154_CR12) 2004; 14 JM Fuster (154_CR55) 1997; 20 D Lai (154_CR18) 2019; 661 154_CR62 154_CR63 154_CR60 B Lv (154_CR8) 2017; 113 154_CR23 154_CR64 A Mognon (154_CR52) 2011; 48 JA Porras‐Salazar (154_CR66) 2018; 28 YF Zhang (154_CR42) 2010; 45 154_CR1 W Liu (154_CR45) 2017; 114 P Wargocki (154_CR11) 2007; 13 A Delorme (154_CR51) 2004; 134 L Lan (154_CR65) 2011; 43 |
References_xml | – reference: LanLLianZWPanLYeQNeurobehavioral approach for evaluation of office workers’ productivity: the effects of room temperatureBuild Environ20094415788810.1016/j.buildenv.2008.10.004 – reference: WargockiPDelewskiMHanedaMPhysiological effects of thermal environment on office workHealthy Build200921270 – reference: JingSLiBTanMLiuHImpact of relative humidity on thermal comfort in a warm environmentIndoor Built Environ20132259860710.1177/1420326X12447614 – reference: HancockPAWarmJSA dynamic model of stress and sustained attention. Human performance in extreme environments: the journal of the Society for Human Performance in ExtremeEnvironments200371528 – reference: HeManchenLianZhiweiChenPinEvaluation on the performance of quilts based on young people’s sleep quality and thermal comfort in winterEnergy Build20191831748310.1016/j.enbuild.2018.10.040 – reference: FusterJMNetwork memoryTrends Neurosci199720451451:CAS:528:DyaK2sXmsFKjsb8%3D10.1016/S0166-2236(97)01128-4 – reference: ASHRAE. Environment indices in thermal comfort (chapter 8). Atlanta, GA: American Society of Heating, Refrigerating and Air‐Conditioning Engineers; 2001. – reference: LanLLianZPanLThe effects of air temperature on office workers’ well-being, workload and productivity-evaluated with subjective ratingsAppl Ergon201042293610.1016/j.apergo.2010.04.003 – reference: GuytonACHallJETextbook of medical physiology.2006Philadelphia, PAElsevier Saunders Press – reference: Chanjuan S, Zhiwei L, Li L. Work performance in relation to lighting environment in office buildings. Indoor Built Environ. 2018. https://doi.org/10.1177/1420326X18820089. – reference: WheelerMEPetersenSEBucknerRLMemory’s echo: vivid remembering reactivates sensory-specific cortexProc Natl Acad Sci USA2000971112591:CAS:528:DC%2BD3cXnt1aht7c%3D10.1073/pnas.97.20.11125 – reference: BaşarEA review of alpha activity in integrative brain function: fundamental physiology, sensory coding, cognition and pathologyInt J Psychophysiol20128612410.1016/j.ijpsycho.2012.07.002 – reference: Changeux JP. The physiology of truth: neuroscience and human knowledge. Harvard University Press: Cambridge, Massachusetts, USA, 2009. – reference: LiuWZhongWWargockiPPerformance, acute health symptoms and physiological responses during exposure to high air temperature and carbon dioxide concentrationBuild Environ20171149610510.1016/j.buildenv.2016.12.020 – reference: KerteszAVisual agnosia: the dual deficit of perception and recognitionCortex197915403191:STN:280:DyaL3c7ls1Smug%3D%3D10.1016/S0010-9452(79)80067-2 – reference: BecerraLRBreiterHCStojanovicMFishmanSEdwardsAComiteAHuman brain activation under controlled thermal stimulation and habituation to noxious heat: an fMRI studyMagn Reson Med: Off J Int Soc Magn Reson Med1999411044571:STN:280:DyaK1M3mtlKksg%3D%3D10.1002/(SICI)1522-2594(199905)41:5<1044::AID-MRM25>3.0.CO;2-M – reference: LvBSuCYangLWuTEffects of stimulus mode and ambient temperature on cerebral responses to local thermal stimulation: An EEG studyInt J Psychophysiol2017113172210.1016/j.ijpsycho.2017.01.003 – reference: Niedermeyer E, da Silva FL, editors. Electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005. – reference: WangHOlesenBWKazanciOBUsing thermostats for indoor climate control in offices: the effect on thermal comfort and heating/cooling energy useEnergy Build2019188–189718310.1016/j.enbuild.2018.12.030 – reference: Ministry of Housing and Urban‐Rural Development of the People’s Republic of China. Design code for heating ventilation and air conditioning of civil buildings: GB50736. Beijing, China: China Architecture & Building Press; 2012. (In Chinese). – reference: HomanRWHermanJPurdyPCerebral location of international 10–20 system electrode placementElectroencephalogr Clin Neurophysiol198766376821:STN:280:DyaL2s7mtFGguw%3D%3D10.1016/0013-4694(87)90206-9 – reference: World Medical Association.World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjectsJ Am Med Assoc2013310219110.1001/jama.2013.281053 – reference: Seppanen O, Fisk WJ, Lei QH. Effect of temperature on task performance in office environment. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA, USA; 2006. No. LBNL-60946. – reference: LiuWWLianZWDengQHUse of mean skin temperature in evaluation of individual thermal comfort for a person in a sleeping posture under steady thermal environmentIndoor Built Environ2015244894991:CAS:528:DC%2BC2MXhtlKktL8%3D10.1177/1420326X14527975 – reference: FangLWyonDPClausenGFangerPOImpact of indoor air temperature and humidity in an office on perceived air quality, SBS symptoms and performanceIndoor Air200414748110.1111/j.1600-0668.2004.00276.x – reference: Wang X, Li D, Menassa CC, Kamat VR. Investigating the effect of indoor thermal environment on occupants’ mental workload and task performance using electroencephalogram. Building and Environment. 2019;158:120–32. – reference: DelormeAMakeigSEEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysisJ Neurosci Methods200413492110.1016/j.jneumeth.2003.10.009 – reference: Gargiulo G, Bifulco P, Calvo RA, Cesarelli M, Jin C, Van Schaik A. A mobile EEG system with dry electrodes. In 2008 IEEE biomedical circuits and systems conference. IEEE; 2008. p. 273–6. – reference: XiongJMaTLianZde DearRPerceptual and physiological responses of elderly subjects to moderate temperaturesBuild Environ20191561172210.1016/j.buildenv.2019.04.012 – reference: Ramirez R, Vamvakousis Z. Detecting emotion from EEG signals using the emotive epoc device. International conference on brain informatics. Springer, Berlin, Heidelberg; 2012. p. 175–84. – reference: NielsenBHyldigTBidstrupFGonzalez-AlonsoJChristoffersenGRJBrain activity and fatigue during prolonged exercise in the heatPflügers Archiv200144241481:CAS:528:DC%2BD3MXjt1Cht7g%3D10.1007/s004240100515 – reference: Fuster JM. Memory in the cerebral cortex: an empirical approach to neural networks in the human and nonhuman primate. MIT press: Cambridge, Massachusetts, USA, 1999. – reference: FanXLiuWWargockiPPhysiological and psychological reactions of sub‐tropically acclimatized subjects exposed to different indoor temperatures at a relative humidity of 70%Indoor Air.2019292153010.1111/ina.12523 – reference: YinZQShangCJLiuYRSongKCaiJThermal comfort in naturally ventilated buildings in hot humid area in summer—take Haikou for exampleBuild Sci201531176182(In Chinese). – reference: Kim M, Choi Y, Han J, Son Y, Chun C. An experiment on attention ability based on electroencephalogram (EEG) in different PMV conditions. In Proceeding of the Windsor conference 2014. – reference: RasmussenPDawsonEANyboLVan LieshoutJJSecherNHGjeddeACapillary-oxygenation-level-dependent near-infrared spectrometry in frontal lobe of humansJ Cereb Blood Flow Metab2007271082931:CAS:528:DC%2BD2sXlvVSkt7Y%3D10.1038/sj.jcbfm.9600416 – reference: HumphreysMAHancockMDo people like to feel ‘neutral’?: Exploring the variation of the desired thermal sensation on the ASHRAE scaleEnergy Build2007398677410.1016/j.enbuild.2007.02.014 – reference: YamtraipatNKhedariJHirunlabhJThermal comfort standards for air conditioned buildings in hot and humid Thailand considering additional factors of acclimatization and education levelSol Energy2005785041710.1016/j.solener.2004.07.006 – reference: Başar E. Brain function and oscillations: volume II: integrative brain function. Neurophysiology and cognitive processes. Springer Science & Business Media: Berlin, Heidelberg, Germany, 2012. – reference: LanLLianZUse of neurobehavioral tests to evaluate the effects of indoor environment quality on productivityBuild Environ20094422081710.1016/j.buildenv.2009.02.001 – reference: ShanXYangEHZhouJChangVWCHuman-building interaction under various indoor temperatures through neural-signal electroencephalogram (EEG) methodsBuild Environ2018129465310.1016/j.buildenv.2017.12.004 – reference: ISO 10551. Ergonomics of the thermal environment. Assessment of the influence of the thermal environment using subjective judgment scales. International Organization for Standardization. 1995. – reference: HerrmannCSStrüberDHelfrichRFEngelAKEEG oscillations: from correlation to causalityInt J Psychophysiol2016103122110.1016/j.ijpsycho.2015.02.003 – reference: TeplanMFundamentals of EEG measurementMeas Sci Rev20022111 – reference: JinLZhangYFZhangZJHuman responses to high humidity in elevated temperatures for people in hot‐humid climatesBuild Environ201711425726610.1016/j.buildenv.2016.12.028 – reference: Porras‐SalazarJAWyonDPPiderit‐MorenoBContreras‐EspinozaSWargockiPReducing classroom temperature in a tropical climate improved the thermal comfort and the performance of elementary school pupilsIndoor Air20182889290410.1111/ina.12501 – reference: China Meteorological Administration. Measures for the release and dissemination of meteorological disaster warning signals. [Chinese government website]. 12 Jun 2007. http://www.gov.cn/zhengce/2007-06/28/content_2602977.htm. Accessed 28 Jun 2007. – reference: YaoYLianZLiuWShenQExperimental study on physiological responses and thermal comfort under various ambient temperaturesPhysiol Behav200893310211:CAS:528:DC%2BD1cXlsVSrtA%3D%3D10.1016/j.physbeh.2007.09.012 – reference: MognonAJovicichJBruzzoneLBuiattiMADJUST: an automatic EEG artifact detector based on the joint use of spatial and temporal featuresPsychophysiology2011482294010.1111/j.1469-8986.2010.01061.x – reference: CraigADChenKBandyDReimanEMThermosensory activation of insular cortexNat Neurosci20003184901:CAS:528:DC%2BD3cXhslKls7s%3D10.1038/72131 – reference: ZhangFHaddadSNakisaBRastgooMNCandidoCTjondronegoroDThe effects of higher temperature setpoints during summer on office workers’ cognitive load and thermal comfortBuild Environ20171231768810.1016/j.buildenv.2017.06.048 – reference: Liu J. Study on the indoor thermal environment and human thermal comfort in natural ventilation building in summer‐hot and winter‐cold zone. Master Thesis, Chongqing: Chongqing University. (In Chinese). 2007. – reference: HancockPAVasmatzidisIEffects of heat stress on cognitive performance: the current state of knowledgeInt J Hyperth200319.33557210.1080/0265673021000054630 – reference: LanLWargockiPLianZQuantitative measurement of productivity loss due to thermal discomfortEnergy Build20114310576210.1016/j.enbuild.2010.09.001 – reference: DavisKDKwanCLCrawleyAPMikulisDJFunctional MRI study of thalamic and cortical activations evoked by cutaneous heat, cold, and tactile stimuliJ Neurophysiol1998801533461:STN:280:DyaK1cvislSrtw%3D%3D10.1152/jn.1998.80.3.1533 – reference: Fountain M, Arens EA, Xu T, Bauman F, Oguru M. An investigation of thermal comfort at high humidities. ASHRAE Transactions. 1999;105(Part 2):94–103. – reference: Seppanen O, Fisk WJ, Lei QH. Room temperature and productivity in office work. In Proceedings of the Healthy Buildings Congress. Lisbon, Portugal, 2006. Vol. 1, pp 243–7. – reference: LaiDayiChenCComparison of the linear regression, multinomial logit, and ordered probability models for predicting the distribution of thermal sensationEnergy Build2019188-1892697710.1016/j.enbuild.2019.02.027 – reference: LaiDLiuWGanTLiuKChenQA review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spacesSci Total Environ2019661337531:CAS:528:DC%2BC1MXhs1alsLg%3D10.1016/j.scitotenv.2019.01.062 – reference: Basar E. Brain function and oscillations: volume I: brain oscillations. Principles and approaches. Springer Science & Business Media: Berlin, Heidelberg, Germany, 2012. – reference: EnanderAEHyggeSThermal stress and human performanceScand J Work, Environ Health199016445010.5271/sjweh.1823 – reference: MoyenNEEllisCLCicconeABThurstonTSCochraneKCBrownLEIncreasing relative humidity impacts low-intensity exercise in the heatAviat Space Environ Med201485112910.3357/ASEM.3787.2014 – reference: State Administration of Work Safety. Measures for the administration of heatstroke prevention measures. [Chinese government website]. 29 Jun 2012. http://www.nhfpc.gov.cn/jkj/s5897/201207/55314.shtml. Accessed 5 Jul 2012. – reference: WargockiPWyonDPThe effects of moderately raised classroom temperatures and classroom ventilation rate on the performance of schoolwork by children (RP-1257)Hvac&R Res20071319322010.1080/10789669.2007.10390951 – reference: Bauman F, Arens EA, Huizenga C, Xu T, Zhang H, Akimoto T, et al. The impact of humidity standards on energy efficient cooling in California. 1996. – reference: Seppanen O, Fisk WJ, Faulkner D. Control of temperature for health and productivity in offices. ASHRAE transactions; 2004. 111(LBNL-55448). – reference: Tao M, Yang D, Liu W. Learning effect and its prediction for cognitive tests used in studies on indoor environmental quality. Energy and Buildings. 2019;197:87–98. – reference: LiuYWangLLiuJDiYA study of human skin and surface temperatures in stable and unstable thermal environmentsJ Therm Biol201338440810.1016/j.jtherbio.2013.06.006 – reference: ZhangYFWangJYChenHMZhangJMengQLThermal comfort in naturally ventilated buildings in hot‐humid area of ChinaBuild Environ2010452562257010.1016/j.buildenv.2010.05.024 – reference: LanLWargockiPWyonDPLianZEffects of thermal discomfort in an office on perceived air quality, SBS symptoms, physiological responses, and human performanceIndoor Air201121376901:CAS:528:DC%2BC3MXhtlans77M10.1111/j.1600-0668.2011.00714.x – reference: YaoYLianZLiuWShenQExperimental study on skin temperature and thermal comfort of the human body in a recumbent posture under uniform thermal environmentsIndoor Built Environ2007165051810.1177/1420326X07084291 – reference: TrezzaBMApolinarioDde OliveiraRSBusseALGonçalvesFLTSaldivaPHNEnvironmental heat exposure and cognitive performance in older adults: a controlled trialAge2015374310.1007/s11357-015-9783-z – volume: 114 start-page: 257 year: 2017 ident: 154_CR39 publication-title: Build Environ doi: 10.1016/j.buildenv.2016.12.028 – volume: 661 start-page: 337 year: 2019 ident: 154_CR18 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.01.062 – volume: 188-189 start-page: 269 year: 2019 ident: 154_CR14 publication-title: Energy Build doi: 10.1016/j.enbuild.2019.02.027 – ident: 154_CR64 – ident: 154_CR48 – ident: 154_CR60 – volume: 42 start-page: 29 year: 2010 ident: 154_CR61 publication-title: Appl Ergon doi: 10.1016/j.apergo.2010.04.003 – ident: 154_CR41 – ident: 154_CR27 doi: 10.1016/j.buildenv.2019.05.012 – volume: 93 start-page: 310 year: 2008 ident: 154_CR9 publication-title: Physiol Behav doi: 10.1016/j.physbeh.2007.09.012 – volume: 86 start-page: 1 year: 2012 ident: 154_CR25 publication-title: Int J Psychophysiol doi: 10.1016/j.ijpsycho.2012.07.002 – ident: 154_CR1 – volume-title: Textbook of medical physiology. year: 2006 ident: 154_CR33 – ident: 154_CR35 – volume: 39 start-page: 867 year: 2007 ident: 154_CR49 publication-title: Energy Build doi: 10.1016/j.enbuild.2007.02.014 – ident: 154_CR54 – volume: 16 start-page: 44 year: 1990 ident: 154_CR17 publication-title: Scand J Work, Environ Health doi: 10.5271/sjweh.1823 – volume: 3 start-page: 184 year: 2000 ident: 154_CR6 publication-title: Nat Neurosci doi: 10.1038/72131 – volume: 43 start-page: 1057 year: 2011 ident: 154_CR65 publication-title: Energy Build doi: 10.1016/j.enbuild.2010.09.001 – volume: 21 start-page: 376 year: 2011 ident: 154_CR10 publication-title: Indoor Air doi: 10.1111/j.1600-0668.2011.00714.x – volume: 2 start-page: 1270 year: 2009 ident: 154_CR19 publication-title: Healthy Build – volume: 113 start-page: 17 year: 2017 ident: 154_CR8 publication-title: Int J Psychophysiol doi: 10.1016/j.ijpsycho.2017.01.003 – volume: 13 start-page: 193 year: 2007 ident: 154_CR11 publication-title: Hvac&R Res doi: 10.1080/10789669.2007.10390951 – volume: 37 start-page: 43 year: 2015 ident: 154_CR69 publication-title: Age doi: 10.1007/s11357-015-9783-z – volume: 7 start-page: 15 year: 2003 ident: 154_CR16 publication-title: Environments – ident: 154_CR40 – ident: 154_CR24 – volume: 28 start-page: 892 year: 2018 ident: 154_CR66 publication-title: Indoor Air doi: 10.1111/ina.12501 – volume: 44 start-page: 1578 year: 2009 ident: 154_CR46 publication-title: Build Environ doi: 10.1016/j.buildenv.2008.10.004 – volume: 45 start-page: 2562 year: 2010 ident: 154_CR42 publication-title: Build Environ doi: 10.1016/j.buildenv.2010.05.024 – volume: 310 start-page: 2191 year: 2013 ident: 154_CR50 publication-title: J Am Med Assoc doi: 10.1001/jama.2013.281053 – volume: 156 start-page: 117 year: 2019 ident: 154_CR20 publication-title: Build Environ doi: 10.1016/j.buildenv.2019.04.012 – volume: 134 start-page: 9 year: 2004 ident: 154_CR51 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 66 start-page: 376 year: 1987 ident: 154_CR44 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(87)90206-9 – volume: 31 start-page: 176 year: 2015 ident: 154_CR43 publication-title: Build Sci – volume: 16 start-page: 505 year: 2007 ident: 154_CR21 publication-title: Indoor Built Environ doi: 10.1177/1420326X07084291 – ident: 154_CR34 – ident: 154_CR72 doi: 10.1177/1420326X18820089 – volume: 188–189 start-page: 71 year: 2019 ident: 154_CR13 publication-title: Energy Build doi: 10.1016/j.enbuild.2018.12.030 – volume: 38 start-page: 440 year: 2013 ident: 154_CR22 publication-title: J Therm Biol doi: 10.1016/j.jtherbio.2013.06.006 – volume: 22 start-page: 598 year: 2013 ident: 154_CR59 publication-title: Indoor Built Environ doi: 10.1177/1420326X12447614 – ident: 154_CR62 – ident: 154_CR23 – volume: 2 start-page: 1 year: 2002 ident: 154_CR28 publication-title: Meas Sci Rev – volume: 44 start-page: 2208 year: 2009 ident: 154_CR47 publication-title: Build Environ doi: 10.1016/j.buildenv.2009.02.001 – volume: 78 start-page: 504 year: 2005 ident: 154_CR38 publication-title: Sol Energy doi: 10.1016/j.solener.2004.07.006 – volume: 14 start-page: 74 year: 2004 ident: 154_CR12 publication-title: Indoor Air doi: 10.1111/j.1600-0668.2004.00276.x – volume: 442 start-page: 41 year: 2001 ident: 154_CR56 publication-title: Pflügers Archiv doi: 10.1007/s004240100515 – volume: 103 start-page: 12 year: 2016 ident: 154_CR4 publication-title: Int J Psychophysiol doi: 10.1016/j.ijpsycho.2015.02.003 – volume: 97 start-page: 11125 year: 2000 ident: 154_CR57 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.97.20.11125 – volume: 15 start-page: 403 year: 1979 ident: 154_CR58 publication-title: Cortex doi: 10.1016/S0010-9452(79)80067-2 – ident: 154_CR37 – volume: 48 start-page: 229 year: 2011 ident: 154_CR52 publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2010.01061.x – volume: 19.3 start-page: 355 year: 2003 ident: 154_CR15 publication-title: Int J Hyperth doi: 10.1080/0265673021000054630 – volume: 27 start-page: 1082 year: 2007 ident: 154_CR70 publication-title: J Cereb Blood Flow Metab doi: 10.1038/sj.jcbfm.9600416 – ident: 154_CR32 – volume: 85 start-page: 112 year: 2014 ident: 154_CR68 publication-title: Aviat Space Environ Med doi: 10.3357/ASEM.3787.2014 – ident: 154_CR71 doi: 10.1016/j.enbuild.2019.05.044 – ident: 154_CR26 – ident: 154_CR63 – volume: 41 start-page: 1044 year: 1999 ident: 154_CR5 publication-title: Magn Reson Med: Off J Int Soc Magn Reson Med doi: 10.1002/(SICI)1522-2594(199905)41:5<1044::AID-MRM25>3.0.CO;2-M – volume: 183 start-page: 174 year: 2019 ident: 154_CR3 publication-title: Energy Build doi: 10.1016/j.enbuild.2018.10.040 – volume: 29 start-page: 215 year: 2019 ident: 154_CR31 publication-title: Indoor Air. doi: 10.1111/ina.12523 – volume: 80 start-page: 1533 year: 1998 ident: 154_CR7 publication-title: J Neurophysiol doi: 10.1152/jn.1998.80.3.1533 – volume: 24 start-page: 489 year: 2015 ident: 154_CR36 publication-title: Indoor Built Environ doi: 10.1177/1420326X14527975 – ident: 154_CR29 doi: 10.1109/BIOCAS.2008.4696927 – ident: 154_CR53 doi: 10.2307/j.ctv1kz4gwm – volume: 129 start-page: 46 year: 2018 ident: 154_CR2 publication-title: Build Environ doi: 10.1016/j.buildenv.2017.12.004 – volume: 114 start-page: 96 year: 2017 ident: 154_CR45 publication-title: Build Environ doi: 10.1016/j.buildenv.2016.12.020 – ident: 154_CR30 doi: 10.1007/978-3-642-35139-6_17 – volume: 20 start-page: 451 year: 1997 ident: 154_CR55 publication-title: Trends Neurosci doi: 10.1016/S0166-2236(97)01128-4 – volume: 123 start-page: 176 year: 2017 ident: 154_CR67 publication-title: Build Environ doi: 10.1016/j.buildenv.2017.06.048 |
SSID | ssj0044760 |
Score | 2.5020635 |
Snippet | In this study, we examined changes in EEG signals during the cognitive activity at different air temperatures and relative humidities (RH). Thirty-two healthy... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 285 |
SubjectTerms | Acclimatization Adolescent Adult Air temperature China Climate Cognition Cognitive ability Cognitive tasks EEG Electroencephalography Environmental quality Epidemiology Health Status Humans Humidity Indoor environmental quality Indoor environments Male Medicine Medicine & Public Health Relative humidity Temperature Young adults |
Title | Changes in EEG signals during the cognitive activity at varying air temperature and relative humidity |
URI | https://link.springer.com/article/10.1038/s41370-019-0154-1 https://www.ncbi.nlm.nih.gov/pubmed/31235789 https://www.proquest.com/docview/2362200612 https://www.proquest.com/docview/2765229070 https://www.proquest.com/docview/2246906423 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB-8uxdBxG97nmsEQVDCNU3TJk9yHrt3CB4iHuxbSNMUF7R77sf9_c40bXUPvZdl2SRtN5mPXyf5zQC80V4XCIwVN7LKeG6C4PhD4EqWqUqz2uhA3OHPF8X5Zf5pruZ9wG3dH6scbGJnqOulpxj5cVYWinKTl-mHq1-cqkbR7mpfQmMPDgR6GpJzPTsbLHGel5EljKiZoysWw66m1MdrNN5UcoUoPIgiuNjxSzet81_u6cZ-aeeGZg_gfo8f2Ulc8IdwJ7SP4F4MvrHIKXoMIXIG1mzRsun0jNEhDRQzFjmJDDEfG48NMWI2UAEJ5jbs2q2I9sTcYsUoaVWfcZm5tmaR9YIDvm9_Lmoc8AQuZ9Nvp-e8r6fAfW70hrtCOykdgjgjGpmmwZgcp7Vx6MeqRlZVpVPfoL-XonCF8rWoQhZUmeaV0Y1S8inst8s2PAcmpNNFLbX3dU2vSFoW-E05VzuDAKFKIB1m0_o-2TjVvPhhu01vqW1cAIsLYGkBrEjg3TjkKmbauK3zK1oiG8mio5baEwJoOW33JvC260F6inf2rqcb4PNTxqudnkc7PVG__G7zIAa21--1zdDvZx08_HfzKKwJvB6b6cJ0pK0Nyy32ySgyga9_MoFnUbrG_y1Fl4XIJPB-ELc_F__vpBze_igv4G5GwYLuAN0R7G9W2_ASEdWmmsBeOS_xU5-KSadCEzj4OL348vU3iZsazA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QASQrwbKNRIICSQ1cTOwz4gVMGWLX2cWmlvxnEcsRJkyz5A_Cl-IzNxEtgKeustWj-Stcczn8f-ZgCeK6dyBMYZ17IUPNU-4fiD55ks4iwWlVaeuMPHJ_n4LP04ySYb8KvnwtC1yl4ntoq6mjnyke-KIs8oNnkRvz3_xilrFJ2u9ik0glgc-p8_cMu2eHPwHuf3hRD7o9N3Y95lFeAu1WrJba6slBahjE5qGcde6xQ7ry1q87KWZVmq2NVo9WSS2zxzVVJ64bMiTkut6oyyRKDKv5aSZxzXTzEZNnhpWgRWMqJ0jqY_6U9RpdpdoLGgFC9EGULUwpM1O3jRGvxlDi-cz7Zmb_823OrwKtsLAnYHNnxzF24GZx8LHKZ74ANHYcGmDRuNPjC6FIJizQIHkiHGZMM1JUZMCkpYweySfbdzolkxO50zCpLVRXhmtqlYYNlgg8-rr9MKG9yHsysZ6Qew2cwavwUskVbllVTOVRVtyZTM8SmztrIaAUkZQdyPpnFdcHPKsfHFtIfsUpkwAQYnwNAEmCSCV0OT8xDZ47LKOzRFJpBTB61g9ggQpnS8HMHLtgbpBXyzsx29Ab-fImyt1dxeq4nr2a0X92JgOn2yMAJxhmjh6L-Lh8URwbOhmDqmK3SNn62wjiBPCG43ZQQPg3QN_1smbdQjHcHrXtz-dP7fQXl0-afswPXx6fGROTo4OXwMNwQ5KtrLe9uwuZyv_BNEc8vyabuEGHy66jX7G_2YU00 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFD6UCiKIeHe02giKoISdSeaSPIgUu2trtfhgYd9iJpPBBZ2te1H8a_46z5nMjG7RvvVt2UnmkpzLl-R85wA8UU7lCIwzrmUpeKp9wvEPzzNZxFksKq08cYffH-cHJ-nbaTbdgl89F4bCKnub2Brqau5oj3wkijyj3ORFPKq7sIgP-5NXp984VZCik9a-nEYQkSP_8wcu35YvD_dxrp8KMRl_fH3AuwoD3KVarbjNlZXSIqzRSS3j2Gud4oNqi5a9rGVZlip2NXpAmeQ2z1yVlF74rIjTUqs6o4oRaP4vFRJRFepSMR0We2laBIYyInaOMCDpT1SlGi3RcVC5F6IPIYLhyYZPPOsZ_nKNZ85qWxc4uQ7XOuzK9oKw3YAt39yEq2HjjwU-0y3wga-wZLOGjcdvGAWIoIizwIdkiDfZELLEiFVBxSuYXbHvdkGUK2ZnC0YJs7psz8w2FQuMG-zwef11VmGH23ByISN9B7abeePvAUukVXkllXNVRcszJXP8lVlbWY3gpIwg7kfTuC7ROdXb-GLaA3epTJgAgxNgaAJMEsHzoctpyPJxXuNdmiITiKqDhTB7BA5TOmqO4FnbgmwEPtnZjuqA70_ZtjZa7my0RN12m5d7MTCdbVkagZhDtND035cHRYng8XCZbkzhdI2fr7GNoF0RXHrKCO4G6Rq-WyZtBiQdwYte3P7c_L-Dcv_8V9mFy6it5t3h8dEDuCJoz6KN49uB7dVi7R8isFuVj1oNYvDpolX2N1zxV4w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changes+in+EEG+signals+during+the+cognitive+activity+at+varying+air+temperature+and+relative+humidity&rft.jtitle=Journal+of+exposure+science+%26+environmental+epidemiology&rft.au=Zhu%2C+Minghui&rft.au=Liu%2C+Weiwei&rft.au=Wargocki%2C+Pawel&rft.date=2020-03-01&rft.pub=Nature+Publishing+Group&rft.issn=1559-0631&rft.eissn=1559-064X&rft.volume=30&rft.issue=2&rft.spage=285&rft.epage=298&rft_id=info:doi/10.1038%2Fs41370-019-0154-1&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1559-0631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1559-0631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1559-0631&client=summon |