Serum-Derived Exosomes from Patients with Coronary Artery Disease Induce Endothelial Injury and Inflammation in Human Umbilical Vein Endothelial Cells
Endothelial injury and inflammation have been found to be essential in the pathogenesis of coronary artery disease (CAD). Circulating exosomes are of great value as novel biomarkers for CAD. However, the role of circulating exosomes in the pathogenesis of CAD remains unclear. Thus, in this study, we...
Saved in:
Published in | International Heart Journal Vol. 62; no. 2; pp. 396 - 406 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
International Heart Journal Association
30.03.2021
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Endothelial injury and inflammation have been found to be essential in the pathogenesis of coronary artery disease (CAD). Circulating exosomes are of great value as novel biomarkers for CAD. However, the role of circulating exosomes in the pathogenesis of CAD remains unclear. Thus, in this study, we aimed to examine whether circulating exosomes from CAD are involved in the endothelial injury and inflammation. The serum-derived exosomes were isolated from CAD and controls using an ExoQuick reagent, and these were then quantified by measuring the protein levels using BCA methods. The uptake of exosomes by human umbilical vein endothelial cells (HUVECs) was observed by laser scanning microscope and analyzed via flow cytometry. Then, HUVECs were treated with vehicle, exosomes from CAD (CAD-exo), and controls (ctrl-exo) in the absence and presence of vascular endothelial growth factor (VEGF). Cell viability, migration, and angiogenesis were evaluated using CCK-8 assay, scratch assay, and tube formation assay. Inflammatory factors including IL-1β, IL-6, TNF-α, ICAM-1, and VCAM-1 levels were detected via qPCR. As per our findings, no significant differences were noted in uptake of ctrl-exo and CAD-exo by HUVECs. CAD-exo suppressed cell viability in a dose-dependent manner. Compared with ctrl-exo, CAD-exo-treated HUVECs significantly suppressed migration and angiogenesis. However, CAD-exo had a stronger inhibitory effect on VEGF-induced migration and angiogenesis compared with ctrl-exo. Moreover, IL-1β, TNF-α, and ICAM-1 were determined to be significantly upregulated in HUVECs treated with CAD-exo, but IL-6 and VCAM-1 expressions were not affected. Overall, our results suggest that CAD-exo are involved in endothelial injury and inflammation, which may, in turn, cause endothelial dysfunction and potentially promote the development of CAD. |
---|---|
AbstractList | Endothelial injury and inflammation have been found to be essential in the pathogenesis of coronary artery disease (CAD). Circulating exosomes are of great value as novel biomarkers for CAD. However, the role of circulating exosomes in the pathogenesis of CAD remains unclear. Thus, in this study, we aimed to examine whether circulating exosomes from CAD are involved in the endothelial injury and inflammation. The serum-derived exosomes were isolated from CAD and controls using an ExoQuick reagent, and these were then quantified by measuring the protein levels using BCA methods. The uptake of exosomes by human umbilical vein endothelial cells (HUVECs) was observed by laser scanning microscope and analyzed via flow cytometry. Then, HUVECs were treated with vehicle, exosomes from CAD (CAD-exo), and controls (ctrl-exo) in the absence and presence of vascular endothelial growth factor (VEGF). Cell viability, migration, and angiogenesis were evaluated using CCK-8 assay, scratch assay, and tube formation assay. Inflammatory factors including IL-1β, IL-6, TNF-α, ICAM-1, and VCAM-1 levels were detected via qPCR. As per our findings, no significant differences were noted in uptake of ctrl-exo and CAD-exo by HUVECs. CAD-exo suppressed cell viability in a dose-dependent manner. Compared with ctrl-exo, CAD-exo-treated HUVECs significantly suppressed migration and angiogenesis. However, CAD-exo had a stronger inhibitory effect on VEGF-induced migration and angiogenesis compared with ctrl-exo. Moreover, IL-1β, TNF-α, and ICAM-1 were determined to be significantly upregulated in HUVECs treated with CAD-exo, but IL-6 and VCAM-1 expressions were not affected. Overall, our results suggest that CAD-exo are involved in endothelial injury and inflammation, which may, in turn, cause endothelial dysfunction and potentially promote the development of CAD. |
Author | Wang, Xuan Wu, Tianlong Liang, Tao Xie, Zhixin Yu, Yanhong Zhang, Ping Yu, Huimin |
Author_xml | – sequence: 1 fullname: Zhang, Ping organization: Second School of Clinical Medicine, Southern Medical University – sequence: 2 fullname: Liang, Tao organization: Department of Cardiovascular, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science – sequence: 3 fullname: Wang, Xuan organization: Department of Cardiovascular, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science – sequence: 4 fullname: Wu, Tianlong organization: Department of Cardiovascular, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science – sequence: 5 fullname: Xie, Zhixin organization: Second School of Clinical Medicine, Southern Medical University – sequence: 6 fullname: Yu, Yanhong organization: Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental and Regenerative Biology, College of Life Science and Technology, Jinan University – sequence: 7 fullname: Yu, Huimin organization: Second School of Clinical Medicine, Southern Medical University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33731537$$D View this record in MEDLINE/PubMed |
BookMark | eNptkdtqVDEUhoNU7EFvfAAJeCfsmmRnZyZ3luloCwUFrbchs7PiZJNDTbI9vIjPa5yZFhFvshYr3_-H_OsUHcUUAaHnlJzToRev3XY6Z6QTnD5CJ7TnsuuZlEeHnvViOEanpUyEcDqQxRN03PeLvkkXJ-jXR8hz6C4hu29g8PpHKilAwTangD_o6iDWgr-7usWrlFPU-Se-yBVauXQFdAF8Hc08Al5Hk-oWvNO-jaa5ETqa1lqvQ2hOKWIX8dUcdMS3YeO8Gxv6Gdrwb-0KvC9P0WOrfYFnh3qGbt-uP62uupv3765XFzfdyOWydtKOjNFxEJQJYMCMFUDIgnGrGQht7WCYMMZqSkGAoZotxRI2nBsiYWk3_Rl6ufe9y-nrDKWqKc05ticVa1FJKbjkjXpxoOZNAKPusgstCHUfYwPIHhhzKiWDVaOruy_XrJ1XlKg_m1JtU4oR1TbVJK_-kdy7_hd-s4enUvUXeEB1rm70sEMFU2x37CQPV-NWZwWx_w2KTq4O |
CitedBy_id | crossref_primary_10_1007_s00421_022_05128_6 crossref_primary_10_12997_jla_2024_13_3_232 crossref_primary_10_1080_21655979_2022_2066754 crossref_primary_10_3390_ijms242115677 crossref_primary_10_1002_JLB_3MIR0221_099R crossref_primary_10_1002_adhm_202300052 crossref_primary_10_1021_acs_molpharmaceut_3c00268 crossref_primary_10_1016_j_carpath_2022_107510 crossref_primary_10_31083_j_rcm2507245 crossref_primary_10_3390_ijms221910270 crossref_primary_10_7717_peerj_16481 crossref_primary_10_1113_JP282054 crossref_primary_10_1536_ihj_22_067 |
Cites_doi | 10.1093/eurheartj/ehu153 10.2340/00015555-3300 10.1016/j.ceb.2009.03.007 10.1093/cvr/cvz139 10.1002/iub.2189 10.3892/or.2016.5066 10.1161/CIRCRESAHA.118.314010 10.1080/20013078.2018.1535750 10.1007/s00395-020-0781-7 10.1159/000492851 10.1161/CIRCRESAHA.116.308334 10.3389/fphys.2020.00654 10.1210/jc.2019-00273 10.1155/2020/9182091 10.14797/mdcj-11-3-160 10.1177/2047487315587402 10.1016/j.ccl.2014.04.003 10.1007/s11886-014-0479-2 10.1073/pnas.1721521115 10.1161/CIRCRESAHA.115.306566 10.1038/hr.2016.163 10.4049/jimmunol.1800304 10.1161/CIRCRESAHA.115.306301 10.1016/j.jhep.2019.09.014 10.1096/fj.201701073R 10.1016/j.rmed.2017.04.014 10.1016/j.ymthe.2017.03.031 10.1016/j.atherosclerosis.2018.07.014 10.2174/1570161116666180313142139 10.3390/biom8030080 |
ContentType | Journal Article |
Copyright | 2021 by the International Heart Journal Association Copyright Japan Science and Technology Agency 2021 |
Copyright_xml | – notice: 2021 by the International Heart Journal Association – notice: Copyright Japan Science and Technology Agency 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP K9. |
DOI | 10.1536/ihj.20-641 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts ProQuest Health & Medical Complete (Alumni) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Calcium & Calcified Tissue Abstracts |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1349-3299 |
EndPage | 406 |
ExternalDocumentID | 33731537 10_1536_ihj_20_641 article_ihj_62_2_62_20_641_article_char_en |
Genre | Journal Article |
GroupedDBID | --- .55 29J 2WC 53G 5GY ACPRK ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DU5 E3Z EBS EJD F5P GX1 JSF JSH KQ8 OK1 RJT RZJ SDH TR2 X7M AAFWJ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP K9. |
ID | FETCH-LOGICAL-c498t-9fc221c56126e2e2df6e00724fa2e6aff5d26ddfa11e6ed1a2868eb44d09e8fb3 |
ISSN | 1349-2365 |
IngestDate | Mon Jun 30 07:53:35 EDT 2025 Thu Jan 02 22:56:57 EST 2025 Tue Jul 01 00:56:17 EDT 2025 Thu Apr 24 23:04:08 EDT 2025 Wed Apr 05 14:52:15 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Inflammatory factors Angiogenesis Pathogenesis Atherosclerosis |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c498t-9fc221c56126e2e2df6e00724fa2e6aff5d26ddfa11e6ed1a2868eb44d09e8fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/ihj/62/2/62_20-641/_article/-char/en |
PMID | 33731537 |
PQID | 2507996494 |
PQPubID | 2048496 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2507996494 pubmed_primary_33731537 crossref_citationtrail_10_1536_ihj_20_641 crossref_primary_10_1536_ihj_20_641 jstage_primary_article_ihj_62_2_62_20_641_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-Mar-30 |
PublicationDateYYYYMMDD | 2021-03-30 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-Mar-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | International Heart Journal |
PublicationTitleAlternate | Int. Heart J. |
PublicationYear | 2021 |
Publisher | International Heart Journal Association Japan Science and Technology Agency |
Publisher_xml | – name: International Heart Journal Association – name: Japan Science and Technology Agency |
References | 19. Tan DBA, Armitage J, Teo TH, Ong NE, Shin H, Moodley YP. Elevated levels of circulating exosome in COPD patients are associated with systemic inflammation. Respir Med 2017; 132: 261-4. 17. Amabile N, Cheng SS, Renard JM, et al. Association of circulating endothelial microparticles with cardiometabolic risk factors in the Framingham Heart Study. Eur Heart J 2014; 35: 2972-9. 24. Sun Y, Liu XL, Zhang D, et al. Platelet-derived exosomes affect the proliferation and migration of human umbilical vein endothelial cells via miR-126. Curr Vasc Pharmacol 2019; 17: 379-87. 11. Libby P, Bornfeldt KE, Tall AR. Atherosclerosis: Successes, surprises, and future challenges. Circ Res 2016; 118: 531-4. 25. Liu YY, Li Q, Hosen MR, et al. Atherosclerotic conditions promote the packaging of functional microRNA-92a-3p into endothelial microvesicles. Circ Res 2019; 124: 575-87. 28. Zhu L, Fang LH. AIBP: A novel molecule at the interface of cholesterol transport, angiogenesis, and atherosclerosis. Methodist Debakey CardioVasc 2015; 11: 160-5. 21. Huang PS, Wang L, Li Q, et al. Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovasc Res 2020; 116: 353-67. 32. Jiang FJ, Chen Q, Wang W, Ling Y, Yan Y, Xia P. Hepatocyte-derived extracellular vesicles promote endothelial inflammation and atherogenesis via microRNA-1. J Hepatol 2020; 72: 156-66. 15. Osada-Oka M, Shiota M, Izumi Y, et al. Macrophage-derived exosomes induce inflammatory factors in endothelial cells under hypertensive conditions. Hypertens Res 2017; 40: 353-60. 5. McPherson R, Tybjaerg-Hansen A. Genetics of coronary artery disease. Circ Res 2016; 118: 564-78. 7. Ling H, Guo Z, Shi Y, Zhang L, Song C. Serum exosomal MicroRNA-21, MicroRNA-126, and PTEN are novel biomarkers for diagnosis of acute coronary syndrome. Front Physiol 2020; 11: 654. 4. Dandona S, Roberts R. The role of genetic risk factors in coronary artery disease. Curr Cardiol Rep 2014; 16: 479. 18. Matsumoto Y, Kano M, Akutsu Y, et al. Quantification of plasma exosome is a potential prognostic marker for esophageal squamous cell carcinoma. Oncol Rep 2016; 36: 2535-43. 16. Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7: 1535750. 6. Simons M, Raposo G. Exosomes--vesicular carriers for intercellular communication. Curr Opin Cell Biol 2009; 21: 575-81. 10. Wu WP, Pan YH, Cai MY, et al. Plasma-derived exosomal circular RNA hsa_circ_0005540 as a novel diagnostic biomarker for coronary artery disease. Dis Markers 2020; 2020: 3178642. 30. Jacquin-Porretaz C, Cordonnier M, Nardin C, et al. Increased levels of interleukin-17A exosomes in psoriasis. Acta Derm Venereol 2019; 99: 1143-7. 2. Chen WW, Gao RL, Liu LS, et al. China cardiovascular diseases report 2015: A summary. J Geriatr Cardiol 2017; 14: 1-10. 22. Chen Z, Wang HQ, Xia Y, Yan FH, Lu Y. Therapeutic potential of mesenchymal cell-derived miRNA-150-5p-expressing exosomes in rheumatoid arthritis mediated by the modulation of MMP14 and VEGF. J Immunol 2018; 201: 2472-82. 20. Zhang HN, Liu J, Qu D, et al. Serum exosomes mediate delivery of arginase 1 as a novel mechanism for endothelial dysfunction in diabetes. Proc Natl Acad Sci U S A 2018; 115: E6927-36. 13. Liu SJ, Chen J, Shi J, et al. M1-like macrophage-derived exosomes suppress angiogenesis and exacerbate cardiac dysfunction in a myocardial infarction microenvironment. Basic Res Cardiol 2020; 115: 22. 8. Su J, Li J, Yu Q, et al. Exosomal miRNAs as potential biomarkers for acute myocardial infarction. IUBMB Life 2020; 72: 384-400. 14. Zheng B, Yin WN, Suzuki T, et al. Exosome-mediated miR-155 transfer from smooth muscle cells to endothelial cells induces endothelial injury and promotes atherosclerosis. Mol Ther 2017; 25: 1279-94. 26. Bao H, Chen YX, Huang K, et al. Platelet-derived microparticles promote endothelial cell proliferation in hypertension via miR-142-3p. FASEB J 2018; 32: 3912-23. 3. Mack M, Gopal A. Epidemiology, traditional and novel risk factors in coronary artery disease. Cardiol Clin 2014; 32: 323-32. 31. Cui XJ, Liu YP, Wang S, et al. Circulating exosomes activate dendritic cells and induce unbalanced CD4+ T cell differentiation in Hashimoto thyroiditis. J Clin Endocrinol Metab 2019; 104: 4607-18. 23. Wang X, Wang H, Cao J, Ye C. Exosomes from adipose-derived stem cells promotes VEGF-C-dependent lymphangiogenesis by regulating miRNA-132/TGF-β pathway. Cell Physiol Biochem 2018; 49: 160-71. 27. Gimbrone MA, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 2016; 118: 620-36. 1. Zhu KF, Wang YM, Zhu JZ, Zhou QY, Wang NF. National prevalence of coronary heart disease and its relationship with human development index: A systematic review. Eur J Prev Cardiol 2016; 23: 530-43. 29. Zhu Y, Xian X, Wang Z, et al. Research progress on the relationship between atherosclerosis and inflammation. Biomolecules 2018; 8: 80. 9. Liang C, Zhang L, Lian X, Zhu T, Zhang Y, Gu N. Circulating exosomal SOCS2-AS1 acts as a novel biomarker in predicting the diagnosis of coronary artery disease. BioMed Res Int 2020; 2020: 9182091. 12. Raggi P, Genest J, Giles JT, et al. Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions. Atherosclerosis 2018; 276: 98-108. 22 23 24 25 26 27 28 29 30 31 10 32 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: 26. Bao H, Chen YX, Huang K, et al. Platelet-derived microparticles promote endothelial cell proliferation in hypertension via miR-142-3p. FASEB J 2018; 32: 3912-23. – reference: 32. Jiang FJ, Chen Q, Wang W, Ling Y, Yan Y, Xia P. Hepatocyte-derived extracellular vesicles promote endothelial inflammation and atherogenesis via microRNA-1. J Hepatol 2020; 72: 156-66. – reference: 30. Jacquin-Porretaz C, Cordonnier M, Nardin C, et al. Increased levels of interleukin-17A exosomes in psoriasis. Acta Derm Venereol 2019; 99: 1143-7. – reference: 6. Simons M, Raposo G. Exosomes--vesicular carriers for intercellular communication. Curr Opin Cell Biol 2009; 21: 575-81. – reference: 2. Chen WW, Gao RL, Liu LS, et al. China cardiovascular diseases report 2015: A summary. J Geriatr Cardiol 2017; 14: 1-10. – reference: 27. Gimbrone MA, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 2016; 118: 620-36. – reference: 22. Chen Z, Wang HQ, Xia Y, Yan FH, Lu Y. Therapeutic potential of mesenchymal cell-derived miRNA-150-5p-expressing exosomes in rheumatoid arthritis mediated by the modulation of MMP14 and VEGF. J Immunol 2018; 201: 2472-82. – reference: 25. Liu YY, Li Q, Hosen MR, et al. Atherosclerotic conditions promote the packaging of functional microRNA-92a-3p into endothelial microvesicles. Circ Res 2019; 124: 575-87. – reference: 20. Zhang HN, Liu J, Qu D, et al. Serum exosomes mediate delivery of arginase 1 as a novel mechanism for endothelial dysfunction in diabetes. Proc Natl Acad Sci U S A 2018; 115: E6927-36. – reference: 16. Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7: 1535750. – reference: 24. Sun Y, Liu XL, Zhang D, et al. Platelet-derived exosomes affect the proliferation and migration of human umbilical vein endothelial cells via miR-126. Curr Vasc Pharmacol 2019; 17: 379-87. – reference: 11. Libby P, Bornfeldt KE, Tall AR. Atherosclerosis: Successes, surprises, and future challenges. Circ Res 2016; 118: 531-4. – reference: 29. Zhu Y, Xian X, Wang Z, et al. Research progress on the relationship between atherosclerosis and inflammation. Biomolecules 2018; 8: 80. – reference: 14. Zheng B, Yin WN, Suzuki T, et al. Exosome-mediated miR-155 transfer from smooth muscle cells to endothelial cells induces endothelial injury and promotes atherosclerosis. Mol Ther 2017; 25: 1279-94. – reference: 23. Wang X, Wang H, Cao J, Ye C. Exosomes from adipose-derived stem cells promotes VEGF-C-dependent lymphangiogenesis by regulating miRNA-132/TGF-β pathway. Cell Physiol Biochem 2018; 49: 160-71. – reference: 4. Dandona S, Roberts R. The role of genetic risk factors in coronary artery disease. Curr Cardiol Rep 2014; 16: 479. – reference: 19. Tan DBA, Armitage J, Teo TH, Ong NE, Shin H, Moodley YP. Elevated levels of circulating exosome in COPD patients are associated with systemic inflammation. Respir Med 2017; 132: 261-4. – reference: 7. Ling H, Guo Z, Shi Y, Zhang L, Song C. Serum exosomal MicroRNA-21, MicroRNA-126, and PTEN are novel biomarkers for diagnosis of acute coronary syndrome. Front Physiol 2020; 11: 654. – reference: 28. Zhu L, Fang LH. AIBP: A novel molecule at the interface of cholesterol transport, angiogenesis, and atherosclerosis. Methodist Debakey CardioVasc 2015; 11: 160-5. – reference: 13. Liu SJ, Chen J, Shi J, et al. M1-like macrophage-derived exosomes suppress angiogenesis and exacerbate cardiac dysfunction in a myocardial infarction microenvironment. Basic Res Cardiol 2020; 115: 22. – reference: 1. Zhu KF, Wang YM, Zhu JZ, Zhou QY, Wang NF. National prevalence of coronary heart disease and its relationship with human development index: A systematic review. Eur J Prev Cardiol 2016; 23: 530-43. – reference: 31. Cui XJ, Liu YP, Wang S, et al. Circulating exosomes activate dendritic cells and induce unbalanced CD4+ T cell differentiation in Hashimoto thyroiditis. J Clin Endocrinol Metab 2019; 104: 4607-18. – reference: 3. Mack M, Gopal A. Epidemiology, traditional and novel risk factors in coronary artery disease. Cardiol Clin 2014; 32: 323-32. – reference: 21. Huang PS, Wang L, Li Q, et al. Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovasc Res 2020; 116: 353-67. – reference: 12. Raggi P, Genest J, Giles JT, et al. Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions. Atherosclerosis 2018; 276: 98-108. – reference: 5. McPherson R, Tybjaerg-Hansen A. Genetics of coronary artery disease. Circ Res 2016; 118: 564-78. – reference: 17. Amabile N, Cheng SS, Renard JM, et al. Association of circulating endothelial microparticles with cardiometabolic risk factors in the Framingham Heart Study. Eur Heart J 2014; 35: 2972-9. – reference: 10. Wu WP, Pan YH, Cai MY, et al. Plasma-derived exosomal circular RNA hsa_circ_0005540 as a novel diagnostic biomarker for coronary artery disease. Dis Markers 2020; 2020: 3178642. – reference: 15. Osada-Oka M, Shiota M, Izumi Y, et al. Macrophage-derived exosomes induce inflammatory factors in endothelial cells under hypertensive conditions. Hypertens Res 2017; 40: 353-60. – reference: 8. Su J, Li J, Yu Q, et al. Exosomal miRNAs as potential biomarkers for acute myocardial infarction. IUBMB Life 2020; 72: 384-400. – reference: 18. Matsumoto Y, Kano M, Akutsu Y, et al. Quantification of plasma exosome is a potential prognostic marker for esophageal squamous cell carcinoma. Oncol Rep 2016; 36: 2535-43. – reference: 9. Liang C, Zhang L, Lian X, Zhu T, Zhang Y, Gu N. Circulating exosomal SOCS2-AS1 acts as a novel biomarker in predicting the diagnosis of coronary artery disease. BioMed Res Int 2020; 2020: 9182091. – ident: 2 – ident: 17 doi: 10.1093/eurheartj/ehu153 – ident: 30 doi: 10.2340/00015555-3300 – ident: 6 doi: 10.1016/j.ceb.2009.03.007 – ident: 21 doi: 10.1093/cvr/cvz139 – ident: 8 doi: 10.1002/iub.2189 – ident: 18 doi: 10.3892/or.2016.5066 – ident: 25 doi: 10.1161/CIRCRESAHA.118.314010 – ident: 10 – ident: 16 doi: 10.1080/20013078.2018.1535750 – ident: 13 doi: 10.1007/s00395-020-0781-7 – ident: 23 doi: 10.1159/000492851 – ident: 11 doi: 10.1161/CIRCRESAHA.116.308334 – ident: 7 doi: 10.3389/fphys.2020.00654 – ident: 31 doi: 10.1210/jc.2019-00273 – ident: 9 doi: 10.1155/2020/9182091 – ident: 28 doi: 10.14797/mdcj-11-3-160 – ident: 1 doi: 10.1177/2047487315587402 – ident: 3 doi: 10.1016/j.ccl.2014.04.003 – ident: 4 doi: 10.1007/s11886-014-0479-2 – ident: 20 doi: 10.1073/pnas.1721521115 – ident: 5 doi: 10.1161/CIRCRESAHA.115.306566 – ident: 15 doi: 10.1038/hr.2016.163 – ident: 22 doi: 10.4049/jimmunol.1800304 – ident: 27 doi: 10.1161/CIRCRESAHA.115.306301 – ident: 32 doi: 10.1016/j.jhep.2019.09.014 – ident: 26 doi: 10.1096/fj.201701073R – ident: 19 doi: 10.1016/j.rmed.2017.04.014 – ident: 14 doi: 10.1016/j.ymthe.2017.03.031 – ident: 12 doi: 10.1016/j.atherosclerosis.2018.07.014 – ident: 24 doi: 10.2174/1570161116666180313142139 – ident: 29 doi: 10.3390/biom8030080 |
SSID | ssj0041507 |
Score | 2.3136148 |
Snippet | Endothelial injury and inflammation have been found to be essential in the pathogenesis of coronary artery disease (CAD). Circulating exosomes are of great... |
SourceID | proquest pubmed crossref jstage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 396 |
SubjectTerms | Angiogenesis Atherosclerosis Cardiovascular disease Cell migration Cell Movement Cell Proliferation Cell viability Cells, Cultured Cholecystokinin Coronary artery Coronary Artery Disease - blood Coronary Artery Disease - pathology Coronary vessels Endothelial cells Exosomes Exosomes - metabolism Female Flow Cytometry Heart diseases Human Umbilical Vein Endothelial Cells - metabolism Human Umbilical Vein Endothelial Cells - pathology Humans IL-1β Inflammation Inflammation - metabolism Inflammation - pathology Inflammatory factors Intercellular adhesion molecule 1 Interleukin 6 Male Middle Aged Pathogenesis Tumor necrosis factor-α Umbilical vein Vascular cell adhesion molecule 1 Vascular endothelial growth factor |
Title | Serum-Derived Exosomes from Patients with Coronary Artery Disease Induce Endothelial Injury and Inflammation in Human Umbilical Vein Endothelial Cells |
URI | https://www.jstage.jst.go.jp/article/ihj/62/2/62_20-641/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/33731537 https://www.proquest.com/docview/2507996494 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | International Heart Journal, 2021/03/30, Vol.62(2), pp.396-406 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELaqBSEuiH-6LMgSXNAqJbFdJz6uStEKqaseWugtyo_DtuqmiCYr4EF4D96QGdtJU3aRFi5W5dpxkvlszzgz3xDyWrIslbA4egXsH54IfN9LYafzUPfNw4D5MsIA58mZPJ2LD4vhotf71fFaqqt0kP24Nq7kf6QKdSBXjJL9B8m2F4UK-A3yhRIkDOWNZAwTvb7w3sFQl6A3jr9tthvkXjIhI1NLmOqi10ZIVIAOcifowvkdSTfxu8wxZu6AmT0uc4zEWlvmjRW8Z-cnXABgbHAjHozYE__5BTrUomw_aqjs9h3p9Xrb1Xf3Dxwxe3Z13H207pH1tNlF0T9o6SpnyWZ35m-rFvUO0Z9qC7ikXG9cb3eEwYwPl_saY1ddLpTHuE0aMdC7Os5s9qRmqZasA0nWWXe5kp0tXBgSg6u7w9Ckr1merwZoM1vCrX0K7j-2xtZhEU0l6B1D35j5sUSqhFsMLBMTX75ovYoE6tfGxndP5Bhxoe_b3bh7OtDtFZgBn_XfLRyj6czuk3vORKEnFm8PSE-XD8mdiXPCeER-7sGONrCjCDvawI4i7GgDO2phRx3sqIUd7UCHWthRgB3two4uS2pgR1vYUYTdXl8Du8dk_n48G516Lr2HlwkVVZ4qMsaCDNOzSs00ywupkcheFAnTMimKYc5knhdJEGip8yBhkYx0KkTuKx0VKX9CDspNqZ8RGg51yLMUvxqGIgfUMJ6kihXpMOMi12mfvGleeJw57ntMwbKOrwq2T161bb9YxpdrWykrt7aNWwVMG8liZgrTtv0LAylh3eqTo0bUsZty2xhMkVApKZTok6dW_O2lOQ85jB8e3ujWnpO7u0l2RA6qr7V-AZpzlb40WIXybDr5DSgpy6Y |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Serum-Derived+Exosomes+from+Patients+with+Coronary+Artery+Disease+Induce+Endothelial+Injury+and+Inflammation+in+Human+Umbilical+Vein+Endothelial+Cells&rft.jtitle=International+heart+journal&rft.au=Zhang%2C+Ping&rft.au=Liang%2C+Tao&rft.au=Wang%2C+Xuan&rft.au=Wu%2C+Tianlong&rft.date=2021-03-30&rft.issn=1349-2365&rft.eissn=1349-3299&rft.volume=62&rft.issue=2&rft.spage=396&rft.epage=406&rft_id=info:doi/10.1536%2Fihj.20-641&rft.externalDBID=n%2Fa&rft.externalDocID=10_1536_ihj_20_641 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1349-2365&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1349-2365&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1349-2365&client=summon |