Haemoglobin modulates NO emission and hyponasty under hypoxia-related stress in Arabidopsis thaliana
Nitric oxide (NO) and ethylene are signalling molecules that are synthesized in response to oxygen depletion. Non-symbiotic plant haemoglobins (Hbs) have been demonstrated to act in roots under oxygen depletion to scavenge NO. Using Arabidopsis thaliana plants, the online emission of NO or ethylene...
Saved in:
Published in | Journal of experimental botany Vol. 63; no. 15; pp. 5581 - 5591 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press [etc.]
01.09.2012
Oxford University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nitric oxide (NO) and ethylene are signalling molecules that are synthesized in response to oxygen depletion. Non-symbiotic plant haemoglobins (Hbs) have been demonstrated to act in roots under oxygen depletion to scavenge NO. Using Arabidopsis thaliana plants, the online emission of NO or ethylene was directly quantified under normoxia, hypoxia (0.1–1.0% O2), or full anoxia. The production of both gases was increased with reduced expression of either of the Hb genes GLB1 or GLB2, whereas NO emission decreased in plants overexpressing these genes. NO emission in plants with reduced Hb gene expression represented a major loss of nitrogen equivalent to 0.2mM nitrate per 24h under hypoxic conditions. Hb gene expression was greatly enhanced in flooded roots, suggesting induction by reduced oxygen diffusion. The function could be to limit loss of nitrogen under NO emission. NO reacts with thiols to form S-nitrosylated compounds, and it is demonstrated that hypoxia substantially increased the content of S-nitrosylated compounds. A parallel up-regulation of Hb gene expression in the normoxic shoots of the flooded plants may reflect signal transmission from root to shoot via ethylene and a role for Hb in the shoots. Hb gene expression was correlated with ethylene-induced upward leaf movement (hyponastic growth) but not with hypocotyl growth, which was Hb independent. Taken together the data suggest that Hb can influence flood-induced hyponasty via ethylene-dependent and, possibly, ethylene-independent pathways. |
---|---|
AbstractList | Nitric oxide (NO) and ethylene are signalling molecules that are synthesized in response to oxygen depletion. Non-symbiotic plant haemoglobins (Hbs) have been demonstrated to act in roots under oxygen depletion to scavenge NO. Using Arabidopsis thaliana plants, the online emission of NO or ethylene was directly quantified under normoxia, hypoxia (0.1-1.0% O(2)), or full anoxia. The production of both gases was increased with reduced expression of either of the Hb genes GLB1 or GLB2, whereas NO emission decreased in plants overexpressing these genes. NO emission in plants with reduced Hb gene expression represented a major loss of nitrogen equivalent to 0.2mM nitrate per 24h under hypoxic conditions. Hb gene expression was greatly enhanced in flooded roots, suggesting induction by reduced oxygen diffusion. The function could be to limit loss of nitrogen under NO emission. NO reacts with thiols to form S-nitrosylated compounds, and it is demonstrated that hypoxia substantially increased the content of S-nitrosylated compounds. A parallel up-regulation of Hb gene expression in the normoxic shoots of the flooded plants may reflect signal transmission from root to shoot via ethylene and a role for Hb in the shoots. Hb gene expression was correlated with ethylene-induced upward leaf movement (hyponastic growth) but not with hypocotyl growth, which was Hb independent. Taken together the data suggest that Hb can influence flood-induced hyponasty via ethylene-dependent and, possibly, ethylene-independent pathways. Nitric oxide (NO) and ethylene are signalling molecules that are synthesized in response to oxygen depletion. Non-symbiotic plant haemoglobins (Hbs) have been demonstrated to act in roots under oxygen depletion to scavenge NO. Using Arabidopsis thaliana plants, the online emission of NO or ethylene was directly quantified under normoxia, hypoxia (0.1–1.0% O2), or full anoxia. The production of both gases was increased with reduced expression of either of the Hb genes GLB1 or GLB2, whereas NO emission decreased in plants overexpressing these genes. NO emission in plants with reduced Hb gene expression represented a major loss of nitrogen equivalent to 0.2mM nitrate per 24h under hypoxic conditions. Hb gene expression was greatly enhanced in flooded roots, suggesting induction by reduced oxygen diffusion. The function could be to limit loss of nitrogen under NO emission. NO reacts with thiols to form S-nitrosylated compounds, and it is demonstrated that hypoxia substantially increased the content of S-nitrosylated compounds. A parallel up-regulation of Hb gene expression in the normoxic shoots of the flooded plants may reflect signal transmission from root to shoot via ethylene and a role for Hb in the shoots. Hb gene expression was correlated with ethylene-induced upward leaf movement (hyponastic growth) but not with hypocotyl growth, which was Hb independent. Taken together the data suggest that Hb can influence flood-induced hyponasty via ethylene-dependent and, possibly, ethylene-independent pathways. Nitric oxide (NO) and ethylene are signalling molecules that are synthesized in response to oxygen depletion. Non-symbiotic plant haemoglobins (Hbs) have been demonstrated to act in roots under oxygen depletion to scavenge NO. Using Arabidopsis thaliana plants, the online emission of NO or ethylene was directly quantified under normoxia, hypoxia (0.1-1.0% O(2)), or full anoxia. The production of both gases was increased with reduced expression of either of the Hb genes GLB1 or GLB2, whereas NO emission decreased in plants overexpressing these genes. NO emission in plants with reduced Hb gene expression represented a major loss of nitrogen equivalent to 0.2mM nitrate per 24h under hypoxic conditions. Hb gene expression was greatly enhanced in flooded roots, suggesting induction by reduced oxygen diffusion. The function could be to limit loss of nitrogen under NO emission. NO reacts with thiols to form S-nitrosylated compounds, and it is demonstrated that hypoxia substantially increased the content of S-nitrosylated compounds. A parallel up-regulation of Hb gene expression in the normoxic shoots of the flooded plants may reflect signal transmission from root to shoot via ethylene and a role for Hb in the shoots. Hb gene expression was correlated with ethylene-induced upward leaf movement (hyponastic growth) but not with hypocotyl growth, which was Hb independent. Taken together the data suggest that Hb can influence flood-induced hyponasty via ethylene-dependent and, possibly, ethylene-independent pathways.Nitric oxide (NO) and ethylene are signalling molecules that are synthesized in response to oxygen depletion. Non-symbiotic plant haemoglobins (Hbs) have been demonstrated to act in roots under oxygen depletion to scavenge NO. Using Arabidopsis thaliana plants, the online emission of NO or ethylene was directly quantified under normoxia, hypoxia (0.1-1.0% O(2)), or full anoxia. The production of both gases was increased with reduced expression of either of the Hb genes GLB1 or GLB2, whereas NO emission decreased in plants overexpressing these genes. NO emission in plants with reduced Hb gene expression represented a major loss of nitrogen equivalent to 0.2mM nitrate per 24h under hypoxic conditions. Hb gene expression was greatly enhanced in flooded roots, suggesting induction by reduced oxygen diffusion. The function could be to limit loss of nitrogen under NO emission. NO reacts with thiols to form S-nitrosylated compounds, and it is demonstrated that hypoxia substantially increased the content of S-nitrosylated compounds. A parallel up-regulation of Hb gene expression in the normoxic shoots of the flooded plants may reflect signal transmission from root to shoot via ethylene and a role for Hb in the shoots. Hb gene expression was correlated with ethylene-induced upward leaf movement (hyponastic growth) but not with hypocotyl growth, which was Hb independent. Taken together the data suggest that Hb can influence flood-induced hyponasty via ethylene-dependent and, possibly, ethylene-independent pathways. Nitric oxide (NO) and ethylene are signalling molecules that are synthesized in response to oxygen depletion. Non-symbiotic plant haemoglobins (Hbs) have been demonstrated to act in roots under oxygen depletion to scavenge NO. Using Arabidopsis thaliana plants, the online emission of NO or ethylene was directly quantified under normoxia, hypoxia (0.1–1.0% O 2 ), or full anoxia. The production of both gases was increased with reduced expression of either of the Hb genes GLB1 or GLB2 , whereas NO emission decreased in plants overexpressing these genes. NO emission in plants with reduced Hb gene expression represented a major loss of nitrogen equivalent to 0.2mM nitrate per 24h under hypoxic conditions. Hb gene expression was greatly enhanced in flooded roots, suggesting induction by reduced oxygen diffusion. The function could be to limit loss of nitrogen under NO emission. NO reacts with thiols to form S -nitrosylated compounds, and it is demonstrated that hypoxia substantially increased the content of S -nitrosylated compounds. A parallel up-regulation of Hb gene expression in the normoxic shoots of the flooded plants may reflect signal transmission from root to shoot via ethylene and a role for Hb in the shoots. Hb gene expression was correlated with ethylene-induced upward leaf movement (hyponastic growth) but not with hypocotyl growth, which was Hb independent. Taken together the data suggest that Hb can influence flood-induced hyponasty via ethylene-dependent and, possibly, ethylene-independent pathways. Nitric oxide (NO) and ethylene are signalling molecules that are synthesized in response to oxygen depletion. Non-symbiotic plant haemoglobins (Hbs) have been demonstrated to act in roots under oxygen depletion to scavenge NO. Using Arabidopsis thaliana plants, the online emission of NO or ethylene was directly quantified under normoxia, hypoxia (0.1-1.0% O sub(2)), or full anoxia. The production of both gases was increased with reduced expression of either of the Hb genes GLB1 or GLB2, whereas NO emission decreased in plants overexpressing these genes. NO emission in plants with reduced Hb gene expression represented a major loss of nitrogen equivalent to 0.2mM nitrate per 24h under hypoxic conditions. Hb gene expression was greatly enhanced in flooded roots, suggesting induction by reduced oxygen diffusion. The function could be to limit loss of nitrogen under NO emission. NO reacts with thiols to form S-nitrosylated compounds, and it is demonstrated that hypoxia substantially increased the content of S-nitrosylated compounds. A parallel up-regulation of Hb gene expression in the normoxic shoots of the flooded plants may reflect signal transmission from root to shoot via ethylene and a role for Hb in the shoots. Hb gene expression was correlated with ethylene-induced upward leaf movement (hyponastic growth) but not with hypocotyl growth, which was Hb independent. Taken together the data suggest that Hb can influence flood-induced hyponasty via ethylene-dependent and, possibly, ethylene-independent pathways. |
Author | Mur, Luis A. J Voesenek, Laurentius A.C.J Mandon, Julien van Zanten, Martijn Hebelstrup, Kim H Harren, Frans J. M Cristescu, Simona M Møller, Ian M |
Author_xml | – sequence: 1 fullname: Hebelstrup, Kim H – sequence: 2 fullname: van Zanten, Martijn – sequence: 3 fullname: Mandon, Julien – sequence: 4 fullname: Voesenek, Laurentius A.C.J – sequence: 5 fullname: Harren, Frans J. M – sequence: 6 fullname: Cristescu, Simona M – sequence: 7 fullname: Møller, Ian M – sequence: 8 fullname: Mur, Luis A. J |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26390009$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22915746$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl1rFDEUhoNU7LZ64w_QuRFEGHvyMZnJjVCKWqHYC-11OMlkdlNmkzWZke6_N-tu_ULoVQh5znvek_eckKMQgyPkOYW3FBQ_u70zZy5lRuERWVAhoWaC0yOyAGCsBtW0x-Qk51sAaKBpnpBjxhRtWiEXpL9Et47LMRofqnXs5xEnl6vP15Vb-5x9DBWGvlptNzFgnrbVHHqXft7vPNbJ7fi-ylNyOVdF4zyh8X3cZJ-raYWjx4BPyeMBx-yeHc5TcvPh_deLy_rq-uOni_Or2grVTbUybrCGd4NtjR2YkRKs4HzAhqLrZQMODW-NpKhQCGqA0xY7DlIxw6S1_JS82-tuZrN2vXVhSjjqTfJrTFsd0eu_X4Jf6WX8rrkQgrWsCLw-CKT4bXZ50uUTrBtHDC7OWVMpedNyKtTDaMOEAMmgexgFQSlXXccL-uLPCX5Zvw-sAK8OAGaL45AwWJ9_c5KrEvPOHuw5m2LOyQ3a-gmnkmcZ3I-lp97tji67o_e7U0re_FNyr_pf-OUeHjBqXKbi4eYLA9qU7lQqQfkPui_RQA |
CODEN | JEBOA6 |
CitedBy_id | crossref_primary_10_1104_pp_112_208173 crossref_primary_10_1093_jxb_erv213 crossref_primary_10_1093_plphys_kiaa081 crossref_primary_10_3390_ijms21041546 crossref_primary_10_1093_jxb_erw022 crossref_primary_10_3390_antiox8060167 crossref_primary_10_1111_nph_16378 crossref_primary_10_1177_1934578X1601100839 crossref_primary_10_1093_jxb_ert358 crossref_primary_10_1007_s00425_014_2198_8 crossref_primary_10_6064_2012_683729 crossref_primary_10_1007_s00425_018_2862_5 crossref_primary_10_1016_j_envpol_2025_125663 crossref_primary_10_3390_ijms17050640 crossref_primary_10_1371_journal_pone_0088573 crossref_primary_10_3390_plants10050978 crossref_primary_10_3390_plants9081022 crossref_primary_10_1111_pce_12773 crossref_primary_10_1002_jmr_2754 crossref_primary_10_1016_j_bbapap_2016_02_006 crossref_primary_10_1111_ppl_12062 crossref_primary_10_3389_fpls_2020_01019 crossref_primary_10_1111_nph_15969 crossref_primary_10_3389_fpls_2024_1290700 crossref_primary_10_1007_s00425_013_2015_9 crossref_primary_10_1080_14620316_2023_2218381 crossref_primary_10_1093_jxb_erx003 crossref_primary_10_3390_ijms19123900 crossref_primary_10_1016_j_jplph_2019_04_010 crossref_primary_10_1016_j_plaphy_2013_02_015 crossref_primary_10_1111_pce_14637 crossref_primary_10_1080_15592324_2018_1473683 crossref_primary_10_1111_ppl_12115 crossref_primary_10_1021_acs_biochem_5b01013 crossref_primary_10_3390_cells7120252 crossref_primary_10_3390_nitrogen1010003 crossref_primary_10_3389_fpls_2023_1178778 crossref_primary_10_3389_fpls_2023_1158184 crossref_primary_10_3389_fpls_2015_01203 crossref_primary_10_3390_plants11070864 crossref_primary_10_1038_s41598_017_13458_1 crossref_primary_10_1016_j_plaphy_2024_109101 crossref_primary_10_1016_j_envexpbot_2020_104365 crossref_primary_10_1093_jxb_erab463 crossref_primary_10_1093_jxb_erae139 crossref_primary_10_1007_s11427_015_4803_x crossref_primary_10_1007_s00344_021_10446_8 crossref_primary_10_1016_j_cj_2020_09_011 crossref_primary_10_3389_fpls_2024_1342814 crossref_primary_10_1007_s00299_024_03367_9 crossref_primary_10_3390_antiox11050878 crossref_primary_10_1038_s41598_020_73613_z crossref_primary_10_3390_antiox10020332 crossref_primary_10_1080_15592324_2023_2300228 crossref_primary_10_1016_j_plantsci_2017_10_001 crossref_primary_10_1093_treephys_tpx023 crossref_primary_10_1042_BCJ20180169 crossref_primary_10_3390_plants10050993 crossref_primary_10_1007_s11032_020_01190_0 crossref_primary_10_1007_s11356_016_7947_8 crossref_primary_10_5511_plantbiotechnology_20_0907a crossref_primary_10_1093_plphys_kiac245 crossref_primary_10_1093_jxb_erz084 crossref_primary_10_1016_j_jgeb_2015_01_001 crossref_primary_10_1016_j_jplph_2013_03_004 crossref_primary_10_1111_tpj_12181 crossref_primary_10_1093_jxb_erz249 crossref_primary_10_1016_j_freeradbiomed_2018_03_045 crossref_primary_10_1016_j_plantsci_2016_03_013 crossref_primary_10_1093_jxb_eraa442 crossref_primary_10_1080_15592324_2016_1273304 crossref_primary_10_1016_j_molp_2014_12_010 crossref_primary_10_1016_j_pbiomolbio_2018_11_005 crossref_primary_10_4161_psb_23578 crossref_primary_10_1371_journal_pone_0082611 crossref_primary_10_1111_pce_14734 crossref_primary_10_1038_s41467_019_12045_4 crossref_primary_10_3390_plants10020360 crossref_primary_10_1093_jxb_erac508 |
Cites_doi | 10.1104/pp.104.053967 10.1016/j.plaphy.2005.03.012 10.1073/pnas.191349198 10.1007/s11104-004-1650-0 10.1104/pp.103.022228 10.1073/pnas.94.22.12230 10.1002/pmic.200800985 10.1111/j.1365-313X.2009.04000.x 10.1093/jexbot/53.367.175 10.1073/pnas.95.17.10317 10.1007/s00425-004-1212-y 10.1007/s11103-006-0048-1 10.1093/jxb/erm293 10.1016/j.plantsci.2011.02.011 10.1093/jxb/ers116 10.1111/j.1469-8137.1975.tb01350.x 10.1074/jbc.M806782200 10.1046/j.1469-8137.2000.00727.x 10.1016/j.febslet.2011.10.036 10.1111/j.1469-8137.2009.02921.x 10.1146/annurev.pp.44.060193.001435 10.1080/07352689.2010.502086 10.1016/j.plaphy.2011.06.005 10.1046/j.1365-313X.2003.01846.x 10.1016/S0092-8674(00)81425-7 10.1126/science.1156970 10.1016/j.gene.2007.01.039 10.1111/j.1469-8137.2008.02735.x 10.1038/35068596 10.1093/aob/mcf115 10.1111/j.1469-8137.2010.03552.x 10.1007/s00425-007-0667-z 10.1093/aob/mci210 10.1007/s00340-008-3127-y 10.1007/s00425-003-1172-7 10.1093/jxb/erh272 10.1104/pp.114.4.1501 10.1146/annurev.arplant.59.032607.092752 10.1104/pp.104.054494 10.1534/genetics.109.107102 10.1038/29087 10.1105/tpc.104.025379 10.1007/BF00014440 10.1111/j.1469-8137.2010.03590.x 10.1111/j.1438-8677.2010.00403.x 10.1104/pp.106.092700 10.1111/j.1469-8137.2011.03920.x 10.1093/aobpla/pls004 10.1105/tpc.2.6.513 10.1111/j.1399-3054.2006.00653.x 10.1080/07352680500365232 10.1073/pnas.212648799 10.1104/pp.104.058719 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS 2012 The Author(s). 2012 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: 2012 The Author(s). 2012 |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QH 7UA C1K F1W H97 L.G 7S9 L.6 5PM |
DOI | 10.1093/jxb/ers210 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1460-2431 |
EndPage | 5591 |
ExternalDocumentID | PMC3444272 22915746 26390009 10_1093_jxb_ers210 US201500016941 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -E4 -~X .2P .I3 0R~ 18M 1TH 29K 2WC 2~F 3O- 4.4 482 48X 53G 5GY 5VS 5WA 5WD 6.Y 70D AABJS AABMN AAESY AAIMJ AAIYJ AAJKP AAJQQ AAMDB AAMVS AANRK AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAWDT AAXTN ABBHK ABEUO ABIXL ABJNI ABLJU ABNKS ABPPZ ABPTD ABPTK ABQLI ABQTQ ABSAR ABSMQ ABWST ABXZS ABZBJ ACFRR ACGFO ACGFS ACGOD ACIWK ACNCT ACPQN ACPRK ACUFI ACUTJ ADBBV ADEIU ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADOCK ADORX ADQLU ADRIX ADRTK ADULT ADVEK ADYVW ADZTZ ADZXQ AEEJZ AEGPL AEGXH AEJOX AEKPW AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AETEA AEUPB AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AFYAG AGINJ AGKEF AGKRT AGQXC AGSYK AHMBA AHXPO AI. AIAGR AIJHB AIKOY AJEEA AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD APIBT APJGH APWMN AQDSO ARIXL ASAOO ASPBG ATDFG ATTQO AVWKF AXUDD AYOIW AZFZN AZQFJ BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC BYORX C1A CAG CASEJ CDBKE COF CS3 CXTWN CZ4 D-I DAKXR DATOO DFEDG DFGAJ DIK DILTD DPORF DPPUQ DU5 D~K E3Z EBS ECGQY EE~ EJD ELUNK ESX F20 F5P F9B FBQ FEDTE FHSFR FLUFQ FOEOM FQBLK G8K GAUVT GJXCC GX1 H5~ HAR HVGLF HW0 HZ~ H~9 IOX J21 JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST KAQDR KBUDW KC5 KOP KQ8 KSI KSN M-Z M49 MBTAY ML0 MVM N9A NEJ NGC NLBLG NOMLY NTWIH NU- NVLIB O0~ O9- OAWHX OBOKY ODMLO OHT OJQWA OJZSN OK1 OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO SA0 TCN TEORI TLC TN5 TR2 UHB UKR UPT VH1 W8F WH7 WOQ X7H XOL YAYTL YKOAZ YQT YSK YXANX YZZ ZCG ZKX ~02 ~91 ~KM AAHBH AARHZ AAUAY AAYXX ABDFA ABDPE ABEJV ABGNP ABIME ABMNT ABNGD ABPIB ABPQP ABVGC ABXSQ ABXVV ABZEO ACHIC ACUKT ACVCV ACZBC ADNBA ADQBN AEHUL AFSHK AGMDO AGORE AGQPQ AHGBF AJBYB AJDVS AJNCP AQVQM ATGXG CITATION H13 IPSME JXSIZ IQODW CGR CUY CVF ECM EIF NPM Z5M 7X8 7QH 7UA C1K F1W H97 L.G 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c498t-9befcb38fc7bcf2b660c433fa51aed650eab37b61a9a441b0317a830692b26cc3 |
ISSN | 0022-0957 1460-2431 |
IngestDate | Thu Aug 21 14:08:13 EDT 2025 Fri Jul 11 09:17:34 EDT 2025 Fri Jul 11 10:18:07 EDT 2025 Fri Jul 11 08:35:25 EDT 2025 Wed Feb 19 02:04:37 EST 2025 Mon Jul 21 09:13:22 EDT 2025 Thu Apr 24 23:12:11 EDT 2025 Tue Jul 01 03:05:19 EDT 2025 Wed Dec 27 19:11:25 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | hyponastic growth nitric oxide (NO) Growth Ethylene Submersion flooding Stress Arabidopsis thaliana haemoglobin Cruciferae Dicotyledones Modulation Nitric oxide Angiospermae Botany Hypoxia Spermatophyta Experimental plant |
Language | English |
License | CC BY 4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0/uk/) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c498t-9befcb38fc7bcf2b660c433fa51aed650eab37b61a9a441b0317a830692b26cc3 |
Notes | http://dx.doi.org/10.1093/jxb/ers210 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3444272 |
PMID | 22915746 |
PQID | 1041139883 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3444272 proquest_miscellaneous_1663573149 proquest_miscellaneous_1524406208 proquest_miscellaneous_1041139883 pubmed_primary_22915746 pascalfrancis_primary_26390009 crossref_citationtrail_10_1093_jxb_ers210 crossref_primary_10_1093_jxb_ers210 fao_agris_US201500016941 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-09-01 |
PublicationDateYYYYMMDD | 2012-09-01 |
PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: England – name: UK |
PublicationTitle | Journal of experimental botany |
PublicationTitleAlternate | J Exp Bot |
PublicationYear | 2012 |
Publisher | Oxford University Press [etc.] Oxford University Press |
Publisher_xml | – name: Oxford University Press [etc.] – name: Oxford University Press |
References | Astier ( key 20170512114620_CIT0004) 2011; 181 Pagnussat ( key 20170512114620_CIT0038) 2003; 132 Manac’h-Little ( key 20170512114620_CIT0033) 2005; 43 Watts ( key 20170512114620_CIT0054) 2001; 98 Heckmann ( key 20170512114620_CIT0020) 2006; 61 Mur ( key 20170512114620_CIT0036) 2012; 63 Jackson ( key 20170512114620_CIT0027) 2002; 53 Perazzolli ( key 20170512114620_CIT0039) 2004; 16 Vashisht ( key 20170512114620_CIT0049) 2011; 190 Benschop ( key 20170512114620_CIT0007) 2007; 143 Dordas ( key 20170512114620_CIT0012) 2003; 35 Kende ( key 20170512114620_CIT0029) 1993; 44 Tsuchisaka ( key 20170512114620_CIT0047) 2009; 183 Dordas ( key 20170512114620_CIT0013) 2004; 219 Delledonne ( key 20170512114620_CIT0011) 1998; 394 Guzman ( key 20170512114620_CIT0016) 1990; 2 Hebelstrup ( key 20170512114620_CIT0017) 2006; 127 Neill ( key 20170512114620_CIT0037) 2008; 59 Gupta ( key 20170512114620_CIT0015) 2011; 585 Bailey-Serres ( key 20170512114620_CIT0005) 2008; 59 Appleby ( key 20170512114620_CIT0003) 1992; 76 Rijnders ( key 20170512114620_CIT0041) 2000; 147 Liu ( key 20170512114620_CIT0032) 2001; 410 Igamberdiev ( key 20170512114620_CIT0025) 2005; 96 Agarwal ( key 20170512114620_CIT0002) 2006; 25 ( key 20170512114620_CIT0031) 2005; 137 Trevaskis ( key 20170512114620_CIT0046) 1997; 94 Van Zanten ( key 20170512114620_CIT0048) 2010; 29 Wang ( key 20170512114620_CIT0053) 2009; 284 Abat ( key 20170512114620_CIT0001) 2009; 9 Hu ( key 20170512114620_CIT0022) 2005; 137 Dordas ( key 20170512114620_CIT0014) 2003; 91 Hebelstrup ( key 20170512114620_CIT0019) 2008; 227 Baudouin ( key 20170512114620_CIT0006) 2011; 13 Taylor ( key 20170512114620_CIT0045) 1994; 24 Hunt ( key 20170512114620_CIT0024) 2002; 99 Clarke ( key 20170512114620_CIT0008) 2009; 182 Visser ( key 20170512114620_CIT0050) 2005; 274 Hebelstrup ( key 20170512114620_CIT0018) 2007; 398 Jackson ( key 20170512114620_CIT0028) 1975; 74 Correa-Aragunde ( key 20170512114620_CIT0009) 2004; 218 Millenaar ( key 20170512114620_CIT0034) 2005; 137 Hua ( key 20170512114620_CIT0023) 1998; 94 Tada ( key 20170512114620_CIT0043) 2008; 321 Sowa ( key 20170512114620_CIT0042) 1998; 95 Wang ( key 20170512114620_CIT0052) 2011; 49 Lee ( key 20170512114620_CIT0030) 2011; 190 Voesenek ( key 20170512114620_CIT0051) 1997; 114 Igamberdiev ( key 20170512114620_CIT0026) 2004; 55 Polko ( key 20170512114620_CIT0040) 2012; 193 Hill ( key 20170512114620_CIT0021) 2012; 2012 Tanou ( key 20170512114620_CIT0044) 2009; 60 Millenaar ( key 20170512114620_CIT0035) 2009; 184 Cristescu ( key 20170512114620_CIT0010) 2008; 92 |
References_xml | – volume: 137 start-page: 998 year: 2005 ident: key 20170512114620_CIT0034 article-title: Ethylene-induced differential growth of petioles in arabidopsis. Analyzing natural variation, response kinetics, and regulation publication-title: Plant Physiology doi: 10.1104/pp.104.053967 – volume: 43 start-page: 485 year: 2005 ident: key 20170512114620_CIT0033 article-title: Hemoglobin expression affects ethylene production in maize cell cultures publication-title: Plant Physiology and Biochemistry doi: 10.1016/j.plaphy.2005.03.012 – volume: 98 start-page: 10119 year: 2001 ident: key 20170512114620_CIT0054 article-title: A hemoglobin from plants homologous to truncated hemoglobins of microorganisms publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.191349198 – volume: 274 start-page: 197 year: 2005 ident: key 20170512114620_CIT0050 article-title: Acclimation to soil flooding—sensing and signal-transduction publication-title: Plant and Soil doi: 10.1007/s11104-004-1650-0 – volume: 132 start-page: 1241 year: 2003 ident: key 20170512114620_CIT0038 article-title: Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process publication-title: Plant Physiology doi: 10.1104/pp.103.022228 – volume: 94 start-page: 12230 year: 1997 ident: key 20170512114620_CIT0046 article-title: Two hemoglobin genes in Arabidopsis thaliana: the evolutionary origins of leghemoglobins publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.94.22.12230 – volume: 9 start-page: 4368 year: 2009 ident: key 20170512114620_CIT0001 article-title: Differential modulation of S-nitrosoproteome of Brassica juncea by low temperature: change in S-nitrosylation of Rubisco is responsible for the inactivation of its carboxylase activity publication-title: Proteomics doi: 10.1002/pmic.200800985 – volume: 60 start-page: 795 year: 2009 ident: key 20170512114620_CIT0044 article-title: Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity publication-title: The Plant Journal doi: 10.1111/j.1365-313X.2009.04000.x – volume: 53 start-page: 175 year: 2002 ident: key 20170512114620_CIT0027 article-title: Long-distance signalling from roots to shoots assessed: the flooding story publication-title: Journal of Experimental Botany doi: 10.1093/jexbot/53.367.175 – volume: 95 start-page: 10317 year: 1998 ident: key 20170512114620_CIT0042 article-title: Altering hemoglobin levels changes energy status in maize cells under hypoxia publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.95.17.10317 – volume: 219 start-page: 66 year: 2004 ident: key 20170512114620_CIT0013 article-title: Class-1 hemoglobins, nitrate and NO levels in anoxic maize cell-suspension cultures publication-title: Planta doi: 10.1007/s00425-004-1212-y – volume: 61 start-page: 769 year: 2006 ident: key 20170512114620_CIT0020 article-title: A single hemoglobin gene in Myrica gale retains both symbiotic and non-symbiotic specificity publication-title: Plant Molecular Biology doi: 10.1007/s11103-006-0048-1 – volume: 59 start-page: 165 year: 2008 ident: key 20170512114620_CIT0037 article-title: Nitric oxide, stomatal closure, and abiotic stress publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erm293 – volume: 181 start-page: 527 year: 2011 ident: key 20170512114620_CIT0004 article-title: S-nitrosylation: an emerging post-translational protein modification in plants publication-title: Plant Science doi: 10.1016/j.plantsci.2011.02.011 – volume: 63 year: 2012 ident: key 20170512114620_CIT0036 article-title: Haemoglobin modulates salicylate and jasmonate/ethylene-mediated resistance mechanisms against pathogens publication-title: Journal of Experimental Botany doi: 10.1093/jxb/ers116 – volume: 74 start-page: 397 year: 1975 ident: key 20170512114620_CIT0028 article-title: Movement of ethylene from roots to shoots—factor in responses of tomato plants to waterlogged soil conditions publication-title: New Phytologist doi: 10.1111/j.1469-8137.1975.tb01350.x – volume: 284 start-page: 2131 year: 2009 ident: key 20170512114620_CIT0053 article-title: S-Nitrosylation of AtSABP3 antagonizes the expression of plant immunity publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M806782200 – volume: 147 start-page: 497 year: 2000 ident: key 20170512114620_CIT0041 article-title: The role of oxygen in submergence-induced petiole elongation in Rumex palustris: in situ measurements of oxygen in petioles of intact plants using micro-electrodes publication-title: New Phytologist doi: 10.1046/j.1469-8137.2000.00727.x – volume: 585 start-page: 3843 year: 2011 ident: key 20170512114620_CIT0015 article-title: Plant hemoglobins: important players at the crossroads between oxygen and nitric oxide publication-title: FEBS Letters doi: 10.1016/j.febslet.2011.10.036 – volume: 184 start-page: 141 year: 2009 ident: key 20170512114620_CIT0035 article-title: Differential petiole growth in Arabidopsis thaliana: photocontrol and hormonal regulation publication-title: New Phytologist doi: 10.1111/j.1469-8137.2009.02921.x – volume: 44 start-page: 283 year: 1993 ident: key 20170512114620_CIT0029 article-title: Ethylene biosynthesis publication-title: Annual Review of Plant Physiology and Plant Molecular Biology doi: 10.1146/annurev.pp.44.060193.001435 – volume: 29 start-page: 300 year: 2010 ident: key 20170512114620_CIT0048 article-title: On the relevance and control of leaf angle publication-title: Critical Reviews in Plant Sciences doi: 10.1080/07352689.2010.502086 – volume: 49 start-page: 1108 year: 2011 ident: key 20170512114620_CIT0052 article-title: Manipulation of hemoglobin expression affects Arabidopsis shoot organogenesis publication-title: Plant Physiology and Biochemistry doi: 10.1016/j.plaphy.2011.06.005 – volume: 35 start-page: 763 year: 2003 ident: key 20170512114620_CIT0012 article-title: Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress publication-title: The Plant Journal doi: 10.1046/j.1365-313X.2003.01846.x – volume: 94 start-page: 261 year: 1998 ident: key 20170512114620_CIT0023 article-title: Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana publication-title: Cell doi: 10.1016/S0092-8674(00)81425-7 – volume: 321 start-page: 952 year: 2008 ident: key 20170512114620_CIT0043 article-title: Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins publication-title: Science doi: 10.1126/science.1156970 – volume: 398 start-page: 86 year: 2007 ident: key 20170512114620_CIT0018 article-title: Metabolic effects of hemoglobin gene expression in plants publication-title: Gene doi: 10.1016/j.gene.2007.01.039 – volume: 182 start-page: 175 year: 2009 ident: key 20170512114620_CIT0008 article-title: Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana publication-title: New Phytologist doi: 10.1111/j.1469-8137.2008.02735.x – volume: 410 start-page: 490 year: 2001 ident: key 20170512114620_CIT0032 article-title: A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans publication-title: Nature doi: 10.1038/35068596 – volume: 91 start-page: 173 year: 2003 ident: key 20170512114620_CIT0014 article-title: Plant haemoglobins, nitric oxide and hypoxic stress publication-title: Annals of Botany doi: 10.1093/aob/mcf115 – volume: 190 start-page: 299 year: 2011 ident: key 20170512114620_CIT0049 article-title: Natural variation of submergence tolerance among Arabidopsis thaliana accessions publication-title: New Phytologist doi: 10.1111/j.1469-8137.2010.03552.x – volume: 227 start-page: 917 year: 2008 ident: key 20170512114620_CIT0019 article-title: Expression of NO scavenging hemoglobin is involved in the timing of bolting in Arabidopsis thaliana publication-title: Planta doi: 10.1007/s00425-007-0667-z – volume: 96 start-page: 557 year: 2005 ident: key 20170512114620_CIT0025 article-title: The haemoglobin/nitric oxide cycle: involvement in flooding stress and effects on hormone signalling publication-title: Annals of Botany doi: 10.1093/aob/mci210 – volume: 92 start-page: 343 year: 2008 ident: key 20170512114620_CIT0010 article-title: Laser-based systems for trace gas detection in life sciences publication-title: Applied Physics B-Lasers and Optics doi: 10.1007/s00340-008-3127-y – volume: 218 start-page: 900 year: 2004 ident: key 20170512114620_CIT0009 article-title: Nitric oxide plays a central role in determining lateral root development in tomato publication-title: Planta doi: 10.1007/s00425-003-1172-7 – volume: 55 start-page: 2473 year: 2004 ident: key 20170512114620_CIT0026 article-title: Nitrate, NO, and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erh272 – volume: 114 start-page: 1501 year: 1997 ident: key 20170512114620_CIT0051 article-title: Ethylene sensitivity and response sensor expression in petioles of Rumex species at low O2 and high CO2 concentrations publication-title: Plant Physiology doi: 10.1104/pp.114.4.1501 – volume: 59 start-page: 313 year: 2008 ident: key 20170512114620_CIT0005 article-title: Flooding stress: acclimations and genetic diversity publication-title: Annual Review of Plant Biology doi: 10.1146/annurev.arplant.59.032607.092752 – volume: 137 start-page: 663 year: 2005 ident: key 20170512114620_CIT0022 article-title: Nitric oxide mediates gravitropic bending in soybean roots publication-title: Plant Physiology doi: 10.1104/pp.104.054494 – volume: 183 start-page: 979 year: 2009 ident: key 20170512114620_CIT0047 article-title: A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana publication-title: Genetics doi: 10.1534/genetics.109.107102 – volume: 394 start-page: 585 year: 1998 ident: key 20170512114620_CIT0011 article-title: Nitric oxide functions as a signal in plant disease resistance publication-title: Nature doi: 10.1038/29087 – volume: 16 start-page: 2785 year: 2004 ident: key 20170512114620_CIT0039 article-title: Arabidopsis nonsymbiotic hemoglobin AHb1 modulates nitric oxide bioactivity publication-title: The Plant Cell doi: 10.1105/tpc.104.025379 – volume: 76 start-page: 365 year: 1992 ident: key 20170512114620_CIT0003 article-title: The origin and functions of hemoglobin in plants publication-title: Science Progress – volume: 24 start-page: 853 year: 1994 ident: key 20170512114620_CIT0045 article-title: A cereal hemoglobin gene is expressed in seed and root tissues under anaerobic conditions publication-title: Plant Molecular Biology doi: 10.1007/BF00014440 – volume: 190 start-page: 457 year: 2011 ident: key 20170512114620_CIT0030 article-title: Molecular characterization of the submergence response of the Arabidopsis thaliana ecotype Columbia publication-title: New Phytologist doi: 10.1111/j.1469-8137.2010.03590.x – volume: 13 start-page: 233 year: 2011 ident: key 20170512114620_CIT0006 article-title: The language of nitric oxide signalling publication-title: Plant Biology doi: 10.1111/j.1438-8677.2010.00403.x – volume: 143 start-page: 1013 year: 2007 ident: key 20170512114620_CIT0007 article-title: Abscisic acid antagonizes ethylene-induced hyponastic growth in Arabidopsis publication-title: Plant Physiology doi: 10.1104/pp.106.092700 – volume: 193 start-page: 339 year: 2012 ident: key 20170512114620_CIT0040 article-title: Ethylene-induced differential petiole growth in Arabidopsis thaliana involves local microtubule reorientation and cell expansion publication-title: New Phytologist doi: 10.1111/j.1469-8137.2011.03920.x – volume: 2012 start-page: pls004 year: 2012 ident: key 20170512114620_CIT0021 article-title: Non-symbiotic haemoglobins – What’s happening beyond nitric oxide scavenging? publication-title: AoB Plants doi: 10.1093/aobpla/pls004 – volume: 2 start-page: 513 year: 1990 ident: key 20170512114620_CIT0016 article-title: Exploiting the triple response of arabidopsis to identify ethylene-related mutants publication-title: The Plant Cell doi: 10.1105/tpc.2.6.513 – volume: 127 start-page: 157 year: 2006 ident: key 20170512114620_CIT0017 article-title: Hemoglobin is essential for normal growth of Arabidopsis organs publication-title: Physiologia Plantarum doi: 10.1111/j.1399-3054.2006.00653.x – volume: 25 start-page: 1 year: 2006 ident: key 20170512114620_CIT0002 article-title: Molecular biology, biotechnology and genomics of flooding-associated low O(2) stress response in plants publication-title: Critical Reviews in Plant Sciences doi: 10.1080/07352680500365232 – volume: 99 start-page: 17197 year: 2002 ident: key 20170512114620_CIT0024 article-title: Increased level of hemoglobin 1 enhances survival of hypoxic stress and promotes early growth in Arabidopsis thaliana publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.212648799 – volume: 137 start-page: 921 year: 2005 ident: key 20170512114620_CIT0031 article-title: Proteomic identification of S-nitrosylated proteins in Arabidopsis thaliana publication-title: Plant Physiology doi: 10.1104/pp.104.058719 |
SSID | ssj0005055 |
Score | 2.3792348 |
Snippet | Nitric oxide (NO) and ethylene are signalling molecules that are synthesized in response to oxygen depletion. Non-symbiotic plant haemoglobins (Hbs) have been... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5581 |
SubjectTerms | anaerobic conditions analysis Arabidopsis Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis - physiology Arabidopsis Proteins Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana Biological and medical sciences ethylene ethylene production Ethylenes Ethylenes - analysis Ethylenes - metabolism Floods Fundamental and applied biological sciences. Psychology gases Gene Expression Gene Expression Regulation, Plant gene overexpression genes genetics hemoglobin Hemoglobins Hemoglobins - genetics Hemoglobins - metabolism hypocotyls hypoxia leaves metabolism Models, Biological nitrates nitric oxide Nitric Oxide - analysis Nitric Oxide - metabolism nitrogen Nitrogen - metabolism normoxia oxygen Oxygen - metabolism Phenotype physiology Plant Leaves Plant Leaves - genetics Plant Leaves - metabolism Plant Leaves - physiology Plant physiology and development Plant Roots Plant Roots - genetics Plant Roots - metabolism Plant Roots - physiology Plant Shoots Plant Shoots - genetics Plant Shoots - metabolism Plant Shoots - physiology Research Paper roots S-Nitrosothiols S-Nitrosothiols - analysis S-Nitrosothiols - metabolism shoots Signal Transduction Stress, Physiological thiols Up-Regulation |
Title | Haemoglobin modulates NO emission and hyponasty under hypoxia-related stress in Arabidopsis thaliana |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22915746 https://www.proquest.com/docview/1041139883 https://www.proquest.com/docview/1524406208 https://www.proquest.com/docview/1663573149 https://pubmed.ncbi.nlm.nih.gov/PMC3444272 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2hQMXxLvLozKCC0KhieO8joBAC1XbA11UcYnsxGFT2GS1yUqFK3-cGdvJPthWwCXaOF47yvdlPOPMg5Dneey5MhSRU2R55nAhJOaATBzFiij2oC3SufSOjsPRmH88C84Gg18rXkuLVr7Kfm6NK_kfVKENcMUo2X9Ath8UGuA34AtHQBiOf4XxSKhpjSk9ygpL2mAlLgVy6-QlFnFrOkfjyY8ZqNsNaNsYMDbX5xelcHQYC-ibNlwENz7mQpZ5PcMkJe1E74CIS7TXtcoAsm47maK3VSUsuO18oUvfHZbTZQAEBkt9QSwrGyfUluc9O49EV1kEg7aXIWqfa4yQUt-6MG70b1o0GE9vv2nZTQv0_ki6TQtlBC0PXYdxuwJYSWxFnWVcsCJXg8AUdvlD4JtkWOcXEgkwb5jxkV3BfjbV4DOWeEHEN7Ju63W8u7RDrjGwNbRd_uFw6SfkBkGX1zbxD2CqAzMR5pG2f11TanYKUaOLrWjgLStMeZRt9sumG-6KXnN6i9y0kNLXhl23yUBVd8j1NxrRuyRfoRjtKUaPT2hHMQqo0Z5iVFOMblCMGopRGGOFYrSj2D0yfv_u9O3IsYU5nIwnceskUhWZ9OMii2RWMBmGbsZ9vxCBJ1QOOr8S0o9k6IlEgLotYeGIRAzGacIkC7PMv092q7pSe4RiHLXgvssz0IRFrOAUv00XYe4xwYQ_JC-6J5tmNms9Fk_5nhrvCT8FQFIDyJA86_vOTK6Wrb32AKBUfIVFNB1_Yrjlh4YPzDwk-2uo9aMw0OPRGhmSpx2MKTxl_LYmKlUvGpiEe2BMxbF_RZ8AdGk3ZG58RR-0ACLf4zDXA0OP5V1Ytg1JtEacvgOmil-_UpUTnTLe55yziD28dMxH5MbyPX1MdkFIqCegbrdyX78OvwFB9N2M |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Haemoglobin+modulates+NO+emission+and+hyponasty+under+hypoxia-related+stress+in+Arabidopsis+thaliana&rft.jtitle=Journal+of+experimental+botany&rft.au=Hebelstrup%2C+Kim+H&rft.au=van+Zanten%2C+Martijn&rft.au=Mandon%2C+Julien&rft.au=Voesenek%2C+Laurentius+A+C+J&rft.date=2012-09-01&rft.eissn=1460-2431&rft.volume=63&rft.issue=15&rft.spage=5581&rft_id=info:doi/10.1093%2Fjxb%2Fers210&rft_id=info%3Apmid%2F22915746&rft.externalDocID=22915746 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon |