Highly solar reflectance and infrared transparent porous coating for non-contact heat dissipations
Passive daytime radiative cooling (PDRC) can dissipate heat to outer space with high solar reflectance (R¯solar) and thermal emittance (ε¯LWIR) in the atmospheric transmission window. However, for the non-contact heat dissipation, besides the high R¯solar, a high infrared transmittance (τ¯LWIR) is n...
Saved in:
Published in | iScience Vol. 25; no. 8; p. 104726 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
19.08.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Passive daytime radiative cooling (PDRC) can dissipate heat to outer space with high solar reflectance (R¯solar) and thermal emittance (ε¯LWIR) in the atmospheric transmission window. However, for the non-contact heat dissipation, besides the high R¯solar, a high infrared transmittance (τ¯LWIR) is needed to directly emit thermal radiation through the IR-transparent coating to outer space. In this work, An IR-transparent porous PE (P-PE) coating with R¯solar= 0.96 and τ¯LWIR= 0.88 was prepared for non-contact heat dissipations. Under the direct sunlight of 860 W m−2, the IR-transparent coating obtained a 4°C lower heater temperature than the normal PDRC coating under the same condition. In addition, the spectral reflectance of the P-PE coating after immersing in air or water changed little, which showed excellent durability for long-term outdoor applications. These results indicate the P-PE coating can be a potential IR-transparent coating for non-contact heat dissipations under direct sunlight.
[Display omitted]
•Infrared transparent coating was used for non-contact heat dissipations•High solar reflectance R¯solar and IR-transmittance τ¯LWIR can be 0.96 and 0.88•IR transparent coating obtained a 4°C lower heater temperature than normal coating
Energy sustainability; Thermal engineering; Thermal property |
---|---|
AbstractList | Passive daytime radiative cooling (PDRC) can dissipate heat to outer space with high solar reflectance
(
R
¯
solar
)
and thermal emittance
(
ε
¯
LWIR
)
in the atmospheric transmission window. However, for the non-contact heat dissipation, besides the high
R
¯
solar
, a high infrared transmittance
(
τ
¯
LWIR
)
is needed to directly emit thermal radiation through the IR-transparent coating to outer space. In this work, An IR-transparent porous PE (P-PE) coating with
R
¯
solar
= 0.96 and
τ
¯
LWIR
= 0.88 was prepared for non-contact heat dissipations. Under the direct sunlight of 860 W m
−2
, the IR-transparent coating obtained a 4°C lower heater temperature than the normal PDRC coating under the same condition. In addition, the spectral reflectance of the P-PE coating after immersing in air or water changed little, which showed excellent durability for long-term outdoor applications. These results indicate the P-PE coating can be a potential IR-transparent coating for non-contact heat dissipations under direct sunlight.
•
Infrared transparent coating was used for non-contact heat dissipations
•
High solar reflectance
R
¯
solar
and IR-transmittance
τ
¯
LWIR
can be 0.96 and 0.88
•
IR transparent coating obtained a 4°C lower heater temperature than normal coating
Energy sustainability; Thermal engineering; Thermal property Passive daytime radiative cooling (PDRC) can dissipate heat to outer space with high solar reflectance (R¯solar) and thermal emittance (ε¯LWIR) in the atmospheric transmission window. However, for the non-contact heat dissipation, besides the high R¯solar, a high infrared transmittance (τ¯LWIR) is needed to directly emit thermal radiation through the IR-transparent coating to outer space. In this work, An IR-transparent porous PE (P-PE) coating with R¯solar= 0.96 and τ¯LWIR= 0.88 was prepared for non-contact heat dissipations. Under the direct sunlight of 860 W m−2, the IR-transparent coating obtained a 4°C lower heater temperature than the normal PDRC coating under the same condition. In addition, the spectral reflectance of the P-PE coating after immersing in air or water changed little, which showed excellent durability for long-term outdoor applications. These results indicate the P-PE coating can be a potential IR-transparent coating for non-contact heat dissipations under direct sunlight. [Display omitted] •Infrared transparent coating was used for non-contact heat dissipations•High solar reflectance R¯solar and IR-transmittance τ¯LWIR can be 0.96 and 0.88•IR transparent coating obtained a 4°C lower heater temperature than normal coating Energy sustainability; Thermal engineering; Thermal property Passive daytime radiative cooling (PDRC) can dissipate heat to outer space with high solar reflectance ( R ¯ solar ) and thermal emittance ( ε ¯ LWIR ) in the atmospheric transmission window. However, for the non-contact heat dissipation, besides the high R ¯ solar , a high infrared transmittance ( τ ¯ LWIR ) is needed to directly emit thermal radiation through the IR-transparent coating to outer space. In this work, An IR-transparent porous PE (P-PE) coating with R ¯ solar = 0.96 and τ ¯ LWIR = 0.88 was prepared for non-contact heat dissipations. Under the direct sunlight of 860 W m-2, the IR-transparent coating obtained a 4°C lower heater temperature than the normal PDRC coating under the same condition. In addition, the spectral reflectance of the P-PE coating after immersing in air or water changed little, which showed excellent durability for long-term outdoor applications. These results indicate the P-PE coating can be a potential IR-transparent coating for non-contact heat dissipations under direct sunlight.Passive daytime radiative cooling (PDRC) can dissipate heat to outer space with high solar reflectance ( R ¯ solar ) and thermal emittance ( ε ¯ LWIR ) in the atmospheric transmission window. However, for the non-contact heat dissipation, besides the high R ¯ solar , a high infrared transmittance ( τ ¯ LWIR ) is needed to directly emit thermal radiation through the IR-transparent coating to outer space. In this work, An IR-transparent porous PE (P-PE) coating with R ¯ solar = 0.96 and τ ¯ LWIR = 0.88 was prepared for non-contact heat dissipations. Under the direct sunlight of 860 W m-2, the IR-transparent coating obtained a 4°C lower heater temperature than the normal PDRC coating under the same condition. In addition, the spectral reflectance of the P-PE coating after immersing in air or water changed little, which showed excellent durability for long-term outdoor applications. These results indicate the P-PE coating can be a potential IR-transparent coating for non-contact heat dissipations under direct sunlight. Passive daytime radiative cooling (PDRC) can dissipate heat to outer space with high solar reflectance (R¯solar) and thermal emittance (ε¯LWIR) in the atmospheric transmission window. However, for the non-contact heat dissipation, besides the high R¯solar, a high infrared transmittance (τ¯LWIR) is needed to directly emit thermal radiation through the IR-transparent coating to outer space. In this work, An IR-transparent porous PE (P-PE) coating with R¯solar= 0.96 and τ¯LWIR= 0.88 was prepared for non-contact heat dissipations. Under the direct sunlight of 860 W m−2, the IR-transparent coating obtained a 4°C lower heater temperature than the normal PDRC coating under the same condition. In addition, the spectral reflectance of the P-PE coating after immersing in air or water changed little, which showed excellent durability for long-term outdoor applications. These results indicate the P-PE coating can be a potential IR-transparent coating for non-contact heat dissipations under direct sunlight. |
ArticleNumber | 104726 |
Author | Yan, Hongjie Chen, Meijie Pang, Dan |
Author_xml | – sequence: 1 givenname: Meijie orcidid: 0000-0001-5742-4160 surname: Chen fullname: Chen, Meijie email: chenmeijie@csu.edu.cn organization: School of Energy Science and Engineering, Central South University, Changsha 410083, China – sequence: 2 givenname: Dan surname: Pang fullname: Pang, Dan organization: School of Energy Science and Engineering, Central South University, Changsha 410083, China – sequence: 3 givenname: Hongjie surname: Yan fullname: Yan, Hongjie email: s-rfy@csu.edu.cn organization: School of Energy Science and Engineering, Central South University, Changsha 410083, China |
BookMark | eNp9kVFrHCEUhaWkNGmaP9AnH_syW0dnHIVSKKFtAoG-tM_i6J1dl1mdqhvIv-_dTApNHwKCV-85B73fW3IWUwRC3rds07JWftxvQnFhwxnneNENXL4iF7xXumGs42f_1OfkqpQ9Y4zj6rR8Q85Fr2TfiuGCjDdhu5sfaEmzzTTDNIOrNjqgNnoa4pRtBk9rtrEsWMZKl5TTsVCXbA1xS6eUKb6tcSlW6yrdga3Uh1LCgoIUyzvyerJzgaun_ZL8-vb15_VNc_fj--31l7vGdVrVRrFBDi2MSslJS82FlWyaBAgNFsDLSUmpxCR4b5kD3wuN51F43jP0YeOS3K65Ptm9WXI42Pxgkg3m8SLlrbG5BjeDaaUeFUgvmYaulcIKB4MApjWMbGIdZn1es5bjeADv8N_Zzs9Cn3di2JltujeaazEMPQZ8eArI6fcRSjUH5AXzbCPg9AyXJ12nO41StUpdTqUgAuNCfRwdJofZtMyciJu9ORE3J-JmJY5W_p_17wtfNH1aTYAw7gNkgwpA5D5khI_TCi_Z_wBT9cbb |
CitedBy_id | crossref_primary_10_1016_j_solener_2023_03_040 crossref_primary_10_1039_D4TA03388D crossref_primary_10_1016_j_enbuild_2022_112702 crossref_primary_10_26599_NRE_2023_9120107 crossref_primary_10_1021_acs_nanolett_4c04891 crossref_primary_10_1016_j_nxener_2023_100072 crossref_primary_10_1016_j_energy_2023_128750 crossref_primary_10_1016_j_cej_2022_139786 crossref_primary_10_1088_1742_6596_2706_1_012026 crossref_primary_10_1016_j_marenvres_2024_106482 crossref_primary_10_1364_OE_533116 crossref_primary_10_1007_s42765_023_00271_x crossref_primary_10_1021_acs_nanolett_3c04996 crossref_primary_10_1007_s11431_023_2603_2 crossref_primary_10_1021_acsami_3c19223 crossref_primary_10_3390_cryst14110965 crossref_primary_10_1016_j_applthermaleng_2024_125060 crossref_primary_10_1016_j_heliyon_2023_e14599 crossref_primary_10_1016_j_heliyon_2024_e38233 crossref_primary_10_1002_admt_202300705 crossref_primary_10_1016_j_ijthermalsci_2022_107959 crossref_primary_10_1016_j_rser_2023_113801 crossref_primary_10_1016_j_pmatsci_2024_101276 crossref_primary_10_1021_acsnano_4c10659 crossref_primary_10_1007_s10971_023_06189_5 crossref_primary_10_1039_D4TA01158A |
Cites_doi | 10.1038/s41467-020-20646-7 10.1038/ncomms13729 10.1002/eom2.12153 10.1016/j.apmt.2021.101298 10.1016/j.renene.2022.05.151 10.1126/science.aai7899 10.1016/j.cej.2020.127104 10.1038/s41893-019-0348-5 10.1016/j.mtphys.2019.100161 10.1016/j.nanoen.2020.105600 10.1016/j.ijheatmasstransfer.2016.08.009 10.1016/j.ijheatmasstransfer.2021.121263 10.1016/j.nanoen.2021.106069 10.1016/j.solmat.2022.111727 10.1021/acsphotonics.7b01492 10.1126/sciadv.aaz5413 10.1016/j.solmat.2021.111286 10.1063/1.5087281 10.1021/acsphotonics.6b00991 10.1016/j.ijheatmasstransfer.2021.122307 10.1038/s41893-018-0023-2 10.1126/science.aaf5471 10.1073/pnas.2001802117 10.1002/adma.201802152 10.1016/j.xcrp.2020.100221 10.1016/j.solmat.2021.111205 10.1126/sciadv.aat9480 10.1038/nature13883 10.1364/AO.14.001335 10.1557/mre.2020.18 10.1016/j.nanoen.2021.106377 10.1126/science.aat9513 10.1063/1.4835995 10.1063/5.0015650 10.1038/s41377-020-0296-x 10.1016/j.nanoen.2020.105611 10.1021/acs.nanolett.0c04241 10.1016/j.solmat.2021.111029 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) 2022 The Author(s). 2022 The Author(s) 2022 |
Copyright_xml | – notice: 2022 The Author(s) – notice: 2022 The Author(s). – notice: 2022 The Author(s) 2022 |
DBID | 6I. AAFTH AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1016/j.isci.2022.104726 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-0042 |
ExternalDocumentID | oai_doaj_org_article_169b8e6d609e4163a3ce73e099eb0f04 PMC9293775 10_1016_j_isci_2022_104726 S2589004222009981 |
GroupedDBID | 0R~ 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION EJD 7X8 5PM |
ID | FETCH-LOGICAL-c498t-807671eb886f96923a60ff3e39eaeed6f86683f325a0ced539668b3d2506713f3 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 01:26:56 EDT 2025 Thu Aug 21 17:34:55 EDT 2025 Thu Jul 10 18:34:30 EDT 2025 Thu Apr 24 23:06:47 EDT 2025 Tue Jul 01 01:03:51 EDT 2025 Sat Apr 27 15:44:09 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Thermal engineering Thermal property Energy sustainability |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c498t-807671eb886f96923a60ff3e39eaeed6f86683f325a0ced539668b3d2506713f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead contact |
ORCID | 0000-0001-5742-4160 |
OpenAccessLink | https://doaj.org/article/169b8e6d609e4163a3ce73e099eb0f04 |
PMID | 35865137 |
PQID | 2693774949 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_169b8e6d609e4163a3ce73e099eb0f04 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9293775 proquest_miscellaneous_2693774949 crossref_citationtrail_10_1016_j_isci_2022_104726 crossref_primary_10_1016_j_isci_2022_104726 elsevier_sciencedirect_doi_10_1016_j_isci_2022_104726 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-19 |
PublicationDateYYYYMMDD | 2022-08-19 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-19 day: 19 |
PublicationDecade | 2020 |
PublicationTitle | iScience |
PublicationYear | 2022 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Cao, Li, Gu (bib3) 2022; 240 Huang, Ruan (bib12) 2017; 104 Smith, Loewenstein (bib28) 1975; 14 Chen, Mandal, Li, Smith-Washington, Tsai, Huang, Shrestha, Yu, Han, Cao, Yang (bib7) 2020; 6 Chen, Pang, Chen, Yan (bib4) 2021; 173 Mandal, Fu, Overvig, Jia, Sun, Shi, Zhou, Xiao, Yu, Yang (bib24) 2018; 362 Ma, Wang, Dou, Zhao, Huang, Xu, Zhang, Xu, Zhang, Yue (bib22) 2021 Leroy, Bhatia, Sircar, Wang (bib17) 2022; 184 Chen, Pang, Chen, Yan, Yang (bib5) 2022; 4 Zhong, Yi, Zhang, Xu, Xu, Zhang, Zuo, Cai (bib42) 2021; 407 Wang, Wu, Shi, Hu, Chen, Wu (bib30) 2021; 12 Weng, Zhang, Jiang, Zhao, Deng (bib31) 2021; 230 Zhai, Ma, David, Zhao, Lou, Tan, Yang, Yin (bib35) 2017; 355 Liu, Zhou, Zhang, Feng, Zuo (bib21) 2019; 11 Xiang, Zhang, Luo, Zhang, Xu, Min, Tang, Meng (bib32) 2021; 81 Zhang, Zhou, Quan, Zhang, Sui, Yu, Liu (bib37) 2021; 225 Raman, Anoma, Zhu, Rephaeli, Fan (bib27) 2014; 515 Leroy, Bhatia, Kelsall, Castillejo-Cuberos, Capua, Zhao, Zhang, Guzman, Wang (bib16) 2019; 5 Mandal, Mandal, Brewer, Ramachandran, Raman (bib25) 2020 Zhou, Song, Liang, Singer, Zhou, Stegenburgs, Zhang, Xu, Ng, Yu (bib43) 2019; 2 Chen, Pang, Mandal, Chen, Yan, He, Yu, Yang (bib6) 2021; 21 Yu, Nie, Yuksel, Lee (bib34) 2020; 128 Cai, Song, Li, Hsu, Lin, Catrysse, Liu, Peng, Chen, Wang (bib2) 2018; 30 Cheng, Han, Wang, Yan, Shi, Liang, Zhang, Shuai (bib9) 2021; 89 Liu, Zhang, Tang, Zhou, Zhang, Ye, Zhao (bib20) 2021; 81 Atiganyanun, Plumley, Han, Hsu, Cytrynbaum, Peng, Han, Han (bib1) 2018; 5 Zhao, Aili, Zhai, Xu, Tan, Yin, Yang (bib40) 2019; 6 Zhao, Pang, Chen, Chen, Yan (bib41) 2022; 26 Chen, Zhu, Raman, Fan (bib8) 2016; 7 Li, Buddhiraju, Fan (bib18) 2020; 9 Tian, Liu, Chen, Zheng (bib29) 2021; 230 Kou, Jurado, Chen, Fan, Minnich (bib15) 2017; 4 Mahian, Bellos, Markides, Taylor, Alagumalai, Yang, Qin, Lee, Ahmadi, Safaei, Wongwises (bib23) 2021; 86 Kim, Lenert (bib14) 2018; 20 Zhang, Ly, Liu, Chen, Yan, Wu, Wang, Zheng, Zhou, Fan (bib36) 2020; 117 Fuqiang (bib10) 2020; 64 Yang, Zhang (bib33) 2020; 7 Zhang, Jing, Chen, Zhang, Wu, Gao, Zhu (bib39) 2022; 194 Zhu, Raman, Fan (bib44) 2013; 103 Incropera, Dewitt (bib13) 2002 Peng, Chen, Song, Catrysse, Hsu, Cai, Liu, Zhu, Zhou, Wu (bib26) 2018; 1 Hsu, Song, Catrysse, Liu, Peng, Xie, Fan, Cui (bib11) 2016; 353 Li, Peoples, Huang, Zhao, Jun, Ruan (bib19) 2020; 1 Zhang, Zhou, Tang, Xing, Quan, Liu, Yu, Hu (bib38) 2021 Kim (10.1016/j.isci.2022.104726_bib14) 2018; 20 Leroy (10.1016/j.isci.2022.104726_bib16) 2019; 5 Atiganyanun (10.1016/j.isci.2022.104726_bib1) 2018; 5 Raman (10.1016/j.isci.2022.104726_bib27) 2014; 515 Zhang (10.1016/j.isci.2022.104726_bib36) 2020; 117 Li (10.1016/j.isci.2022.104726_bib19) 2020; 1 Cao (10.1016/j.isci.2022.104726_bib3) 2022; 240 Zhao (10.1016/j.isci.2022.104726_bib40) 2019; 6 Incropera (10.1016/j.isci.2022.104726_bib13) 2002 Hsu (10.1016/j.isci.2022.104726_bib11) 2016; 353 Liu (10.1016/j.isci.2022.104726_bib21) 2019; 11 Chen (10.1016/j.isci.2022.104726_bib8) 2016; 7 Zhang (10.1016/j.isci.2022.104726_bib37) 2021; 225 Tian (10.1016/j.isci.2022.104726_bib29) 2021; 230 Huang (10.1016/j.isci.2022.104726_bib12) 2017; 104 Leroy (10.1016/j.isci.2022.104726_bib17) 2022; 184 Peng (10.1016/j.isci.2022.104726_bib26) 2018; 1 Yang (10.1016/j.isci.2022.104726_bib33) 2020; 7 Zhong (10.1016/j.isci.2022.104726_bib42) 2021; 407 Zhu (10.1016/j.isci.2022.104726_bib44) 2013; 103 Zhai (10.1016/j.isci.2022.104726_bib35) 2017; 355 Li (10.1016/j.isci.2022.104726_bib18) 2020; 9 Chen (10.1016/j.isci.2022.104726_bib4) 2021; 173 Chen (10.1016/j.isci.2022.104726_bib5) 2022; 4 Mandal (10.1016/j.isci.2022.104726_bib25) 2020 Zhou (10.1016/j.isci.2022.104726_bib43) 2019; 2 Mandal (10.1016/j.isci.2022.104726_bib24) 2018; 362 Chen (10.1016/j.isci.2022.104726_bib6) 2021; 21 Cheng (10.1016/j.isci.2022.104726_bib9) 2021; 89 Fuqiang (10.1016/j.isci.2022.104726_bib10) 2020; 64 Kou (10.1016/j.isci.2022.104726_bib15) 2017; 4 Weng (10.1016/j.isci.2022.104726_bib31) 2021; 230 Yu (10.1016/j.isci.2022.104726_bib34) 2020; 128 Smith (10.1016/j.isci.2022.104726_bib28) 1975; 14 Xiang (10.1016/j.isci.2022.104726_bib32) 2021; 81 Mahian (10.1016/j.isci.2022.104726_bib23) 2021; 86 Wang (10.1016/j.isci.2022.104726_bib30) 2021; 12 Zhang (10.1016/j.isci.2022.104726_bib38) 2021 Zhang (10.1016/j.isci.2022.104726_bib39) 2022; 194 Zhao (10.1016/j.isci.2022.104726_bib41) 2022; 26 Chen (10.1016/j.isci.2022.104726_bib7) 2020; 6 Liu (10.1016/j.isci.2022.104726_bib20) 2021; 81 Ma (10.1016/j.isci.2022.104726_bib22) 2021 Cai (10.1016/j.isci.2022.104726_bib2) 2018; 30 |
References_xml | – volume: 2 start-page: 718 year: 2019 end-page: 724 ident: bib43 article-title: A polydimethylsiloxane-coated metal structure for all-day radiative cooling publication-title: Nat. Sustain. – volume: 362 start-page: 315 year: 2018 end-page: 319 ident: bib24 article-title: Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling publication-title: Science – year: 2020 ident: bib25 article-title: Radiative cooling and thermoregulation in the earth’s glow publication-title: arXiv – volume: 230 start-page: 111286 year: 2021 ident: bib29 article-title: A facile approach to achieve subambient radiative cooling through aluminum foils and polyethylene bubble wrap publication-title: Sol. Energy Mater. Sol. Cells – volume: 230 start-page: 111205 year: 2021 ident: bib31 article-title: Effective daytime radiative cooling via a template method based PDMS sponge emitter with synergistic thermo-optical activity publication-title: Sol. Energy Mater. Sol. Cells – volume: 14 start-page: 1335 year: 1975 end-page: 1341 ident: bib28 article-title: Optical constants of far infrared materials 3: plastics publication-title: Appl. Opt. – volume: 6 start-page: 021306 year: 2019 ident: bib40 article-title: Radiative sky cooling: fundamental principles, materials, and applications publication-title: Appl. Phys. Rev. – volume: 4 start-page: 1 year: 2022 end-page: 28 ident: bib5 article-title: Passive daytime radiative cooling: fundamentals, material designs, and applications publication-title: EcoMat – volume: 21 start-page: 1412 year: 2021 end-page: 1418 ident: bib6 article-title: Designing mesoporous photonic structures for high-performance passive daytime radiative cooling publication-title: Nano Lett. – volume: 240 start-page: 111727 year: 2022 ident: bib3 article-title: Highly optically selective polyethylene porous films as versatile optical shields for daytime radiative cooling applications publication-title: Sol. Energy Mater. Sol. Cells – volume: 128 year: 2020 ident: bib34 article-title: Reflectivity of solid and hollow microsphere composites and the effects of uniform and varying diameters publication-title: J. Appl. Phys. – volume: 353 start-page: 1019 year: 2016 end-page: 1023 ident: bib11 article-title: Radiative human body cooling by nanoporous polyethylene textile publication-title: Science – volume: 7 start-page: 5 year: 2020 end-page: 8 ident: bib33 article-title: Passive daytime radiative cooling: Principle, application, and economic analysis publication-title: MRS Energy Sustain – volume: 81 start-page: 105611 year: 2021 ident: bib20 article-title: Recent advances in the development of radiative sky cooling inspired from solar thermal harvesting publication-title: Nano Energy – volume: 515 start-page: 540 year: 2014 end-page: 544 ident: bib27 article-title: Passive radiative cooling below ambient air temperature under direct sunlight publication-title: Nature – volume: 64 start-page: 1017 year: 2020 end-page: 1029 ident: bib10 article-title: Optical properties and cooling performance analyses of single-layer radiative cooling coating with mixture of TiO2 particles and SiO2 particles publication-title: Sci. China Technol. Sci. – volume: 104 start-page: 890 year: 2017 end-page: 896 ident: bib12 article-title: Nanoparticle embedded double-layer coating for daytime radiative cooling publication-title: Int. J. Heat Mass Transf. – volume: 117 start-page: 14657 year: 2020 end-page: 14666 ident: bib36 article-title: Biologically inspired flexible photonic films for efficient passive radiative cooling publication-title: Proc. Natl. Acad. Sci. USA – volume: 355 start-page: 1062 year: 2017 end-page: 1066 ident: bib35 article-title: Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling publication-title: Science – volume: 173 start-page: 121263 year: 2021 ident: bib4 article-title: Investigating the effective radiative cooling performance of random dielectric microsphere coatings publication-title: Int. J. Heat Mass Transf. – volume: 9 start-page: 68 year: 2020 ident: bib18 article-title: Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space publication-title: Light Sci. Appl. – volume: 407 start-page: 127104 year: 2021 ident: bib42 article-title: Self-cleaning and spectrally selective coating on cotton fabric for passive daytime radiative cooling publication-title: Chem. Eng. J. – volume: 1 start-page: 100221 year: 2020 ident: bib19 article-title: Full daytime sub-ambient radiative cooling with high figure of merit in commercial-like paints publication-title: Cell Rep. Phys. Sci. – volume: 1 start-page: 105 year: 2018 end-page: 112 ident: bib26 article-title: Nanoporous polyethylene microfibres for large-scale radiative cooling fabric publication-title: Nat. Sustain. – volume: 5 start-page: 1181 year: 2018 end-page: 1187 ident: bib1 article-title: Effective radiative cooling by paint-format microsphere-based photonic random media publication-title: ACS Photonics – volume: 7 start-page: 13729 year: 2016 ident: bib8 article-title: Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle publication-title: Nat. Commun. – volume: 194 start-page: 850 year: 2022 end-page: 857 ident: bib39 article-title: Full daytime sub-ambient radiative cooling film with high efficiency and low cost publication-title: Renew. Energy – volume: 4 start-page: 626 year: 2017 end-page: 630 ident: bib15 article-title: Daytime radiative cooling using near-black infrared emitters publication-title: ACS Photonics – year: 2021 ident: bib22 article-title: Flexible daytime radiative cooling enhanced by enabling three-phase composites with scattering interfaces between silica microspheres and hierarchical porous coatings publication-title: ACS Appl. Mater. Interfaces – year: 2002 ident: bib13 article-title: Fundamentals of Heat and Mass Transfer – volume: 89 start-page: 106377 year: 2021 ident: bib9 article-title: Efficient radiative cooling coating with biomimetic human skin wrinkle structure publication-title: Nano Energy – volume: 5 start-page: 1 year: 2019 end-page: 9 ident: bib16 article-title: High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel publication-title: Sci. Adv. – volume: 12 start-page: 365 year: 2021 ident: bib30 article-title: A structural polymer for highly efficient all-day passive radiative cooling. Nat publication-title: Nat. Commun. – volume: 86 start-page: 106069 year: 2021 ident: bib23 article-title: Recent advances in using nanofluids in renewable energy systems and the environmental implications of their uptake publication-title: Nano Energy – volume: 30 start-page: e1802152 year: 2018 ident: bib2 article-title: Spectrally selective nanocomposite textile for outdoor personal cooling publication-title: Adv. Mater. – volume: 11 start-page: 100161 year: 2019 ident: bib21 article-title: Advances and challenges in commercializing radiative cooling publication-title: Mater. Today Phys. – volume: 225 start-page: 111029 year: 2021 ident: bib37 article-title: A flexible film to block solar radiation for daytime radiative cooling publication-title: Sol. Energy Mater. Sol. Cells – volume: 6 start-page: eaaz5413 year: 2020 ident: bib7 article-title: Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling publication-title: Sci. Adv. – volume: 103 start-page: 223902 year: 2013 ident: bib44 article-title: Color-preserving daytime radiative cooling publication-title: Appl. Phys. Lett. – volume: 20 year: 2018 ident: bib14 article-title: Optical and thermal filtering nanoporous materials for sub-ambient radiative cooling publication-title: J. Opt. – volume: 81 start-page: 105600 year: 2021 ident: bib32 article-title: 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling publication-title: Nano Energy – year: 2021 ident: bib38 article-title: Mechanically robust and spectrally selective convection shield for daytime subambient radiative cooling publication-title: ACS Appl. Mater. Interfaces – volume: 184 start-page: 122307 year: 2022 ident: bib17 article-title: Thermal transport in solar-reflecting and infrared-transparent polyethylene aerogels publication-title: Int. J. Heat Mass Transf. – volume: 26 start-page: 101298 year: 2022 ident: bib41 article-title: Scalable aqueous processing-based radiative cooling coatings for heat dissipation applications publication-title: Appl. Mater. Today – volume: 12 start-page: 365 year: 2021 ident: 10.1016/j.isci.2022.104726_bib30 article-title: A structural polymer for highly efficient all-day passive radiative cooling. Nat publication-title: Nat. Commun. doi: 10.1038/s41467-020-20646-7 – volume: 7 start-page: 13729 year: 2016 ident: 10.1016/j.isci.2022.104726_bib8 article-title: Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle publication-title: Nat. Commun. doi: 10.1038/ncomms13729 – volume: 4 start-page: 1 year: 2022 ident: 10.1016/j.isci.2022.104726_bib5 article-title: Passive daytime radiative cooling: fundamentals, material designs, and applications publication-title: EcoMat doi: 10.1002/eom2.12153 – volume: 64 start-page: 1017 year: 2020 ident: 10.1016/j.isci.2022.104726_bib10 article-title: Optical properties and cooling performance analyses of single-layer radiative cooling coating with mixture of TiO2 particles and SiO2 particles publication-title: Sci. China Technol. Sci. – volume: 26 start-page: 101298 year: 2022 ident: 10.1016/j.isci.2022.104726_bib41 article-title: Scalable aqueous processing-based radiative cooling coatings for heat dissipation applications publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2021.101298 – volume: 194 start-page: 850 year: 2022 ident: 10.1016/j.isci.2022.104726_bib39 article-title: Full daytime sub-ambient radiative cooling film with high efficiency and low cost publication-title: Renew. Energy doi: 10.1016/j.renene.2022.05.151 – volume: 355 start-page: 1062 year: 2017 ident: 10.1016/j.isci.2022.104726_bib35 article-title: Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling publication-title: Science doi: 10.1126/science.aai7899 – volume: 407 start-page: 127104 year: 2021 ident: 10.1016/j.isci.2022.104726_bib42 article-title: Self-cleaning and spectrally selective coating on cotton fabric for passive daytime radiative cooling publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127104 – volume: 2 start-page: 718 year: 2019 ident: 10.1016/j.isci.2022.104726_bib43 article-title: A polydimethylsiloxane-coated metal structure for all-day radiative cooling publication-title: Nat. Sustain. doi: 10.1038/s41893-019-0348-5 – volume: 11 start-page: 100161 year: 2019 ident: 10.1016/j.isci.2022.104726_bib21 article-title: Advances and challenges in commercializing radiative cooling publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2019.100161 – volume: 81 start-page: 105600 year: 2021 ident: 10.1016/j.isci.2022.104726_bib32 article-title: 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105600 – volume: 104 start-page: 890 year: 2017 ident: 10.1016/j.isci.2022.104726_bib12 article-title: Nanoparticle embedded double-layer coating for daytime radiative cooling publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.08.009 – volume: 173 start-page: 121263 year: 2021 ident: 10.1016/j.isci.2022.104726_bib4 article-title: Investigating the effective radiative cooling performance of random dielectric microsphere coatings publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2021.121263 – volume: 86 start-page: 106069 year: 2021 ident: 10.1016/j.isci.2022.104726_bib23 article-title: Recent advances in using nanofluids in renewable energy systems and the environmental implications of their uptake publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106069 – volume: 240 start-page: 111727 year: 2022 ident: 10.1016/j.isci.2022.104726_bib3 article-title: Highly optically selective polyethylene porous films as versatile optical shields for daytime radiative cooling applications publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2022.111727 – volume: 5 start-page: 1181 year: 2018 ident: 10.1016/j.isci.2022.104726_bib1 article-title: Effective radiative cooling by paint-format microsphere-based photonic random media publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b01492 – volume: 6 start-page: eaaz5413 year: 2020 ident: 10.1016/j.isci.2022.104726_bib7 article-title: Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz5413 – volume: 230 start-page: 111286 year: 2021 ident: 10.1016/j.isci.2022.104726_bib29 article-title: A facile approach to achieve subambient radiative cooling through aluminum foils and polyethylene bubble wrap publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2021.111286 – volume: 6 start-page: 021306 year: 2019 ident: 10.1016/j.isci.2022.104726_bib40 article-title: Radiative sky cooling: fundamental principles, materials, and applications publication-title: Appl. Phys. Rev. doi: 10.1063/1.5087281 – volume: 4 start-page: 626 year: 2017 ident: 10.1016/j.isci.2022.104726_bib15 article-title: Daytime radiative cooling using near-black infrared emitters publication-title: ACS Photonics doi: 10.1021/acsphotonics.6b00991 – volume: 184 start-page: 122307 year: 2022 ident: 10.1016/j.isci.2022.104726_bib17 article-title: Thermal transport in solar-reflecting and infrared-transparent polyethylene aerogels publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2021.122307 – volume: 1 start-page: 105 year: 2018 ident: 10.1016/j.isci.2022.104726_bib26 article-title: Nanoporous polyethylene microfibres for large-scale radiative cooling fabric publication-title: Nat. Sustain. doi: 10.1038/s41893-018-0023-2 – volume: 353 start-page: 1019 year: 2016 ident: 10.1016/j.isci.2022.104726_bib11 article-title: Radiative human body cooling by nanoporous polyethylene textile publication-title: Science doi: 10.1126/science.aaf5471 – volume: 117 start-page: 14657 year: 2020 ident: 10.1016/j.isci.2022.104726_bib36 article-title: Biologically inspired flexible photonic films for efficient passive radiative cooling publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2001802117 – volume: 30 start-page: e1802152 year: 2018 ident: 10.1016/j.isci.2022.104726_bib2 article-title: Spectrally selective nanocomposite textile for outdoor personal cooling publication-title: Adv. Mater. doi: 10.1002/adma.201802152 – volume: 1 start-page: 100221 year: 2020 ident: 10.1016/j.isci.2022.104726_bib19 article-title: Full daytime sub-ambient radiative cooling with high figure of merit in commercial-like paints publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2020.100221 – volume: 230 start-page: 111205 year: 2021 ident: 10.1016/j.isci.2022.104726_bib31 article-title: Effective daytime radiative cooling via a template method based PDMS sponge emitter with synergistic thermo-optical activity publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2021.111205 – volume: 5 start-page: 1 year: 2019 ident: 10.1016/j.isci.2022.104726_bib16 article-title: High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel publication-title: Sci. Adv. doi: 10.1126/sciadv.aat9480 – volume: 515 start-page: 540 year: 2014 ident: 10.1016/j.isci.2022.104726_bib27 article-title: Passive radiative cooling below ambient air temperature under direct sunlight publication-title: Nature doi: 10.1038/nature13883 – volume: 14 start-page: 1335 year: 1975 ident: 10.1016/j.isci.2022.104726_bib28 article-title: Optical constants of far infrared materials 3: plastics publication-title: Appl. Opt. doi: 10.1364/AO.14.001335 – year: 2021 ident: 10.1016/j.isci.2022.104726_bib22 article-title: Flexible daytime radiative cooling enhanced by enabling three-phase composites with scattering interfaces between silica microspheres and hierarchical porous coatings publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 5 year: 2020 ident: 10.1016/j.isci.2022.104726_bib33 article-title: Passive daytime radiative cooling: Principle, application, and economic analysis publication-title: MRS Energy Sustain doi: 10.1557/mre.2020.18 – volume: 89 start-page: 106377 year: 2021 ident: 10.1016/j.isci.2022.104726_bib9 article-title: Efficient radiative cooling coating with biomimetic human skin wrinkle structure publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106377 – year: 2021 ident: 10.1016/j.isci.2022.104726_bib38 article-title: Mechanically robust and spectrally selective convection shield for daytime subambient radiative cooling publication-title: ACS Appl. Mater. Interfaces – volume: 362 start-page: 315 year: 2018 ident: 10.1016/j.isci.2022.104726_bib24 article-title: Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling publication-title: Science doi: 10.1126/science.aat9513 – volume: 103 start-page: 223902 year: 2013 ident: 10.1016/j.isci.2022.104726_bib44 article-title: Color-preserving daytime radiative cooling publication-title: Appl. Phys. Lett. doi: 10.1063/1.4835995 – volume: 128 year: 2020 ident: 10.1016/j.isci.2022.104726_bib34 article-title: Reflectivity of solid and hollow microsphere composites and the effects of uniform and varying diameters publication-title: J. Appl. Phys. doi: 10.1063/5.0015650 – year: 2002 ident: 10.1016/j.isci.2022.104726_bib13 – volume: 20 year: 2018 ident: 10.1016/j.isci.2022.104726_bib14 article-title: Optical and thermal filtering nanoporous materials for sub-ambient radiative cooling publication-title: J. Opt. – volume: 9 start-page: 68 year: 2020 ident: 10.1016/j.isci.2022.104726_bib18 article-title: Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space publication-title: Light Sci. Appl. doi: 10.1038/s41377-020-0296-x – volume: 81 start-page: 105611 year: 2021 ident: 10.1016/j.isci.2022.104726_bib20 article-title: Recent advances in the development of radiative sky cooling inspired from solar thermal harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105611 – year: 2020 ident: 10.1016/j.isci.2022.104726_bib25 article-title: Radiative cooling and thermoregulation in the earth’s glow publication-title: arXiv – volume: 21 start-page: 1412 year: 2021 ident: 10.1016/j.isci.2022.104726_bib6 article-title: Designing mesoporous photonic structures for high-performance passive daytime radiative cooling publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c04241 – volume: 225 start-page: 111029 year: 2021 ident: 10.1016/j.isci.2022.104726_bib37 article-title: A flexible film to block solar radiation for daytime radiative cooling publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2021.111029 |
SSID | ssj0002002496 |
Score | 2.3624885 |
Snippet | Passive daytime radiative cooling (PDRC) can dissipate heat to outer space with high solar reflectance (R¯solar) and thermal emittance (ε¯LWIR) in the... Passive daytime radiative cooling (PDRC) can dissipate heat to outer space with high solar reflectance ( R ¯ solar ) and thermal emittance ( ε ¯ LWIR ) in the... Passive daytime radiative cooling (PDRC) can dissipate heat to outer space with high solar reflectance ( R ¯ solar ) and thermal emittance ( ε ¯ LWIR ) in the... |
SourceID | doaj pubmedcentral proquest crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104726 |
SubjectTerms | Energy sustainability Thermal engineering Thermal property |
Title | Highly solar reflectance and infrared transparent porous coating for non-contact heat dissipations |
URI | https://dx.doi.org/10.1016/j.isci.2022.104726 https://www.proquest.com/docview/2693774949 https://pubmed.ncbi.nlm.nih.gov/PMC9293775 https://doaj.org/article/169b8e6d609e4163a3ce73e099eb0f04 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iyYsoKq5fRPAmxaZp0uSooiwePLmwt5CkCa5IFa0H_70zabu0F714bZsmnZl23jQvL4RcVJXMlbM6g1RSZmXkMVNlEJnXpYIMIVztEkH2Uc4X5cNSLEdbfSEnrJMH7gx3xaR2Ksha5jogeLDch4oHADbB5bFTAoWcNyqmXtL0GkrhpZ3lBHKCIDT7FTMduQtXvEJxWBQ4x1mhssIoKyXx_klyGoHPKXVylIvud8h2DyLpdTf4XbIRmj3ikLLx-k0_sVil0AX-kEefUtvUFALpA7nmtE1q5rgErKWAvaHwp_7NIvmZAn6lzVuTIX3d-pbid5rihP1Au94ni_u7p9t51u-gkPlSqxaVhmXFglNKRi0By1mZx8gD18FCcpRRSal45IWwuQ-14FD8KMdrwEXQDk4ckE3oNxwSWkUuAwNf1LWDItA7ziLkduF1ZMyxYkbYYEHje3lx3OXi1Qw8sheDVjdoddNZfUYu123eO3GNX6--Qcesr0Rh7HQAwsX04WL-CpcZEYNbTY8xOuwAt1r92vn5EAMGXkCcVbFNAB-ZQgLCq1DkZ0aqSXBMRjo906yek5Q3gFNoLI7-49GOyRYOGH94M31CNtuPr3AKiKl1Z-nl-AGbBBPI |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+solar+reflectance+and+infrared+transparent+porous+coating+for+non-contact+heat+dissipations&rft.jtitle=iScience&rft.au=Chen%2C+Meijie&rft.au=Pang%2C+Dan&rft.au=Yan%2C+Hongjie&rft.date=2022-08-19&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=25&rft.issue=8&rft.spage=104726&rft_id=info:doi/10.1016%2Fj.isci.2022.104726&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isci_2022_104726 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |