Haemoglobin modulates NO emission and hyponasty under hypoxia-related stress in Arabidopsis thaliana

Nitric oxide (NO) and ethylene are signalling molecules that are synthesized in response to oxygen depletion. Non-symbiotic plant haemoglobins (Hbs) have been demonstrated to act in roots under oxygen depletion to scavenge NO. Using Arabidopsis thaliana plants, the online emission of NO or ethylene...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental botany Vol. 63; no. 15; pp. 5581 - 5591
Main Authors Hebelstrup, Kim H, van Zanten, Martijn, Mandon, Julien, Voesenek, Laurentius A.C.J, Harren, Frans J. M, Cristescu, Simona M, Møller, Ian M, Mur, Luis A. J
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press [etc.] 01.09.2012
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nitric oxide (NO) and ethylene are signalling molecules that are synthesized in response to oxygen depletion. Non-symbiotic plant haemoglobins (Hbs) have been demonstrated to act in roots under oxygen depletion to scavenge NO. Using Arabidopsis thaliana plants, the online emission of NO or ethylene was directly quantified under normoxia, hypoxia (0.1–1.0% O2), or full anoxia. The production of both gases was increased with reduced expression of either of the Hb genes GLB1 or GLB2, whereas NO emission decreased in plants overexpressing these genes. NO emission in plants with reduced Hb gene expression represented a major loss of nitrogen equivalent to 0.2mM nitrate per 24h under hypoxic conditions. Hb gene expression was greatly enhanced in flooded roots, suggesting induction by reduced oxygen diffusion. The function could be to limit loss of nitrogen under NO emission. NO reacts with thiols to form S-nitrosylated compounds, and it is demonstrated that hypoxia substantially increased the content of S-nitrosylated compounds. A parallel up-regulation of Hb gene expression in the normoxic shoots of the flooded plants may reflect signal transmission from root to shoot via ethylene and a role for Hb in the shoots. Hb gene expression was correlated with ethylene-induced upward leaf movement (hyponastic growth) but not with hypocotyl growth, which was Hb independent. Taken together the data suggest that Hb can influence flood-induced hyponasty via ethylene-dependent and, possibly, ethylene-independent pathways.
AbstractList Nitric oxide (NO) and ethylene are signalling molecules that are synthesized in response to oxygen depletion. Non-symbiotic plant haemoglobins (Hbs) have been demonstrated to act in roots under oxygen depletion to scavenge NO. Using Arabidopsis thaliana plants, the online emission of NO or ethylene was directly quantified under normoxia, hypoxia (0.1-1.0% O(2)), or full anoxia. The production of both gases was increased with reduced expression of either of the Hb genes GLB1 or GLB2, whereas NO emission decreased in plants overexpressing these genes. NO emission in plants with reduced Hb gene expression represented a major loss of nitrogen equivalent to 0.2mM nitrate per 24h under hypoxic conditions. Hb gene expression was greatly enhanced in flooded roots, suggesting induction by reduced oxygen diffusion. The function could be to limit loss of nitrogen under NO emission. NO reacts with thiols to form S-nitrosylated compounds, and it is demonstrated that hypoxia substantially increased the content of S-nitrosylated compounds. A parallel up-regulation of Hb gene expression in the normoxic shoots of the flooded plants may reflect signal transmission from root to shoot via ethylene and a role for Hb in the shoots. Hb gene expression was correlated with ethylene-induced upward leaf movement (hyponastic growth) but not with hypocotyl growth, which was Hb independent. Taken together the data suggest that Hb can influence flood-induced hyponasty via ethylene-dependent and, possibly, ethylene-independent pathways.
Nitric oxide (NO) and ethylene are signalling molecules that are synthesized in response to oxygen depletion. Non-symbiotic plant haemoglobins (Hbs) have been demonstrated to act in roots under oxygen depletion to scavenge NO. Using Arabidopsis thaliana plants, the online emission of NO or ethylene was directly quantified under normoxia, hypoxia (0.1–1.0% O2), or full anoxia. The production of both gases was increased with reduced expression of either of the Hb genes GLB1 or GLB2, whereas NO emission decreased in plants overexpressing these genes. NO emission in plants with reduced Hb gene expression represented a major loss of nitrogen equivalent to 0.2mM nitrate per 24h under hypoxic conditions. Hb gene expression was greatly enhanced in flooded roots, suggesting induction by reduced oxygen diffusion. The function could be to limit loss of nitrogen under NO emission. NO reacts with thiols to form S-nitrosylated compounds, and it is demonstrated that hypoxia substantially increased the content of S-nitrosylated compounds. A parallel up-regulation of Hb gene expression in the normoxic shoots of the flooded plants may reflect signal transmission from root to shoot via ethylene and a role for Hb in the shoots. Hb gene expression was correlated with ethylene-induced upward leaf movement (hyponastic growth) but not with hypocotyl growth, which was Hb independent. Taken together the data suggest that Hb can influence flood-induced hyponasty via ethylene-dependent and, possibly, ethylene-independent pathways.
Nitric oxide (NO) and ethylene are signalling molecules that are synthesized in response to oxygen depletion. Non-symbiotic plant haemoglobins (Hbs) have been demonstrated to act in roots under oxygen depletion to scavenge NO. Using Arabidopsis thaliana plants, the online emission of NO or ethylene was directly quantified under normoxia, hypoxia (0.1-1.0% O(2)), or full anoxia. The production of both gases was increased with reduced expression of either of the Hb genes GLB1 or GLB2, whereas NO emission decreased in plants overexpressing these genes. NO emission in plants with reduced Hb gene expression represented a major loss of nitrogen equivalent to 0.2mM nitrate per 24h under hypoxic conditions. Hb gene expression was greatly enhanced in flooded roots, suggesting induction by reduced oxygen diffusion. The function could be to limit loss of nitrogen under NO emission. NO reacts with thiols to form S-nitrosylated compounds, and it is demonstrated that hypoxia substantially increased the content of S-nitrosylated compounds. A parallel up-regulation of Hb gene expression in the normoxic shoots of the flooded plants may reflect signal transmission from root to shoot via ethylene and a role for Hb in the shoots. Hb gene expression was correlated with ethylene-induced upward leaf movement (hyponastic growth) but not with hypocotyl growth, which was Hb independent. Taken together the data suggest that Hb can influence flood-induced hyponasty via ethylene-dependent and, possibly, ethylene-independent pathways.Nitric oxide (NO) and ethylene are signalling molecules that are synthesized in response to oxygen depletion. Non-symbiotic plant haemoglobins (Hbs) have been demonstrated to act in roots under oxygen depletion to scavenge NO. Using Arabidopsis thaliana plants, the online emission of NO or ethylene was directly quantified under normoxia, hypoxia (0.1-1.0% O(2)), or full anoxia. The production of both gases was increased with reduced expression of either of the Hb genes GLB1 or GLB2, whereas NO emission decreased in plants overexpressing these genes. NO emission in plants with reduced Hb gene expression represented a major loss of nitrogen equivalent to 0.2mM nitrate per 24h under hypoxic conditions. Hb gene expression was greatly enhanced in flooded roots, suggesting induction by reduced oxygen diffusion. The function could be to limit loss of nitrogen under NO emission. NO reacts with thiols to form S-nitrosylated compounds, and it is demonstrated that hypoxia substantially increased the content of S-nitrosylated compounds. A parallel up-regulation of Hb gene expression in the normoxic shoots of the flooded plants may reflect signal transmission from root to shoot via ethylene and a role for Hb in the shoots. Hb gene expression was correlated with ethylene-induced upward leaf movement (hyponastic growth) but not with hypocotyl growth, which was Hb independent. Taken together the data suggest that Hb can influence flood-induced hyponasty via ethylene-dependent and, possibly, ethylene-independent pathways.
Nitric oxide (NO) and ethylene are signalling molecules that are synthesized in response to oxygen depletion. Non-symbiotic plant haemoglobins (Hbs) have been demonstrated to act in roots under oxygen depletion to scavenge NO. Using Arabidopsis thaliana plants, the online emission of NO or ethylene was directly quantified under normoxia, hypoxia (0.1–1.0% O 2 ), or full anoxia. The production of both gases was increased with reduced expression of either of the Hb genes GLB1 or GLB2 , whereas NO emission decreased in plants overexpressing these genes. NO emission in plants with reduced Hb gene expression represented a major loss of nitrogen equivalent to 0.2mM nitrate per 24h under hypoxic conditions. Hb gene expression was greatly enhanced in flooded roots, suggesting induction by reduced oxygen diffusion. The function could be to limit loss of nitrogen under NO emission. NO reacts with thiols to form S -nitrosylated compounds, and it is demonstrated that hypoxia substantially increased the content of S -nitrosylated compounds. A parallel up-regulation of Hb gene expression in the normoxic shoots of the flooded plants may reflect signal transmission from root to shoot via ethylene and a role for Hb in the shoots. Hb gene expression was correlated with ethylene-induced upward leaf movement (hyponastic growth) but not with hypocotyl growth, which was Hb independent. Taken together the data suggest that Hb can influence flood-induced hyponasty via ethylene-dependent and, possibly, ethylene-independent pathways.
Nitric oxide (NO) and ethylene are signalling molecules that are synthesized in response to oxygen depletion. Non-symbiotic plant haemoglobins (Hbs) have been demonstrated to act in roots under oxygen depletion to scavenge NO. Using Arabidopsis thaliana plants, the online emission of NO or ethylene was directly quantified under normoxia, hypoxia (0.1-1.0% O sub(2)), or full anoxia. The production of both gases was increased with reduced expression of either of the Hb genes GLB1 or GLB2, whereas NO emission decreased in plants overexpressing these genes. NO emission in plants with reduced Hb gene expression represented a major loss of nitrogen equivalent to 0.2mM nitrate per 24h under hypoxic conditions. Hb gene expression was greatly enhanced in flooded roots, suggesting induction by reduced oxygen diffusion. The function could be to limit loss of nitrogen under NO emission. NO reacts with thiols to form S-nitrosylated compounds, and it is demonstrated that hypoxia substantially increased the content of S-nitrosylated compounds. A parallel up-regulation of Hb gene expression in the normoxic shoots of the flooded plants may reflect signal transmission from root to shoot via ethylene and a role for Hb in the shoots. Hb gene expression was correlated with ethylene-induced upward leaf movement (hyponastic growth) but not with hypocotyl growth, which was Hb independent. Taken together the data suggest that Hb can influence flood-induced hyponasty via ethylene-dependent and, possibly, ethylene-independent pathways.
Author Mur, Luis A. J
Voesenek, Laurentius A.C.J
Mandon, Julien
van Zanten, Martijn
Hebelstrup, Kim H
Harren, Frans J. M
Cristescu, Simona M
Møller, Ian M
Author_xml – sequence: 1
  fullname: Hebelstrup, Kim H
– sequence: 2
  fullname: van Zanten, Martijn
– sequence: 3
  fullname: Mandon, Julien
– sequence: 4
  fullname: Voesenek, Laurentius A.C.J
– sequence: 5
  fullname: Harren, Frans J. M
– sequence: 6
  fullname: Cristescu, Simona M
– sequence: 7
  fullname: Møller, Ian M
– sequence: 8
  fullname: Mur, Luis A. J
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26390009$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22915746$$D View this record in MEDLINE/PubMed
BookMark eNqFkl1rFDEUhoNU7LZ64w_QuRFEGHvyMZnJjVCKWqHYC-11OMlkdlNmkzWZke6_N-tu_ULoVQh5znvek_eckKMQgyPkOYW3FBQ_u70zZy5lRuERWVAhoWaC0yOyAGCsBtW0x-Qk51sAaKBpnpBjxhRtWiEXpL9Et47LMRofqnXs5xEnl6vP15Vb-5x9DBWGvlptNzFgnrbVHHqXft7vPNbJ7fi-ylNyOVdF4zyh8X3cZJ-raYWjx4BPyeMBx-yeHc5TcvPh_deLy_rq-uOni_Or2grVTbUybrCGd4NtjR2YkRKs4HzAhqLrZQMODW-NpKhQCGqA0xY7DlIxw6S1_JS82-tuZrN2vXVhSjjqTfJrTFsd0eu_X4Jf6WX8rrkQgrWsCLw-CKT4bXZ50uUTrBtHDC7OWVMpedNyKtTDaMOEAMmgexgFQSlXXccL-uLPCX5Zvw-sAK8OAGaL45AwWJ9_c5KrEvPOHuw5m2LOyQ3a-gmnkmcZ3I-lp97tji67o_e7U0re_FNyr_pf-OUeHjBqXKbi4eYLA9qU7lQqQfkPui_RQA
CODEN JEBOA6
CitedBy_id crossref_primary_10_1104_pp_112_208173
crossref_primary_10_1093_jxb_erv213
crossref_primary_10_1093_plphys_kiaa081
crossref_primary_10_3390_ijms21041546
crossref_primary_10_1093_jxb_erw022
crossref_primary_10_3390_antiox8060167
crossref_primary_10_1111_nph_16378
crossref_primary_10_1177_1934578X1601100839
crossref_primary_10_1093_jxb_ert358
crossref_primary_10_1007_s00425_014_2198_8
crossref_primary_10_6064_2012_683729
crossref_primary_10_1007_s00425_018_2862_5
crossref_primary_10_1016_j_envpol_2025_125663
crossref_primary_10_3390_ijms17050640
crossref_primary_10_1371_journal_pone_0088573
crossref_primary_10_3390_plants10050978
crossref_primary_10_3390_plants9081022
crossref_primary_10_1111_pce_12773
crossref_primary_10_1002_jmr_2754
crossref_primary_10_1016_j_bbapap_2016_02_006
crossref_primary_10_1111_ppl_12062
crossref_primary_10_3389_fpls_2020_01019
crossref_primary_10_1111_nph_15969
crossref_primary_10_3389_fpls_2024_1290700
crossref_primary_10_1007_s00425_013_2015_9
crossref_primary_10_1080_14620316_2023_2218381
crossref_primary_10_1093_jxb_erx003
crossref_primary_10_3390_ijms19123900
crossref_primary_10_1016_j_jplph_2019_04_010
crossref_primary_10_1016_j_plaphy_2013_02_015
crossref_primary_10_1111_pce_14637
crossref_primary_10_1080_15592324_2018_1473683
crossref_primary_10_1111_ppl_12115
crossref_primary_10_1021_acs_biochem_5b01013
crossref_primary_10_3390_cells7120252
crossref_primary_10_3390_nitrogen1010003
crossref_primary_10_3389_fpls_2023_1178778
crossref_primary_10_3389_fpls_2023_1158184
crossref_primary_10_3389_fpls_2015_01203
crossref_primary_10_3390_plants11070864
crossref_primary_10_1038_s41598_017_13458_1
crossref_primary_10_1016_j_plaphy_2024_109101
crossref_primary_10_1016_j_envexpbot_2020_104365
crossref_primary_10_1093_jxb_erab463
crossref_primary_10_1093_jxb_erae139
crossref_primary_10_1007_s11427_015_4803_x
crossref_primary_10_1007_s00344_021_10446_8
crossref_primary_10_1016_j_cj_2020_09_011
crossref_primary_10_3389_fpls_2024_1342814
crossref_primary_10_1007_s00299_024_03367_9
crossref_primary_10_3390_antiox11050878
crossref_primary_10_1038_s41598_020_73613_z
crossref_primary_10_3390_antiox10020332
crossref_primary_10_1080_15592324_2023_2300228
crossref_primary_10_1016_j_plantsci_2017_10_001
crossref_primary_10_1093_treephys_tpx023
crossref_primary_10_1042_BCJ20180169
crossref_primary_10_3390_plants10050993
crossref_primary_10_1007_s11032_020_01190_0
crossref_primary_10_1007_s11356_016_7947_8
crossref_primary_10_5511_plantbiotechnology_20_0907a
crossref_primary_10_1093_plphys_kiac245
crossref_primary_10_1093_jxb_erz084
crossref_primary_10_1016_j_jgeb_2015_01_001
crossref_primary_10_1016_j_jplph_2013_03_004
crossref_primary_10_1111_tpj_12181
crossref_primary_10_1093_jxb_erz249
crossref_primary_10_1016_j_freeradbiomed_2018_03_045
crossref_primary_10_1016_j_plantsci_2016_03_013
crossref_primary_10_1093_jxb_eraa442
crossref_primary_10_1080_15592324_2016_1273304
crossref_primary_10_1016_j_molp_2014_12_010
crossref_primary_10_1016_j_pbiomolbio_2018_11_005
crossref_primary_10_4161_psb_23578
crossref_primary_10_1371_journal_pone_0082611
crossref_primary_10_1111_pce_14734
crossref_primary_10_1038_s41467_019_12045_4
crossref_primary_10_3390_plants10020360
crossref_primary_10_1093_jxb_erac508
Cites_doi 10.1104/pp.104.053967
10.1016/j.plaphy.2005.03.012
10.1073/pnas.191349198
10.1007/s11104-004-1650-0
10.1104/pp.103.022228
10.1073/pnas.94.22.12230
10.1002/pmic.200800985
10.1111/j.1365-313X.2009.04000.x
10.1093/jexbot/53.367.175
10.1073/pnas.95.17.10317
10.1007/s00425-004-1212-y
10.1007/s11103-006-0048-1
10.1093/jxb/erm293
10.1016/j.plantsci.2011.02.011
10.1093/jxb/ers116
10.1111/j.1469-8137.1975.tb01350.x
10.1074/jbc.M806782200
10.1046/j.1469-8137.2000.00727.x
10.1016/j.febslet.2011.10.036
10.1111/j.1469-8137.2009.02921.x
10.1146/annurev.pp.44.060193.001435
10.1080/07352689.2010.502086
10.1016/j.plaphy.2011.06.005
10.1046/j.1365-313X.2003.01846.x
10.1016/S0092-8674(00)81425-7
10.1126/science.1156970
10.1016/j.gene.2007.01.039
10.1111/j.1469-8137.2008.02735.x
10.1038/35068596
10.1093/aob/mcf115
10.1111/j.1469-8137.2010.03552.x
10.1007/s00425-007-0667-z
10.1093/aob/mci210
10.1007/s00340-008-3127-y
10.1007/s00425-003-1172-7
10.1093/jxb/erh272
10.1104/pp.114.4.1501
10.1146/annurev.arplant.59.032607.092752
10.1104/pp.104.054494
10.1534/genetics.109.107102
10.1038/29087
10.1105/tpc.104.025379
10.1007/BF00014440
10.1111/j.1469-8137.2010.03590.x
10.1111/j.1438-8677.2010.00403.x
10.1104/pp.106.092700
10.1111/j.1469-8137.2011.03920.x
10.1093/aobpla/pls004
10.1105/tpc.2.6.513
10.1111/j.1399-3054.2006.00653.x
10.1080/07352680500365232
10.1073/pnas.212648799
10.1104/pp.104.058719
ContentType Journal Article
Copyright 2015 INIST-CNRS
2012 The Author(s). 2012
Copyright_xml – notice: 2015 INIST-CNRS
– notice: 2012 The Author(s). 2012
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QH
7UA
C1K
F1W
H97
L.G
7S9
L.6
5PM
DOI 10.1093/jxb/ers210
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA
MEDLINE - Academic


Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1460-2431
EndPage 5591
ExternalDocumentID PMC3444272
22915746
26390009
10_1093_jxb_ers210
US201500016941
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-E4
-~X
.2P
.I3
0R~
18M
1TH
29K
2WC
2~F
3O-
4.4
482
48X
53G
5GY
5VS
5WA
5WD
6.Y
70D
AABJS
AABMN
AAESY
AAIMJ
AAIYJ
AAJKP
AAJQQ
AAMDB
AAMVS
AANRK
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAWDT
AAXTN
ABBHK
ABEUO
ABIXL
ABJNI
ABLJU
ABNKS
ABPPZ
ABPTD
ABPTK
ABQLI
ABQTQ
ABSAR
ABSMQ
ABWST
ABXZS
ABZBJ
ACFRR
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPQN
ACPRK
ACUFI
ACUTJ
ADBBV
ADEIU
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADORX
ADQLU
ADRIX
ADRTK
ADULT
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AETEA
AEUPB
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIAGR
AIJHB
AIKOY
AJEEA
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
APIBT
APJGH
APWMN
AQDSO
ARIXL
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZQFJ
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
BYORX
C1A
CAG
CASEJ
CDBKE
COF
CS3
CXTWN
CZ4
D-I
DAKXR
DATOO
DFEDG
DFGAJ
DIK
DILTD
DPORF
DPPUQ
DU5
D~K
E3Z
EBS
ECGQY
EE~
EJD
ELUNK
ESX
F20
F5P
F9B
FBQ
FEDTE
FHSFR
FLUFQ
FOEOM
FQBLK
G8K
GAUVT
GJXCC
GX1
H5~
HAR
HVGLF
HW0
HZ~
H~9
IOX
J21
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
KAQDR
KBUDW
KC5
KOP
KQ8
KSI
KSN
M-Z
M49
MBTAY
ML0
MVM
N9A
NEJ
NGC
NLBLG
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
OBOKY
ODMLO
OHT
OJQWA
OJZSN
OK1
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
SA0
TCN
TEORI
TLC
TN5
TR2
UHB
UKR
UPT
VH1
W8F
WH7
WOQ
X7H
XOL
YAYTL
YKOAZ
YQT
YSK
YXANX
YZZ
ZCG
ZKX
~02
~91
~KM
AAHBH
AARHZ
AAUAY
AAYXX
ABDFA
ABDPE
ABEJV
ABGNP
ABIME
ABMNT
ABNGD
ABPIB
ABPQP
ABVGC
ABXSQ
ABXVV
ABZEO
ACHIC
ACUKT
ACVCV
ACZBC
ADNBA
ADQBN
AEHUL
AFSHK
AGMDO
AGORE
AGQPQ
AHGBF
AJBYB
AJDVS
AJNCP
AQVQM
ATGXG
CITATION
H13
IPSME
JXSIZ
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
Z5M
7X8
7QH
7UA
C1K
F1W
H97
L.G
7S9
L.6
5PM
ID FETCH-LOGICAL-c498t-9befcb38fc7bcf2b660c433fa51aed650eab37b61a9a441b0317a830692b26cc3
ISSN 0022-0957
1460-2431
IngestDate Thu Aug 21 14:08:13 EDT 2025
Fri Jul 11 09:17:34 EDT 2025
Fri Jul 11 10:18:07 EDT 2025
Fri Jul 11 08:35:25 EDT 2025
Wed Feb 19 02:04:37 EST 2025
Mon Jul 21 09:13:22 EDT 2025
Thu Apr 24 23:12:11 EDT 2025
Tue Jul 01 03:05:19 EDT 2025
Wed Dec 27 19:11:25 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords hyponastic growth
nitric oxide (NO)
Growth
Ethylene
Submersion
flooding
Stress
Arabidopsis thaliana
haemoglobin
Cruciferae
Dicotyledones
Modulation
Nitric oxide
Angiospermae
Botany
Hypoxia
Spermatophyta
Experimental plant
Language English
License CC BY 4.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0/uk/) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c498t-9befcb38fc7bcf2b660c433fa51aed650eab37b61a9a441b0317a830692b26cc3
Notes http://dx.doi.org/10.1093/jxb/ers210
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3444272
PMID 22915746
PQID 1041139883
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3444272
proquest_miscellaneous_1663573149
proquest_miscellaneous_1524406208
proquest_miscellaneous_1041139883
pubmed_primary_22915746
pascalfrancis_primary_26390009
crossref_citationtrail_10_1093_jxb_ers210
crossref_primary_10_1093_jxb_ers210
fao_agris_US201500016941
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-09-01
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
– name: UK
PublicationTitle Journal of experimental botany
PublicationTitleAlternate J Exp Bot
PublicationYear 2012
Publisher Oxford University Press [etc.]
Oxford University Press
Publisher_xml – name: Oxford University Press [etc.]
– name: Oxford University Press
References Astier ( key 20170512114620_CIT0004) 2011; 181
Pagnussat ( key 20170512114620_CIT0038) 2003; 132
Manac’h-Little ( key 20170512114620_CIT0033) 2005; 43
Watts ( key 20170512114620_CIT0054) 2001; 98
Heckmann ( key 20170512114620_CIT0020) 2006; 61
Mur ( key 20170512114620_CIT0036) 2012; 63
Jackson ( key 20170512114620_CIT0027) 2002; 53
Perazzolli ( key 20170512114620_CIT0039) 2004; 16
Vashisht ( key 20170512114620_CIT0049) 2011; 190
Benschop ( key 20170512114620_CIT0007) 2007; 143
Dordas ( key 20170512114620_CIT0012) 2003; 35
Kende ( key 20170512114620_CIT0029) 1993; 44
Tsuchisaka ( key 20170512114620_CIT0047) 2009; 183
Dordas ( key 20170512114620_CIT0013) 2004; 219
Delledonne ( key 20170512114620_CIT0011) 1998; 394
Guzman ( key 20170512114620_CIT0016) 1990; 2
Hebelstrup ( key 20170512114620_CIT0017) 2006; 127
Neill ( key 20170512114620_CIT0037) 2008; 59
Gupta ( key 20170512114620_CIT0015) 2011; 585
Bailey-Serres ( key 20170512114620_CIT0005) 2008; 59
Appleby ( key 20170512114620_CIT0003) 1992; 76
Rijnders ( key 20170512114620_CIT0041) 2000; 147
Liu ( key 20170512114620_CIT0032) 2001; 410
Igamberdiev ( key 20170512114620_CIT0025) 2005; 96
Agarwal ( key 20170512114620_CIT0002) 2006; 25
( key 20170512114620_CIT0031) 2005; 137
Trevaskis ( key 20170512114620_CIT0046) 1997; 94
Van Zanten ( key 20170512114620_CIT0048) 2010; 29
Wang ( key 20170512114620_CIT0053) 2009; 284
Abat ( key 20170512114620_CIT0001) 2009; 9
Hu ( key 20170512114620_CIT0022) 2005; 137
Dordas ( key 20170512114620_CIT0014) 2003; 91
Hebelstrup ( key 20170512114620_CIT0019) 2008; 227
Baudouin ( key 20170512114620_CIT0006) 2011; 13
Taylor ( key 20170512114620_CIT0045) 1994; 24
Hunt ( key 20170512114620_CIT0024) 2002; 99
Clarke ( key 20170512114620_CIT0008) 2009; 182
Visser ( key 20170512114620_CIT0050) 2005; 274
Hebelstrup ( key 20170512114620_CIT0018) 2007; 398
Jackson ( key 20170512114620_CIT0028) 1975; 74
Correa-Aragunde ( key 20170512114620_CIT0009) 2004; 218
Millenaar ( key 20170512114620_CIT0034) 2005; 137
Hua ( key 20170512114620_CIT0023) 1998; 94
Tada ( key 20170512114620_CIT0043) 2008; 321
Sowa ( key 20170512114620_CIT0042) 1998; 95
Wang ( key 20170512114620_CIT0052) 2011; 49
Lee ( key 20170512114620_CIT0030) 2011; 190
Voesenek ( key 20170512114620_CIT0051) 1997; 114
Igamberdiev ( key 20170512114620_CIT0026) 2004; 55
Polko ( key 20170512114620_CIT0040) 2012; 193
Hill ( key 20170512114620_CIT0021) 2012; 2012
Tanou ( key 20170512114620_CIT0044) 2009; 60
Millenaar ( key 20170512114620_CIT0035) 2009; 184
Cristescu ( key 20170512114620_CIT0010) 2008; 92
References_xml – volume: 137
  start-page: 998
  year: 2005
  ident: key 20170512114620_CIT0034
  article-title: Ethylene-induced differential growth of petioles in arabidopsis. Analyzing natural variation, response kinetics, and regulation
  publication-title: Plant Physiology
  doi: 10.1104/pp.104.053967
– volume: 43
  start-page: 485
  year: 2005
  ident: key 20170512114620_CIT0033
  article-title: Hemoglobin expression affects ethylene production in maize cell cultures
  publication-title: Plant Physiology and Biochemistry
  doi: 10.1016/j.plaphy.2005.03.012
– volume: 98
  start-page: 10119
  year: 2001
  ident: key 20170512114620_CIT0054
  article-title: A hemoglobin from plants homologous to truncated hemoglobins of microorganisms
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.191349198
– volume: 274
  start-page: 197
  year: 2005
  ident: key 20170512114620_CIT0050
  article-title: Acclimation to soil flooding—sensing and signal-transduction
  publication-title: Plant and Soil
  doi: 10.1007/s11104-004-1650-0
– volume: 132
  start-page: 1241
  year: 2003
  ident: key 20170512114620_CIT0038
  article-title: Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process
  publication-title: Plant Physiology
  doi: 10.1104/pp.103.022228
– volume: 94
  start-page: 12230
  year: 1997
  ident: key 20170512114620_CIT0046
  article-title: Two hemoglobin genes in Arabidopsis thaliana: the evolutionary origins of leghemoglobins
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.94.22.12230
– volume: 9
  start-page: 4368
  year: 2009
  ident: key 20170512114620_CIT0001
  article-title: Differential modulation of S-nitrosoproteome of Brassica juncea by low temperature: change in S-nitrosylation of Rubisco is responsible for the inactivation of its carboxylase activity
  publication-title: Proteomics
  doi: 10.1002/pmic.200800985
– volume: 60
  start-page: 795
  year: 2009
  ident: key 20170512114620_CIT0044
  article-title: Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity
  publication-title: The Plant Journal
  doi: 10.1111/j.1365-313X.2009.04000.x
– volume: 53
  start-page: 175
  year: 2002
  ident: key 20170512114620_CIT0027
  article-title: Long-distance signalling from roots to shoots assessed: the flooding story
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jexbot/53.367.175
– volume: 95
  start-page: 10317
  year: 1998
  ident: key 20170512114620_CIT0042
  article-title: Altering hemoglobin levels changes energy status in maize cells under hypoxia
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.95.17.10317
– volume: 219
  start-page: 66
  year: 2004
  ident: key 20170512114620_CIT0013
  article-title: Class-1 hemoglobins, nitrate and NO levels in anoxic maize cell-suspension cultures
  publication-title: Planta
  doi: 10.1007/s00425-004-1212-y
– volume: 61
  start-page: 769
  year: 2006
  ident: key 20170512114620_CIT0020
  article-title: A single hemoglobin gene in Myrica gale retains both symbiotic and non-symbiotic specificity
  publication-title: Plant Molecular Biology
  doi: 10.1007/s11103-006-0048-1
– volume: 59
  start-page: 165
  year: 2008
  ident: key 20170512114620_CIT0037
  article-title: Nitric oxide, stomatal closure, and abiotic stress
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erm293
– volume: 181
  start-page: 527
  year: 2011
  ident: key 20170512114620_CIT0004
  article-title: S-nitrosylation: an emerging post-translational protein modification in plants
  publication-title: Plant Science
  doi: 10.1016/j.plantsci.2011.02.011
– volume: 63
  year: 2012
  ident: key 20170512114620_CIT0036
  article-title: Haemoglobin modulates salicylate and jasmonate/ethylene-mediated resistance mechanisms against pathogens
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/ers116
– volume: 74
  start-page: 397
  year: 1975
  ident: key 20170512114620_CIT0028
  article-title: Movement of ethylene from roots to shoots—factor in responses of tomato plants to waterlogged soil conditions
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.1975.tb01350.x
– volume: 284
  start-page: 2131
  year: 2009
  ident: key 20170512114620_CIT0053
  article-title: S-Nitrosylation of AtSABP3 antagonizes the expression of plant immunity
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M806782200
– volume: 147
  start-page: 497
  year: 2000
  ident: key 20170512114620_CIT0041
  article-title: The role of oxygen in submergence-induced petiole elongation in Rumex palustris: in situ measurements of oxygen in petioles of intact plants using micro-electrodes
  publication-title: New Phytologist
  doi: 10.1046/j.1469-8137.2000.00727.x
– volume: 585
  start-page: 3843
  year: 2011
  ident: key 20170512114620_CIT0015
  article-title: Plant hemoglobins: important players at the crossroads between oxygen and nitric oxide
  publication-title: FEBS Letters
  doi: 10.1016/j.febslet.2011.10.036
– volume: 184
  start-page: 141
  year: 2009
  ident: key 20170512114620_CIT0035
  article-title: Differential petiole growth in Arabidopsis thaliana: photocontrol and hormonal regulation
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2009.02921.x
– volume: 44
  start-page: 283
  year: 1993
  ident: key 20170512114620_CIT0029
  article-title: Ethylene biosynthesis
  publication-title: Annual Review of Plant Physiology and Plant Molecular Biology
  doi: 10.1146/annurev.pp.44.060193.001435
– volume: 29
  start-page: 300
  year: 2010
  ident: key 20170512114620_CIT0048
  article-title: On the relevance and control of leaf angle
  publication-title: Critical Reviews in Plant Sciences
  doi: 10.1080/07352689.2010.502086
– volume: 49
  start-page: 1108
  year: 2011
  ident: key 20170512114620_CIT0052
  article-title: Manipulation of hemoglobin expression affects Arabidopsis shoot organogenesis
  publication-title: Plant Physiology and Biochemistry
  doi: 10.1016/j.plaphy.2011.06.005
– volume: 35
  start-page: 763
  year: 2003
  ident: key 20170512114620_CIT0012
  article-title: Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress
  publication-title: The Plant Journal
  doi: 10.1046/j.1365-313X.2003.01846.x
– volume: 94
  start-page: 261
  year: 1998
  ident: key 20170512114620_CIT0023
  article-title: Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81425-7
– volume: 321
  start-page: 952
  year: 2008
  ident: key 20170512114620_CIT0043
  article-title: Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins
  publication-title: Science
  doi: 10.1126/science.1156970
– volume: 398
  start-page: 86
  year: 2007
  ident: key 20170512114620_CIT0018
  article-title: Metabolic effects of hemoglobin gene expression in plants
  publication-title: Gene
  doi: 10.1016/j.gene.2007.01.039
– volume: 182
  start-page: 175
  year: 2009
  ident: key 20170512114620_CIT0008
  article-title: Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2008.02735.x
– volume: 410
  start-page: 490
  year: 2001
  ident: key 20170512114620_CIT0032
  article-title: A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans
  publication-title: Nature
  doi: 10.1038/35068596
– volume: 91
  start-page: 173
  year: 2003
  ident: key 20170512114620_CIT0014
  article-title: Plant haemoglobins, nitric oxide and hypoxic stress
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcf115
– volume: 190
  start-page: 299
  year: 2011
  ident: key 20170512114620_CIT0049
  article-title: Natural variation of submergence tolerance among Arabidopsis thaliana accessions
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2010.03552.x
– volume: 227
  start-page: 917
  year: 2008
  ident: key 20170512114620_CIT0019
  article-title: Expression of NO scavenging hemoglobin is involved in the timing of bolting in Arabidopsis thaliana
  publication-title: Planta
  doi: 10.1007/s00425-007-0667-z
– volume: 96
  start-page: 557
  year: 2005
  ident: key 20170512114620_CIT0025
  article-title: The haemoglobin/nitric oxide cycle: involvement in flooding stress and effects on hormone signalling
  publication-title: Annals of Botany
  doi: 10.1093/aob/mci210
– volume: 92
  start-page: 343
  year: 2008
  ident: key 20170512114620_CIT0010
  article-title: Laser-based systems for trace gas detection in life sciences
  publication-title: Applied Physics B-Lasers and Optics
  doi: 10.1007/s00340-008-3127-y
– volume: 218
  start-page: 900
  year: 2004
  ident: key 20170512114620_CIT0009
  article-title: Nitric oxide plays a central role in determining lateral root development in tomato
  publication-title: Planta
  doi: 10.1007/s00425-003-1172-7
– volume: 55
  start-page: 2473
  year: 2004
  ident: key 20170512114620_CIT0026
  article-title: Nitrate, NO, and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erh272
– volume: 114
  start-page: 1501
  year: 1997
  ident: key 20170512114620_CIT0051
  article-title: Ethylene sensitivity and response sensor expression in petioles of Rumex species at low O2 and high CO2 concentrations
  publication-title: Plant Physiology
  doi: 10.1104/pp.114.4.1501
– volume: 59
  start-page: 313
  year: 2008
  ident: key 20170512114620_CIT0005
  article-title: Flooding stress: acclimations and genetic diversity
  publication-title: Annual Review of Plant Biology
  doi: 10.1146/annurev.arplant.59.032607.092752
– volume: 137
  start-page: 663
  year: 2005
  ident: key 20170512114620_CIT0022
  article-title: Nitric oxide mediates gravitropic bending in soybean roots
  publication-title: Plant Physiology
  doi: 10.1104/pp.104.054494
– volume: 183
  start-page: 979
  year: 2009
  ident: key 20170512114620_CIT0047
  article-title: A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana
  publication-title: Genetics
  doi: 10.1534/genetics.109.107102
– volume: 394
  start-page: 585
  year: 1998
  ident: key 20170512114620_CIT0011
  article-title: Nitric oxide functions as a signal in plant disease resistance
  publication-title: Nature
  doi: 10.1038/29087
– volume: 16
  start-page: 2785
  year: 2004
  ident: key 20170512114620_CIT0039
  article-title: Arabidopsis nonsymbiotic hemoglobin AHb1 modulates nitric oxide bioactivity
  publication-title: The Plant Cell
  doi: 10.1105/tpc.104.025379
– volume: 76
  start-page: 365
  year: 1992
  ident: key 20170512114620_CIT0003
  article-title: The origin and functions of hemoglobin in plants
  publication-title: Science Progress
– volume: 24
  start-page: 853
  year: 1994
  ident: key 20170512114620_CIT0045
  article-title: A cereal hemoglobin gene is expressed in seed and root tissues under anaerobic conditions
  publication-title: Plant Molecular Biology
  doi: 10.1007/BF00014440
– volume: 190
  start-page: 457
  year: 2011
  ident: key 20170512114620_CIT0030
  article-title: Molecular characterization of the submergence response of the Arabidopsis thaliana ecotype Columbia
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2010.03590.x
– volume: 13
  start-page: 233
  year: 2011
  ident: key 20170512114620_CIT0006
  article-title: The language of nitric oxide signalling
  publication-title: Plant Biology
  doi: 10.1111/j.1438-8677.2010.00403.x
– volume: 143
  start-page: 1013
  year: 2007
  ident: key 20170512114620_CIT0007
  article-title: Abscisic acid antagonizes ethylene-induced hyponastic growth in Arabidopsis
  publication-title: Plant Physiology
  doi: 10.1104/pp.106.092700
– volume: 193
  start-page: 339
  year: 2012
  ident: key 20170512114620_CIT0040
  article-title: Ethylene-induced differential petiole growth in Arabidopsis thaliana involves local microtubule reorientation and cell expansion
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2011.03920.x
– volume: 2012
  start-page: pls004
  year: 2012
  ident: key 20170512114620_CIT0021
  article-title: Non-symbiotic haemoglobins – What’s happening beyond nitric oxide scavenging?
  publication-title: AoB Plants
  doi: 10.1093/aobpla/pls004
– volume: 2
  start-page: 513
  year: 1990
  ident: key 20170512114620_CIT0016
  article-title: Exploiting the triple response of arabidopsis to identify ethylene-related mutants
  publication-title: The Plant Cell
  doi: 10.1105/tpc.2.6.513
– volume: 127
  start-page: 157
  year: 2006
  ident: key 20170512114620_CIT0017
  article-title: Hemoglobin is essential for normal growth of Arabidopsis organs
  publication-title: Physiologia Plantarum
  doi: 10.1111/j.1399-3054.2006.00653.x
– volume: 25
  start-page: 1
  year: 2006
  ident: key 20170512114620_CIT0002
  article-title: Molecular biology, biotechnology and genomics of flooding-associated low O(2) stress response in plants
  publication-title: Critical Reviews in Plant Sciences
  doi: 10.1080/07352680500365232
– volume: 99
  start-page: 17197
  year: 2002
  ident: key 20170512114620_CIT0024
  article-title: Increased level of hemoglobin 1 enhances survival of hypoxic stress and promotes early growth in Arabidopsis thaliana
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.212648799
– volume: 137
  start-page: 921
  year: 2005
  ident: key 20170512114620_CIT0031
  article-title: Proteomic identification of S-nitrosylated proteins in Arabidopsis thaliana
  publication-title: Plant Physiology
  doi: 10.1104/pp.104.058719
SSID ssj0005055
Score 2.3792348
Snippet Nitric oxide (NO) and ethylene are signalling molecules that are synthesized in response to oxygen depletion. Non-symbiotic plant haemoglobins (Hbs) have been...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5581
SubjectTerms anaerobic conditions
analysis
Arabidopsis
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis - physiology
Arabidopsis Proteins
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Biological and medical sciences
ethylene
ethylene production
Ethylenes
Ethylenes - analysis
Ethylenes - metabolism
Floods
Fundamental and applied biological sciences. Psychology
gases
Gene Expression
Gene Expression Regulation, Plant
gene overexpression
genes
genetics
hemoglobin
Hemoglobins
Hemoglobins - genetics
Hemoglobins - metabolism
hypocotyls
hypoxia
leaves
metabolism
Models, Biological
nitrates
nitric oxide
Nitric Oxide - analysis
Nitric Oxide - metabolism
nitrogen
Nitrogen - metabolism
normoxia
oxygen
Oxygen - metabolism
Phenotype
physiology
Plant Leaves
Plant Leaves - genetics
Plant Leaves - metabolism
Plant Leaves - physiology
Plant physiology and development
Plant Roots
Plant Roots - genetics
Plant Roots - metabolism
Plant Roots - physiology
Plant Shoots
Plant Shoots - genetics
Plant Shoots - metabolism
Plant Shoots - physiology
Research Paper
roots
S-Nitrosothiols
S-Nitrosothiols - analysis
S-Nitrosothiols - metabolism
shoots
Signal Transduction
Stress, Physiological
thiols
Up-Regulation
Title Haemoglobin modulates NO emission and hyponasty under hypoxia-related stress in Arabidopsis thaliana
URI https://www.ncbi.nlm.nih.gov/pubmed/22915746
https://www.proquest.com/docview/1041139883
https://www.proquest.com/docview/1524406208
https://www.proquest.com/docview/1663573149
https://pubmed.ncbi.nlm.nih.gov/PMC3444272
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2hQMXxLvLozKCC0KhieO8joBAC1XbA11UcYnsxGFT2GS1yUqFK3-cGdvJPthWwCXaOF47yvdlPOPMg5Dneey5MhSRU2R55nAhJOaATBzFiij2oC3SufSOjsPRmH88C84Gg18rXkuLVr7Kfm6NK_kfVKENcMUo2X9Ath8UGuA34AtHQBiOf4XxSKhpjSk9ygpL2mAlLgVy6-QlFnFrOkfjyY8ZqNsNaNsYMDbX5xelcHQYC-ibNlwENz7mQpZ5PcMkJe1E74CIS7TXtcoAsm47maK3VSUsuO18oUvfHZbTZQAEBkt9QSwrGyfUluc9O49EV1kEg7aXIWqfa4yQUt-6MG70b1o0GE9vv2nZTQv0_ki6TQtlBC0PXYdxuwJYSWxFnWVcsCJXg8AUdvlD4JtkWOcXEgkwb5jxkV3BfjbV4DOWeEHEN7Ju63W8u7RDrjGwNbRd_uFw6SfkBkGX1zbxD2CqAzMR5pG2f11TanYKUaOLrWjgLStMeZRt9sumG-6KXnN6i9y0kNLXhl23yUBVd8j1NxrRuyRfoRjtKUaPT2hHMQqo0Z5iVFOMblCMGopRGGOFYrSj2D0yfv_u9O3IsYU5nIwnceskUhWZ9OMii2RWMBmGbsZ9vxCBJ1QOOr8S0o9k6IlEgLotYeGIRAzGacIkC7PMv092q7pSe4RiHLXgvssz0IRFrOAUv00XYe4xwYQ_JC-6J5tmNms9Fk_5nhrvCT8FQFIDyJA86_vOTK6Wrb32AKBUfIVFNB1_Yrjlh4YPzDwk-2uo9aMw0OPRGhmSpx2MKTxl_LYmKlUvGpiEe2BMxbF_RZ8AdGk3ZG58RR-0ACLf4zDXA0OP5V1Ytg1JtEacvgOmil-_UpUTnTLe55yziD28dMxH5MbyPX1MdkFIqCegbrdyX78OvwFB9N2M
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Haemoglobin+modulates+NO+emission+and+hyponasty+under+hypoxia-related+stress+in+Arabidopsis+thaliana&rft.jtitle=Journal+of+experimental+botany&rft.au=Hebelstrup%2C+Kim+H&rft.au=van+Zanten%2C+Martijn&rft.au=Mandon%2C+Julien&rft.au=Voesenek%2C+Laurentius+A+C+J&rft.date=2012-09-01&rft.eissn=1460-2431&rft.volume=63&rft.issue=15&rft.spage=5581&rft_id=info:doi/10.1093%2Fjxb%2Fers210&rft_id=info%3Apmid%2F22915746&rft.externalDocID=22915746
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon