Highly solar reflectance and infrared transparent porous coating for non-contact heat dissipations

Passive daytime radiative cooling (PDRC) can dissipate heat to outer space with high solar reflectance (R¯solar) and thermal emittance (ε¯LWIR) in the atmospheric transmission window. However, for the non-contact heat dissipation, besides the high R¯solar, a high infrared transmittance (τ¯LWIR) is n...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 25; no. 8; p. 104726
Main Authors Chen, Meijie, Pang, Dan, Yan, Hongjie
Format Journal Article
LanguageEnglish
Published Elsevier Inc 19.08.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Passive daytime radiative cooling (PDRC) can dissipate heat to outer space with high solar reflectance (R¯solar) and thermal emittance (ε¯LWIR) in the atmospheric transmission window. However, for the non-contact heat dissipation, besides the high R¯solar, a high infrared transmittance (τ¯LWIR) is needed to directly emit thermal radiation through the IR-transparent coating to outer space. In this work, An IR-transparent porous PE (P-PE) coating with R¯solar= 0.96 and τ¯LWIR= 0.88 was prepared for non-contact heat dissipations. Under the direct sunlight of 860 W m−2, the IR-transparent coating obtained a 4°C lower heater temperature than the normal PDRC coating under the same condition. In addition, the spectral reflectance of the P-PE coating after immersing in air or water changed little, which showed excellent durability for long-term outdoor applications. These results indicate the P-PE coating can be a potential IR-transparent coating for non-contact heat dissipations under direct sunlight. [Display omitted] •Infrared transparent coating was used for non-contact heat dissipations•High solar reflectance R¯solar and IR-transmittance τ¯LWIR can be 0.96 and 0.88•IR transparent coating obtained a 4°C lower heater temperature than normal coating Energy sustainability; Thermal engineering; Thermal property
AbstractList Passive daytime radiative cooling (PDRC) can dissipate heat to outer space with high solar reflectance ( R ¯ solar ) and thermal emittance ( ε ¯ LWIR ) in the atmospheric transmission window. However, for the non-contact heat dissipation, besides the high R ¯ solar , a high infrared transmittance ( τ ¯ LWIR ) is needed to directly emit thermal radiation through the IR-transparent coating to outer space. In this work, An IR-transparent porous PE (P-PE) coating with R ¯ solar = 0.96 and τ ¯ LWIR = 0.88 was prepared for non-contact heat dissipations. Under the direct sunlight of 860 W m −2 , the IR-transparent coating obtained a 4°C lower heater temperature than the normal PDRC coating under the same condition. In addition, the spectral reflectance of the P-PE coating after immersing in air or water changed little, which showed excellent durability for long-term outdoor applications. These results indicate the P-PE coating can be a potential IR-transparent coating for non-contact heat dissipations under direct sunlight. • Infrared transparent coating was used for non-contact heat dissipations • High solar reflectance R ¯ solar and IR-transmittance τ ¯ LWIR can be 0.96 and 0.88 • IR transparent coating obtained a 4°C lower heater temperature than normal coating Energy sustainability; Thermal engineering; Thermal property
Passive daytime radiative cooling (PDRC) can dissipate heat to outer space with high solar reflectance (R¯solar) and thermal emittance (ε¯LWIR) in the atmospheric transmission window. However, for the non-contact heat dissipation, besides the high R¯solar, a high infrared transmittance (τ¯LWIR) is needed to directly emit thermal radiation through the IR-transparent coating to outer space. In this work, An IR-transparent porous PE (P-PE) coating with R¯solar= 0.96 and τ¯LWIR= 0.88 was prepared for non-contact heat dissipations. Under the direct sunlight of 860 W m−2, the IR-transparent coating obtained a 4°C lower heater temperature than the normal PDRC coating under the same condition. In addition, the spectral reflectance of the P-PE coating after immersing in air or water changed little, which showed excellent durability for long-term outdoor applications. These results indicate the P-PE coating can be a potential IR-transparent coating for non-contact heat dissipations under direct sunlight. [Display omitted] •Infrared transparent coating was used for non-contact heat dissipations•High solar reflectance R¯solar and IR-transmittance τ¯LWIR can be 0.96 and 0.88•IR transparent coating obtained a 4°C lower heater temperature than normal coating Energy sustainability; Thermal engineering; Thermal property
Passive daytime radiative cooling (PDRC) can dissipate heat to outer space with high solar reflectance ( R ¯ solar ) and thermal emittance ( ε ¯ LWIR ) in the atmospheric transmission window. However, for the non-contact heat dissipation, besides the high R ¯ solar , a high infrared transmittance ( τ ¯ LWIR ) is needed to directly emit thermal radiation through the IR-transparent coating to outer space. In this work, An IR-transparent porous PE (P-PE) coating with R ¯ solar = 0.96 and τ ¯ LWIR = 0.88 was prepared for non-contact heat dissipations. Under the direct sunlight of 860 W m-2, the IR-transparent coating obtained a 4°C lower heater temperature than the normal PDRC coating under the same condition. In addition, the spectral reflectance of the P-PE coating after immersing in air or water changed little, which showed excellent durability for long-term outdoor applications. These results indicate the P-PE coating can be a potential IR-transparent coating for non-contact heat dissipations under direct sunlight.Passive daytime radiative cooling (PDRC) can dissipate heat to outer space with high solar reflectance ( R ¯ solar ) and thermal emittance ( ε ¯ LWIR ) in the atmospheric transmission window. However, for the non-contact heat dissipation, besides the high R ¯ solar , a high infrared transmittance ( τ ¯ LWIR ) is needed to directly emit thermal radiation through the IR-transparent coating to outer space. In this work, An IR-transparent porous PE (P-PE) coating with R ¯ solar = 0.96 and τ ¯ LWIR = 0.88 was prepared for non-contact heat dissipations. Under the direct sunlight of 860 W m-2, the IR-transparent coating obtained a 4°C lower heater temperature than the normal PDRC coating under the same condition. In addition, the spectral reflectance of the P-PE coating after immersing in air or water changed little, which showed excellent durability for long-term outdoor applications. These results indicate the P-PE coating can be a potential IR-transparent coating for non-contact heat dissipations under direct sunlight.
Passive daytime radiative cooling (PDRC) can dissipate heat to outer space with high solar reflectance (R¯solar) and thermal emittance (ε¯LWIR) in the atmospheric transmission window. However, for the non-contact heat dissipation, besides the high R¯solar, a high infrared transmittance (τ¯LWIR) is needed to directly emit thermal radiation through the IR-transparent coating to outer space. In this work, An IR-transparent porous PE (P-PE) coating with R¯solar= 0.96 and τ¯LWIR= 0.88 was prepared for non-contact heat dissipations. Under the direct sunlight of 860 W m−2, the IR-transparent coating obtained a 4°C lower heater temperature than the normal PDRC coating under the same condition. In addition, the spectral reflectance of the P-PE coating after immersing in air or water changed little, which showed excellent durability for long-term outdoor applications. These results indicate the P-PE coating can be a potential IR-transparent coating for non-contact heat dissipations under direct sunlight.
ArticleNumber 104726
Author Yan, Hongjie
Chen, Meijie
Pang, Dan
Author_xml – sequence: 1
  givenname: Meijie
  orcidid: 0000-0001-5742-4160
  surname: Chen
  fullname: Chen, Meijie
  email: chenmeijie@csu.edu.cn
  organization: School of Energy Science and Engineering, Central South University, Changsha 410083, China
– sequence: 2
  givenname: Dan
  surname: Pang
  fullname: Pang, Dan
  organization: School of Energy Science and Engineering, Central South University, Changsha 410083, China
– sequence: 3
  givenname: Hongjie
  surname: Yan
  fullname: Yan, Hongjie
  email: s-rfy@csu.edu.cn
  organization: School of Energy Science and Engineering, Central South University, Changsha 410083, China
BookMark eNp9kVFrHCEUhaWkNGmaP9AnH_syW0dnHIVSKKFtAoG-tM_i6J1dl1mdqhvIv-_dTApNHwKCV-85B73fW3IWUwRC3rds07JWftxvQnFhwxnneNENXL4iF7xXumGs42f_1OfkqpQ9Y4zj6rR8Q85Fr2TfiuGCjDdhu5sfaEmzzTTDNIOrNjqgNnoa4pRtBk9rtrEsWMZKl5TTsVCXbA1xS6eUKb6tcSlW6yrdga3Uh1LCgoIUyzvyerJzgaun_ZL8-vb15_VNc_fj--31l7vGdVrVRrFBDi2MSslJS82FlWyaBAgNFsDLSUmpxCR4b5kD3wuN51F43jP0YeOS3K65Ptm9WXI42Pxgkg3m8SLlrbG5BjeDaaUeFUgvmYaulcIKB4MApjWMbGIdZn1es5bjeADv8N_Zzs9Cn3di2JltujeaazEMPQZ8eArI6fcRSjUH5AXzbCPg9AyXJ12nO41StUpdTqUgAuNCfRwdJofZtMyciJu9ORE3J-JmJY5W_p_17wtfNH1aTYAw7gNkgwpA5D5khI_TCi_Z_wBT9cbb
CitedBy_id crossref_primary_10_1016_j_solener_2023_03_040
crossref_primary_10_1039_D4TA03388D
crossref_primary_10_1016_j_enbuild_2022_112702
crossref_primary_10_26599_NRE_2023_9120107
crossref_primary_10_1021_acs_nanolett_4c04891
crossref_primary_10_1016_j_nxener_2023_100072
crossref_primary_10_1016_j_energy_2023_128750
crossref_primary_10_1016_j_cej_2022_139786
crossref_primary_10_1088_1742_6596_2706_1_012026
crossref_primary_10_1016_j_marenvres_2024_106482
crossref_primary_10_1364_OE_533116
crossref_primary_10_1007_s42765_023_00271_x
crossref_primary_10_1021_acs_nanolett_3c04996
crossref_primary_10_1007_s11431_023_2603_2
crossref_primary_10_1021_acsami_3c19223
crossref_primary_10_3390_cryst14110965
crossref_primary_10_1016_j_applthermaleng_2024_125060
crossref_primary_10_1016_j_heliyon_2023_e14599
crossref_primary_10_1016_j_heliyon_2024_e38233
crossref_primary_10_1002_admt_202300705
crossref_primary_10_1016_j_ijthermalsci_2022_107959
crossref_primary_10_1016_j_rser_2023_113801
crossref_primary_10_1016_j_pmatsci_2024_101276
crossref_primary_10_1021_acsnano_4c10659
crossref_primary_10_1007_s10971_023_06189_5
crossref_primary_10_1039_D4TA01158A
Cites_doi 10.1038/s41467-020-20646-7
10.1038/ncomms13729
10.1002/eom2.12153
10.1016/j.apmt.2021.101298
10.1016/j.renene.2022.05.151
10.1126/science.aai7899
10.1016/j.cej.2020.127104
10.1038/s41893-019-0348-5
10.1016/j.mtphys.2019.100161
10.1016/j.nanoen.2020.105600
10.1016/j.ijheatmasstransfer.2016.08.009
10.1016/j.ijheatmasstransfer.2021.121263
10.1016/j.nanoen.2021.106069
10.1016/j.solmat.2022.111727
10.1021/acsphotonics.7b01492
10.1126/sciadv.aaz5413
10.1016/j.solmat.2021.111286
10.1063/1.5087281
10.1021/acsphotonics.6b00991
10.1016/j.ijheatmasstransfer.2021.122307
10.1038/s41893-018-0023-2
10.1126/science.aaf5471
10.1073/pnas.2001802117
10.1002/adma.201802152
10.1016/j.xcrp.2020.100221
10.1016/j.solmat.2021.111205
10.1126/sciadv.aat9480
10.1038/nature13883
10.1364/AO.14.001335
10.1557/mre.2020.18
10.1016/j.nanoen.2021.106377
10.1126/science.aat9513
10.1063/1.4835995
10.1063/5.0015650
10.1038/s41377-020-0296-x
10.1016/j.nanoen.2020.105611
10.1021/acs.nanolett.0c04241
10.1016/j.solmat.2021.111029
ContentType Journal Article
Copyright 2022 The Author(s)
2022 The Author(s).
2022 The Author(s) 2022
Copyright_xml – notice: 2022 The Author(s)
– notice: 2022 The Author(s).
– notice: 2022 The Author(s) 2022
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.isci.2022.104726
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
ExternalDocumentID oai_doaj_org_article_169b8e6d609e4163a3ce73e099eb0f04
PMC9293775
10_1016_j_isci_2022_104726
S2589004222009981
GroupedDBID 0R~
0SF
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
7X8
5PM
ID FETCH-LOGICAL-c498t-807671eb886f96923a60ff3e39eaeed6f86683f325a0ced539668b3d2506713f3
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Wed Aug 27 01:26:56 EDT 2025
Thu Aug 21 17:34:55 EDT 2025
Thu Jul 10 18:34:30 EDT 2025
Thu Apr 24 23:06:47 EDT 2025
Tue Jul 01 01:03:51 EDT 2025
Sat Apr 27 15:44:09 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Thermal engineering
Thermal property
Energy sustainability
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c498t-807671eb886f96923a60ff3e39eaeed6f86683f325a0ced539668b3d2506713f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead contact
ORCID 0000-0001-5742-4160
OpenAccessLink https://doaj.org/article/169b8e6d609e4163a3ce73e099eb0f04
PMID 35865137
PQID 2693774949
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_169b8e6d609e4163a3ce73e099eb0f04
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9293775
proquest_miscellaneous_2693774949
crossref_citationtrail_10_1016_j_isci_2022_104726
crossref_primary_10_1016_j_isci_2022_104726
elsevier_sciencedirect_doi_10_1016_j_isci_2022_104726
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-19
PublicationDateYYYYMMDD 2022-08-19
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-19
  day: 19
PublicationDecade 2020
PublicationTitle iScience
PublicationYear 2022
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Cao, Li, Gu (bib3) 2022; 240
Huang, Ruan (bib12) 2017; 104
Smith, Loewenstein (bib28) 1975; 14
Chen, Mandal, Li, Smith-Washington, Tsai, Huang, Shrestha, Yu, Han, Cao, Yang (bib7) 2020; 6
Chen, Pang, Chen, Yan (bib4) 2021; 173
Mandal, Fu, Overvig, Jia, Sun, Shi, Zhou, Xiao, Yu, Yang (bib24) 2018; 362
Ma, Wang, Dou, Zhao, Huang, Xu, Zhang, Xu, Zhang, Yue (bib22) 2021
Leroy, Bhatia, Sircar, Wang (bib17) 2022; 184
Chen, Pang, Chen, Yan, Yang (bib5) 2022; 4
Zhong, Yi, Zhang, Xu, Xu, Zhang, Zuo, Cai (bib42) 2021; 407
Wang, Wu, Shi, Hu, Chen, Wu (bib30) 2021; 12
Weng, Zhang, Jiang, Zhao, Deng (bib31) 2021; 230
Zhai, Ma, David, Zhao, Lou, Tan, Yang, Yin (bib35) 2017; 355
Liu, Zhou, Zhang, Feng, Zuo (bib21) 2019; 11
Xiang, Zhang, Luo, Zhang, Xu, Min, Tang, Meng (bib32) 2021; 81
Zhang, Zhou, Quan, Zhang, Sui, Yu, Liu (bib37) 2021; 225
Raman, Anoma, Zhu, Rephaeli, Fan (bib27) 2014; 515
Leroy, Bhatia, Kelsall, Castillejo-Cuberos, Capua, Zhao, Zhang, Guzman, Wang (bib16) 2019; 5
Mandal, Mandal, Brewer, Ramachandran, Raman (bib25) 2020
Zhou, Song, Liang, Singer, Zhou, Stegenburgs, Zhang, Xu, Ng, Yu (bib43) 2019; 2
Chen, Pang, Mandal, Chen, Yan, He, Yu, Yang (bib6) 2021; 21
Yu, Nie, Yuksel, Lee (bib34) 2020; 128
Cai, Song, Li, Hsu, Lin, Catrysse, Liu, Peng, Chen, Wang (bib2) 2018; 30
Cheng, Han, Wang, Yan, Shi, Liang, Zhang, Shuai (bib9) 2021; 89
Liu, Zhang, Tang, Zhou, Zhang, Ye, Zhao (bib20) 2021; 81
Atiganyanun, Plumley, Han, Hsu, Cytrynbaum, Peng, Han, Han (bib1) 2018; 5
Zhao, Aili, Zhai, Xu, Tan, Yin, Yang (bib40) 2019; 6
Zhao, Pang, Chen, Chen, Yan (bib41) 2022; 26
Chen, Zhu, Raman, Fan (bib8) 2016; 7
Li, Buddhiraju, Fan (bib18) 2020; 9
Tian, Liu, Chen, Zheng (bib29) 2021; 230
Kou, Jurado, Chen, Fan, Minnich (bib15) 2017; 4
Mahian, Bellos, Markides, Taylor, Alagumalai, Yang, Qin, Lee, Ahmadi, Safaei, Wongwises (bib23) 2021; 86
Kim, Lenert (bib14) 2018; 20
Zhang, Ly, Liu, Chen, Yan, Wu, Wang, Zheng, Zhou, Fan (bib36) 2020; 117
Fuqiang (bib10) 2020; 64
Yang, Zhang (bib33) 2020; 7
Zhang, Jing, Chen, Zhang, Wu, Gao, Zhu (bib39) 2022; 194
Zhu, Raman, Fan (bib44) 2013; 103
Incropera, Dewitt (bib13) 2002
Peng, Chen, Song, Catrysse, Hsu, Cai, Liu, Zhu, Zhou, Wu (bib26) 2018; 1
Hsu, Song, Catrysse, Liu, Peng, Xie, Fan, Cui (bib11) 2016; 353
Li, Peoples, Huang, Zhao, Jun, Ruan (bib19) 2020; 1
Zhang, Zhou, Tang, Xing, Quan, Liu, Yu, Hu (bib38) 2021
Kim (10.1016/j.isci.2022.104726_bib14) 2018; 20
Leroy (10.1016/j.isci.2022.104726_bib16) 2019; 5
Atiganyanun (10.1016/j.isci.2022.104726_bib1) 2018; 5
Raman (10.1016/j.isci.2022.104726_bib27) 2014; 515
Zhang (10.1016/j.isci.2022.104726_bib36) 2020; 117
Li (10.1016/j.isci.2022.104726_bib19) 2020; 1
Cao (10.1016/j.isci.2022.104726_bib3) 2022; 240
Zhao (10.1016/j.isci.2022.104726_bib40) 2019; 6
Incropera (10.1016/j.isci.2022.104726_bib13) 2002
Hsu (10.1016/j.isci.2022.104726_bib11) 2016; 353
Liu (10.1016/j.isci.2022.104726_bib21) 2019; 11
Chen (10.1016/j.isci.2022.104726_bib8) 2016; 7
Zhang (10.1016/j.isci.2022.104726_bib37) 2021; 225
Tian (10.1016/j.isci.2022.104726_bib29) 2021; 230
Huang (10.1016/j.isci.2022.104726_bib12) 2017; 104
Leroy (10.1016/j.isci.2022.104726_bib17) 2022; 184
Peng (10.1016/j.isci.2022.104726_bib26) 2018; 1
Yang (10.1016/j.isci.2022.104726_bib33) 2020; 7
Zhong (10.1016/j.isci.2022.104726_bib42) 2021; 407
Zhu (10.1016/j.isci.2022.104726_bib44) 2013; 103
Zhai (10.1016/j.isci.2022.104726_bib35) 2017; 355
Li (10.1016/j.isci.2022.104726_bib18) 2020; 9
Chen (10.1016/j.isci.2022.104726_bib4) 2021; 173
Chen (10.1016/j.isci.2022.104726_bib5) 2022; 4
Mandal (10.1016/j.isci.2022.104726_bib25) 2020
Zhou (10.1016/j.isci.2022.104726_bib43) 2019; 2
Mandal (10.1016/j.isci.2022.104726_bib24) 2018; 362
Chen (10.1016/j.isci.2022.104726_bib6) 2021; 21
Cheng (10.1016/j.isci.2022.104726_bib9) 2021; 89
Fuqiang (10.1016/j.isci.2022.104726_bib10) 2020; 64
Kou (10.1016/j.isci.2022.104726_bib15) 2017; 4
Weng (10.1016/j.isci.2022.104726_bib31) 2021; 230
Yu (10.1016/j.isci.2022.104726_bib34) 2020; 128
Smith (10.1016/j.isci.2022.104726_bib28) 1975; 14
Xiang (10.1016/j.isci.2022.104726_bib32) 2021; 81
Mahian (10.1016/j.isci.2022.104726_bib23) 2021; 86
Wang (10.1016/j.isci.2022.104726_bib30) 2021; 12
Zhang (10.1016/j.isci.2022.104726_bib38) 2021
Zhang (10.1016/j.isci.2022.104726_bib39) 2022; 194
Zhao (10.1016/j.isci.2022.104726_bib41) 2022; 26
Chen (10.1016/j.isci.2022.104726_bib7) 2020; 6
Liu (10.1016/j.isci.2022.104726_bib20) 2021; 81
Ma (10.1016/j.isci.2022.104726_bib22) 2021
Cai (10.1016/j.isci.2022.104726_bib2) 2018; 30
References_xml – volume: 2
  start-page: 718
  year: 2019
  end-page: 724
  ident: bib43
  article-title: A polydimethylsiloxane-coated metal structure for all-day radiative cooling
  publication-title: Nat. Sustain.
– volume: 362
  start-page: 315
  year: 2018
  end-page: 319
  ident: bib24
  article-title: Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling
  publication-title: Science
– year: 2020
  ident: bib25
  article-title: Radiative cooling and thermoregulation in the earth’s glow
  publication-title: arXiv
– volume: 230
  start-page: 111286
  year: 2021
  ident: bib29
  article-title: A facile approach to achieve subambient radiative cooling through aluminum foils and polyethylene bubble wrap
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 230
  start-page: 111205
  year: 2021
  ident: bib31
  article-title: Effective daytime radiative cooling via a template method based PDMS sponge emitter with synergistic thermo-optical activity
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 14
  start-page: 1335
  year: 1975
  end-page: 1341
  ident: bib28
  article-title: Optical constants of far infrared materials 3: plastics
  publication-title: Appl. Opt.
– volume: 6
  start-page: 021306
  year: 2019
  ident: bib40
  article-title: Radiative sky cooling: fundamental principles, materials, and applications
  publication-title: Appl. Phys. Rev.
– volume: 4
  start-page: 1
  year: 2022
  end-page: 28
  ident: bib5
  article-title: Passive daytime radiative cooling: fundamentals, material designs, and applications
  publication-title: EcoMat
– volume: 21
  start-page: 1412
  year: 2021
  end-page: 1418
  ident: bib6
  article-title: Designing mesoporous photonic structures for high-performance passive daytime radiative cooling
  publication-title: Nano Lett.
– volume: 240
  start-page: 111727
  year: 2022
  ident: bib3
  article-title: Highly optically selective polyethylene porous films as versatile optical shields for daytime radiative cooling applications
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 128
  year: 2020
  ident: bib34
  article-title: Reflectivity of solid and hollow microsphere composites and the effects of uniform and varying diameters
  publication-title: J. Appl. Phys.
– volume: 353
  start-page: 1019
  year: 2016
  end-page: 1023
  ident: bib11
  article-title: Radiative human body cooling by nanoporous polyethylene textile
  publication-title: Science
– volume: 7
  start-page: 5
  year: 2020
  end-page: 8
  ident: bib33
  article-title: Passive daytime radiative cooling: Principle, application, and economic analysis
  publication-title: MRS Energy Sustain
– volume: 81
  start-page: 105611
  year: 2021
  ident: bib20
  article-title: Recent advances in the development of radiative sky cooling inspired from solar thermal harvesting
  publication-title: Nano Energy
– volume: 515
  start-page: 540
  year: 2014
  end-page: 544
  ident: bib27
  article-title: Passive radiative cooling below ambient air temperature under direct sunlight
  publication-title: Nature
– volume: 64
  start-page: 1017
  year: 2020
  end-page: 1029
  ident: bib10
  article-title: Optical properties and cooling performance analyses of single-layer radiative cooling coating with mixture of TiO2 particles and SiO2 particles
  publication-title: Sci. China Technol. Sci.
– volume: 104
  start-page: 890
  year: 2017
  end-page: 896
  ident: bib12
  article-title: Nanoparticle embedded double-layer coating for daytime radiative cooling
  publication-title: Int. J. Heat Mass Transf.
– volume: 117
  start-page: 14657
  year: 2020
  end-page: 14666
  ident: bib36
  article-title: Biologically inspired flexible photonic films for efficient passive radiative cooling
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 355
  start-page: 1062
  year: 2017
  end-page: 1066
  ident: bib35
  article-title: Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling
  publication-title: Science
– volume: 173
  start-page: 121263
  year: 2021
  ident: bib4
  article-title: Investigating the effective radiative cooling performance of random dielectric microsphere coatings
  publication-title: Int. J. Heat Mass Transf.
– volume: 9
  start-page: 68
  year: 2020
  ident: bib18
  article-title: Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space
  publication-title: Light Sci. Appl.
– volume: 407
  start-page: 127104
  year: 2021
  ident: bib42
  article-title: Self-cleaning and spectrally selective coating on cotton fabric for passive daytime radiative cooling
  publication-title: Chem. Eng. J.
– volume: 1
  start-page: 100221
  year: 2020
  ident: bib19
  article-title: Full daytime sub-ambient radiative cooling with high figure of merit in commercial-like paints
  publication-title: Cell Rep. Phys. Sci.
– volume: 1
  start-page: 105
  year: 2018
  end-page: 112
  ident: bib26
  article-title: Nanoporous polyethylene microfibres for large-scale radiative cooling fabric
  publication-title: Nat. Sustain.
– volume: 5
  start-page: 1181
  year: 2018
  end-page: 1187
  ident: bib1
  article-title: Effective radiative cooling by paint-format microsphere-based photonic random media
  publication-title: ACS Photonics
– volume: 7
  start-page: 13729
  year: 2016
  ident: bib8
  article-title: Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle
  publication-title: Nat. Commun.
– volume: 194
  start-page: 850
  year: 2022
  end-page: 857
  ident: bib39
  article-title: Full daytime sub-ambient radiative cooling film with high efficiency and low cost
  publication-title: Renew. Energy
– volume: 4
  start-page: 626
  year: 2017
  end-page: 630
  ident: bib15
  article-title: Daytime radiative cooling using near-black infrared emitters
  publication-title: ACS Photonics
– year: 2021
  ident: bib22
  article-title: Flexible daytime radiative cooling enhanced by enabling three-phase composites with scattering interfaces between silica microspheres and hierarchical porous coatings
  publication-title: ACS Appl. Mater. Interfaces
– year: 2002
  ident: bib13
  article-title: Fundamentals of Heat and Mass Transfer
– volume: 89
  start-page: 106377
  year: 2021
  ident: bib9
  article-title: Efficient radiative cooling coating with biomimetic human skin wrinkle structure
  publication-title: Nano Energy
– volume: 5
  start-page: 1
  year: 2019
  end-page: 9
  ident: bib16
  article-title: High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel
  publication-title: Sci. Adv.
– volume: 12
  start-page: 365
  year: 2021
  ident: bib30
  article-title: A structural polymer for highly efficient all-day passive radiative cooling. Nat
  publication-title: Nat. Commun.
– volume: 86
  start-page: 106069
  year: 2021
  ident: bib23
  article-title: Recent advances in using nanofluids in renewable energy systems and the environmental implications of their uptake
  publication-title: Nano Energy
– volume: 30
  start-page: e1802152
  year: 2018
  ident: bib2
  article-title: Spectrally selective nanocomposite textile for outdoor personal cooling
  publication-title: Adv. Mater.
– volume: 11
  start-page: 100161
  year: 2019
  ident: bib21
  article-title: Advances and challenges in commercializing radiative cooling
  publication-title: Mater. Today Phys.
– volume: 225
  start-page: 111029
  year: 2021
  ident: bib37
  article-title: A flexible film to block solar radiation for daytime radiative cooling
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 6
  start-page: eaaz5413
  year: 2020
  ident: bib7
  article-title: Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling
  publication-title: Sci. Adv.
– volume: 103
  start-page: 223902
  year: 2013
  ident: bib44
  article-title: Color-preserving daytime radiative cooling
  publication-title: Appl. Phys. Lett.
– volume: 20
  year: 2018
  ident: bib14
  article-title: Optical and thermal filtering nanoporous materials for sub-ambient radiative cooling
  publication-title: J. Opt.
– volume: 81
  start-page: 105600
  year: 2021
  ident: bib32
  article-title: 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling
  publication-title: Nano Energy
– year: 2021
  ident: bib38
  article-title: Mechanically robust and spectrally selective convection shield for daytime subambient radiative cooling
  publication-title: ACS Appl. Mater. Interfaces
– volume: 184
  start-page: 122307
  year: 2022
  ident: bib17
  article-title: Thermal transport in solar-reflecting and infrared-transparent polyethylene aerogels
  publication-title: Int. J. Heat Mass Transf.
– volume: 26
  start-page: 101298
  year: 2022
  ident: bib41
  article-title: Scalable aqueous processing-based radiative cooling coatings for heat dissipation applications
  publication-title: Appl. Mater. Today
– volume: 12
  start-page: 365
  year: 2021
  ident: 10.1016/j.isci.2022.104726_bib30
  article-title: A structural polymer for highly efficient all-day passive radiative cooling. Nat
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20646-7
– volume: 7
  start-page: 13729
  year: 2016
  ident: 10.1016/j.isci.2022.104726_bib8
  article-title: Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13729
– volume: 4
  start-page: 1
  year: 2022
  ident: 10.1016/j.isci.2022.104726_bib5
  article-title: Passive daytime radiative cooling: fundamentals, material designs, and applications
  publication-title: EcoMat
  doi: 10.1002/eom2.12153
– volume: 64
  start-page: 1017
  year: 2020
  ident: 10.1016/j.isci.2022.104726_bib10
  article-title: Optical properties and cooling performance analyses of single-layer radiative cooling coating with mixture of TiO2 particles and SiO2 particles
  publication-title: Sci. China Technol. Sci.
– volume: 26
  start-page: 101298
  year: 2022
  ident: 10.1016/j.isci.2022.104726_bib41
  article-title: Scalable aqueous processing-based radiative cooling coatings for heat dissipation applications
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2021.101298
– volume: 194
  start-page: 850
  year: 2022
  ident: 10.1016/j.isci.2022.104726_bib39
  article-title: Full daytime sub-ambient radiative cooling film with high efficiency and low cost
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.05.151
– volume: 355
  start-page: 1062
  year: 2017
  ident: 10.1016/j.isci.2022.104726_bib35
  article-title: Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling
  publication-title: Science
  doi: 10.1126/science.aai7899
– volume: 407
  start-page: 127104
  year: 2021
  ident: 10.1016/j.isci.2022.104726_bib42
  article-title: Self-cleaning and spectrally selective coating on cotton fabric for passive daytime radiative cooling
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127104
– volume: 2
  start-page: 718
  year: 2019
  ident: 10.1016/j.isci.2022.104726_bib43
  article-title: A polydimethylsiloxane-coated metal structure for all-day radiative cooling
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-019-0348-5
– volume: 11
  start-page: 100161
  year: 2019
  ident: 10.1016/j.isci.2022.104726_bib21
  article-title: Advances and challenges in commercializing radiative cooling
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2019.100161
– volume: 81
  start-page: 105600
  year: 2021
  ident: 10.1016/j.isci.2022.104726_bib32
  article-title: 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105600
– volume: 104
  start-page: 890
  year: 2017
  ident: 10.1016/j.isci.2022.104726_bib12
  article-title: Nanoparticle embedded double-layer coating for daytime radiative cooling
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.08.009
– volume: 173
  start-page: 121263
  year: 2021
  ident: 10.1016/j.isci.2022.104726_bib4
  article-title: Investigating the effective radiative cooling performance of random dielectric microsphere coatings
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2021.121263
– volume: 86
  start-page: 106069
  year: 2021
  ident: 10.1016/j.isci.2022.104726_bib23
  article-title: Recent advances in using nanofluids in renewable energy systems and the environmental implications of their uptake
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106069
– volume: 240
  start-page: 111727
  year: 2022
  ident: 10.1016/j.isci.2022.104726_bib3
  article-title: Highly optically selective polyethylene porous films as versatile optical shields for daytime radiative cooling applications
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2022.111727
– volume: 5
  start-page: 1181
  year: 2018
  ident: 10.1016/j.isci.2022.104726_bib1
  article-title: Effective radiative cooling by paint-format microsphere-based photonic random media
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b01492
– volume: 6
  start-page: eaaz5413
  year: 2020
  ident: 10.1016/j.isci.2022.104726_bib7
  article-title: Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz5413
– volume: 230
  start-page: 111286
  year: 2021
  ident: 10.1016/j.isci.2022.104726_bib29
  article-title: A facile approach to achieve subambient radiative cooling through aluminum foils and polyethylene bubble wrap
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2021.111286
– volume: 6
  start-page: 021306
  year: 2019
  ident: 10.1016/j.isci.2022.104726_bib40
  article-title: Radiative sky cooling: fundamental principles, materials, and applications
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5087281
– volume: 4
  start-page: 626
  year: 2017
  ident: 10.1016/j.isci.2022.104726_bib15
  article-title: Daytime radiative cooling using near-black infrared emitters
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.6b00991
– volume: 184
  start-page: 122307
  year: 2022
  ident: 10.1016/j.isci.2022.104726_bib17
  article-title: Thermal transport in solar-reflecting and infrared-transparent polyethylene aerogels
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2021.122307
– volume: 1
  start-page: 105
  year: 2018
  ident: 10.1016/j.isci.2022.104726_bib26
  article-title: Nanoporous polyethylene microfibres for large-scale radiative cooling fabric
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-018-0023-2
– volume: 353
  start-page: 1019
  year: 2016
  ident: 10.1016/j.isci.2022.104726_bib11
  article-title: Radiative human body cooling by nanoporous polyethylene textile
  publication-title: Science
  doi: 10.1126/science.aaf5471
– volume: 117
  start-page: 14657
  year: 2020
  ident: 10.1016/j.isci.2022.104726_bib36
  article-title: Biologically inspired flexible photonic films for efficient passive radiative cooling
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2001802117
– volume: 30
  start-page: e1802152
  year: 2018
  ident: 10.1016/j.isci.2022.104726_bib2
  article-title: Spectrally selective nanocomposite textile for outdoor personal cooling
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802152
– volume: 1
  start-page: 100221
  year: 2020
  ident: 10.1016/j.isci.2022.104726_bib19
  article-title: Full daytime sub-ambient radiative cooling with high figure of merit in commercial-like paints
  publication-title: Cell Rep. Phys. Sci.
  doi: 10.1016/j.xcrp.2020.100221
– volume: 230
  start-page: 111205
  year: 2021
  ident: 10.1016/j.isci.2022.104726_bib31
  article-title: Effective daytime radiative cooling via a template method based PDMS sponge emitter with synergistic thermo-optical activity
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2021.111205
– volume: 5
  start-page: 1
  year: 2019
  ident: 10.1016/j.isci.2022.104726_bib16
  article-title: High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat9480
– volume: 515
  start-page: 540
  year: 2014
  ident: 10.1016/j.isci.2022.104726_bib27
  article-title: Passive radiative cooling below ambient air temperature under direct sunlight
  publication-title: Nature
  doi: 10.1038/nature13883
– volume: 14
  start-page: 1335
  year: 1975
  ident: 10.1016/j.isci.2022.104726_bib28
  article-title: Optical constants of far infrared materials 3: plastics
  publication-title: Appl. Opt.
  doi: 10.1364/AO.14.001335
– year: 2021
  ident: 10.1016/j.isci.2022.104726_bib22
  article-title: Flexible daytime radiative cooling enhanced by enabling three-phase composites with scattering interfaces between silica microspheres and hierarchical porous coatings
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 5
  year: 2020
  ident: 10.1016/j.isci.2022.104726_bib33
  article-title: Passive daytime radiative cooling: Principle, application, and economic analysis
  publication-title: MRS Energy Sustain
  doi: 10.1557/mre.2020.18
– volume: 89
  start-page: 106377
  year: 2021
  ident: 10.1016/j.isci.2022.104726_bib9
  article-title: Efficient radiative cooling coating with biomimetic human skin wrinkle structure
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106377
– year: 2021
  ident: 10.1016/j.isci.2022.104726_bib38
  article-title: Mechanically robust and spectrally selective convection shield for daytime subambient radiative cooling
  publication-title: ACS Appl. Mater. Interfaces
– volume: 362
  start-page: 315
  year: 2018
  ident: 10.1016/j.isci.2022.104726_bib24
  article-title: Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling
  publication-title: Science
  doi: 10.1126/science.aat9513
– volume: 103
  start-page: 223902
  year: 2013
  ident: 10.1016/j.isci.2022.104726_bib44
  article-title: Color-preserving daytime radiative cooling
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4835995
– volume: 128
  year: 2020
  ident: 10.1016/j.isci.2022.104726_bib34
  article-title: Reflectivity of solid and hollow microsphere composites and the effects of uniform and varying diameters
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0015650
– year: 2002
  ident: 10.1016/j.isci.2022.104726_bib13
– volume: 20
  year: 2018
  ident: 10.1016/j.isci.2022.104726_bib14
  article-title: Optical and thermal filtering nanoporous materials for sub-ambient radiative cooling
  publication-title: J. Opt.
– volume: 9
  start-page: 68
  year: 2020
  ident: 10.1016/j.isci.2022.104726_bib18
  article-title: Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-020-0296-x
– volume: 81
  start-page: 105611
  year: 2021
  ident: 10.1016/j.isci.2022.104726_bib20
  article-title: Recent advances in the development of radiative sky cooling inspired from solar thermal harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105611
– year: 2020
  ident: 10.1016/j.isci.2022.104726_bib25
  article-title: Radiative cooling and thermoregulation in the earth’s glow
  publication-title: arXiv
– volume: 21
  start-page: 1412
  year: 2021
  ident: 10.1016/j.isci.2022.104726_bib6
  article-title: Designing mesoporous photonic structures for high-performance passive daytime radiative cooling
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c04241
– volume: 225
  start-page: 111029
  year: 2021
  ident: 10.1016/j.isci.2022.104726_bib37
  article-title: A flexible film to block solar radiation for daytime radiative cooling
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2021.111029
SSID ssj0002002496
Score 2.3624885
Snippet Passive daytime radiative cooling (PDRC) can dissipate heat to outer space with high solar reflectance (R¯solar) and thermal emittance (ε¯LWIR) in the...
Passive daytime radiative cooling (PDRC) can dissipate heat to outer space with high solar reflectance ( R ¯ solar ) and thermal emittance ( ε ¯ LWIR ) in the...
Passive daytime radiative cooling (PDRC) can dissipate heat to outer space with high solar reflectance ( R ¯ solar ) and thermal emittance ( ε ¯ LWIR ) in the...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104726
SubjectTerms Energy sustainability
Thermal engineering
Thermal property
Title Highly solar reflectance and infrared transparent porous coating for non-contact heat dissipations
URI https://dx.doi.org/10.1016/j.isci.2022.104726
https://www.proquest.com/docview/2693774949
https://pubmed.ncbi.nlm.nih.gov/PMC9293775
https://doaj.org/article/169b8e6d609e4163a3ce73e099eb0f04
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iyYsoKq5fRPAmxaZp0uSooiwePLmwt5CkCa5IFa0H_70zabu0F714bZsmnZl23jQvL4RcVJXMlbM6g1RSZmXkMVNlEJnXpYIMIVztEkH2Uc4X5cNSLEdbfSEnrJMH7gx3xaR2Ksha5jogeLDch4oHADbB5bFTAoWcNyqmXtL0GkrhpZ3lBHKCIDT7FTMduQtXvEJxWBQ4x1mhssIoKyXx_klyGoHPKXVylIvud8h2DyLpdTf4XbIRmj3ikLLx-k0_sVil0AX-kEefUtvUFALpA7nmtE1q5rgErKWAvaHwp_7NIvmZAn6lzVuTIX3d-pbid5rihP1Au94ni_u7p9t51u-gkPlSqxaVhmXFglNKRi0By1mZx8gD18FCcpRRSal45IWwuQ-14FD8KMdrwEXQDk4ckE3oNxwSWkUuAwNf1LWDItA7ziLkduF1ZMyxYkbYYEHje3lx3OXi1Qw8sheDVjdoddNZfUYu123eO3GNX6--Qcesr0Rh7HQAwsX04WL-CpcZEYNbTY8xOuwAt1r92vn5EAMGXkCcVbFNAB-ZQgLCq1DkZ0aqSXBMRjo906yek5Q3gFNoLI7-49GOyRYOGH94M31CNtuPr3AKiKl1Z-nl-AGbBBPI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+solar+reflectance+and+infrared+transparent+porous+coating+for+non-contact+heat+dissipations&rft.jtitle=iScience&rft.au=Chen%2C+Meijie&rft.au=Pang%2C+Dan&rft.au=Yan%2C+Hongjie&rft.date=2022-08-19&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=25&rft.issue=8&rft.spage=104726&rft_id=info:doi/10.1016%2Fj.isci.2022.104726&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isci_2022_104726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon