Metallic Active Sites on MoO2(110) Surface to Catalyze Advanced Oxidation Processes for Efficient Pollutant Removal

Advanced oxidation processes (AOPs) based on sulfate radicals (SO4⋅−) suffer from low conversion rate of Fe(III) to Fe(II) and produce a large amount of iron sludge as waste. Herein, we show that by using MoO2 as a cocatalyst, the rate of Fe(III)/Fe(II) cycling in PMS system accelerated significantl...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 23; no. 2; p. 100861
Main Authors Ji, Jiahui, Aleisa, Rashed M., Duan, Huan, Zhang, Jinlong, Yin, Yadong, Xing, Mingyang
Format Journal Article
LanguageEnglish
Published Elsevier Inc 21.02.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Advanced oxidation processes (AOPs) based on sulfate radicals (SO4⋅−) suffer from low conversion rate of Fe(III) to Fe(II) and produce a large amount of iron sludge as waste. Herein, we show that by using MoO2 as a cocatalyst, the rate of Fe(III)/Fe(II) cycling in PMS system accelerated significantly, with a reaction rate constant 50 times that of PMS/Fe(II) system. Our results showed outstanding removal efficiency (96%) of L-RhB in 10 min with extremely low concentration of Fe(II) (0.036 mM), outperforming most reported SO4⋅−-based AOPs systems. Surface chemical analysis combined with density functional theory (DFT) calculation demonstrated that both Fe(III)/Fe(II) cycling and PMS activation occurred on the (110) crystal plane of MoO2, whereas the exposed active sites of Mo(IV) on MoO2 surface were responsible for accelerating PMS activation. Considering its performance, and non-toxicity, using MoO2 as a cocatalyst is a promising technique for large-scale practical environmental remediation. [Display omitted] •The degradation rate of PMS/Fe(II)/MoO2 system is 50 times higher than that without MoO2•Fe(III)/Fe(II) cycle on (110) surface of MoO2 in PMS/Fe(II)/MoO2 system was confirmed•The metal active sites exposed to MoO2 (110) surface are responsible for PMS activation•Compared with MoS2, MoO2 co-catalytic system has less toxicity and no release of H2S Inorganic Chemistry; Catalysis; Water Resources Engineering
AbstractList Advanced oxidation processes (AOPs) based on sulfate radicals (SO4⋅−) suffer from low conversion rate of Fe(III) to Fe(II) and produce a large amount of iron sludge as waste. Herein, we show that by using MoO2 as a cocatalyst, the rate of Fe(III)/Fe(II) cycling in PMS system accelerated significantly, with a reaction rate constant 50 times that of PMS/Fe(II) system. Our results showed outstanding removal efficiency (96%) of L-RhB in 10 min with extremely low concentration of Fe(II) (0.036 mM), outperforming most reported SO4⋅−-based AOPs systems. Surface chemical analysis combined with density functional theory (DFT) calculation demonstrated that both Fe(III)/Fe(II) cycling and PMS activation occurred on the (110) crystal plane of MoO2, whereas the exposed active sites of Mo(IV) on MoO2 surface were responsible for accelerating PMS activation. Considering its performance, and non-toxicity, using MoO2 as a cocatalyst is a promising technique for large-scale practical environmental remediation. : Inorganic Chemistry; Catalysis; Water Resources Engineering Subject Areas: Inorganic Chemistry, Catalysis, Water Resources Engineering
Advanced oxidation processes (AOPs) based on sulfate radicals (SO4⋅−) suffer from low conversion rate of Fe(III) to Fe(II) and produce a large amount of iron sludge as waste. Herein, we show that by using MoO2 as a cocatalyst, the rate of Fe(III)/Fe(II) cycling in PMS system accelerated significantly, with a reaction rate constant 50 times that of PMS/Fe(II) system. Our results showed outstanding removal efficiency (96%) of L-RhB in 10 min with extremely low concentration of Fe(II) (0.036 mM), outperforming most reported SO4⋅−-based AOPs systems. Surface chemical analysis combined with density functional theory (DFT) calculation demonstrated that both Fe(III)/Fe(II) cycling and PMS activation occurred on the (110) crystal plane of MoO2, whereas the exposed active sites of Mo(IV) on MoO2 surface were responsible for accelerating PMS activation. Considering its performance, and non-toxicity, using MoO2 as a cocatalyst is a promising technique for large-scale practical environmental remediation. [Display omitted] •The degradation rate of PMS/Fe(II)/MoO2 system is 50 times higher than that without MoO2•Fe(III)/Fe(II) cycle on (110) surface of MoO2 in PMS/Fe(II)/MoO2 system was confirmed•The metal active sites exposed to MoO2 (110) surface are responsible for PMS activation•Compared with MoS2, MoO2 co-catalytic system has less toxicity and no release of H2S Inorganic Chemistry; Catalysis; Water Resources Engineering
Advanced oxidation processes (AOPs) based on sulfate radicals (SO 4 ⋅− ) suffer from low conversion rate of Fe(III) to Fe(II) and produce a large amount of iron sludge as waste. Herein, we show that by using MoO 2 as a cocatalyst, the rate of Fe(III)/Fe(II) cycling in PMS system accelerated significantly, with a reaction rate constant 50 times that of PMS/Fe(II) system. Our results showed outstanding removal efficiency (96%) of L-RhB in 10 min with extremely low concentration of Fe(II) (0.036 mM), outperforming most reported SO 4 ⋅− -based AOPs systems. Surface chemical analysis combined with density functional theory (DFT) calculation demonstrated that both Fe(III)/Fe(II) cycling and PMS activation occurred on the (110) crystal plane of MoO 2 , whereas the exposed active sites of Mo(IV) on MoO 2 surface were responsible for accelerating PMS activation. Considering its performance, and non-toxicity, using MoO 2 as a cocatalyst is a promising technique for large-scale practical environmental remediation. • The degradation rate of PMS/Fe(II)/MoO 2 system is 50 times higher than that without MoO 2 • Fe(III)/Fe(II) cycle on (110) surface of MoO 2 in PMS/Fe(II)/MoO 2 system was confirmed • The metal active sites exposed to MoO 2 (110) surface are responsible for PMS activation • Compared with MoS 2 , MoO 2 co-catalytic system has less toxicity and no release of H 2 S Inorganic Chemistry; Catalysis; Water Resources Engineering
Advanced oxidation processes (AOPs) based on sulfate radicals (SO4⋅-) suffer from low conversion rate of Fe(III) to Fe(II) and produce a large amount of iron sludge as waste. Herein, we show that by using MoO2 as a cocatalyst, the rate of Fe(III)/Fe(II) cycling in PMS system accelerated significantly, with a reaction rate constant 50 times that of PMS/Fe(II) system. Our results showed outstanding removal efficiency (96%) of L-RhB in 10 min with extremely low concentration of Fe(II) (0.036 mM), outperforming most reported SO4⋅--based AOPs systems. Surface chemical analysis combined with density functional theory (DFT) calculation demonstrated that both Fe(III)/Fe(II) cycling and PMS activation occurred on the (110) crystal plane of MoO2, whereas the exposed active sites of Mo(IV) on MoO2 surface were responsible for accelerating PMS activation. Considering its performance, and non-toxicity, using MoO2 as a cocatalyst is a promising technique for large-scale practical environmental remediation.Advanced oxidation processes (AOPs) based on sulfate radicals (SO4⋅-) suffer from low conversion rate of Fe(III) to Fe(II) and produce a large amount of iron sludge as waste. Herein, we show that by using MoO2 as a cocatalyst, the rate of Fe(III)/Fe(II) cycling in PMS system accelerated significantly, with a reaction rate constant 50 times that of PMS/Fe(II) system. Our results showed outstanding removal efficiency (96%) of L-RhB in 10 min with extremely low concentration of Fe(II) (0.036 mM), outperforming most reported SO4⋅--based AOPs systems. Surface chemical analysis combined with density functional theory (DFT) calculation demonstrated that both Fe(III)/Fe(II) cycling and PMS activation occurred on the (110) crystal plane of MoO2, whereas the exposed active sites of Mo(IV) on MoO2 surface were responsible for accelerating PMS activation. Considering its performance, and non-toxicity, using MoO2 as a cocatalyst is a promising technique for large-scale practical environmental remediation.
ArticleNumber 100861
Author Zhang, Jinlong
Aleisa, Rashed M.
Ji, Jiahui
Duan, Huan
Yin, Yadong
Xing, Mingyang
AuthorAffiliation 3 School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
1 Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
2 Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
AuthorAffiliation_xml – name: 3 School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
– name: 2 Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
– name: 1 Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
Author_xml – sequence: 1
  givenname: Jiahui
  surname: Ji
  fullname: Ji, Jiahui
  organization: Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
– sequence: 2
  givenname: Rashed M.
  surname: Aleisa
  fullname: Aleisa, Rashed M.
  organization: Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
– sequence: 3
  givenname: Huan
  surname: Duan
  fullname: Duan, Huan
  organization: School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
– sequence: 4
  givenname: Jinlong
  surname: Zhang
  fullname: Zhang, Jinlong
  organization: Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
– sequence: 5
  givenname: Yadong
  surname: Yin
  fullname: Yin, Yadong
  organization: Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
– sequence: 6
  givenname: Mingyang
  surname: Xing
  fullname: Xing, Mingyang
  email: mingyangxing@ecust.edu.cn
  organization: Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
BookMark eNp9kctuFDEQRVsoiDzID7DyMixmKLvdLwkhjUYhREo0EYG15bbLwSNPO9juEeHrcacjRFhk5VLVvdd2nePiYPADFsU7CksKtP6wXdqo7JIBmxrQ1vRVccSqtlsAcHbwT31YnMa4BchKYLyr3xSHJYM8bdhREa8xSeesIiuV7B7JrU0YiR_Itd-wM0rhPbkdg5EKSfJkLbP64TeSld7LQaEmm19Wy2Sz4SZ4hTFmt_GBnBtjlcUhkRvv3Jhkrr7izu-le1u8NtJFPH06T4rvn8-_rb8srjYXl-vV1ULxrk2LTrZgOlVxpjmlhjLVtLwvFZPYAucN50C7rtEcNUCNDTNaQl-bpmdc9awpT4rLOVd7uRX3we5keBBeWvHY8OFOyJCscijK0nDguiqpLjnUutNYs75mCqRWqqpz1qc5637sd6hV_liQ7lno88lgf4g7vxcN5B1ylgPOngKC_zliTGKXAaJzckA_RsHKqurqLOyylM1SFXyMAc3fayiICb7Yigm-mOCLGX42tf-ZlE2PYPJzrHvZ-nG2YoaxtxhEnMhlujagSnlb9iX7H6rbyl0
CitedBy_id crossref_primary_10_1016_j_jhazmat_2020_124175
crossref_primary_10_1021_acsestengg_2c00287
crossref_primary_10_1002_eom2_12155
crossref_primary_10_3390_en17184674
crossref_primary_10_1016_j_jece_2024_114075
crossref_primary_10_1016_j_jhazmat_2022_128899
crossref_primary_10_1016_j_cej_2022_137361
crossref_primary_10_1016_j_eti_2024_103736
crossref_primary_10_1016_j_cjche_2024_11_020
crossref_primary_10_1016_j_cej_2022_137123
crossref_primary_10_1016_j_carbpol_2021_118853
crossref_primary_10_1016_j_ces_2023_119148
crossref_primary_10_1002_ange_202105736
crossref_primary_10_1016_j_envres_2024_118919
crossref_primary_10_1016_j_cej_2021_128521
crossref_primary_10_1016_j_jhazmat_2023_131798
crossref_primary_10_1016_j_colsurfa_2022_130549
crossref_primary_10_1016_j_jhazmat_2020_123084
crossref_primary_10_1016_j_jcis_2021_03_140
crossref_primary_10_3390_catal14100738
crossref_primary_10_1039_D4GC02017K
crossref_primary_10_1016_j_jcis_2021_11_042
crossref_primary_10_1016_j_xcrp_2020_100149
crossref_primary_10_1016_j_cej_2024_157087
crossref_primary_10_1016_j_cej_2024_155460
crossref_primary_10_1016_j_jece_2024_112958
crossref_primary_10_1039_D2RA04263K
crossref_primary_10_1016_j_eng_2023_06_010
crossref_primary_10_1016_j_seppur_2023_124359
crossref_primary_10_1073_pnas_2218813120
crossref_primary_10_1016_j_cej_2022_140381
crossref_primary_10_1016_j_cej_2024_149595
crossref_primary_10_1002_anie_202006059
crossref_primary_10_1002_ange_202013015
crossref_primary_10_1016_j_envpol_2022_120668
crossref_primary_10_1038_s41545_023_00251_z
crossref_primary_10_1002_anie_202214881
crossref_primary_10_1016_j_apcatb_2023_123173
crossref_primary_10_1016_j_jhazmat_2022_128598
crossref_primary_10_1021_acsami_1c06149
crossref_primary_10_1016_j_cclet_2020_08_002
crossref_primary_10_1016_j_seppur_2022_120964
crossref_primary_10_1016_j_seppur_2024_127837
crossref_primary_10_1016_j_cej_2023_146693
crossref_primary_10_1021_acs_est_1c02015
crossref_primary_10_3390_catal13010189
crossref_primary_10_1002_anie_202013015
crossref_primary_10_1039_D2EY00107A
crossref_primary_10_1021_acsami_1c03601
crossref_primary_10_1016_j_scitotenv_2022_154906
crossref_primary_10_1021_acsaem_3c00320
crossref_primary_10_1002_anie_202105736
crossref_primary_10_1021_acs_iecr_1c02259
crossref_primary_10_1016_j_jhazmat_2021_126556
crossref_primary_10_1016_j_envres_2022_113780
crossref_primary_10_1002_sstr_202100169
crossref_primary_10_1021_acscatal_1c03099
crossref_primary_10_1016_j_apcatb_2022_121091
crossref_primary_10_1016_j_cej_2022_136473
crossref_primary_10_1016_j_jclepro_2020_122253
crossref_primary_10_1002_adfm_202002353
crossref_primary_10_1016_j_apcatb_2022_122062
crossref_primary_10_1002_ange_202006059
crossref_primary_10_1016_j_cej_2020_128162
crossref_primary_10_1021_acs_est_1c08806
crossref_primary_10_1016_j_apsusc_2022_155495
crossref_primary_10_1016_j_seppur_2022_122475
crossref_primary_10_1016_j_jcis_2024_02_165
crossref_primary_10_3390_colorants3010001
crossref_primary_10_1016_j_catcom_2022_106481
crossref_primary_10_1016_j_cej_2022_137177
crossref_primary_10_1016_j_jece_2024_112404
crossref_primary_10_1016_j_watres_2021_116834
crossref_primary_10_1002_ange_202214881
crossref_primary_10_1016_j_jhazmat_2021_125050
crossref_primary_10_1016_j_seppur_2023_123345
crossref_primary_10_1021_acsami_0c20832
crossref_primary_10_1007_s10854_024_13465_9
crossref_primary_10_1016_j_ces_2020_116209
crossref_primary_10_1016_j_xcrp_2024_101966
crossref_primary_10_1021_acsami_0c06373
crossref_primary_10_1016_j_envint_2021_106572
crossref_primary_10_1016_j_seppur_2022_121293
crossref_primary_10_3390_catal12080847
crossref_primary_10_1016_j_seppur_2024_130921
crossref_primary_10_1016_j_apcatb_2023_123535
crossref_primary_10_3390_catal13091285
crossref_primary_10_1016_j_jece_2023_109905
crossref_primary_10_1016_j_apcatb_2022_121235
crossref_primary_10_1016_j_scitotenv_2021_151421
crossref_primary_10_1016_j_jhazmat_2020_123111
crossref_primary_10_1016_j_jenvman_2024_123246
crossref_primary_10_1016_j_watres_2021_116850
crossref_primary_10_1016_j_ultsonch_2022_106106
crossref_primary_10_1016_j_envres_2024_119891
crossref_primary_10_1016_j_jhazmat_2020_124847
crossref_primary_10_1039_D0EN00347F
crossref_primary_10_1021_acsestengg_1c00307
crossref_primary_10_1021_jacsau_3c00206
crossref_primary_10_1016_j_chemosphere_2021_132047
crossref_primary_10_1016_j_seppur_2022_120511
Cites_doi 10.1039/C6CY02317G
10.1021/nn201802c
10.1038/srep13645
10.1016/j.chempr.2018.03.002
10.1021/acs.est.8b00959
10.1016/j.cclet.2018.06.026
10.1016/S0169-4332(01)00551-7
10.1021/acs.est.9b01676
10.1016/j.apcatb.2017.05.036
10.1021/es1013714
10.1016/j.watres.2008.10.045
10.1039/C9TA01603A
10.1016/S0891-5849(99)00049-0
10.1016/j.pnsc.2009.04.002
10.1021/ac60097a009
10.1016/S0003-2670(02)01015-2
10.1016/j.jhazmat.2014.06.004
10.1021/acs.est.7b05563
10.1016/j.ultsonch.2016.08.005
10.1016/j.watres.2016.05.050
10.1016/j.cej.2019.121989
10.1002/1521-3773(20010817)40:16<3014::AID-ANIE3014>3.0.CO;2-M
10.1016/j.cclet.2018.04.022
10.1016/j.jhazmat.2010.01.091
10.1021/es2017363
10.1007/s11164-018-3543-5
10.1039/C8TA06232C
10.1021/jp3039169
10.1016/j.cej.2016.10.064
10.1021/ja00756a009
10.1021/acs.est.7b05543
10.1016/j.apcatb.2008.02.011
10.1016/j.apcata.2010.07.041
10.1021/acs.est.6b00701
10.1016/j.optmat.2010.10.028
10.1016/j.apcatb.2017.08.088
10.1016/j.apcatb.2008.07.010
10.1021/nn800844h
10.1021/acs.est.7b03014
10.1039/C6RA24101H
10.1002/jctb.280440302
10.1039/C5TA00622H
10.1016/j.biortech.2005.05.001
10.1016/j.apcatb.2017.03.011
10.1021/es035121o
10.1021/acs.est.7b03007
10.1021/es4019145
10.1021/ie9002848
10.1016/S0043-1648(03)00237-0
10.1007/s11164-015-2268-y
10.1016/j.cej.2011.05.076
10.1021/es0263792
10.1016/j.seppur.2019.116170
10.1007/s11164-018-3590-y
10.1080/10643380500326564
10.1016/j.saa.2015.05.029
10.1016/j.jphotochem.2015.10.004
ContentType Journal Article
Copyright 2020 The Author(s)
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.
2020 The Author(s) 2020
Copyright_xml – notice: 2020 The Author(s)
– notice: Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2020 The Author(s) 2020
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.isci.2020.100861
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
ExternalDocumentID oai_doaj_org_article_33f404d531d3406d9de62b62c0adcc56
PMC7011042
10_1016_j_isci_2020_100861
S2589004220300444
GroupedDBID 0SF
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
7X8
5PM
ID FETCH-LOGICAL-c498t-9a80f9c542d411f12c784b3c2ae804474401997d4ed006e72fda0b6f7b24cb273
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Wed Aug 27 01:31:14 EDT 2025
Thu Aug 21 14:37:09 EDT 2025
Fri Jul 11 07:19:25 EDT 2025
Tue Jul 01 01:03:27 EDT 2025
Thu Apr 24 22:52:08 EDT 2025
Tue Jul 25 21:08:07 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Water Resources Engineering
Inorganic Chemistry
Catalysis
Language English
License This is an open access article under the CC BY license.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c498t-9a80f9c542d411f12c784b3c2ae804474401997d4ed006e72fda0b6f7b24cb273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
OpenAccessLink https://doaj.org/article/33f404d531d3406d9de62b62c0adcc56
PMID 32058972
PQID 2355964239
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_33f404d531d3406d9de62b62c0adcc56
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7011042
proquest_miscellaneous_2355964239
crossref_primary_10_1016_j_isci_2020_100861
crossref_citationtrail_10_1016_j_isci_2020_100861
elsevier_sciencedirect_doi_10_1016_j_isci_2020_100861
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-21
PublicationDateYYYYMMDD 2020-02-21
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-21
  day: 21
PublicationDecade 2020
PublicationTitle iScience
PublicationYear 2020
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Ito, Adachi, Yamanashi, Shimada (bib29) 2016; 100
Al-Ghouti, Khraisheh, Allen, Ahmad (bib1) 2003; 69
Muthuraman, Teng (bib36) 2009; 19
Ling, Wang, Peng (bib34) 2010; 178
Xia, Deng, Xie, Wang, Feng, Wu, Tu (bib50) 2018; 6
Yi, Ji, Shen, Dong, Liu, Zhang, Xing (bib60) 2019; 53
Tang, Jiang, Qian, Jian, Zhang, Wang, Yang (bib43) 2015; 5
Timmins, Liu, Bechara, Kotake, Swartz (bib45) 1999; 27
Rastogi, Al-Abed, Dionysiou (bib40) 2009; 85
Barros, Bouchet, Raoult, Mogne, Martin, Kasrai, Yamada (bib4) 2003; 254
Hayon, Treinin, Wilf (bib24) 1972; 94
Du, Qiu, Zhu, Xing, Zhang (bib16) 2018; 44
Guan, Ma, Li, Fang, Chen (bib21) 2011; 45
Clarizia, Russo, Somma, Marotta, Andreozzi (bib10) 2017; 209
Liang, Su (bib33) 2009; 48
Camacho-López, Escobar-Alarcón, Picquart, Arroyo, Córdoba, Haro-Poniatowski (bib7) 2011; 33
Sheng, Yang, Wang, Wang, Li, Guo, Lou, Liu (bib41) 2019; 375
Hanawa, Hiromoto, Asami (bib22) 2001; 183
Yang, Cheng, Elzatahry, Chen, Alghamdi, Deng (bib53) 2019; 30
Dai, Yang, Yao, Chen, Jia, Luo (bib12) 2017; 7
Anipsitakis, Dionysiou (bib2) 2003; 37
Du, Bao, Liu, Kim, Dionysiou (bib15) 2018
Pimentel, Oturan, Dezotti, Oturan (bib38) 2008; 83
Brandt (bib5) 1971
Xie, Lin, Liu, Jiang, Zhu, Xu (bib51) 2015; 3
Ghanbari, Moradi (bib20) 2017; 310
Tokarz-Sobieraj, Gryboś, Witko (bib46) 2011; 391
Fang, Liu, Wang, Dionysiou, Zhou (bib18) 2017; 214
Xing, Xu, Dong, Bai, Zeng, Zhou, Zhang, Yin (bib52) 2018; 4
Yun, Lee, Kim, Park, Lee (bib55) 2018; 52
Pignatello, Oliveros, MacKay (bib37) 2006; 36
Dong, Liu, Xing, Zhang (bib14) 2018; 44
Chen, Fang, Xia, Huang, Huang (bib9) 2018; 52
Zou, Ma, Chen, Li, Guan, Xie, Pan (bib59) 2013; 47
Yi, Zhou, Xing, Zhang (bib54) 2015; 42
Li, Shan, Pan (bib32) 2018; 52
Zhang, Chen, Bi, Huang, Zhou, Zheng (bib58) 2019; 7
Anipsitakis, Dionysiou (bib3) 2004; 38
Buck, Skillen, Robertson, Robertson (bib6) 2018; 29
Hu, Su, Chen, Yu, Li, Zhou, Alvarez, Long (bib27) 2017; 51
Tao, Ma, Zhang, Zhao (bib44) 2001; 40
Sun, Hu, Luo, Huang (bib42) 2011; 5
Chen, Zuo, Yang, Cui, Fu (bib8) 2016; 6
Crini (bib11) 2006; 97
Rastogi, Al-Abed, Dionysiou (bib39) 2009; 43
Liu, Zhou, Ding, Zhao, Xu, Fang (bib35) 2017; 34
Wacławek, Grübel, Černík (bib48) 2015; 149
Zhang, Chen, Leiknes (bib57) 2016; 50
Huang, Wang, Yang, Guo, Yu (bib28) 2017; 51
Herrera, Ruiz, Aguillon, Fehrmann (bib25) 1989; 44
Zamora, Villamena (bib56) 2012; 116
Harvey, Smart, Amis (bib23) 1955; 27
Kusic, Peternel, Ukic, Koprivanac, Bolanca, Papic, Bozic (bib31) 2011; 172
Hu, Mai, Wen, Fan (bib26) 2009; 3
Wang, Xu, Wu, Gong, Xie (bib49) 2020; 235
Ugo, Moretto, De Boni, Scopece, Mazzocchin (bib47) 2002; 474
Dan, Ma, Zhou, Xi, Qian (bib13) 2014; 279
Khan, He, Khan, Boccelli, Dionysiou (bib30) 2016; 316
Duan, Su, Miao, Zhong, Shao, Wang, Sun (bib17) 2018; 220
Furman, Teel, Watts (bib19) 2010; 44
Buck (10.1016/j.isci.2020.100861_bib6) 2018; 29
Xie (10.1016/j.isci.2020.100861_bib51) 2015; 3
Muthuraman (10.1016/j.isci.2020.100861_bib36) 2009; 19
Rastogi (10.1016/j.isci.2020.100861_bib40) 2009; 85
Zou (10.1016/j.isci.2020.100861_bib59) 2013; 47
Guan (10.1016/j.isci.2020.100861_bib21) 2011; 45
Herrera (10.1016/j.isci.2020.100861_bib25) 1989; 44
Yang (10.1016/j.isci.2020.100861_bib53) 2019; 30
Huang (10.1016/j.isci.2020.100861_bib28) 2017; 51
Kusic (10.1016/j.isci.2020.100861_bib31) 2011; 172
Yi (10.1016/j.isci.2020.100861_bib60) 2019; 53
Ling (10.1016/j.isci.2020.100861_bib34) 2010; 178
Tokarz-Sobieraj (10.1016/j.isci.2020.100861_bib46) 2011; 391
Zhang (10.1016/j.isci.2020.100861_bib58) 2019; 7
Anipsitakis (10.1016/j.isci.2020.100861_bib2) 2003; 37
Chen (10.1016/j.isci.2020.100861_bib8) 2016; 6
Yun (10.1016/j.isci.2020.100861_bib55) 2018; 52
Liang (10.1016/j.isci.2020.100861_bib33) 2009; 48
Xia (10.1016/j.isci.2020.100861_bib50) 2018; 6
Harvey (10.1016/j.isci.2020.100861_bib23) 1955; 27
Wacławek (10.1016/j.isci.2020.100861_bib48) 2015; 149
Fang (10.1016/j.isci.2020.100861_bib18) 2017; 214
Tao (10.1016/j.isci.2020.100861_bib44) 2001; 40
Duan (10.1016/j.isci.2020.100861_bib17) 2018; 220
Anipsitakis (10.1016/j.isci.2020.100861_bib3) 2004; 38
Ghanbari (10.1016/j.isci.2020.100861_bib20) 2017; 310
Ugo (10.1016/j.isci.2020.100861_bib47) 2002; 474
Du (10.1016/j.isci.2020.100861_bib15) 2018
Ito (10.1016/j.isci.2020.100861_bib29) 2016; 100
Li (10.1016/j.isci.2020.100861_bib32) 2018; 52
Zamora (10.1016/j.isci.2020.100861_bib56) 2012; 116
Dong (10.1016/j.isci.2020.100861_bib14) 2018; 44
Timmins (10.1016/j.isci.2020.100861_bib45) 1999; 27
Hu (10.1016/j.isci.2020.100861_bib26) 2009; 3
Zhang (10.1016/j.isci.2020.100861_bib57) 2016; 50
Dan (10.1016/j.isci.2020.100861_bib13) 2014; 279
Tang (10.1016/j.isci.2020.100861_bib43) 2015; 5
Chen (10.1016/j.isci.2020.100861_bib9) 2018; 52
Pignatello (10.1016/j.isci.2020.100861_bib37) 2006; 36
Crini (10.1016/j.isci.2020.100861_bib11) 2006; 97
Xing (10.1016/j.isci.2020.100861_bib52) 2018; 4
Hu (10.1016/j.isci.2020.100861_bib27) 2017; 51
Pimentel (10.1016/j.isci.2020.100861_bib38) 2008; 83
Sun (10.1016/j.isci.2020.100861_bib42) 2011; 5
Al-Ghouti (10.1016/j.isci.2020.100861_bib1) 2003; 69
Hayon (10.1016/j.isci.2020.100861_bib24) 1972; 94
Camacho-López (10.1016/j.isci.2020.100861_bib7) 2011; 33
Hanawa (10.1016/j.isci.2020.100861_bib22) 2001; 183
Clarizia (10.1016/j.isci.2020.100861_bib10) 2017; 209
Sheng (10.1016/j.isci.2020.100861_bib41) 2019; 375
Dai (10.1016/j.isci.2020.100861_bib12) 2017; 7
Khan (10.1016/j.isci.2020.100861_bib30) 2016; 316
Liu (10.1016/j.isci.2020.100861_bib35) 2017; 34
Rastogi (10.1016/j.isci.2020.100861_bib39) 2009; 43
Wang (10.1016/j.isci.2020.100861_bib49) 2020; 235
Du (10.1016/j.isci.2020.100861_bib16) 2018; 44
Barros (10.1016/j.isci.2020.100861_bib4) 2003; 254
Brandt (10.1016/j.isci.2020.100861_bib5) 1971
Furman (10.1016/j.isci.2020.100861_bib19) 2010; 44
Yi (10.1016/j.isci.2020.100861_bib54) 2015; 42
References_xml – volume: 214
  start-page: 34
  year: 2017
  end-page: 45
  ident: bib18
  article-title: Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation
  publication-title: Appl. Catal. B Environ.
– volume: 149
  start-page: 928
  year: 2015
  end-page: 933
  ident: bib48
  article-title: Simple spectrophotometric determination of monopersulfate
  publication-title: Spectrochim. Acta A
– volume: 36
  start-page: 1
  year: 2006
  end-page: 84
  ident: bib37
  article-title: Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 235
  start-page: 116170
  year: 2020
  ident: bib49
  article-title: Improved sulfamethoxazole degradation by the addition of MoS
  publication-title: Sep. Purif. Technol.
– volume: 53
  start-page: 9725
  year: 2019
  end-page: 9733
  ident: bib60
  article-title: Singlet oxygen triggered by superoxide radicals in a molybdenum cocatalytic fenton reaction with enhanced REDOX activity in the environment.
  publication-title: Environ. Sci. Technol.
– volume: 44
  start-page: 7079
  year: 2018
  end-page: 7091
  ident: bib14
  article-title: Development of titanium oxide-based mesoporous materials in photocatalysis
  publication-title: Res. Chem. Intermediat.
– volume: 209
  start-page: 358
  year: 2017
  end-page: 371
  ident: bib10
  article-title: Homogeneous photo-Fenton processes at near neutral pH: a review
  publication-title: Appl. Catal. B Environ.
– volume: 51
  start-page: 12611
  year: 2017
  end-page: 12618
  ident: bib28
  article-title: Degradation of bisphenol A by peroxymonosulfatecatalytically activated with Mn
  publication-title: Environ. Sci. Technol.
– volume: 474
  start-page: 147
  year: 2002
  end-page: 160
  ident: bib47
  article-title: Iron (II) and iron (III) determination by potentiometry and ion-exchange voltammetry at ionomer-coated electrodes
  publication-title: Anal. Chim. Acta
– volume: 183
  start-page: 68
  year: 2001
  end-page: 75
  ident: bib22
  article-title: Characterization of the surface oxide film of a Co–Cr–Mo alloy after being located in quasi-biological environments using XPS
  publication-title: Appl. Surf. Sci.
– volume: 40
  start-page: 3014
  year: 2001
  end-page: 3016
  ident: bib44
  article-title: Efficient photooxidative degradation of organic compounds in the presence of iron tetrasulfophthalocyanine under visible light irradiation
  publication-title: Angew.Chem. Int. Ed.
– volume: 94
  start-page: 47
  year: 1972
  end-page: 57
  ident: bib24
  article-title: Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems.SO
  publication-title: J. Am. Chem. Soc.
– volume: 83
  start-page: 140
  year: 2008
  end-page: 149
  ident: bib38
  article-title: Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode
  publication-title: Appl. Catal. B Environ.
– year: 1971
  ident: bib5
  article-title: On the Crystal Structures of MoO
– volume: 85
  start-page: 171
  year: 2009
  end-page: 179
  ident: bib40
  article-title: Sulfate radical-based ferrous–peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems
  publication-title: Appl. Catal. B Environ.
– volume: 172
  start-page: 109
  year: 2011
  end-page: 121
  ident: bib31
  article-title: Modeling of iron activated persulfate oxidation treating reactive azo dye in water matrix
  publication-title: Chem. Eng. J.
– volume: 69
  start-page: 229
  year: 2003
  end-page: 238
  ident: bib1
  article-title: The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth
  publication-title: J. Environ. Manage.
– volume: 33
  start-page: 480
  year: 2011
  end-page: 484
  ident: bib7
  article-title: Micro-Raman study of the m-MoO
  publication-title: Opt. Mater.
– volume: 47
  start-page: 11685
  year: 2013
  end-page: 11691
  ident: bib59
  article-title: Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine
  publication-title: Environ. Sci. Technol.
– volume: 48
  start-page: 5558
  year: 2009
  end-page: 5562
  ident: bib33
  article-title: Identification of sulfate and hydroxyl radicals in thermally activated persulfate
  publication-title: Ind. Eng. Chem. Res.
– volume: 52
  start-page: 2197
  year: 2018
  end-page: 2205
  ident: bib32
  article-title: Fe(III)-Doped g-C
  publication-title: Environ. Sci. Technol.
– volume: 100
  start-page: 458
  year: 2016
  end-page: 465
  ident: bib29
  article-title: Long-term natural remediation process in textile dye-polluted river sediment driven by bacterial community changes
  publication-title: Water Res.
– volume: 6
  start-page: 101361
  year: 2016
  end-page: 101364
  ident: bib8
  article-title: Yolk–shell structured CoFe
  publication-title: RSC Adv.
– volume: 27
  start-page: 26
  year: 1955
  end-page: 29
  ident: bib23
  article-title: Simultaneous spectrophotometric determination of iron(II) and total iron with 1,10-phenanthroline
  publication-title: Anal. Chem.
– volume: 254
  start-page: 863
  year: 2003
  end-page: 870
  ident: bib4
  article-title: Friction reduction by metal sulfides in boundary lubrication studied by XPS and XANES analyses
  publication-title: Wear
– volume: 391
  start-page: 137
  year: 2011
  end-page: 143
  ident: bib46
  article-title: Electronic structure of MoO
  publication-title: Appl. Catal. A.Gen.
– volume: 30
  start-page: 324
  year: 2019
  end-page: 330
  ident: bib53
  article-title: Recyclable Fenton-like catalyst based on zeolite Y supported ultrafine, highly-dispersed Fe
  publication-title: Chin. Chem. Lett.
– volume: 279
  start-page: 476
  year: 2014
  end-page: 484
  ident: bib13
  article-title: Sulfate radical-induced degradation of Acid Orange 7 by a new magnetic composite catalyzed peroxymonosulfate oxidation process
  publication-title: J. Hazard. Mater.
– volume: 4
  start-page: 1359
  year: 2018
  end-page: 1372
  ident: bib52
  article-title: Metal sulfides as excellent cocatalysts for H
  publication-title: Chem
– volume: 44
  start-page: 7847
  year: 2018
  end-page: 7859
  ident: bib16
  article-title: Cobalt phosphide nanocages encapsulated with graphene as ultralong cycle life anodes for reversible lithium storage
  publication-title: Res. Chem. Intermediat.
– volume: 116
  start-page: 7210
  year: 2012
  end-page: 7218
  ident: bib56
  article-title: Theoretical and experimental studies of the spin trapping of inorganic radicals by 5,5-dimethyl-1-pyrroline N-oxide (DMPO). 3. Sulfur dioxide, sulfite, and sulfate radical anions
  publication-title: J. Phys. Chem. A
– volume: 375
  start-page: 121989
  year: 2019
  ident: bib41
  article-title: Pivotal roles of MoS
  publication-title: Chem. Eng. J.
– volume: 38
  start-page: 3705
  year: 2004
  end-page: 3712
  ident: bib3
  article-title: Radical generation by the interaction of transition metals with common oxidants
  publication-title: Environ. Sci. Technol.
– volume: 43
  start-page: 684
  year: 2009
  end-page: 694
  ident: bib39
  article-title: Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols
  publication-title: Water Res.
– volume: 19
  start-page: 1215
  year: 2009
  end-page: 1220
  ident: bib36
  article-title: Extraction of methyl red from industrial wastewater using xylene as an extractant
  publication-title: Prog. Nat. Sci.
– volume: 5
  start-page: 13645
  year: 2015
  end-page: 13655
  ident: bib43
  article-title: Dielectric relaxation, resonance and scaling behaviors in Sr
  publication-title: Sci. Rep.
– volume: 3
  start-page: 8055
  year: 2015
  end-page: 8061
  ident: bib51
  article-title: The synergistic effect of metallic molybdenum dioxide nanoparticle decorated graphene as an active electrocatalyst for an enhanced hydrogen evolution reaction
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 478
  year: 2009
  end-page: 482
  ident: bib26
  article-title: From MoO
  publication-title: ACS Nano
– volume: 45
  start-page: 9308
  year: 2011
  end-page: 9314
  ident: bib21
  article-title: Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system
  publication-title: Environ. Sci. Technol.
– volume: 316
  start-page: 37
  year: 2016
  end-page: 43
  ident: bib30
  article-title: Efficient degradation of lindane in aqueous solution by iron (II) and/or UV activated peroxymonosulfate
  publication-title: J. Photochem. Photobiol. A
– volume: 29
  start-page: 773
  year: 2018
  end-page: 777
  ident: bib6
  article-title: Photocatalytic OH radical formation and quantification over TiO
  publication-title: Chin. Chem. Lett.
– volume: 220
  start-page: 626
  year: 2018
  end-page: 634
  ident: bib17
  article-title: Insights into perovskite-catalyzed peroxymonosulfate activation: maneuverable cobalt sites for promoted evolution of sulfate radicals
  publication-title: Appl. Catal. B Environ.
– volume: 52
  start-page: 1461
  year: 2018
  end-page: 1470
  ident: bib9
  article-title: Selective transformation of Î
  publication-title: Environ. Sci. Technol.
– volume: 6
  start-page: 15546
  year: 2018
  end-page: 15552
  ident: bib50
  article-title: Boosting sodium ion storage by anchoring MoO
  publication-title: J. Mat. Chem. A
– volume: 7
  start-page: 934
  year: 2017
  end-page: 942
  ident: bib12
  article-title: Highly efficient removal of organic contaminant based on peroxymonosulfate activation by iron phthalocyanine: mechanism and bicarbonate ion enhancement effect
  publication-title: Catal. Sci. Technol.
– volume: 5
  start-page: 7100
  year: 2011
  end-page: 7107
  ident: bib42
  article-title: Self-assembled hierarchical MoO
  publication-title: ACS Nano
– volume: 34
  start-page: 953
  year: 2017
  end-page: 959
  ident: bib35
  article-title: Ultrasound irritation enhanced heterogeneous activation of peroxymonosulfate with Fe
  publication-title: Ultrason. Sonochem.
– volume: 44
  start-page: 171
  year: 1989
  end-page: 181
  ident: bib25
  article-title: A new spectrophotometric method for the determination of ferrous iron in the presence of ferric iron
  publication-title: J. Chem. Tech. Biotechnol.
– volume: 44
  start-page: 6423
  year: 2010
  end-page: 6428
  ident: bib19
  article-title: Mechanism of base activation of persulfate
  publication-title: Environ. Sci. Technol.
– volume: 178
  start-page: 385
  year: 2010
  end-page: 389
  ident: bib34
  article-title: Oxidative degradation of dyes in water using Co
  publication-title: J. Hazard. Mater.
– year: 2018
  ident: bib15
  article-title: Facile preparation of porous Mn/Fe
  publication-title: Chem. Eng. J.
– volume: 51
  start-page: 11288
  year: 2017
  end-page: 11296
  ident: bib27
  article-title: Selective degradation of organic pollutants using an efficient metal-free catalyst derived from carbonized polypyrrole via peroxymonosulfate activation
  publication-title: Environ. Sci. Technol.
– volume: 37
  start-page: 4790
  year: 2003
  end-page: 4797
  ident: bib2
  article-title: Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt
  publication-title: Environ. Sci. Technol.
– volume: 50
  start-page: 5864
  year: 2016
  end-page: 5873
  ident: bib57
  article-title: Oxidation of refractory benzothiazoles with PMS/CuFe
  publication-title: Environ. Sci. Technol.
– volume: 27
  start-page: 329
  year: 1999
  end-page: 333
  ident: bib45
  article-title: Trapping of free radicals with direct in vivo EPR detection: a comparison of 5, 5-dimethyl-1-pyrroline-N-oxide and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide as spin traps for HO and SO
  publication-title: Free Radic. Biol. Med.
– volume: 42
  start-page: 4181
  year: 2015
  end-page: 4189
  ident: bib54
  article-title: Vacuum activation-induced Ti
  publication-title: Res. Chem. Intermediat.
– volume: 97
  start-page: 1061
  year: 2006
  end-page: 1085
  ident: bib11
  article-title: Non-conventional low-cost adsorbents for dye removal: a review
  publication-title: Bioresour.Technol.
– volume: 52
  start-page: 7032
  year: 2018
  end-page: 7042
  ident: bib55
  article-title: Identifying the nonradical mechanism in the peroxymonosulfate activation process: singlet oxygenation versus mediated electron transfer
  publication-title: Environ. Sci. Technol.
– volume: 7
  start-page: 12893
  year: 2019
  end-page: 12899
  ident: bib58
  article-title: A bimetallic Co
  publication-title: J. Mat. Chem. A
– volume: 310
  start-page: 41
  year: 2017
  end-page: 62
  ident: bib20
  article-title: Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 934
  year: 2017
  ident: 10.1016/j.isci.2020.100861_bib12
  article-title: Highly efficient removal of organic contaminant based on peroxymonosulfate activation by iron phthalocyanine: mechanism and bicarbonate ion enhancement effect
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C6CY02317G
– volume: 5
  start-page: 7100
  year: 2011
  ident: 10.1016/j.isci.2020.100861_bib42
  article-title: Self-assembled hierarchical MoO2/graphenenanoarchitectures and their application as a high-performance anode material for lithium-ion batteries
  publication-title: ACS Nano
  doi: 10.1021/nn201802c
– volume: 5
  start-page: 13645
  year: 2015
  ident: 10.1016/j.isci.2020.100861_bib43
  article-title: Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41hexaferrite
  publication-title: Sci. Rep.
  doi: 10.1038/srep13645
– volume: 4
  start-page: 1359
  year: 2018
  ident: 10.1016/j.isci.2020.100861_bib52
  article-title: Metal sulfides as excellent cocatalysts for H2O2 decomposition in advanced oxidation processes
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.03.002
– year: 2018
  ident: 10.1016/j.isci.2020.100861_bib15
  article-title: Facile preparation of porous Mn/Fe3O4 cubes as peroxymonosulfate activating catalyst for effective bisphenolA degradation
  publication-title: Chem. Eng. J.
– volume: 52
  start-page: 7032
  year: 2018
  ident: 10.1016/j.isci.2020.100861_bib55
  article-title: Identifying the nonradical mechanism in the peroxymonosulfate activation process: singlet oxygenation versus mediated electron transfer
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b00959
– volume: 30
  start-page: 324
  year: 2019
  ident: 10.1016/j.isci.2020.100861_bib53
  article-title: Recyclable Fenton-like catalyst based on zeolite Y supported ultrafine, highly-dispersed Fe2O3 nanoparticles for removal of organics under mild conditions
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2018.06.026
– volume: 183
  start-page: 68
  year: 2001
  ident: 10.1016/j.isci.2020.100861_bib22
  article-title: Characterization of the surface oxide film of a Co–Cr–Mo alloy after being located in quasi-biological environments using XPS
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/S0169-4332(01)00551-7
– volume: 53
  start-page: 9725
  year: 2019
  ident: 10.1016/j.isci.2020.100861_bib60
  article-title: Singlet oxygen triggered by superoxide radicals in a molybdenum cocatalytic fenton reaction with enhanced REDOX activity in the environment.
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b01676
– volume: 214
  start-page: 34
  year: 2017
  ident: 10.1016/j.isci.2020.100861_bib18
  article-title: Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.05.036
– volume: 44
  start-page: 6423
  year: 2010
  ident: 10.1016/j.isci.2020.100861_bib19
  article-title: Mechanism of base activation of persulfate
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1013714
– volume: 43
  start-page: 684
  year: 2009
  ident: 10.1016/j.isci.2020.100861_bib39
  article-title: Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols
  publication-title: Water Res.
  doi: 10.1016/j.watres.2008.10.045
– volume: 7
  start-page: 12893
  year: 2019
  ident: 10.1016/j.isci.2020.100861_bib58
  article-title: A bimetallic Co4Mo8 cluster built from Mo8oxothiomolybdate capped by a Co4-thiacalix[4]arene unit: the observation of the Co–Mo synergistic effect for binder-free electrocatalysts
  publication-title: J. Mat. Chem. A
  doi: 10.1039/C9TA01603A
– volume: 27
  start-page: 329
  year: 1999
  ident: 10.1016/j.isci.2020.100861_bib45
  article-title: Trapping of free radicals with direct in vivo EPR detection: a comparison of 5, 5-dimethyl-1-pyrroline-N-oxide and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide as spin traps for HO and SO4⋅−
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/S0891-5849(99)00049-0
– volume: 19
  start-page: 1215
  year: 2009
  ident: 10.1016/j.isci.2020.100861_bib36
  article-title: Extraction of methyl red from industrial wastewater using xylene as an extractant
  publication-title: Prog. Nat. Sci.
  doi: 10.1016/j.pnsc.2009.04.002
– volume: 27
  start-page: 26
  year: 1955
  ident: 10.1016/j.isci.2020.100861_bib23
  article-title: Simultaneous spectrophotometric determination of iron(II) and total iron with 1,10-phenanthroline
  publication-title: Anal. Chem.
  doi: 10.1021/ac60097a009
– volume: 474
  start-page: 147
  year: 2002
  ident: 10.1016/j.isci.2020.100861_bib47
  article-title: Iron (II) and iron (III) determination by potentiometry and ion-exchange voltammetry at ionomer-coated electrodes
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(02)01015-2
– volume: 279
  start-page: 476
  year: 2014
  ident: 10.1016/j.isci.2020.100861_bib13
  article-title: Sulfate radical-induced degradation of Acid Orange 7 by a new magnetic composite catalyzed peroxymonosulfate oxidation process
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.06.004
– volume: 52
  start-page: 2197
  year: 2018
  ident: 10.1016/j.isci.2020.100861_bib32
  article-title: Fe(III)-Doped g-C3N4 mediated peroxymonosulfate activation for selective degradation of phenolic compounds via high-valent iron-oxo species
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b05563
– volume: 34
  start-page: 953
  year: 2017
  ident: 10.1016/j.isci.2020.100861_bib35
  article-title: Ultrasound irritation enhanced heterogeneous activation of peroxymonosulfate with Fe3O4 for degradation of azo dye
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2016.08.005
– volume: 100
  start-page: 458
  year: 2016
  ident: 10.1016/j.isci.2020.100861_bib29
  article-title: Long-term natural remediation process in textile dye-polluted river sediment driven by bacterial community changes
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.05.050
– volume: 375
  start-page: 121989
  year: 2019
  ident: 10.1016/j.isci.2020.100861_bib41
  article-title: Pivotal roles of MoS2 in boosting catalytic degradation of aqueous organic pollutants by Fe(II)/PMS
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.121989
– volume: 40
  start-page: 3014
  year: 2001
  ident: 10.1016/j.isci.2020.100861_bib44
  article-title: Efficient photooxidative degradation of organic compounds in the presence of iron tetrasulfophthalocyanine under visible light irradiation
  publication-title: Angew.Chem. Int. Ed.
  doi: 10.1002/1521-3773(20010817)40:16<3014::AID-ANIE3014>3.0.CO;2-M
– volume: 29
  start-page: 773
  year: 2018
  ident: 10.1016/j.isci.2020.100861_bib6
  article-title: Photocatalytic OH radical formation and quantification over TiO2 P25: producing a robust and optimised screening method
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2018.04.022
– volume: 178
  start-page: 385
  year: 2010
  ident: 10.1016/j.isci.2020.100861_bib34
  article-title: Oxidative degradation of dyes in water using Co2+/H2O2 and Co2+/peroxymonosulfate
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.01.091
– volume: 45
  start-page: 9308
  year: 2011
  ident: 10.1016/j.isci.2020.100861_bib21
  article-title: Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2017363
– volume: 44
  start-page: 7079
  year: 2018
  ident: 10.1016/j.isci.2020.100861_bib14
  article-title: Development of titanium oxide-based mesoporous materials in photocatalysis
  publication-title: Res. Chem. Intermediat.
  doi: 10.1007/s11164-018-3543-5
– volume: 6
  start-page: 15546
  year: 2018
  ident: 10.1016/j.isci.2020.100861_bib50
  article-title: Boosting sodium ion storage by anchoring MoO2 on vertical graphene arrays
  publication-title: J. Mat. Chem. A
  doi: 10.1039/C8TA06232C
– volume: 116
  start-page: 7210
  year: 2012
  ident: 10.1016/j.isci.2020.100861_bib56
  article-title: Theoretical and experimental studies of the spin trapping of inorganic radicals by 5,5-dimethyl-1-pyrroline N-oxide (DMPO). 3. Sulfur dioxide, sulfite, and sulfate radical anions
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp3039169
– volume: 310
  start-page: 41
  year: 2017
  ident: 10.1016/j.isci.2020.100861_bib20
  article-title: Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.10.064
– volume: 94
  start-page: 47
  year: 1972
  ident: 10.1016/j.isci.2020.100861_bib24
  article-title: Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems.SO2-, SO3-, SO4-, and SO5- radicals
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00756a009
– volume: 52
  start-page: 1461
  year: 2018
  ident: 10.1016/j.isci.2020.100861_bib9
  article-title: Selective transformation of Î2-Lactam antibiotics by peroxymonosulfate: reaction kinetics and non-radical mechanism
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b05543
– volume: 83
  start-page: 140
  year: 2008
  ident: 10.1016/j.isci.2020.100861_bib38
  article-title: Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2008.02.011
– volume: 391
  start-page: 137
  year: 2011
  ident: 10.1016/j.isci.2020.100861_bib46
  article-title: Electronic structure of MoO2. DFT periodic and cluster model studies
  publication-title: Appl. Catal. A.Gen.
  doi: 10.1016/j.apcata.2010.07.041
– volume: 50
  start-page: 5864
  year: 2016
  ident: 10.1016/j.isci.2020.100861_bib57
  article-title: Oxidation of refractory benzothiazoles with PMS/CuFe2O4: kinetics and transformation intermediates
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b00701
– volume: 69
  start-page: 229
  year: 2003
  ident: 10.1016/j.isci.2020.100861_bib1
  article-title: The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth
  publication-title: J. Environ. Manage.
– volume: 33
  start-page: 480
  year: 2011
  ident: 10.1016/j.isci.2020.100861_bib7
  article-title: Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2010.10.028
– volume: 220
  start-page: 626
  year: 2018
  ident: 10.1016/j.isci.2020.100861_bib17
  article-title: Insights into perovskite-catalyzed peroxymonosulfate activation: maneuverable cobalt sites for promoted evolution of sulfate radicals
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.08.088
– volume: 85
  start-page: 171
  year: 2009
  ident: 10.1016/j.isci.2020.100861_bib40
  article-title: Sulfate radical-based ferrous–peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2008.07.010
– volume: 3
  start-page: 478
  year: 2009
  ident: 10.1016/j.isci.2020.100861_bib26
  article-title: From MoO3nanobelts to MoO2nanorods: structure transformation and electrical transport
  publication-title: ACS Nano
  doi: 10.1021/nn800844h
– volume: 51
  start-page: 11288
  year: 2017
  ident: 10.1016/j.isci.2020.100861_bib27
  article-title: Selective degradation of organic pollutants using an efficient metal-free catalyst derived from carbonized polypyrrole via peroxymonosulfate activation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b03014
– volume: 6
  start-page: 101361
  year: 2016
  ident: 10.1016/j.isci.2020.100861_bib8
  article-title: Yolk–shell structured CoFe2O4 microspheres as novel catalysts for peroxymonosulfate activation for efficient degradation of butyl paraben
  publication-title: RSC Adv.
  doi: 10.1039/C6RA24101H
– volume: 44
  start-page: 171
  year: 1989
  ident: 10.1016/j.isci.2020.100861_bib25
  article-title: A new spectrophotometric method for the determination of ferrous iron in the presence of ferric iron
  publication-title: J. Chem. Tech. Biotechnol.
  doi: 10.1002/jctb.280440302
– volume: 3
  start-page: 8055
  year: 2015
  ident: 10.1016/j.isci.2020.100861_bib51
  article-title: The synergistic effect of metallic molybdenum dioxide nanoparticle decorated graphene as an active electrocatalyst for an enhanced hydrogen evolution reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00622H
– volume: 97
  start-page: 1061
  year: 2006
  ident: 10.1016/j.isci.2020.100861_bib11
  article-title: Non-conventional low-cost adsorbents for dye removal: a review
  publication-title: Bioresour.Technol.
  doi: 10.1016/j.biortech.2005.05.001
– volume: 209
  start-page: 358
  year: 2017
  ident: 10.1016/j.isci.2020.100861_bib10
  article-title: Homogeneous photo-Fenton processes at near neutral pH: a review
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.03.011
– volume: 38
  start-page: 3705
  year: 2004
  ident: 10.1016/j.isci.2020.100861_bib3
  article-title: Radical generation by the interaction of transition metals with common oxidants
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es035121o
– volume: 51
  start-page: 12611
  year: 2017
  ident: 10.1016/j.isci.2020.100861_bib28
  article-title: Degradation of bisphenol A by peroxymonosulfatecatalytically activated with Mn1.8Fe1.2O4nanospheres: synergism between Mn and Fe
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b03007
– volume: 47
  start-page: 11685
  year: 2013
  ident: 10.1016/j.isci.2020.100861_bib59
  article-title: Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es4019145
– volume: 48
  start-page: 5558
  year: 2009
  ident: 10.1016/j.isci.2020.100861_bib33
  article-title: Identification of sulfate and hydroxyl radicals in thermally activated persulfate
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie9002848
– volume: 254
  start-page: 863
  year: 2003
  ident: 10.1016/j.isci.2020.100861_bib4
  article-title: Friction reduction by metal sulfides in boundary lubrication studied by XPS and XANES analyses
  publication-title: Wear
  doi: 10.1016/S0043-1648(03)00237-0
– volume: 42
  start-page: 4181
  year: 2015
  ident: 10.1016/j.isci.2020.100861_bib54
  article-title: Vacuum activation-induced Ti3+ and carbon codoped TiO2 with enhanced solar light photo-catalytic activity
  publication-title: Res. Chem. Intermediat.
  doi: 10.1007/s11164-015-2268-y
– volume: 172
  start-page: 109
  year: 2011
  ident: 10.1016/j.isci.2020.100861_bib31
  article-title: Modeling of iron activated persulfate oxidation treating reactive azo dye in water matrix
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.05.076
– volume: 37
  start-page: 4790
  year: 2003
  ident: 10.1016/j.isci.2020.100861_bib2
  article-title: Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0263792
– volume: 235
  start-page: 116170
  year: 2020
  ident: 10.1016/j.isci.2020.100861_bib49
  article-title: Improved sulfamethoxazole degradation by the addition of MoS2 into the Fe2+/peroxymonosulfate process
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.116170
– year: 1971
  ident: 10.1016/j.isci.2020.100861_bib5
– volume: 44
  start-page: 7847
  year: 2018
  ident: 10.1016/j.isci.2020.100861_bib16
  article-title: Cobalt phosphide nanocages encapsulated with graphene as ultralong cycle life anodes for reversible lithium storage
  publication-title: Res. Chem. Intermediat.
  doi: 10.1007/s11164-018-3590-y
– volume: 36
  start-page: 1
  year: 2006
  ident: 10.1016/j.isci.2020.100861_bib37
  article-title: Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643380500326564
– volume: 149
  start-page: 928
  year: 2015
  ident: 10.1016/j.isci.2020.100861_bib48
  article-title: Simple spectrophotometric determination of monopersulfate
  publication-title: Spectrochim. Acta A
  doi: 10.1016/j.saa.2015.05.029
– volume: 316
  start-page: 37
  year: 2016
  ident: 10.1016/j.isci.2020.100861_bib30
  article-title: Efficient degradation of lindane in aqueous solution by iron (II) and/or UV activated peroxymonosulfate
  publication-title: J. Photochem. Photobiol. A
  doi: 10.1016/j.jphotochem.2015.10.004
SSID ssj0002002496
Score 2.478308
Snippet Advanced oxidation processes (AOPs) based on sulfate radicals (SO4⋅−) suffer from low conversion rate of Fe(III) to Fe(II) and produce a large amount of iron...
Advanced oxidation processes (AOPs) based on sulfate radicals (SO4⋅-) suffer from low conversion rate of Fe(III) to Fe(II) and produce a large amount of iron...
Advanced oxidation processes (AOPs) based on sulfate radicals (SO 4 ⋅− ) suffer from low conversion rate of Fe(III) to Fe(II) and produce a large amount of...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 100861
SubjectTerms Catalysis
Inorganic Chemistry
Water Resources Engineering
Title Metallic Active Sites on MoO2(110) Surface to Catalyze Advanced Oxidation Processes for Efficient Pollutant Removal
URI https://dx.doi.org/10.1016/j.isci.2020.100861
https://www.proquest.com/docview/2355964239
https://pubmed.ncbi.nlm.nih.gov/PMC7011042
https://doaj.org/article/33f404d531d3406d9de62b62c0adcc56
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp15KQxu6bVJU6CGhmNiy_Dpuwy4hsEnIA3ITeozoLhs7ZHchya_vjOwN68vmkoMvtmTLmpHnk_XpG8Z-JxjjjTMugjz2kdQZRAa_gZEn9Kxd6Z0LBNnz_PRWnt1ldxupvogT1soDtx13nKZextKhq7gUg4-rHOTC5MLG2lmbBbFtjHkbk6lZWF4jKbyQWS4jThC6ZrdjpiV30Y5XnByKwBIo86QXlYJ4fy84bYDPPnVyIxaNP7NPHYjkw7bxu-wD1F_YYgIIpOdTy4fhG8avEU0ueFPzSXMhDjEAH_Hr1aPXFviy4Sf03-b5BfiwYwHwi6dpm2CJd7sHsDZCWj4KKhPYEn5JeZEp7TC_gvsGffQrux2Pbk5Ooy6lQmRlVS6jSpexr2wmhZNJ4hNhi1Ka1AoNZSwlqQUS88RJcDgcoRDe6djkvjBCWoNQZ4_t1E0N3xgHBB6VEyAtHmmqdSqsyFyc2LLKJMgBS9ZdqmynN05pL-ZqTSybKTKDIjOo1gwD9ue1zkOrtrG19F-y1GtJUsoOJ9B_VOc_6i3_GbBsbWfVgY4WTOCtplsf_mvtFApHJC2z6Bqa1UIJhHBVTsKKA1b0vKXX0v6VevovaHsXhMek-P4er_aDfaQGhw34yT7bWT6u4AAh1NL8DKPlP1wDGEQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metallic+Active+Sites+on+MoO2%28110%29+Surface+to+Catalyze+Advanced+Oxidation+Processes+for+Efficient+Pollutant+Removal&rft.jtitle=iScience&rft.au=Ji%2C+Jiahui&rft.au=Aleisa%2C+Rashed+M&rft.au=Duan%2C+Huan&rft.au=Zhang%2C+Jinlong&rft.date=2020-02-21&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=23&rft.issue=2&rft.spage=100861&rft_id=info:doi/10.1016%2Fj.isci.2020.100861&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon