Metallic Active Sites on MoO2(110) Surface to Catalyze Advanced Oxidation Processes for Efficient Pollutant Removal
Advanced oxidation processes (AOPs) based on sulfate radicals (SO4⋅−) suffer from low conversion rate of Fe(III) to Fe(II) and produce a large amount of iron sludge as waste. Herein, we show that by using MoO2 as a cocatalyst, the rate of Fe(III)/Fe(II) cycling in PMS system accelerated significantl...
Saved in:
Published in | iScience Vol. 23; no. 2; p. 100861 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
21.02.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Advanced oxidation processes (AOPs) based on sulfate radicals (SO4⋅−) suffer from low conversion rate of Fe(III) to Fe(II) and produce a large amount of iron sludge as waste. Herein, we show that by using MoO2 as a cocatalyst, the rate of Fe(III)/Fe(II) cycling in PMS system accelerated significantly, with a reaction rate constant 50 times that of PMS/Fe(II) system. Our results showed outstanding removal efficiency (96%) of L-RhB in 10 min with extremely low concentration of Fe(II) (0.036 mM), outperforming most reported SO4⋅−-based AOPs systems. Surface chemical analysis combined with density functional theory (DFT) calculation demonstrated that both Fe(III)/Fe(II) cycling and PMS activation occurred on the (110) crystal plane of MoO2, whereas the exposed active sites of Mo(IV) on MoO2 surface were responsible for accelerating PMS activation. Considering its performance, and non-toxicity, using MoO2 as a cocatalyst is a promising technique for large-scale practical environmental remediation.
[Display omitted]
•The degradation rate of PMS/Fe(II)/MoO2 system is 50 times higher than that without MoO2•Fe(III)/Fe(II) cycle on (110) surface of MoO2 in PMS/Fe(II)/MoO2 system was confirmed•The metal active sites exposed to MoO2 (110) surface are responsible for PMS activation•Compared with MoS2, MoO2 co-catalytic system has less toxicity and no release of H2S
Inorganic Chemistry; Catalysis; Water Resources Engineering |
---|---|
AbstractList | Advanced oxidation processes (AOPs) based on sulfate radicals (SO4⋅−) suffer from low conversion rate of Fe(III) to Fe(II) and produce a large amount of iron sludge as waste. Herein, we show that by using MoO2 as a cocatalyst, the rate of Fe(III)/Fe(II) cycling in PMS system accelerated significantly, with a reaction rate constant 50 times that of PMS/Fe(II) system. Our results showed outstanding removal efficiency (96%) of L-RhB in 10 min with extremely low concentration of Fe(II) (0.036 mM), outperforming most reported SO4⋅−-based AOPs systems. Surface chemical analysis combined with density functional theory (DFT) calculation demonstrated that both Fe(III)/Fe(II) cycling and PMS activation occurred on the (110) crystal plane of MoO2, whereas the exposed active sites of Mo(IV) on MoO2 surface were responsible for accelerating PMS activation. Considering its performance, and non-toxicity, using MoO2 as a cocatalyst is a promising technique for large-scale practical environmental remediation. : Inorganic Chemistry; Catalysis; Water Resources Engineering Subject Areas: Inorganic Chemistry, Catalysis, Water Resources Engineering Advanced oxidation processes (AOPs) based on sulfate radicals (SO4⋅−) suffer from low conversion rate of Fe(III) to Fe(II) and produce a large amount of iron sludge as waste. Herein, we show that by using MoO2 as a cocatalyst, the rate of Fe(III)/Fe(II) cycling in PMS system accelerated significantly, with a reaction rate constant 50 times that of PMS/Fe(II) system. Our results showed outstanding removal efficiency (96%) of L-RhB in 10 min with extremely low concentration of Fe(II) (0.036 mM), outperforming most reported SO4⋅−-based AOPs systems. Surface chemical analysis combined with density functional theory (DFT) calculation demonstrated that both Fe(III)/Fe(II) cycling and PMS activation occurred on the (110) crystal plane of MoO2, whereas the exposed active sites of Mo(IV) on MoO2 surface were responsible for accelerating PMS activation. Considering its performance, and non-toxicity, using MoO2 as a cocatalyst is a promising technique for large-scale practical environmental remediation. [Display omitted] •The degradation rate of PMS/Fe(II)/MoO2 system is 50 times higher than that without MoO2•Fe(III)/Fe(II) cycle on (110) surface of MoO2 in PMS/Fe(II)/MoO2 system was confirmed•The metal active sites exposed to MoO2 (110) surface are responsible for PMS activation•Compared with MoS2, MoO2 co-catalytic system has less toxicity and no release of H2S Inorganic Chemistry; Catalysis; Water Resources Engineering Advanced oxidation processes (AOPs) based on sulfate radicals (SO 4 ⋅− ) suffer from low conversion rate of Fe(III) to Fe(II) and produce a large amount of iron sludge as waste. Herein, we show that by using MoO 2 as a cocatalyst, the rate of Fe(III)/Fe(II) cycling in PMS system accelerated significantly, with a reaction rate constant 50 times that of PMS/Fe(II) system. Our results showed outstanding removal efficiency (96%) of L-RhB in 10 min with extremely low concentration of Fe(II) (0.036 mM), outperforming most reported SO 4 ⋅− -based AOPs systems. Surface chemical analysis combined with density functional theory (DFT) calculation demonstrated that both Fe(III)/Fe(II) cycling and PMS activation occurred on the (110) crystal plane of MoO 2 , whereas the exposed active sites of Mo(IV) on MoO 2 surface were responsible for accelerating PMS activation. Considering its performance, and non-toxicity, using MoO 2 as a cocatalyst is a promising technique for large-scale practical environmental remediation. • The degradation rate of PMS/Fe(II)/MoO 2 system is 50 times higher than that without MoO 2 • Fe(III)/Fe(II) cycle on (110) surface of MoO 2 in PMS/Fe(II)/MoO 2 system was confirmed • The metal active sites exposed to MoO 2 (110) surface are responsible for PMS activation • Compared with MoS 2 , MoO 2 co-catalytic system has less toxicity and no release of H 2 S Inorganic Chemistry; Catalysis; Water Resources Engineering Advanced oxidation processes (AOPs) based on sulfate radicals (SO4⋅-) suffer from low conversion rate of Fe(III) to Fe(II) and produce a large amount of iron sludge as waste. Herein, we show that by using MoO2 as a cocatalyst, the rate of Fe(III)/Fe(II) cycling in PMS system accelerated significantly, with a reaction rate constant 50 times that of PMS/Fe(II) system. Our results showed outstanding removal efficiency (96%) of L-RhB in 10 min with extremely low concentration of Fe(II) (0.036 mM), outperforming most reported SO4⋅--based AOPs systems. Surface chemical analysis combined with density functional theory (DFT) calculation demonstrated that both Fe(III)/Fe(II) cycling and PMS activation occurred on the (110) crystal plane of MoO2, whereas the exposed active sites of Mo(IV) on MoO2 surface were responsible for accelerating PMS activation. Considering its performance, and non-toxicity, using MoO2 as a cocatalyst is a promising technique for large-scale practical environmental remediation.Advanced oxidation processes (AOPs) based on sulfate radicals (SO4⋅-) suffer from low conversion rate of Fe(III) to Fe(II) and produce a large amount of iron sludge as waste. Herein, we show that by using MoO2 as a cocatalyst, the rate of Fe(III)/Fe(II) cycling in PMS system accelerated significantly, with a reaction rate constant 50 times that of PMS/Fe(II) system. Our results showed outstanding removal efficiency (96%) of L-RhB in 10 min with extremely low concentration of Fe(II) (0.036 mM), outperforming most reported SO4⋅--based AOPs systems. Surface chemical analysis combined with density functional theory (DFT) calculation demonstrated that both Fe(III)/Fe(II) cycling and PMS activation occurred on the (110) crystal plane of MoO2, whereas the exposed active sites of Mo(IV) on MoO2 surface were responsible for accelerating PMS activation. Considering its performance, and non-toxicity, using MoO2 as a cocatalyst is a promising technique for large-scale practical environmental remediation. |
ArticleNumber | 100861 |
Author | Zhang, Jinlong Aleisa, Rashed M. Ji, Jiahui Duan, Huan Yin, Yadong Xing, Mingyang |
AuthorAffiliation | 3 School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China 1 Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China 2 Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA |
AuthorAffiliation_xml | – name: 3 School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China – name: 2 Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA – name: 1 Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China |
Author_xml | – sequence: 1 givenname: Jiahui surname: Ji fullname: Ji, Jiahui organization: Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China – sequence: 2 givenname: Rashed M. surname: Aleisa fullname: Aleisa, Rashed M. organization: Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA – sequence: 3 givenname: Huan surname: Duan fullname: Duan, Huan organization: School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China – sequence: 4 givenname: Jinlong surname: Zhang fullname: Zhang, Jinlong organization: Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China – sequence: 5 givenname: Yadong surname: Yin fullname: Yin, Yadong organization: Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA – sequence: 6 givenname: Mingyang surname: Xing fullname: Xing, Mingyang email: mingyangxing@ecust.edu.cn organization: Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China |
BookMark | eNp9kctuFDEQRVsoiDzID7DyMixmKLvdLwkhjUYhREo0EYG15bbLwSNPO9juEeHrcacjRFhk5VLVvdd2nePiYPADFsU7CksKtP6wXdqo7JIBmxrQ1vRVccSqtlsAcHbwT31YnMa4BchKYLyr3xSHJYM8bdhREa8xSeesIiuV7B7JrU0YiR_Itd-wM0rhPbkdg5EKSfJkLbP64TeSld7LQaEmm19Wy2Sz4SZ4hTFmt_GBnBtjlcUhkRvv3Jhkrr7izu-le1u8NtJFPH06T4rvn8-_rb8srjYXl-vV1ULxrk2LTrZgOlVxpjmlhjLVtLwvFZPYAucN50C7rtEcNUCNDTNaQl-bpmdc9awpT4rLOVd7uRX3we5keBBeWvHY8OFOyJCscijK0nDguiqpLjnUutNYs75mCqRWqqpz1qc5637sd6hV_liQ7lno88lgf4g7vxcN5B1ylgPOngKC_zliTGKXAaJzckA_RsHKqurqLOyylM1SFXyMAc3fayiICb7Yigm-mOCLGX42tf-ZlE2PYPJzrHvZ-nG2YoaxtxhEnMhlujagSnlb9iX7H6rbyl0 |
CitedBy_id | crossref_primary_10_1016_j_jhazmat_2020_124175 crossref_primary_10_1021_acsestengg_2c00287 crossref_primary_10_1002_eom2_12155 crossref_primary_10_3390_en17184674 crossref_primary_10_1016_j_jece_2024_114075 crossref_primary_10_1016_j_jhazmat_2022_128899 crossref_primary_10_1016_j_cej_2022_137361 crossref_primary_10_1016_j_eti_2024_103736 crossref_primary_10_1016_j_cjche_2024_11_020 crossref_primary_10_1016_j_cej_2022_137123 crossref_primary_10_1016_j_carbpol_2021_118853 crossref_primary_10_1016_j_ces_2023_119148 crossref_primary_10_1002_ange_202105736 crossref_primary_10_1016_j_envres_2024_118919 crossref_primary_10_1016_j_cej_2021_128521 crossref_primary_10_1016_j_jhazmat_2023_131798 crossref_primary_10_1016_j_colsurfa_2022_130549 crossref_primary_10_1016_j_jhazmat_2020_123084 crossref_primary_10_1016_j_jcis_2021_03_140 crossref_primary_10_3390_catal14100738 crossref_primary_10_1039_D4GC02017K crossref_primary_10_1016_j_jcis_2021_11_042 crossref_primary_10_1016_j_xcrp_2020_100149 crossref_primary_10_1016_j_cej_2024_157087 crossref_primary_10_1016_j_cej_2024_155460 crossref_primary_10_1016_j_jece_2024_112958 crossref_primary_10_1039_D2RA04263K crossref_primary_10_1016_j_eng_2023_06_010 crossref_primary_10_1016_j_seppur_2023_124359 crossref_primary_10_1073_pnas_2218813120 crossref_primary_10_1016_j_cej_2022_140381 crossref_primary_10_1016_j_cej_2024_149595 crossref_primary_10_1002_anie_202006059 crossref_primary_10_1002_ange_202013015 crossref_primary_10_1016_j_envpol_2022_120668 crossref_primary_10_1038_s41545_023_00251_z crossref_primary_10_1002_anie_202214881 crossref_primary_10_1016_j_apcatb_2023_123173 crossref_primary_10_1016_j_jhazmat_2022_128598 crossref_primary_10_1021_acsami_1c06149 crossref_primary_10_1016_j_cclet_2020_08_002 crossref_primary_10_1016_j_seppur_2022_120964 crossref_primary_10_1016_j_seppur_2024_127837 crossref_primary_10_1016_j_cej_2023_146693 crossref_primary_10_1021_acs_est_1c02015 crossref_primary_10_3390_catal13010189 crossref_primary_10_1002_anie_202013015 crossref_primary_10_1039_D2EY00107A crossref_primary_10_1021_acsami_1c03601 crossref_primary_10_1016_j_scitotenv_2022_154906 crossref_primary_10_1021_acsaem_3c00320 crossref_primary_10_1002_anie_202105736 crossref_primary_10_1021_acs_iecr_1c02259 crossref_primary_10_1016_j_jhazmat_2021_126556 crossref_primary_10_1016_j_envres_2022_113780 crossref_primary_10_1002_sstr_202100169 crossref_primary_10_1021_acscatal_1c03099 crossref_primary_10_1016_j_apcatb_2022_121091 crossref_primary_10_1016_j_cej_2022_136473 crossref_primary_10_1016_j_jclepro_2020_122253 crossref_primary_10_1002_adfm_202002353 crossref_primary_10_1016_j_apcatb_2022_122062 crossref_primary_10_1002_ange_202006059 crossref_primary_10_1016_j_cej_2020_128162 crossref_primary_10_1021_acs_est_1c08806 crossref_primary_10_1016_j_apsusc_2022_155495 crossref_primary_10_1016_j_seppur_2022_122475 crossref_primary_10_1016_j_jcis_2024_02_165 crossref_primary_10_3390_colorants3010001 crossref_primary_10_1016_j_catcom_2022_106481 crossref_primary_10_1016_j_cej_2022_137177 crossref_primary_10_1016_j_jece_2024_112404 crossref_primary_10_1016_j_watres_2021_116834 crossref_primary_10_1002_ange_202214881 crossref_primary_10_1016_j_jhazmat_2021_125050 crossref_primary_10_1016_j_seppur_2023_123345 crossref_primary_10_1021_acsami_0c20832 crossref_primary_10_1007_s10854_024_13465_9 crossref_primary_10_1016_j_ces_2020_116209 crossref_primary_10_1016_j_xcrp_2024_101966 crossref_primary_10_1021_acsami_0c06373 crossref_primary_10_1016_j_envint_2021_106572 crossref_primary_10_1016_j_seppur_2022_121293 crossref_primary_10_3390_catal12080847 crossref_primary_10_1016_j_seppur_2024_130921 crossref_primary_10_1016_j_apcatb_2023_123535 crossref_primary_10_3390_catal13091285 crossref_primary_10_1016_j_jece_2023_109905 crossref_primary_10_1016_j_apcatb_2022_121235 crossref_primary_10_1016_j_scitotenv_2021_151421 crossref_primary_10_1016_j_jhazmat_2020_123111 crossref_primary_10_1016_j_jenvman_2024_123246 crossref_primary_10_1016_j_watres_2021_116850 crossref_primary_10_1016_j_ultsonch_2022_106106 crossref_primary_10_1016_j_envres_2024_119891 crossref_primary_10_1016_j_jhazmat_2020_124847 crossref_primary_10_1039_D0EN00347F crossref_primary_10_1021_acsestengg_1c00307 crossref_primary_10_1021_jacsau_3c00206 crossref_primary_10_1016_j_chemosphere_2021_132047 crossref_primary_10_1016_j_seppur_2022_120511 |
Cites_doi | 10.1039/C6CY02317G 10.1021/nn201802c 10.1038/srep13645 10.1016/j.chempr.2018.03.002 10.1021/acs.est.8b00959 10.1016/j.cclet.2018.06.026 10.1016/S0169-4332(01)00551-7 10.1021/acs.est.9b01676 10.1016/j.apcatb.2017.05.036 10.1021/es1013714 10.1016/j.watres.2008.10.045 10.1039/C9TA01603A 10.1016/S0891-5849(99)00049-0 10.1016/j.pnsc.2009.04.002 10.1021/ac60097a009 10.1016/S0003-2670(02)01015-2 10.1016/j.jhazmat.2014.06.004 10.1021/acs.est.7b05563 10.1016/j.ultsonch.2016.08.005 10.1016/j.watres.2016.05.050 10.1016/j.cej.2019.121989 10.1002/1521-3773(20010817)40:16<3014::AID-ANIE3014>3.0.CO;2-M 10.1016/j.cclet.2018.04.022 10.1016/j.jhazmat.2010.01.091 10.1021/es2017363 10.1007/s11164-018-3543-5 10.1039/C8TA06232C 10.1021/jp3039169 10.1016/j.cej.2016.10.064 10.1021/ja00756a009 10.1021/acs.est.7b05543 10.1016/j.apcatb.2008.02.011 10.1016/j.apcata.2010.07.041 10.1021/acs.est.6b00701 10.1016/j.optmat.2010.10.028 10.1016/j.apcatb.2017.08.088 10.1016/j.apcatb.2008.07.010 10.1021/nn800844h 10.1021/acs.est.7b03014 10.1039/C6RA24101H 10.1002/jctb.280440302 10.1039/C5TA00622H 10.1016/j.biortech.2005.05.001 10.1016/j.apcatb.2017.03.011 10.1021/es035121o 10.1021/acs.est.7b03007 10.1021/es4019145 10.1021/ie9002848 10.1016/S0043-1648(03)00237-0 10.1007/s11164-015-2268-y 10.1016/j.cej.2011.05.076 10.1021/es0263792 10.1016/j.seppur.2019.116170 10.1007/s11164-018-3590-y 10.1080/10643380500326564 10.1016/j.saa.2015.05.029 10.1016/j.jphotochem.2015.10.004 |
ContentType | Journal Article |
Copyright | 2020 The Author(s) Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved. 2020 The Author(s) 2020 |
Copyright_xml | – notice: 2020 The Author(s) – notice: Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2020 The Author(s) 2020 |
DBID | 6I. AAFTH AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1016/j.isci.2020.100861 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-0042 |
ExternalDocumentID | oai_doaj_org_article_33f404d531d3406d9de62b62c0adcc56 PMC7011042 10_1016_j_isci_2020_100861 S2589004220300444 |
GroupedDBID | 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION EJD 7X8 5PM |
ID | FETCH-LOGICAL-c498t-9a80f9c542d411f12c784b3c2ae804474401997d4ed006e72fda0b6f7b24cb273 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 01:31:14 EDT 2025 Thu Aug 21 14:37:09 EDT 2025 Fri Jul 11 07:19:25 EDT 2025 Tue Jul 01 01:03:27 EDT 2025 Thu Apr 24 22:52:08 EDT 2025 Tue Jul 25 21:08:07 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Water Resources Engineering Inorganic Chemistry Catalysis |
Language | English |
License | This is an open access article under the CC BY license. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c498t-9a80f9c542d411f12c784b3c2ae804474401997d4ed006e72fda0b6f7b24cb273 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact |
OpenAccessLink | https://doaj.org/article/33f404d531d3406d9de62b62c0adcc56 |
PMID | 32058972 |
PQID | 2355964239 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_33f404d531d3406d9de62b62c0adcc56 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7011042 proquest_miscellaneous_2355964239 crossref_primary_10_1016_j_isci_2020_100861 crossref_citationtrail_10_1016_j_isci_2020_100861 elsevier_sciencedirect_doi_10_1016_j_isci_2020_100861 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-21 |
PublicationDateYYYYMMDD | 2020-02-21 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-21 day: 21 |
PublicationDecade | 2020 |
PublicationTitle | iScience |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Ito, Adachi, Yamanashi, Shimada (bib29) 2016; 100 Al-Ghouti, Khraisheh, Allen, Ahmad (bib1) 2003; 69 Muthuraman, Teng (bib36) 2009; 19 Ling, Wang, Peng (bib34) 2010; 178 Xia, Deng, Xie, Wang, Feng, Wu, Tu (bib50) 2018; 6 Yi, Ji, Shen, Dong, Liu, Zhang, Xing (bib60) 2019; 53 Tang, Jiang, Qian, Jian, Zhang, Wang, Yang (bib43) 2015; 5 Timmins, Liu, Bechara, Kotake, Swartz (bib45) 1999; 27 Rastogi, Al-Abed, Dionysiou (bib40) 2009; 85 Barros, Bouchet, Raoult, Mogne, Martin, Kasrai, Yamada (bib4) 2003; 254 Hayon, Treinin, Wilf (bib24) 1972; 94 Du, Qiu, Zhu, Xing, Zhang (bib16) 2018; 44 Guan, Ma, Li, Fang, Chen (bib21) 2011; 45 Clarizia, Russo, Somma, Marotta, Andreozzi (bib10) 2017; 209 Liang, Su (bib33) 2009; 48 Camacho-López, Escobar-Alarcón, Picquart, Arroyo, Córdoba, Haro-Poniatowski (bib7) 2011; 33 Sheng, Yang, Wang, Wang, Li, Guo, Lou, Liu (bib41) 2019; 375 Hanawa, Hiromoto, Asami (bib22) 2001; 183 Yang, Cheng, Elzatahry, Chen, Alghamdi, Deng (bib53) 2019; 30 Dai, Yang, Yao, Chen, Jia, Luo (bib12) 2017; 7 Anipsitakis, Dionysiou (bib2) 2003; 37 Du, Bao, Liu, Kim, Dionysiou (bib15) 2018 Pimentel, Oturan, Dezotti, Oturan (bib38) 2008; 83 Brandt (bib5) 1971 Xie, Lin, Liu, Jiang, Zhu, Xu (bib51) 2015; 3 Ghanbari, Moradi (bib20) 2017; 310 Tokarz-Sobieraj, Gryboś, Witko (bib46) 2011; 391 Fang, Liu, Wang, Dionysiou, Zhou (bib18) 2017; 214 Xing, Xu, Dong, Bai, Zeng, Zhou, Zhang, Yin (bib52) 2018; 4 Yun, Lee, Kim, Park, Lee (bib55) 2018; 52 Pignatello, Oliveros, MacKay (bib37) 2006; 36 Dong, Liu, Xing, Zhang (bib14) 2018; 44 Chen, Fang, Xia, Huang, Huang (bib9) 2018; 52 Zou, Ma, Chen, Li, Guan, Xie, Pan (bib59) 2013; 47 Yi, Zhou, Xing, Zhang (bib54) 2015; 42 Li, Shan, Pan (bib32) 2018; 52 Zhang, Chen, Bi, Huang, Zhou, Zheng (bib58) 2019; 7 Anipsitakis, Dionysiou (bib3) 2004; 38 Buck, Skillen, Robertson, Robertson (bib6) 2018; 29 Hu, Su, Chen, Yu, Li, Zhou, Alvarez, Long (bib27) 2017; 51 Tao, Ma, Zhang, Zhao (bib44) 2001; 40 Sun, Hu, Luo, Huang (bib42) 2011; 5 Chen, Zuo, Yang, Cui, Fu (bib8) 2016; 6 Crini (bib11) 2006; 97 Rastogi, Al-Abed, Dionysiou (bib39) 2009; 43 Liu, Zhou, Ding, Zhao, Xu, Fang (bib35) 2017; 34 Wacławek, Grübel, Černík (bib48) 2015; 149 Zhang, Chen, Leiknes (bib57) 2016; 50 Huang, Wang, Yang, Guo, Yu (bib28) 2017; 51 Herrera, Ruiz, Aguillon, Fehrmann (bib25) 1989; 44 Zamora, Villamena (bib56) 2012; 116 Harvey, Smart, Amis (bib23) 1955; 27 Kusic, Peternel, Ukic, Koprivanac, Bolanca, Papic, Bozic (bib31) 2011; 172 Hu, Mai, Wen, Fan (bib26) 2009; 3 Wang, Xu, Wu, Gong, Xie (bib49) 2020; 235 Ugo, Moretto, De Boni, Scopece, Mazzocchin (bib47) 2002; 474 Dan, Ma, Zhou, Xi, Qian (bib13) 2014; 279 Khan, He, Khan, Boccelli, Dionysiou (bib30) 2016; 316 Duan, Su, Miao, Zhong, Shao, Wang, Sun (bib17) 2018; 220 Furman, Teel, Watts (bib19) 2010; 44 Buck (10.1016/j.isci.2020.100861_bib6) 2018; 29 Xie (10.1016/j.isci.2020.100861_bib51) 2015; 3 Muthuraman (10.1016/j.isci.2020.100861_bib36) 2009; 19 Rastogi (10.1016/j.isci.2020.100861_bib40) 2009; 85 Zou (10.1016/j.isci.2020.100861_bib59) 2013; 47 Guan (10.1016/j.isci.2020.100861_bib21) 2011; 45 Herrera (10.1016/j.isci.2020.100861_bib25) 1989; 44 Yang (10.1016/j.isci.2020.100861_bib53) 2019; 30 Huang (10.1016/j.isci.2020.100861_bib28) 2017; 51 Kusic (10.1016/j.isci.2020.100861_bib31) 2011; 172 Yi (10.1016/j.isci.2020.100861_bib60) 2019; 53 Ling (10.1016/j.isci.2020.100861_bib34) 2010; 178 Tokarz-Sobieraj (10.1016/j.isci.2020.100861_bib46) 2011; 391 Zhang (10.1016/j.isci.2020.100861_bib58) 2019; 7 Anipsitakis (10.1016/j.isci.2020.100861_bib2) 2003; 37 Chen (10.1016/j.isci.2020.100861_bib8) 2016; 6 Yun (10.1016/j.isci.2020.100861_bib55) 2018; 52 Liang (10.1016/j.isci.2020.100861_bib33) 2009; 48 Xia (10.1016/j.isci.2020.100861_bib50) 2018; 6 Harvey (10.1016/j.isci.2020.100861_bib23) 1955; 27 Wacławek (10.1016/j.isci.2020.100861_bib48) 2015; 149 Fang (10.1016/j.isci.2020.100861_bib18) 2017; 214 Tao (10.1016/j.isci.2020.100861_bib44) 2001; 40 Duan (10.1016/j.isci.2020.100861_bib17) 2018; 220 Anipsitakis (10.1016/j.isci.2020.100861_bib3) 2004; 38 Ghanbari (10.1016/j.isci.2020.100861_bib20) 2017; 310 Ugo (10.1016/j.isci.2020.100861_bib47) 2002; 474 Du (10.1016/j.isci.2020.100861_bib15) 2018 Ito (10.1016/j.isci.2020.100861_bib29) 2016; 100 Li (10.1016/j.isci.2020.100861_bib32) 2018; 52 Zamora (10.1016/j.isci.2020.100861_bib56) 2012; 116 Dong (10.1016/j.isci.2020.100861_bib14) 2018; 44 Timmins (10.1016/j.isci.2020.100861_bib45) 1999; 27 Hu (10.1016/j.isci.2020.100861_bib26) 2009; 3 Zhang (10.1016/j.isci.2020.100861_bib57) 2016; 50 Dan (10.1016/j.isci.2020.100861_bib13) 2014; 279 Tang (10.1016/j.isci.2020.100861_bib43) 2015; 5 Chen (10.1016/j.isci.2020.100861_bib9) 2018; 52 Pignatello (10.1016/j.isci.2020.100861_bib37) 2006; 36 Crini (10.1016/j.isci.2020.100861_bib11) 2006; 97 Xing (10.1016/j.isci.2020.100861_bib52) 2018; 4 Hu (10.1016/j.isci.2020.100861_bib27) 2017; 51 Pimentel (10.1016/j.isci.2020.100861_bib38) 2008; 83 Sun (10.1016/j.isci.2020.100861_bib42) 2011; 5 Al-Ghouti (10.1016/j.isci.2020.100861_bib1) 2003; 69 Hayon (10.1016/j.isci.2020.100861_bib24) 1972; 94 Camacho-López (10.1016/j.isci.2020.100861_bib7) 2011; 33 Hanawa (10.1016/j.isci.2020.100861_bib22) 2001; 183 Clarizia (10.1016/j.isci.2020.100861_bib10) 2017; 209 Sheng (10.1016/j.isci.2020.100861_bib41) 2019; 375 Dai (10.1016/j.isci.2020.100861_bib12) 2017; 7 Khan (10.1016/j.isci.2020.100861_bib30) 2016; 316 Liu (10.1016/j.isci.2020.100861_bib35) 2017; 34 Rastogi (10.1016/j.isci.2020.100861_bib39) 2009; 43 Wang (10.1016/j.isci.2020.100861_bib49) 2020; 235 Du (10.1016/j.isci.2020.100861_bib16) 2018; 44 Barros (10.1016/j.isci.2020.100861_bib4) 2003; 254 Brandt (10.1016/j.isci.2020.100861_bib5) 1971 Furman (10.1016/j.isci.2020.100861_bib19) 2010; 44 Yi (10.1016/j.isci.2020.100861_bib54) 2015; 42 |
References_xml | – volume: 214 start-page: 34 year: 2017 end-page: 45 ident: bib18 article-title: Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation publication-title: Appl. Catal. B Environ. – volume: 149 start-page: 928 year: 2015 end-page: 933 ident: bib48 article-title: Simple spectrophotometric determination of monopersulfate publication-title: Spectrochim. Acta A – volume: 36 start-page: 1 year: 2006 end-page: 84 ident: bib37 article-title: Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 235 start-page: 116170 year: 2020 ident: bib49 article-title: Improved sulfamethoxazole degradation by the addition of MoS publication-title: Sep. Purif. Technol. – volume: 53 start-page: 9725 year: 2019 end-page: 9733 ident: bib60 article-title: Singlet oxygen triggered by superoxide radicals in a molybdenum cocatalytic fenton reaction with enhanced REDOX activity in the environment. publication-title: Environ. Sci. Technol. – volume: 44 start-page: 7079 year: 2018 end-page: 7091 ident: bib14 article-title: Development of titanium oxide-based mesoporous materials in photocatalysis publication-title: Res. Chem. Intermediat. – volume: 209 start-page: 358 year: 2017 end-page: 371 ident: bib10 article-title: Homogeneous photo-Fenton processes at near neutral pH: a review publication-title: Appl. Catal. B Environ. – volume: 51 start-page: 12611 year: 2017 end-page: 12618 ident: bib28 article-title: Degradation of bisphenol A by peroxymonosulfatecatalytically activated with Mn publication-title: Environ. Sci. Technol. – volume: 474 start-page: 147 year: 2002 end-page: 160 ident: bib47 article-title: Iron (II) and iron (III) determination by potentiometry and ion-exchange voltammetry at ionomer-coated electrodes publication-title: Anal. Chim. Acta – volume: 183 start-page: 68 year: 2001 end-page: 75 ident: bib22 article-title: Characterization of the surface oxide film of a Co–Cr–Mo alloy after being located in quasi-biological environments using XPS publication-title: Appl. Surf. Sci. – volume: 40 start-page: 3014 year: 2001 end-page: 3016 ident: bib44 article-title: Efficient photooxidative degradation of organic compounds in the presence of iron tetrasulfophthalocyanine under visible light irradiation publication-title: Angew.Chem. Int. Ed. – volume: 94 start-page: 47 year: 1972 end-page: 57 ident: bib24 article-title: Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems.SO publication-title: J. Am. Chem. Soc. – volume: 83 start-page: 140 year: 2008 end-page: 149 ident: bib38 article-title: Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode publication-title: Appl. Catal. B Environ. – year: 1971 ident: bib5 article-title: On the Crystal Structures of MoO – volume: 85 start-page: 171 year: 2009 end-page: 179 ident: bib40 article-title: Sulfate radical-based ferrous–peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems publication-title: Appl. Catal. B Environ. – volume: 172 start-page: 109 year: 2011 end-page: 121 ident: bib31 article-title: Modeling of iron activated persulfate oxidation treating reactive azo dye in water matrix publication-title: Chem. Eng. J. – volume: 69 start-page: 229 year: 2003 end-page: 238 ident: bib1 article-title: The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth publication-title: J. Environ. Manage. – volume: 33 start-page: 480 year: 2011 end-page: 484 ident: bib7 article-title: Micro-Raman study of the m-MoO publication-title: Opt. Mater. – volume: 47 start-page: 11685 year: 2013 end-page: 11691 ident: bib59 article-title: Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine publication-title: Environ. Sci. Technol. – volume: 48 start-page: 5558 year: 2009 end-page: 5562 ident: bib33 article-title: Identification of sulfate and hydroxyl radicals in thermally activated persulfate publication-title: Ind. Eng. Chem. Res. – volume: 52 start-page: 2197 year: 2018 end-page: 2205 ident: bib32 article-title: Fe(III)-Doped g-C publication-title: Environ. Sci. Technol. – volume: 100 start-page: 458 year: 2016 end-page: 465 ident: bib29 article-title: Long-term natural remediation process in textile dye-polluted river sediment driven by bacterial community changes publication-title: Water Res. – volume: 6 start-page: 101361 year: 2016 end-page: 101364 ident: bib8 article-title: Yolk–shell structured CoFe publication-title: RSC Adv. – volume: 27 start-page: 26 year: 1955 end-page: 29 ident: bib23 article-title: Simultaneous spectrophotometric determination of iron(II) and total iron with 1,10-phenanthroline publication-title: Anal. Chem. – volume: 254 start-page: 863 year: 2003 end-page: 870 ident: bib4 article-title: Friction reduction by metal sulfides in boundary lubrication studied by XPS and XANES analyses publication-title: Wear – volume: 391 start-page: 137 year: 2011 end-page: 143 ident: bib46 article-title: Electronic structure of MoO publication-title: Appl. Catal. A.Gen. – volume: 30 start-page: 324 year: 2019 end-page: 330 ident: bib53 article-title: Recyclable Fenton-like catalyst based on zeolite Y supported ultrafine, highly-dispersed Fe publication-title: Chin. Chem. Lett. – volume: 279 start-page: 476 year: 2014 end-page: 484 ident: bib13 article-title: Sulfate radical-induced degradation of Acid Orange 7 by a new magnetic composite catalyzed peroxymonosulfate oxidation process publication-title: J. Hazard. Mater. – volume: 4 start-page: 1359 year: 2018 end-page: 1372 ident: bib52 article-title: Metal sulfides as excellent cocatalysts for H publication-title: Chem – volume: 44 start-page: 7847 year: 2018 end-page: 7859 ident: bib16 article-title: Cobalt phosphide nanocages encapsulated with graphene as ultralong cycle life anodes for reversible lithium storage publication-title: Res. Chem. Intermediat. – volume: 116 start-page: 7210 year: 2012 end-page: 7218 ident: bib56 article-title: Theoretical and experimental studies of the spin trapping of inorganic radicals by 5,5-dimethyl-1-pyrroline N-oxide (DMPO). 3. Sulfur dioxide, sulfite, and sulfate radical anions publication-title: J. Phys. Chem. A – volume: 375 start-page: 121989 year: 2019 ident: bib41 article-title: Pivotal roles of MoS publication-title: Chem. Eng. J. – volume: 38 start-page: 3705 year: 2004 end-page: 3712 ident: bib3 article-title: Radical generation by the interaction of transition metals with common oxidants publication-title: Environ. Sci. Technol. – volume: 43 start-page: 684 year: 2009 end-page: 694 ident: bib39 article-title: Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols publication-title: Water Res. – volume: 19 start-page: 1215 year: 2009 end-page: 1220 ident: bib36 article-title: Extraction of methyl red from industrial wastewater using xylene as an extractant publication-title: Prog. Nat. Sci. – volume: 5 start-page: 13645 year: 2015 end-page: 13655 ident: bib43 article-title: Dielectric relaxation, resonance and scaling behaviors in Sr publication-title: Sci. Rep. – volume: 3 start-page: 8055 year: 2015 end-page: 8061 ident: bib51 article-title: The synergistic effect of metallic molybdenum dioxide nanoparticle decorated graphene as an active electrocatalyst for an enhanced hydrogen evolution reaction publication-title: J. Mater. Chem. A – volume: 3 start-page: 478 year: 2009 end-page: 482 ident: bib26 article-title: From MoO publication-title: ACS Nano – volume: 45 start-page: 9308 year: 2011 end-page: 9314 ident: bib21 article-title: Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system publication-title: Environ. Sci. Technol. – volume: 316 start-page: 37 year: 2016 end-page: 43 ident: bib30 article-title: Efficient degradation of lindane in aqueous solution by iron (II) and/or UV activated peroxymonosulfate publication-title: J. Photochem. Photobiol. A – volume: 29 start-page: 773 year: 2018 end-page: 777 ident: bib6 article-title: Photocatalytic OH radical formation and quantification over TiO publication-title: Chin. Chem. Lett. – volume: 220 start-page: 626 year: 2018 end-page: 634 ident: bib17 article-title: Insights into perovskite-catalyzed peroxymonosulfate activation: maneuverable cobalt sites for promoted evolution of sulfate radicals publication-title: Appl. Catal. B Environ. – volume: 52 start-page: 1461 year: 2018 end-page: 1470 ident: bib9 article-title: Selective transformation of Î publication-title: Environ. Sci. Technol. – volume: 6 start-page: 15546 year: 2018 end-page: 15552 ident: bib50 article-title: Boosting sodium ion storage by anchoring MoO publication-title: J. Mat. Chem. A – volume: 7 start-page: 934 year: 2017 end-page: 942 ident: bib12 article-title: Highly efficient removal of organic contaminant based on peroxymonosulfate activation by iron phthalocyanine: mechanism and bicarbonate ion enhancement effect publication-title: Catal. Sci. Technol. – volume: 5 start-page: 7100 year: 2011 end-page: 7107 ident: bib42 article-title: Self-assembled hierarchical MoO publication-title: ACS Nano – volume: 34 start-page: 953 year: 2017 end-page: 959 ident: bib35 article-title: Ultrasound irritation enhanced heterogeneous activation of peroxymonosulfate with Fe publication-title: Ultrason. Sonochem. – volume: 44 start-page: 171 year: 1989 end-page: 181 ident: bib25 article-title: A new spectrophotometric method for the determination of ferrous iron in the presence of ferric iron publication-title: J. Chem. Tech. Biotechnol. – volume: 44 start-page: 6423 year: 2010 end-page: 6428 ident: bib19 article-title: Mechanism of base activation of persulfate publication-title: Environ. Sci. Technol. – volume: 178 start-page: 385 year: 2010 end-page: 389 ident: bib34 article-title: Oxidative degradation of dyes in water using Co publication-title: J. Hazard. Mater. – year: 2018 ident: bib15 article-title: Facile preparation of porous Mn/Fe publication-title: Chem. Eng. J. – volume: 51 start-page: 11288 year: 2017 end-page: 11296 ident: bib27 article-title: Selective degradation of organic pollutants using an efficient metal-free catalyst derived from carbonized polypyrrole via peroxymonosulfate activation publication-title: Environ. Sci. Technol. – volume: 37 start-page: 4790 year: 2003 end-page: 4797 ident: bib2 article-title: Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt publication-title: Environ. Sci. Technol. – volume: 50 start-page: 5864 year: 2016 end-page: 5873 ident: bib57 article-title: Oxidation of refractory benzothiazoles with PMS/CuFe publication-title: Environ. Sci. Technol. – volume: 27 start-page: 329 year: 1999 end-page: 333 ident: bib45 article-title: Trapping of free radicals with direct in vivo EPR detection: a comparison of 5, 5-dimethyl-1-pyrroline-N-oxide and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide as spin traps for HO and SO publication-title: Free Radic. Biol. Med. – volume: 42 start-page: 4181 year: 2015 end-page: 4189 ident: bib54 article-title: Vacuum activation-induced Ti publication-title: Res. Chem. Intermediat. – volume: 97 start-page: 1061 year: 2006 end-page: 1085 ident: bib11 article-title: Non-conventional low-cost adsorbents for dye removal: a review publication-title: Bioresour.Technol. – volume: 52 start-page: 7032 year: 2018 end-page: 7042 ident: bib55 article-title: Identifying the nonradical mechanism in the peroxymonosulfate activation process: singlet oxygenation versus mediated electron transfer publication-title: Environ. Sci. Technol. – volume: 7 start-page: 12893 year: 2019 end-page: 12899 ident: bib58 article-title: A bimetallic Co publication-title: J. Mat. Chem. A – volume: 310 start-page: 41 year: 2017 end-page: 62 ident: bib20 article-title: Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review publication-title: Chem. Eng. J. – volume: 7 start-page: 934 year: 2017 ident: 10.1016/j.isci.2020.100861_bib12 article-title: Highly efficient removal of organic contaminant based on peroxymonosulfate activation by iron phthalocyanine: mechanism and bicarbonate ion enhancement effect publication-title: Catal. Sci. Technol. doi: 10.1039/C6CY02317G – volume: 5 start-page: 7100 year: 2011 ident: 10.1016/j.isci.2020.100861_bib42 article-title: Self-assembled hierarchical MoO2/graphenenanoarchitectures and their application as a high-performance anode material for lithium-ion batteries publication-title: ACS Nano doi: 10.1021/nn201802c – volume: 5 start-page: 13645 year: 2015 ident: 10.1016/j.isci.2020.100861_bib43 article-title: Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41hexaferrite publication-title: Sci. Rep. doi: 10.1038/srep13645 – volume: 4 start-page: 1359 year: 2018 ident: 10.1016/j.isci.2020.100861_bib52 article-title: Metal sulfides as excellent cocatalysts for H2O2 decomposition in advanced oxidation processes publication-title: Chem doi: 10.1016/j.chempr.2018.03.002 – year: 2018 ident: 10.1016/j.isci.2020.100861_bib15 article-title: Facile preparation of porous Mn/Fe3O4 cubes as peroxymonosulfate activating catalyst for effective bisphenolA degradation publication-title: Chem. Eng. J. – volume: 52 start-page: 7032 year: 2018 ident: 10.1016/j.isci.2020.100861_bib55 article-title: Identifying the nonradical mechanism in the peroxymonosulfate activation process: singlet oxygenation versus mediated electron transfer publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b00959 – volume: 30 start-page: 324 year: 2019 ident: 10.1016/j.isci.2020.100861_bib53 article-title: Recyclable Fenton-like catalyst based on zeolite Y supported ultrafine, highly-dispersed Fe2O3 nanoparticles for removal of organics under mild conditions publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2018.06.026 – volume: 183 start-page: 68 year: 2001 ident: 10.1016/j.isci.2020.100861_bib22 article-title: Characterization of the surface oxide film of a Co–Cr–Mo alloy after being located in quasi-biological environments using XPS publication-title: Appl. Surf. Sci. doi: 10.1016/S0169-4332(01)00551-7 – volume: 53 start-page: 9725 year: 2019 ident: 10.1016/j.isci.2020.100861_bib60 article-title: Singlet oxygen triggered by superoxide radicals in a molybdenum cocatalytic fenton reaction with enhanced REDOX activity in the environment. publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b01676 – volume: 214 start-page: 34 year: 2017 ident: 10.1016/j.isci.2020.100861_bib18 article-title: Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.05.036 – volume: 44 start-page: 6423 year: 2010 ident: 10.1016/j.isci.2020.100861_bib19 article-title: Mechanism of base activation of persulfate publication-title: Environ. Sci. Technol. doi: 10.1021/es1013714 – volume: 43 start-page: 684 year: 2009 ident: 10.1016/j.isci.2020.100861_bib39 article-title: Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols publication-title: Water Res. doi: 10.1016/j.watres.2008.10.045 – volume: 7 start-page: 12893 year: 2019 ident: 10.1016/j.isci.2020.100861_bib58 article-title: A bimetallic Co4Mo8 cluster built from Mo8oxothiomolybdate capped by a Co4-thiacalix[4]arene unit: the observation of the Co–Mo synergistic effect for binder-free electrocatalysts publication-title: J. Mat. Chem. A doi: 10.1039/C9TA01603A – volume: 27 start-page: 329 year: 1999 ident: 10.1016/j.isci.2020.100861_bib45 article-title: Trapping of free radicals with direct in vivo EPR detection: a comparison of 5, 5-dimethyl-1-pyrroline-N-oxide and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide as spin traps for HO and SO4⋅− publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(99)00049-0 – volume: 19 start-page: 1215 year: 2009 ident: 10.1016/j.isci.2020.100861_bib36 article-title: Extraction of methyl red from industrial wastewater using xylene as an extractant publication-title: Prog. Nat. Sci. doi: 10.1016/j.pnsc.2009.04.002 – volume: 27 start-page: 26 year: 1955 ident: 10.1016/j.isci.2020.100861_bib23 article-title: Simultaneous spectrophotometric determination of iron(II) and total iron with 1,10-phenanthroline publication-title: Anal. Chem. doi: 10.1021/ac60097a009 – volume: 474 start-page: 147 year: 2002 ident: 10.1016/j.isci.2020.100861_bib47 article-title: Iron (II) and iron (III) determination by potentiometry and ion-exchange voltammetry at ionomer-coated electrodes publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(02)01015-2 – volume: 279 start-page: 476 year: 2014 ident: 10.1016/j.isci.2020.100861_bib13 article-title: Sulfate radical-induced degradation of Acid Orange 7 by a new magnetic composite catalyzed peroxymonosulfate oxidation process publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.06.004 – volume: 52 start-page: 2197 year: 2018 ident: 10.1016/j.isci.2020.100861_bib32 article-title: Fe(III)-Doped g-C3N4 mediated peroxymonosulfate activation for selective degradation of phenolic compounds via high-valent iron-oxo species publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b05563 – volume: 34 start-page: 953 year: 2017 ident: 10.1016/j.isci.2020.100861_bib35 article-title: Ultrasound irritation enhanced heterogeneous activation of peroxymonosulfate with Fe3O4 for degradation of azo dye publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2016.08.005 – volume: 100 start-page: 458 year: 2016 ident: 10.1016/j.isci.2020.100861_bib29 article-title: Long-term natural remediation process in textile dye-polluted river sediment driven by bacterial community changes publication-title: Water Res. doi: 10.1016/j.watres.2016.05.050 – volume: 375 start-page: 121989 year: 2019 ident: 10.1016/j.isci.2020.100861_bib41 article-title: Pivotal roles of MoS2 in boosting catalytic degradation of aqueous organic pollutants by Fe(II)/PMS publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.121989 – volume: 40 start-page: 3014 year: 2001 ident: 10.1016/j.isci.2020.100861_bib44 article-title: Efficient photooxidative degradation of organic compounds in the presence of iron tetrasulfophthalocyanine under visible light irradiation publication-title: Angew.Chem. Int. Ed. doi: 10.1002/1521-3773(20010817)40:16<3014::AID-ANIE3014>3.0.CO;2-M – volume: 29 start-page: 773 year: 2018 ident: 10.1016/j.isci.2020.100861_bib6 article-title: Photocatalytic OH radical formation and quantification over TiO2 P25: producing a robust and optimised screening method publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2018.04.022 – volume: 178 start-page: 385 year: 2010 ident: 10.1016/j.isci.2020.100861_bib34 article-title: Oxidative degradation of dyes in water using Co2+/H2O2 and Co2+/peroxymonosulfate publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.01.091 – volume: 45 start-page: 9308 year: 2011 ident: 10.1016/j.isci.2020.100861_bib21 article-title: Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system publication-title: Environ. Sci. Technol. doi: 10.1021/es2017363 – volume: 44 start-page: 7079 year: 2018 ident: 10.1016/j.isci.2020.100861_bib14 article-title: Development of titanium oxide-based mesoporous materials in photocatalysis publication-title: Res. Chem. Intermediat. doi: 10.1007/s11164-018-3543-5 – volume: 6 start-page: 15546 year: 2018 ident: 10.1016/j.isci.2020.100861_bib50 article-title: Boosting sodium ion storage by anchoring MoO2 on vertical graphene arrays publication-title: J. Mat. Chem. A doi: 10.1039/C8TA06232C – volume: 116 start-page: 7210 year: 2012 ident: 10.1016/j.isci.2020.100861_bib56 article-title: Theoretical and experimental studies of the spin trapping of inorganic radicals by 5,5-dimethyl-1-pyrroline N-oxide (DMPO). 3. Sulfur dioxide, sulfite, and sulfate radical anions publication-title: J. Phys. Chem. A doi: 10.1021/jp3039169 – volume: 310 start-page: 41 year: 2017 ident: 10.1016/j.isci.2020.100861_bib20 article-title: Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.10.064 – volume: 94 start-page: 47 year: 1972 ident: 10.1016/j.isci.2020.100861_bib24 article-title: Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems.SO2-, SO3-, SO4-, and SO5- radicals publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00756a009 – volume: 52 start-page: 1461 year: 2018 ident: 10.1016/j.isci.2020.100861_bib9 article-title: Selective transformation of Î2-Lactam antibiotics by peroxymonosulfate: reaction kinetics and non-radical mechanism publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b05543 – volume: 83 start-page: 140 year: 2008 ident: 10.1016/j.isci.2020.100861_bib38 article-title: Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2008.02.011 – volume: 391 start-page: 137 year: 2011 ident: 10.1016/j.isci.2020.100861_bib46 article-title: Electronic structure of MoO2. DFT periodic and cluster model studies publication-title: Appl. Catal. A.Gen. doi: 10.1016/j.apcata.2010.07.041 – volume: 50 start-page: 5864 year: 2016 ident: 10.1016/j.isci.2020.100861_bib57 article-title: Oxidation of refractory benzothiazoles with PMS/CuFe2O4: kinetics and transformation intermediates publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b00701 – volume: 69 start-page: 229 year: 2003 ident: 10.1016/j.isci.2020.100861_bib1 article-title: The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth publication-title: J. Environ. Manage. – volume: 33 start-page: 480 year: 2011 ident: 10.1016/j.isci.2020.100861_bib7 article-title: Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation publication-title: Opt. Mater. doi: 10.1016/j.optmat.2010.10.028 – volume: 220 start-page: 626 year: 2018 ident: 10.1016/j.isci.2020.100861_bib17 article-title: Insights into perovskite-catalyzed peroxymonosulfate activation: maneuverable cobalt sites for promoted evolution of sulfate radicals publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.08.088 – volume: 85 start-page: 171 year: 2009 ident: 10.1016/j.isci.2020.100861_bib40 article-title: Sulfate radical-based ferrous–peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2008.07.010 – volume: 3 start-page: 478 year: 2009 ident: 10.1016/j.isci.2020.100861_bib26 article-title: From MoO3nanobelts to MoO2nanorods: structure transformation and electrical transport publication-title: ACS Nano doi: 10.1021/nn800844h – volume: 51 start-page: 11288 year: 2017 ident: 10.1016/j.isci.2020.100861_bib27 article-title: Selective degradation of organic pollutants using an efficient metal-free catalyst derived from carbonized polypyrrole via peroxymonosulfate activation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b03014 – volume: 6 start-page: 101361 year: 2016 ident: 10.1016/j.isci.2020.100861_bib8 article-title: Yolk–shell structured CoFe2O4 microspheres as novel catalysts for peroxymonosulfate activation for efficient degradation of butyl paraben publication-title: RSC Adv. doi: 10.1039/C6RA24101H – volume: 44 start-page: 171 year: 1989 ident: 10.1016/j.isci.2020.100861_bib25 article-title: A new spectrophotometric method for the determination of ferrous iron in the presence of ferric iron publication-title: J. Chem. Tech. Biotechnol. doi: 10.1002/jctb.280440302 – volume: 3 start-page: 8055 year: 2015 ident: 10.1016/j.isci.2020.100861_bib51 article-title: The synergistic effect of metallic molybdenum dioxide nanoparticle decorated graphene as an active electrocatalyst for an enhanced hydrogen evolution reaction publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00622H – volume: 97 start-page: 1061 year: 2006 ident: 10.1016/j.isci.2020.100861_bib11 article-title: Non-conventional low-cost adsorbents for dye removal: a review publication-title: Bioresour.Technol. doi: 10.1016/j.biortech.2005.05.001 – volume: 209 start-page: 358 year: 2017 ident: 10.1016/j.isci.2020.100861_bib10 article-title: Homogeneous photo-Fenton processes at near neutral pH: a review publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.03.011 – volume: 38 start-page: 3705 year: 2004 ident: 10.1016/j.isci.2020.100861_bib3 article-title: Radical generation by the interaction of transition metals with common oxidants publication-title: Environ. Sci. Technol. doi: 10.1021/es035121o – volume: 51 start-page: 12611 year: 2017 ident: 10.1016/j.isci.2020.100861_bib28 article-title: Degradation of bisphenol A by peroxymonosulfatecatalytically activated with Mn1.8Fe1.2O4nanospheres: synergism between Mn and Fe publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b03007 – volume: 47 start-page: 11685 year: 2013 ident: 10.1016/j.isci.2020.100861_bib59 article-title: Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine publication-title: Environ. Sci. Technol. doi: 10.1021/es4019145 – volume: 48 start-page: 5558 year: 2009 ident: 10.1016/j.isci.2020.100861_bib33 article-title: Identification of sulfate and hydroxyl radicals in thermally activated persulfate publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie9002848 – volume: 254 start-page: 863 year: 2003 ident: 10.1016/j.isci.2020.100861_bib4 article-title: Friction reduction by metal sulfides in boundary lubrication studied by XPS and XANES analyses publication-title: Wear doi: 10.1016/S0043-1648(03)00237-0 – volume: 42 start-page: 4181 year: 2015 ident: 10.1016/j.isci.2020.100861_bib54 article-title: Vacuum activation-induced Ti3+ and carbon codoped TiO2 with enhanced solar light photo-catalytic activity publication-title: Res. Chem. Intermediat. doi: 10.1007/s11164-015-2268-y – volume: 172 start-page: 109 year: 2011 ident: 10.1016/j.isci.2020.100861_bib31 article-title: Modeling of iron activated persulfate oxidation treating reactive azo dye in water matrix publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.05.076 – volume: 37 start-page: 4790 year: 2003 ident: 10.1016/j.isci.2020.100861_bib2 article-title: Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt publication-title: Environ. Sci. Technol. doi: 10.1021/es0263792 – volume: 235 start-page: 116170 year: 2020 ident: 10.1016/j.isci.2020.100861_bib49 article-title: Improved sulfamethoxazole degradation by the addition of MoS2 into the Fe2+/peroxymonosulfate process publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.116170 – year: 1971 ident: 10.1016/j.isci.2020.100861_bib5 – volume: 44 start-page: 7847 year: 2018 ident: 10.1016/j.isci.2020.100861_bib16 article-title: Cobalt phosphide nanocages encapsulated with graphene as ultralong cycle life anodes for reversible lithium storage publication-title: Res. Chem. Intermediat. doi: 10.1007/s11164-018-3590-y – volume: 36 start-page: 1 year: 2006 ident: 10.1016/j.isci.2020.100861_bib37 article-title: Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643380500326564 – volume: 149 start-page: 928 year: 2015 ident: 10.1016/j.isci.2020.100861_bib48 article-title: Simple spectrophotometric determination of monopersulfate publication-title: Spectrochim. Acta A doi: 10.1016/j.saa.2015.05.029 – volume: 316 start-page: 37 year: 2016 ident: 10.1016/j.isci.2020.100861_bib30 article-title: Efficient degradation of lindane in aqueous solution by iron (II) and/or UV activated peroxymonosulfate publication-title: J. Photochem. Photobiol. A doi: 10.1016/j.jphotochem.2015.10.004 |
SSID | ssj0002002496 |
Score | 2.478308 |
Snippet | Advanced oxidation processes (AOPs) based on sulfate radicals (SO4⋅−) suffer from low conversion rate of Fe(III) to Fe(II) and produce a large amount of iron... Advanced oxidation processes (AOPs) based on sulfate radicals (SO4⋅-) suffer from low conversion rate of Fe(III) to Fe(II) and produce a large amount of iron... Advanced oxidation processes (AOPs) based on sulfate radicals (SO 4 ⋅− ) suffer from low conversion rate of Fe(III) to Fe(II) and produce a large amount of... |
SourceID | doaj pubmedcentral proquest crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 100861 |
SubjectTerms | Catalysis Inorganic Chemistry Water Resources Engineering |
Title | Metallic Active Sites on MoO2(110) Surface to Catalyze Advanced Oxidation Processes for Efficient Pollutant Removal |
URI | https://dx.doi.org/10.1016/j.isci.2020.100861 https://www.proquest.com/docview/2355964239 https://pubmed.ncbi.nlm.nih.gov/PMC7011042 https://doaj.org/article/33f404d531d3406d9de62b62c0adcc56 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp15KQxu6bVJU6CGhmNiy_Dpuwy4hsEnIA3ITeozoLhs7ZHchya_vjOwN68vmkoMvtmTLmpHnk_XpG8Z-JxjjjTMugjz2kdQZRAa_gZEn9Kxd6Z0LBNnz_PRWnt1ldxupvogT1soDtx13nKZextKhq7gUg4-rHOTC5MLG2lmbBbFtjHkbk6lZWF4jKbyQWS4jThC6ZrdjpiV30Y5XnByKwBIo86QXlYJ4fy84bYDPPnVyIxaNP7NPHYjkw7bxu-wD1F_YYgIIpOdTy4fhG8avEU0ueFPzSXMhDjEAH_Hr1aPXFviy4Sf03-b5BfiwYwHwi6dpm2CJd7sHsDZCWj4KKhPYEn5JeZEp7TC_gvsGffQrux2Pbk5Ooy6lQmRlVS6jSpexr2wmhZNJ4hNhi1Ka1AoNZSwlqQUS88RJcDgcoRDe6djkvjBCWoNQZ4_t1E0N3xgHBB6VEyAtHmmqdSqsyFyc2LLKJMgBS9ZdqmynN05pL-ZqTSybKTKDIjOo1gwD9ue1zkOrtrG19F-y1GtJUsoOJ9B_VOc_6i3_GbBsbWfVgY4WTOCtplsf_mvtFApHJC2z6Bqa1UIJhHBVTsKKA1b0vKXX0v6VevovaHsXhMek-P4er_aDfaQGhw34yT7bWT6u4AAh1NL8DKPlP1wDGEQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metallic+Active+Sites+on+MoO2%28110%29+Surface+to+Catalyze+Advanced+Oxidation+Processes+for+Efficient+Pollutant+Removal&rft.jtitle=iScience&rft.au=Ji%2C+Jiahui&rft.au=Aleisa%2C+Rashed+M&rft.au=Duan%2C+Huan&rft.au=Zhang%2C+Jinlong&rft.date=2020-02-21&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=23&rft.issue=2&rft.spage=100861&rft_id=info:doi/10.1016%2Fj.isci.2020.100861&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |