Serum-Derived Exosomes from Patients with Coronary Artery Disease Induce Endothelial Injury and Inflammation in Human Umbilical Vein Endothelial Cells

Endothelial injury and inflammation have been found to be essential in the pathogenesis of coronary artery disease (CAD). Circulating exosomes are of great value as novel biomarkers for CAD. However, the role of circulating exosomes in the pathogenesis of CAD remains unclear. Thus, in this study, we...

Full description

Saved in:
Bibliographic Details
Published inInternational Heart Journal Vol. 62; no. 2; pp. 396 - 406
Main Authors Zhang, Ping, Liang, Tao, Wang, Xuan, Wu, Tianlong, Xie, Zhixin, Yu, Yanhong, Yu, Huimin
Format Journal Article
LanguageEnglish
Published Japan International Heart Journal Association 30.03.2021
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Endothelial injury and inflammation have been found to be essential in the pathogenesis of coronary artery disease (CAD). Circulating exosomes are of great value as novel biomarkers for CAD. However, the role of circulating exosomes in the pathogenesis of CAD remains unclear. Thus, in this study, we aimed to examine whether circulating exosomes from CAD are involved in the endothelial injury and inflammation. The serum-derived exosomes were isolated from CAD and controls using an ExoQuick reagent, and these were then quantified by measuring the protein levels using BCA methods. The uptake of exosomes by human umbilical vein endothelial cells (HUVECs) was observed by laser scanning microscope and analyzed via flow cytometry. Then, HUVECs were treated with vehicle, exosomes from CAD (CAD-exo), and controls (ctrl-exo) in the absence and presence of vascular endothelial growth factor (VEGF). Cell viability, migration, and angiogenesis were evaluated using CCK-8 assay, scratch assay, and tube formation assay. Inflammatory factors including IL-1β, IL-6, TNF-α, ICAM-1, and VCAM-1 levels were detected via qPCR. As per our findings, no significant differences were noted in uptake of ctrl-exo and CAD-exo by HUVECs. CAD-exo suppressed cell viability in a dose-dependent manner. Compared with ctrl-exo, CAD-exo-treated HUVECs significantly suppressed migration and angiogenesis. However, CAD-exo had a stronger inhibitory effect on VEGF-induced migration and angiogenesis compared with ctrl-exo. Moreover, IL-1β, TNF-α, and ICAM-1 were determined to be significantly upregulated in HUVECs treated with CAD-exo, but IL-6 and VCAM-1 expressions were not affected. Overall, our results suggest that CAD-exo are involved in endothelial injury and inflammation, which may, in turn, cause endothelial dysfunction and potentially promote the development of CAD.
AbstractList Endothelial injury and inflammation have been found to be essential in the pathogenesis of coronary artery disease (CAD). Circulating exosomes are of great value as novel biomarkers for CAD. However, the role of circulating exosomes in the pathogenesis of CAD remains unclear. Thus, in this study, we aimed to examine whether circulating exosomes from CAD are involved in the endothelial injury and inflammation. The serum-derived exosomes were isolated from CAD and controls using an ExoQuick reagent, and these were then quantified by measuring the protein levels using BCA methods. The uptake of exosomes by human umbilical vein endothelial cells (HUVECs) was observed by laser scanning microscope and analyzed via flow cytometry. Then, HUVECs were treated with vehicle, exosomes from CAD (CAD-exo), and controls (ctrl-exo) in the absence and presence of vascular endothelial growth factor (VEGF). Cell viability, migration, and angiogenesis were evaluated using CCK-8 assay, scratch assay, and tube formation assay. Inflammatory factors including IL-1β, IL-6, TNF-α, ICAM-1, and VCAM-1 levels were detected via qPCR. As per our findings, no significant differences were noted in uptake of ctrl-exo and CAD-exo by HUVECs. CAD-exo suppressed cell viability in a dose-dependent manner. Compared with ctrl-exo, CAD-exo-treated HUVECs significantly suppressed migration and angiogenesis. However, CAD-exo had a stronger inhibitory effect on VEGF-induced migration and angiogenesis compared with ctrl-exo. Moreover, IL-1β, TNF-α, and ICAM-1 were determined to be significantly upregulated in HUVECs treated with CAD-exo, but IL-6 and VCAM-1 expressions were not affected. Overall, our results suggest that CAD-exo are involved in endothelial injury and inflammation, which may, in turn, cause endothelial dysfunction and potentially promote the development of CAD.
Author Wang, Xuan
Wu, Tianlong
Liang, Tao
Xie, Zhixin
Yu, Yanhong
Zhang, Ping
Yu, Huimin
Author_xml – sequence: 1
  fullname: Zhang, Ping
  organization: Second School of Clinical Medicine, Southern Medical University
– sequence: 2
  fullname: Liang, Tao
  organization: Department of Cardiovascular, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science
– sequence: 3
  fullname: Wang, Xuan
  organization: Department of Cardiovascular, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science
– sequence: 4
  fullname: Wu, Tianlong
  organization: Department of Cardiovascular, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science
– sequence: 5
  fullname: Xie, Zhixin
  organization: Second School of Clinical Medicine, Southern Medical University
– sequence: 6
  fullname: Yu, Yanhong
  organization: Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental and Regenerative Biology, College of Life Science and Technology, Jinan University
– sequence: 7
  fullname: Yu, Huimin
  organization: Second School of Clinical Medicine, Southern Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33731537$$D View this record in MEDLINE/PubMed
BookMark eNptkdtqVDEUhoNU7EFvfAAJeCfsmmRnZyZ3luloCwUFrbchs7PiZJNDTbI9vIjPa5yZFhFvshYr3_-H_OsUHcUUAaHnlJzToRev3XY6Z6QTnD5CJ7TnsuuZlEeHnvViOEanpUyEcDqQxRN03PeLvkkXJ-jXR8hz6C4hu29g8PpHKilAwTangD_o6iDWgr-7usWrlFPU-Se-yBVauXQFdAF8Hc08Al5Hk-oWvNO-jaa5ETqa1lqvQ2hOKWIX8dUcdMS3YeO8Gxv6Gdrwb-0KvC9P0WOrfYFnh3qGbt-uP62uupv3765XFzfdyOWydtKOjNFxEJQJYMCMFUDIgnGrGQht7WCYMMZqSkGAoZotxRI2nBsiYWk3_Rl6ufe9y-nrDKWqKc05ticVa1FJKbjkjXpxoOZNAKPusgstCHUfYwPIHhhzKiWDVaOruy_XrJ1XlKg_m1JtU4oR1TbVJK_-kdy7_hd-s4enUvUXeEB1rm70sEMFU2x37CQPV-NWZwWx_w2KTq4O
CitedBy_id crossref_primary_10_1007_s00421_022_05128_6
crossref_primary_10_12997_jla_2024_13_3_232
crossref_primary_10_1080_21655979_2022_2066754
crossref_primary_10_3390_ijms242115677
crossref_primary_10_1002_JLB_3MIR0221_099R
crossref_primary_10_1002_adhm_202300052
crossref_primary_10_1021_acs_molpharmaceut_3c00268
crossref_primary_10_1016_j_carpath_2022_107510
crossref_primary_10_31083_j_rcm2507245
crossref_primary_10_3390_ijms221910270
crossref_primary_10_7717_peerj_16481
crossref_primary_10_1113_JP282054
crossref_primary_10_1536_ihj_22_067
Cites_doi 10.1093/eurheartj/ehu153
10.2340/00015555-3300
10.1016/j.ceb.2009.03.007
10.1093/cvr/cvz139
10.1002/iub.2189
10.3892/or.2016.5066
10.1161/CIRCRESAHA.118.314010
10.1080/20013078.2018.1535750
10.1007/s00395-020-0781-7
10.1159/000492851
10.1161/CIRCRESAHA.116.308334
10.3389/fphys.2020.00654
10.1210/jc.2019-00273
10.1155/2020/9182091
10.14797/mdcj-11-3-160
10.1177/2047487315587402
10.1016/j.ccl.2014.04.003
10.1007/s11886-014-0479-2
10.1073/pnas.1721521115
10.1161/CIRCRESAHA.115.306566
10.1038/hr.2016.163
10.4049/jimmunol.1800304
10.1161/CIRCRESAHA.115.306301
10.1016/j.jhep.2019.09.014
10.1096/fj.201701073R
10.1016/j.rmed.2017.04.014
10.1016/j.ymthe.2017.03.031
10.1016/j.atherosclerosis.2018.07.014
10.2174/1570161116666180313142139
10.3390/biom8030080
ContentType Journal Article
Copyright 2021 by the International Heart Journal Association
Copyright Japan Science and Technology Agency 2021
Copyright_xml – notice: 2021 by the International Heart Journal Association
– notice: Copyright Japan Science and Technology Agency 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
K9.
DOI 10.1536/ihj.20-641
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Calcium & Calcified Tissue Abstracts
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1349-3299
EndPage 406
ExternalDocumentID 33731537
10_1536_ihj_20_641
article_ihj_62_2_62_20_641_article_char_en
Genre Journal Article
GroupedDBID ---
.55
29J
2WC
53G
5GY
ACPRK
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
JSF
JSH
KQ8
OK1
RJT
RZJ
SDH
TR2
X7M
AAFWJ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
K9.
ID FETCH-LOGICAL-c498t-9fc221c56126e2e2df6e00724fa2e6aff5d26ddfa11e6ed1a2868eb44d09e8fb3
ISSN 1349-2365
IngestDate Mon Jun 30 07:53:35 EDT 2025
Thu Jan 02 22:56:57 EST 2025
Tue Jul 01 00:56:17 EDT 2025
Thu Apr 24 23:04:08 EDT 2025
Wed Apr 05 14:52:15 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Inflammatory factors
Angiogenesis
Pathogenesis
Atherosclerosis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c498t-9fc221c56126e2e2df6e00724fa2e6aff5d26ddfa11e6ed1a2868eb44d09e8fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/ihj/62/2/62_20-641/_article/-char/en
PMID 33731537
PQID 2507996494
PQPubID 2048496
PageCount 11
ParticipantIDs proquest_journals_2507996494
pubmed_primary_33731537
crossref_citationtrail_10_1536_ihj_20_641
crossref_primary_10_1536_ihj_20_641
jstage_primary_article_ihj_62_2_62_20_641_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-Mar-30
PublicationDateYYYYMMDD 2021-03-30
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-Mar-30
  day: 30
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle International Heart Journal
PublicationTitleAlternate Int. Heart J.
PublicationYear 2021
Publisher International Heart Journal Association
Japan Science and Technology Agency
Publisher_xml – name: International Heart Journal Association
– name: Japan Science and Technology Agency
References 19. Tan DBA, Armitage J, Teo TH, Ong NE, Shin H, Moodley YP. Elevated levels of circulating exosome in COPD patients are associated with systemic inflammation. Respir Med 2017; 132: 261-4.
17. Amabile N, Cheng SS, Renard JM, et al. Association of circulating endothelial microparticles with cardiometabolic risk factors in the Framingham Heart Study. Eur Heart J 2014; 35: 2972-9.
24. Sun Y, Liu XL, Zhang D, et al. Platelet-derived exosomes affect the proliferation and migration of human umbilical vein endothelial cells via miR-126. Curr Vasc Pharmacol 2019; 17: 379-87.
11. Libby P, Bornfeldt KE, Tall AR. Atherosclerosis: Successes, surprises, and future challenges. Circ Res 2016; 118: 531-4.
25. Liu YY, Li Q, Hosen MR, et al. Atherosclerotic conditions promote the packaging of functional microRNA-92a-3p into endothelial microvesicles. Circ Res 2019; 124: 575-87.
28. Zhu L, Fang LH. AIBP: A novel molecule at the interface of cholesterol transport, angiogenesis, and atherosclerosis. Methodist Debakey CardioVasc 2015; 11: 160-5.
21. Huang PS, Wang L, Li Q, et al. Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovasc Res 2020; 116: 353-67.
32. Jiang FJ, Chen Q, Wang W, Ling Y, Yan Y, Xia P. Hepatocyte-derived extracellular vesicles promote endothelial inflammation and atherogenesis via microRNA-1. J Hepatol 2020; 72: 156-66.
15. Osada-Oka M, Shiota M, Izumi Y, et al. Macrophage-derived exosomes induce inflammatory factors in endothelial cells under hypertensive conditions. Hypertens Res 2017; 40: 353-60.
5. McPherson R, Tybjaerg-Hansen A. Genetics of coronary artery disease. Circ Res 2016; 118: 564-78.
7. Ling H, Guo Z, Shi Y, Zhang L, Song C. Serum exosomal MicroRNA-21, MicroRNA-126, and PTEN are novel biomarkers for diagnosis of acute coronary syndrome. Front Physiol 2020; 11: 654.
4. Dandona S, Roberts R. The role of genetic risk factors in coronary artery disease. Curr Cardiol Rep 2014; 16: 479.
18. Matsumoto Y, Kano M, Akutsu Y, et al. Quantification of plasma exosome is a potential prognostic marker for esophageal squamous cell carcinoma. Oncol Rep 2016; 36: 2535-43.
16. Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7: 1535750.
6. Simons M, Raposo G. Exosomes--vesicular carriers for intercellular communication. Curr Opin Cell Biol 2009; 21: 575-81.
10. Wu WP, Pan YH, Cai MY, et al. Plasma-derived exosomal circular RNA hsa_circ_0005540 as a novel diagnostic biomarker for coronary artery disease. Dis Markers 2020; 2020: 3178642.
30. Jacquin-Porretaz C, Cordonnier M, Nardin C, et al. Increased levels of interleukin-17A exosomes in psoriasis. Acta Derm Venereol 2019; 99: 1143-7.
2. Chen WW, Gao RL, Liu LS, et al. China cardiovascular diseases report 2015: A summary. J Geriatr Cardiol 2017; 14: 1-10.
22. Chen Z, Wang HQ, Xia Y, Yan FH, Lu Y. Therapeutic potential of mesenchymal cell-derived miRNA-150-5p-expressing exosomes in rheumatoid arthritis mediated by the modulation of MMP14 and VEGF. J Immunol 2018; 201: 2472-82.
20. Zhang HN, Liu J, Qu D, et al. Serum exosomes mediate delivery of arginase 1 as a novel mechanism for endothelial dysfunction in diabetes. Proc Natl Acad Sci U S A 2018; 115: E6927-36.
13. Liu SJ, Chen J, Shi J, et al. M1-like macrophage-derived exosomes suppress angiogenesis and exacerbate cardiac dysfunction in a myocardial infarction microenvironment. Basic Res Cardiol 2020; 115: 22.
8. Su J, Li J, Yu Q, et al. Exosomal miRNAs as potential biomarkers for acute myocardial infarction. IUBMB Life 2020; 72: 384-400.
14. Zheng B, Yin WN, Suzuki T, et al. Exosome-mediated miR-155 transfer from smooth muscle cells to endothelial cells induces endothelial injury and promotes atherosclerosis. Mol Ther 2017; 25: 1279-94.
26. Bao H, Chen YX, Huang K, et al. Platelet-derived microparticles promote endothelial cell proliferation in hypertension via miR-142-3p. FASEB J 2018; 32: 3912-23.
3. Mack M, Gopal A. Epidemiology, traditional and novel risk factors in coronary artery disease. Cardiol Clin 2014; 32: 323-32.
31. Cui XJ, Liu YP, Wang S, et al. Circulating exosomes activate dendritic cells and induce unbalanced CD4+ T cell differentiation in Hashimoto thyroiditis. J Clin Endocrinol Metab 2019; 104: 4607-18.
23. Wang X, Wang H, Cao J, Ye C. Exosomes from adipose-derived stem cells promotes VEGF-C-dependent lymphangiogenesis by regulating miRNA-132/TGF-β pathway. Cell Physiol Biochem 2018; 49: 160-71.
27. Gimbrone MA, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 2016; 118: 620-36.
1. Zhu KF, Wang YM, Zhu JZ, Zhou QY, Wang NF. National prevalence of coronary heart disease and its relationship with human development index: A systematic review. Eur J Prev Cardiol 2016; 23: 530-43.
29. Zhu Y, Xian X, Wang Z, et al. Research progress on the relationship between atherosclerosis and inflammation. Biomolecules 2018; 8: 80.
9. Liang C, Zhang L, Lian X, Zhu T, Zhang Y, Gu N. Circulating exosomal SOCS2-AS1 acts as a novel biomarker in predicting the diagnosis of coronary artery disease. BioMed Res Int 2020; 2020: 9182091.
12. Raggi P, Genest J, Giles JT, et al. Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions. Atherosclerosis 2018; 276: 98-108.
22
23
24
25
26
27
28
29
30
31
10
32
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 26. Bao H, Chen YX, Huang K, et al. Platelet-derived microparticles promote endothelial cell proliferation in hypertension via miR-142-3p. FASEB J 2018; 32: 3912-23.
– reference: 32. Jiang FJ, Chen Q, Wang W, Ling Y, Yan Y, Xia P. Hepatocyte-derived extracellular vesicles promote endothelial inflammation and atherogenesis via microRNA-1. J Hepatol 2020; 72: 156-66.
– reference: 30. Jacquin-Porretaz C, Cordonnier M, Nardin C, et al. Increased levels of interleukin-17A exosomes in psoriasis. Acta Derm Venereol 2019; 99: 1143-7.
– reference: 6. Simons M, Raposo G. Exosomes--vesicular carriers for intercellular communication. Curr Opin Cell Biol 2009; 21: 575-81.
– reference: 2. Chen WW, Gao RL, Liu LS, et al. China cardiovascular diseases report 2015: A summary. J Geriatr Cardiol 2017; 14: 1-10.
– reference: 27. Gimbrone MA, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 2016; 118: 620-36.
– reference: 22. Chen Z, Wang HQ, Xia Y, Yan FH, Lu Y. Therapeutic potential of mesenchymal cell-derived miRNA-150-5p-expressing exosomes in rheumatoid arthritis mediated by the modulation of MMP14 and VEGF. J Immunol 2018; 201: 2472-82.
– reference: 25. Liu YY, Li Q, Hosen MR, et al. Atherosclerotic conditions promote the packaging of functional microRNA-92a-3p into endothelial microvesicles. Circ Res 2019; 124: 575-87.
– reference: 20. Zhang HN, Liu J, Qu D, et al. Serum exosomes mediate delivery of arginase 1 as a novel mechanism for endothelial dysfunction in diabetes. Proc Natl Acad Sci U S A 2018; 115: E6927-36.
– reference: 16. Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7: 1535750.
– reference: 24. Sun Y, Liu XL, Zhang D, et al. Platelet-derived exosomes affect the proliferation and migration of human umbilical vein endothelial cells via miR-126. Curr Vasc Pharmacol 2019; 17: 379-87.
– reference: 11. Libby P, Bornfeldt KE, Tall AR. Atherosclerosis: Successes, surprises, and future challenges. Circ Res 2016; 118: 531-4.
– reference: 29. Zhu Y, Xian X, Wang Z, et al. Research progress on the relationship between atherosclerosis and inflammation. Biomolecules 2018; 8: 80.
– reference: 14. Zheng B, Yin WN, Suzuki T, et al. Exosome-mediated miR-155 transfer from smooth muscle cells to endothelial cells induces endothelial injury and promotes atherosclerosis. Mol Ther 2017; 25: 1279-94.
– reference: 23. Wang X, Wang H, Cao J, Ye C. Exosomes from adipose-derived stem cells promotes VEGF-C-dependent lymphangiogenesis by regulating miRNA-132/TGF-β pathway. Cell Physiol Biochem 2018; 49: 160-71.
– reference: 4. Dandona S, Roberts R. The role of genetic risk factors in coronary artery disease. Curr Cardiol Rep 2014; 16: 479.
– reference: 19. Tan DBA, Armitage J, Teo TH, Ong NE, Shin H, Moodley YP. Elevated levels of circulating exosome in COPD patients are associated with systemic inflammation. Respir Med 2017; 132: 261-4.
– reference: 7. Ling H, Guo Z, Shi Y, Zhang L, Song C. Serum exosomal MicroRNA-21, MicroRNA-126, and PTEN are novel biomarkers for diagnosis of acute coronary syndrome. Front Physiol 2020; 11: 654.
– reference: 28. Zhu L, Fang LH. AIBP: A novel molecule at the interface of cholesterol transport, angiogenesis, and atherosclerosis. Methodist Debakey CardioVasc 2015; 11: 160-5.
– reference: 13. Liu SJ, Chen J, Shi J, et al. M1-like macrophage-derived exosomes suppress angiogenesis and exacerbate cardiac dysfunction in a myocardial infarction microenvironment. Basic Res Cardiol 2020; 115: 22.
– reference: 1. Zhu KF, Wang YM, Zhu JZ, Zhou QY, Wang NF. National prevalence of coronary heart disease and its relationship with human development index: A systematic review. Eur J Prev Cardiol 2016; 23: 530-43.
– reference: 31. Cui XJ, Liu YP, Wang S, et al. Circulating exosomes activate dendritic cells and induce unbalanced CD4+ T cell differentiation in Hashimoto thyroiditis. J Clin Endocrinol Metab 2019; 104: 4607-18.
– reference: 3. Mack M, Gopal A. Epidemiology, traditional and novel risk factors in coronary artery disease. Cardiol Clin 2014; 32: 323-32.
– reference: 21. Huang PS, Wang L, Li Q, et al. Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovasc Res 2020; 116: 353-67.
– reference: 12. Raggi P, Genest J, Giles JT, et al. Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions. Atherosclerosis 2018; 276: 98-108.
– reference: 5. McPherson R, Tybjaerg-Hansen A. Genetics of coronary artery disease. Circ Res 2016; 118: 564-78.
– reference: 17. Amabile N, Cheng SS, Renard JM, et al. Association of circulating endothelial microparticles with cardiometabolic risk factors in the Framingham Heart Study. Eur Heart J 2014; 35: 2972-9.
– reference: 10. Wu WP, Pan YH, Cai MY, et al. Plasma-derived exosomal circular RNA hsa_circ_0005540 as a novel diagnostic biomarker for coronary artery disease. Dis Markers 2020; 2020: 3178642.
– reference: 15. Osada-Oka M, Shiota M, Izumi Y, et al. Macrophage-derived exosomes induce inflammatory factors in endothelial cells under hypertensive conditions. Hypertens Res 2017; 40: 353-60.
– reference: 8. Su J, Li J, Yu Q, et al. Exosomal miRNAs as potential biomarkers for acute myocardial infarction. IUBMB Life 2020; 72: 384-400.
– reference: 18. Matsumoto Y, Kano M, Akutsu Y, et al. Quantification of plasma exosome is a potential prognostic marker for esophageal squamous cell carcinoma. Oncol Rep 2016; 36: 2535-43.
– reference: 9. Liang C, Zhang L, Lian X, Zhu T, Zhang Y, Gu N. Circulating exosomal SOCS2-AS1 acts as a novel biomarker in predicting the diagnosis of coronary artery disease. BioMed Res Int 2020; 2020: 9182091.
– ident: 2
– ident: 17
  doi: 10.1093/eurheartj/ehu153
– ident: 30
  doi: 10.2340/00015555-3300
– ident: 6
  doi: 10.1016/j.ceb.2009.03.007
– ident: 21
  doi: 10.1093/cvr/cvz139
– ident: 8
  doi: 10.1002/iub.2189
– ident: 18
  doi: 10.3892/or.2016.5066
– ident: 25
  doi: 10.1161/CIRCRESAHA.118.314010
– ident: 10
– ident: 16
  doi: 10.1080/20013078.2018.1535750
– ident: 13
  doi: 10.1007/s00395-020-0781-7
– ident: 23
  doi: 10.1159/000492851
– ident: 11
  doi: 10.1161/CIRCRESAHA.116.308334
– ident: 7
  doi: 10.3389/fphys.2020.00654
– ident: 31
  doi: 10.1210/jc.2019-00273
– ident: 9
  doi: 10.1155/2020/9182091
– ident: 28
  doi: 10.14797/mdcj-11-3-160
– ident: 1
  doi: 10.1177/2047487315587402
– ident: 3
  doi: 10.1016/j.ccl.2014.04.003
– ident: 4
  doi: 10.1007/s11886-014-0479-2
– ident: 20
  doi: 10.1073/pnas.1721521115
– ident: 5
  doi: 10.1161/CIRCRESAHA.115.306566
– ident: 15
  doi: 10.1038/hr.2016.163
– ident: 22
  doi: 10.4049/jimmunol.1800304
– ident: 27
  doi: 10.1161/CIRCRESAHA.115.306301
– ident: 32
  doi: 10.1016/j.jhep.2019.09.014
– ident: 26
  doi: 10.1096/fj.201701073R
– ident: 19
  doi: 10.1016/j.rmed.2017.04.014
– ident: 14
  doi: 10.1016/j.ymthe.2017.03.031
– ident: 12
  doi: 10.1016/j.atherosclerosis.2018.07.014
– ident: 24
  doi: 10.2174/1570161116666180313142139
– ident: 29
  doi: 10.3390/biom8030080
SSID ssj0041507
Score 2.3136148
Snippet Endothelial injury and inflammation have been found to be essential in the pathogenesis of coronary artery disease (CAD). Circulating exosomes are of great...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 396
SubjectTerms Angiogenesis
Atherosclerosis
Cardiovascular disease
Cell migration
Cell Movement
Cell Proliferation
Cell viability
Cells, Cultured
Cholecystokinin
Coronary artery
Coronary Artery Disease - blood
Coronary Artery Disease - pathology
Coronary vessels
Endothelial cells
Exosomes
Exosomes - metabolism
Female
Flow Cytometry
Heart diseases
Human Umbilical Vein Endothelial Cells - metabolism
Human Umbilical Vein Endothelial Cells - pathology
Humans
IL-1β
Inflammation
Inflammation - metabolism
Inflammation - pathology
Inflammatory factors
Intercellular adhesion molecule 1
Interleukin 6
Male
Middle Aged
Pathogenesis
Tumor necrosis factor-α
Umbilical vein
Vascular cell adhesion molecule 1
Vascular endothelial growth factor
Title Serum-Derived Exosomes from Patients with Coronary Artery Disease Induce Endothelial Injury and Inflammation in Human Umbilical Vein Endothelial Cells
URI https://www.jstage.jst.go.jp/article/ihj/62/2/62_20-641/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/33731537
https://www.proquest.com/docview/2507996494
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX International Heart Journal, 2021/03/30, Vol.62(2), pp.396-406
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELaqBSEuiH-6LMgSXNAqJbFdJz6uStEKqaseWugtyo_DtuqmiCYr4EF4D96QGdtJU3aRFi5W5dpxkvlszzgz3xDyWrIslbA4egXsH54IfN9LYafzUPfNw4D5MsIA58mZPJ2LD4vhotf71fFaqqt0kP24Nq7kf6QKdSBXjJL9B8m2F4UK-A3yhRIkDOWNZAwTvb7w3sFQl6A3jr9tthvkXjIhI1NLmOqi10ZIVIAOcifowvkdSTfxu8wxZu6AmT0uc4zEWlvmjRW8Z-cnXABgbHAjHozYE__5BTrUomw_aqjs9h3p9Xrb1Xf3Dxwxe3Z13H207pH1tNlF0T9o6SpnyWZ35m-rFvUO0Z9qC7ikXG9cb3eEwYwPl_saY1ddLpTHuE0aMdC7Os5s9qRmqZasA0nWWXe5kp0tXBgSg6u7w9Ckr1merwZoM1vCrX0K7j-2xtZhEU0l6B1D35j5sUSqhFsMLBMTX75ovYoE6tfGxndP5Bhxoe_b3bh7OtDtFZgBn_XfLRyj6czuk3vORKEnFm8PSE-XD8mdiXPCeER-7sGONrCjCDvawI4i7GgDO2phRx3sqIUd7UCHWthRgB3two4uS2pgR1vYUYTdXl8Du8dk_n48G516Lr2HlwkVVZ4qMsaCDNOzSs00ywupkcheFAnTMimKYc5knhdJEGip8yBhkYx0KkTuKx0VKX9CDspNqZ8RGg51yLMUvxqGIgfUMJ6kihXpMOMi12mfvGleeJw57ntMwbKOrwq2T161bb9YxpdrWykrt7aNWwVMG8liZgrTtv0LAylh3eqTo0bUsZty2xhMkVApKZTok6dW_O2lOQ85jB8e3ujWnpO7u0l2RA6qr7V-AZpzlb40WIXybDr5DSgpy6Y
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Serum-Derived+Exosomes+from+Patients+with+Coronary+Artery+Disease+Induce+Endothelial+Injury+and+Inflammation+in+Human+Umbilical+Vein+Endothelial+Cells&rft.jtitle=International+heart+journal&rft.au=Zhang%2C+Ping&rft.au=Liang%2C+Tao&rft.au=Wang%2C+Xuan&rft.au=Wu%2C+Tianlong&rft.date=2021-03-30&rft.issn=1349-2365&rft.eissn=1349-3299&rft.volume=62&rft.issue=2&rft.spage=396&rft.epage=406&rft_id=info:doi/10.1536%2Fihj.20-641&rft.externalDBID=n%2Fa&rft.externalDocID=10_1536_ihj_20_641
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1349-2365&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1349-2365&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1349-2365&client=summon