Increased plasma serotonin metabolite 5-hydroxyindole acetic acid concentrations are associated with impaired systolic and late diastolic forward flows during cardiac cycle and elevated resistive index at popliteal artery and renal insufficiency in type 2 diabetic patients with microalbuminuria

Although lower extremity arterial disease is frequently accompanied by diabetes mellitus, the association of circulating biomarkers with flow components during the cardiac cycle in lower-leg arteries has yet to be fully elucidated. We enrolled 165 type 2 diabetic patients with normal ankle-brachial...

Full description

Saved in:
Bibliographic Details
Published inEndocrine Journal Vol. 63; no. 1; pp. 69 - 76
Main Authors Takami, Kazuhisa, Takeda, Jun, Suzuki, Eiji, Tajima, Yoshitaka, Saito, Jun, Horikawa, Yukio
Format Journal Article
LanguageEnglish
Published Japan The Japan Endocrine Society 2016
Subjects
Online AccessGet full text
ISSN0918-8959
1348-4540
1348-4540
DOI10.1507/endocrj.EJ15-0343

Cover

Abstract Although lower extremity arterial disease is frequently accompanied by diabetes mellitus, the association of circulating biomarkers with flow components during the cardiac cycle in lower-leg arteries has yet to be fully elucidated. We enrolled 165 type 2 diabetic patients with normal ankle-brachial index (ABI 1.0-1.4), comprising 106 normoalbuminuric and 59 microalbuminuric patients, and 40 age-matched nondiabetic subjects consecutively admitted to our hospital. Serum high sensitivity C-reactive protein (hsCRP) level and plasma von Willebrand factor ristocetin cofactor activity (VWF) and vasoconstrictor serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA) concentrations were measured. An automatic device was used to measure ABI and brachial-ankle pulse wave velocity (baPWV). Flow components during the cardiac cycle, total flow volume, and resistive index at popliteal artery were evaluated using gated magnetic resonance imaging. Although estimated glomerular filtration rate (eGFR), early diastolic flow reversal, heart rate, and ABI were similar between the groups, diabetic patients had higher log hsCRP (p<0.001), VWF (p<0.001), 5-HIAA (p=0.002), resistive index (p<0.001) and baPWV (p<0.001) and lower systolic (p=0.026) and late diastolic (p<0.001) forward flows and total flow volume (p<0.001) than nondiabetic subjects. Multivariate analyses demonstrated that 5-HIAA in microalbuminuric patients showed higher associations with systolic and late diastolic forward flows during the cardiac cycle, total flow volume and resistive index at popliteal artery, and eGFR compared to normoalbuminuric patients. In microalbuminuric patients, 5-HIAA was a significant independent determinant among these factors. Thus, increased plasma 5-HIAA levels are involved in the pathogenesis of impaired blood flow in lower extremities and renal insufficiency in diabetic patients with microalbuminuria.
AbstractList Although lower extremity arterial disease is frequently accompanied by diabetes mellitus, the association of circulating biomarkers with flow components during the cardiac cycle in lower-leg arteries has yet to be fully elucidated. We enrolled 165 type 2 diabetic patients with normal ankle-brachial index (ABI 1.0-1.4), comprising 106 normoalbuminuric and 59 microalbuminuric patients, and 40 age-matched nondiabetic subjects consecutively admitted to our hospital. Serum high sensitivity C-reactive protein (hsCRP) level and plasma von Willebrand factor ristocetin cofactor activity (VWF) and vasoconstrictor serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA) concentrations were measured. An automatic device was used to measure ABI and brachial-ankle pulse wave velocity (baPWV). Flow components during the cardiac cycle, total flow volume, and resistive index at popliteal artery were evaluated using gated magnetic resonance imaging. Although estimated glomerular filtration rate (eGFR), early diastolic flow reversal, heart rate, and ABI were similar between the groups, diabetic patients had higher log hsCRP (p<0.001), VWF (p<0.001), 5-HIAA (p=0.002), resistive index (p<0.001) and baPWV (p<0.001) and lower systolic (p=0.026) and late diastolic (p<0.001) forward flows and total flow volume (p<0.001) than nondiabetic subjects. Multivariate analyses demonstrated that 5-HIAA in microalbuminuric patients showed higher associations with systolic and late diastolic forward flows during the cardiac cycle, total flow volume and resistive index at popliteal artery, and eGFR compared to normoalbuminuric patients. In microalbuminuric patients, 5-HIAA was a significant independent determinant among these factors. Thus, increased plasma 5-HIAA levels are involved in the pathogenesis of impaired blood flow in lower extremities and renal insufficiency in diabetic patients with microalbuminuria.Although lower extremity arterial disease is frequently accompanied by diabetes mellitus, the association of circulating biomarkers with flow components during the cardiac cycle in lower-leg arteries has yet to be fully elucidated. We enrolled 165 type 2 diabetic patients with normal ankle-brachial index (ABI 1.0-1.4), comprising 106 normoalbuminuric and 59 microalbuminuric patients, and 40 age-matched nondiabetic subjects consecutively admitted to our hospital. Serum high sensitivity C-reactive protein (hsCRP) level and plasma von Willebrand factor ristocetin cofactor activity (VWF) and vasoconstrictor serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA) concentrations were measured. An automatic device was used to measure ABI and brachial-ankle pulse wave velocity (baPWV). Flow components during the cardiac cycle, total flow volume, and resistive index at popliteal artery were evaluated using gated magnetic resonance imaging. Although estimated glomerular filtration rate (eGFR), early diastolic flow reversal, heart rate, and ABI were similar between the groups, diabetic patients had higher log hsCRP (p<0.001), VWF (p<0.001), 5-HIAA (p=0.002), resistive index (p<0.001) and baPWV (p<0.001) and lower systolic (p=0.026) and late diastolic (p<0.001) forward flows and total flow volume (p<0.001) than nondiabetic subjects. Multivariate analyses demonstrated that 5-HIAA in microalbuminuric patients showed higher associations with systolic and late diastolic forward flows during the cardiac cycle, total flow volume and resistive index at popliteal artery, and eGFR compared to normoalbuminuric patients. In microalbuminuric patients, 5-HIAA was a significant independent determinant among these factors. Thus, increased plasma 5-HIAA levels are involved in the pathogenesis of impaired blood flow in lower extremities and renal insufficiency in diabetic patients with microalbuminuria.
Although lower extremity arterial disease is frequently accompanied by diabetes mellitus, the association of circulating biomarkers with flow components during the cardiac cycle in lower-leg arteries has yet to be fully elucidated. We enrolled 165 type 2 diabetic patients with normal ankle-brachial index (ABI 1.0-1.4), comprising 106 normoalbuminuric and 59 microalbuminuric patients, and 40 age-matched nondiabetic subjects consecutively admitted to our hospital. Serum high sensitivity C-reactive protein (hsCRP) level and plasma von Willebrand factor ristocetin cofactor activity (VWF) and vasoconstrictor serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA) concentrations were measured. An automatic device was used to measure ABI and brachial-ankle pulse wave velocity (baPWV). Flow components during the cardiac cycle, total flow volume, and resistive index at popliteal artery were evaluated using gated magnetic resonance imaging. Although estimated glomerular filtration rate (eGFR), early diastolic flow reversal, heart rate, and ABI were similar between the groups, diabetic patients had higher log hsCRP (p<0.001), VWF (p<0.001), 5-HIAA (p=0.002), resistive index (p<0.001) and baPWV (p<0.001) and lower systolic (p=0.026) and late diastolic (p<0.001) forward flows and total flow volume (p<0.001) than nondiabetic subjects. Multivariate analyses demonstrated that 5-HIAA in microalbuminuric patients showed higher associations with systolic and late diastolic forward flows during the cardiac cycle, total flow volume and resistive index at popliteal artery, and eGFR compared to normoalbuminuric patients. In microalbuminuric patients, 5-HIAA was a significant independent determinant among these factors. Thus, increased plasma 5-HIAA levels are involved in the pathogenesis of impaired blood flow in lower extremities and renal insufficiency in diabetic patients with microalbuminuria.
Author Saito, Jun
Suzuki, Eiji
Takeda, Jun
Tajima, Yoshitaka
Takami, Kazuhisa
Horikawa, Yukio
Author_xml – sequence: 1
  fullname: Takami, Kazuhisa
  organization: Department of Internal Medicine, Kizawa Memorial Hospital, Minokamo 505-8503, Japan
– sequence: 1
  fullname: Takeda, Jun
  organization: Department of Diabetes and Endocrinology, Gifu University School of Medicine, Gifu 501-1194, Japan
– sequence: 1
  fullname: Suzuki, Eiji
  organization: Department of Diabetes and Endocrinology, Gifu Prefectural General Medical Center, Gifu 500-8717, Japan
– sequence: 1
  fullname: Tajima, Yoshitaka
  organization: Department of Diabetes and Endocrinology, Gifu Prefectural General Medical Center, Gifu 500-8717, Japan
– sequence: 1
  fullname: Saito, Jun
  organization: Department of Diabetes and Endocrinology, Gifu Prefectural General Medical Center, Gifu 500-8717, Japan
– sequence: 1
  fullname: Horikawa, Yukio
  organization: Department of Diabetes and Endocrinology, Gifu University School of Medicine, Gifu 501-1194, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26567921$$D View this record in MEDLINE/PubMed
BookMark eNp9ksFu1DAQhgMqotvCA3BBvsElxY6TeHNEVSlFlbjAOXKcSXdWjh1sb9u8PZPd7R44cLHl8f_N_KOZi-zMeQdZ9kHwK1Fx9QVc703YXt38EFXOZSlfZyshy3VeViU_y1a8Eet83VTNeXYR45ZzKatSvs3Oi7qqVVOI1atPd84E0BF6NlkdR80iBJ-8Q8dGSLrzFhOwKt_MffDPM1JJC0wbSGjowp4Z7wy4FHRC7yLTgb5j9AZ1oqxPmDYMx0ljoFecY6KMRLqeWRKwHvUxNPjwpEPPBuufIut3Ad0DMxRBbZiZzVKWKLDwuM8cIGJM-AiMTMEz04lNflrsaksuEoR5DwRwFEAXd8OABsGZmV4szROwYqnf7XuZyD-1EQ-ORzTBa9vtRnTkRL_L3gzaRnh_vC-z399ufl1_z-9_3t5df73PTdmsU656ULIBJVTDB10MWpV6EEM3KFOVXaeaztScG2U476CvQcqm5J0RjSwqotbyMvt8yDsF_2cHMbUjRgPWagd-F1uh6kKWhZAVST8epbtuhL6dAo46zO3LcEmgDgJqJcYAQ2sw7adEw0LbCt4ua9Qe16hd1qhd1ohI8Q_5kvx_zO2B2cakH-BE0CSQZnciatmK5TiRJ4XZ6EAy-RdI8_Em
CitedBy_id crossref_primary_10_1186_s12967_022_03629_8
crossref_primary_10_1007_s00702_018_1908_y
crossref_primary_10_1007_s40200_022_01096_y
crossref_primary_10_1016_j_aca_2019_07_004
crossref_primary_10_1016_j_vph_2024_107412
crossref_primary_10_1016_j_arr_2021_101256
crossref_primary_10_1002_efd2_70048
crossref_primary_10_1016_j_heliyon_2023_e17844
crossref_primary_10_1080_0886022X_2021_1937219
crossref_primary_10_1155_2017_7680576
crossref_primary_10_1155_2022_5700249
Cites_doi 10.1097/00004872-200105000-00012
10.2337/diabetes.51.4.1157
10.1111/j.1365-2362.1988.tb01030.x
10.1161/01.CIR.100.5.483
10.1517/13543784.13.7.865
10.1161/01.HYP.9.3.277
10.1002/jmri.1880050608
10.1161/HYPERTENSIONAHA.109.134031
10.1007/s00125-012-2517-1
10.1016/j.diabres.2011.06.020
10.2337/dc10-0939
10.1016/j.atherosclerosis.2006.09.005
10.1016/j.jacc.2009.12.003
10.1016/0049-3848(94)90231-3
10.2337/diacare.22.11.1851
10.1097/00005344-199000163-00002
10.1111/j.1748-1716.2010.02081.x
10.2337/diabetes.52.2.448
10.1536/ihj.13-377
10.2337/dc07-0410
10.1161/CIR.0b013e318276fbcb
10.1097/FJC.0b013e3180325af3
10.1161/01.CIR.103.9.1238
10.1016/S0002-8703(99)70313-3
10.1161/HYPERTENSIONAHA.108.126615
10.1253/circj.71.995
10.1016/S0168-8227(02)00105-5
10.1001/jama.295.2.180
10.3758/BRM.41.4.1149
10.1053/j.ajkd.2008.12.034
10.2337/diacare.24.12.2107
10.1016/j.lab.2004.03.014
10.1148/radiology.206.3.9494498
10.1016/j.metabol.2009.03.009
10.1111/j.2040-1124.2010.00074.x
ContentType Journal Article
Copyright The Japan Endocrine Society
Copyright_xml – notice: The Japan Endocrine Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1507/endocrj.EJ15-0343
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1348-4540
EndPage 76
ExternalDocumentID 26567921
10_1507_endocrj_EJ15_0343
article_endocrj_63_1_63_EJ15_0343_article_char_en
Genre Journal Article
GroupedDBID ---
.55
.GJ
29G
2WC
3O-
53G
5GY
5RE
AAEJM
AAFWJ
ACPRK
ADBBV
AENEX
AFPKN
AJJEV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
CS3
DIK
DU5
E3Z
EBD
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
JMI
JSF
JSH
KQ8
MOJWN
OK1
OVT
P2P
RJT
RNS
RPM
RZJ
SV3
TKC
TR2
X7M
XSB
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c498t-7de739e71790fa2fa74af1fbf7c54bb79bc600c7c00bed6e33940bc19325e7183
ISSN 0918-8959
1348-4540
IngestDate Thu Jul 10 18:43:18 EDT 2025
Mon Jul 21 05:47:52 EDT 2025
Tue Jul 01 01:17:27 EDT 2025
Thu Apr 24 23:06:33 EDT 2025
Wed Sep 03 06:30:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c498t-7de739e71790fa2fa74af1fbf7c54bb79bc600c7c00bed6e33940bc19325e7183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/endocrj/63/1/63_EJ15-0343/_article/-char/en
PMID 26567921
PQID 1762342135
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1762342135
pubmed_primary_26567921
crossref_citationtrail_10_1507_endocrj_EJ15_0343
crossref_primary_10_1507_endocrj_EJ15_0343
jstage_primary_article_endocrj_63_1_63_EJ15_0343_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-00-00
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016-00-00
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Endocrine Journal
PublicationTitleAlternate Endocr J
PublicationYear 2016
Publisher The Japan Endocrine Society
Publisher_xml – name: The Japan Endocrine Society
References 18. Bhatt DL, Steg PG, Ohman EM, Hirsch AT, Ikeda Y, et al. (2006) International prevalence, recognition, and treatment of cardiovascular risk factors in outpatients with atherothrombosis. JAMA 295:180-189.
14. From AM, Scott CG, Chen HH (2010) The development of heart failure in patients with diabetes mellitus and pre-clinical diastolic dysfunction a population-based study. J Am Coll Cardiol 55:300-305.
6. Barradas MA, Gill DS, Fonseca VA, Mikhailidis DP, Dandona P (1988) Intraplatelet serotonin in patients with diabetes mellitus and peripheral vascular disease. Eur J Clin Invest 18:399-404.
27. Stacey RB, Bertoni AG, Eng J, Bluemke DA, Hundley WG, et al. (2010) Modification of the effect of glycemic status on aortic distensibility by age in the multi-ethnic study of atherosclerosis. Hypertension 55:26-32.
30. McEniery CM, McDonnell BJ, So A, Aitken S, Bolton CE, et al. (2009) Aortic calcification is associated with aortic stiffness and isolated systolic hypertension in healthy individuals. Hypertension 53:524-531.
33. Miyazaki M, Higashi Y, Goto C, Chayama K, Yoshizumi M, et al. (2007) Sarpogrelate hydrochloride, a selective 5-HT2A antagonist, improves vascular function in patients with peripheral arterial disease. J Cardiovasc Pharmacol 49:221-227.
21. Committee of the Japan Diabetes Society on the Diagnostic Criteria of Diabetes Mellitus, Seino Y, Nanjo K, Tajima N, Kadowaki T, et al. (2010) Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J Diabetes Investig 1:212-228.
5. Vikenes K, Farstad M, Nordrehaug JE (1999) Serotonin is associated with coronary artery disease and cardiac events. Circulation 100:483-489.
1. Tyce GM (1990) Origin and metabolism of serotonin. J Cardiovasc Pharmacol 16 Suppl 3: S1-S7.
22. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, et al. (2009) Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 53:982-992.
32. Doggrell SA (2004) Sarpogrelate: cardiovascular and renal clinical potential. Expert Opin Investig Drugs 13:865-874.
16. Rizzoni D, Porteri E, Guelfi D, Muiesan ML, Piccoli A, et al. (2001) Endothelial dysfunction in small resistance arteries of patients with non-insulin-dependent diabetes mellitus. J Hypertens 19:913-919.
29. Taniwaki H, Kawagishi T, Emoto M, Shoji T, Kanda H, et al. (1999) Correlation between the intima-media thickness of the carotid artery and aortic pulse-wave velocity in patients with type 2 diabetes. Vessel wall properties in type 2 diabetes. Diabetes Care 22:1851- 1857.
20. Aboyans V, Criqui MH, Abraham P, Allison MA, Creager MA, et al. (2012) Measurement and interpretation of the ankle-brachial index: a scientific statement from the American Heart Association. Circulation 126:2890-2909.
13. London GM, Guerin AP (1999) Influence of arterial pulse and reflected waves on blood pressure and cardiac function. Am Heart J 138:220-224.
8. Fukui M, Ose H, Hasegawa G, Yoshikawa T, Nakamura N (2007) Association between urinary albumin excretion and plasma 5-hydroxyindole-3-acetic acid concentration in men with type 2 diabetes. Diabetes Care 30:2649-2651.
19. Yamazaki T, Goto S, Shigematsu H, Shimada K, Uchiyama S, et al. (2007) Prevalence, awareness and treatment of cardiovascular risk factors in patients at high risk of atherothrombosis in Japan. Circ J 71:995-1003.
28. Bruno RM, Penno G, Daniele G, Pucci L, Lucchesi D, et al. (2012) Type 2 diabetes mellitus worsens arterial stiffness in hypertensive patients through endothelial dysfunction. Diabetologia 55:1847-1855.
2. Malyszko J, Urano T, Knofler R, Taminato A, Yoshimi T, et al. (1994) Daily variations of platelet aggregation in relation to blood and plasma serotonin in diabetes. Thromb Res 75:569-576.
23. McCauley TR, Pena CS, Holland CK, Price TB, Gore JC (1995) Validation of volume flow measurements with cine phase-contrast MR imaging for peripheral arterial waveforms. J Magn Reson Imaging 5:663-668.
12. Suzuki E, Kashiwagi A, Nishio Y, Egawa K, Shimizu S, et al. (2001) Increased arterial wall stiffness limits flow volume in the lower extremities in type 2 diabetic patients. Diabetes Care 24:2107-2114.
7. Hara K, Hirowatari Y, Shimura Y, Takahashi H (2011) Serotonin levels in platelet-poor plasma and whole blood in people with type 2 diabetes with chronic kidney disease. Diabetes Res Clin Pract 94:167-171.
25. Faul F, Erdfelder E, Buchner A, Lang AG (2009) Statistical power analyses using G∗Power 3.1: tests for correlation and regression analyses. Behav Res Methods 41:1149-1160.
17. Rizzoni D, Porteri E, Guelfi D, Muiesan ML, Valentini U, et al. (2001) Structural alterations in subcutaneous small arteries of normotensive and hypertensive patients with non-insulin-dependent diabetes mellitus. Circulation 103:1238-1244.
26. Lalande S, Hofman PL, Baldi JC (2010) Effect of reduced total blood flow on left ventricular volumes and kinetics in type 2 diabetes. Acta Physiol (Oxf) 199:23-30.
4. Hara K, Hirowatari Y, Yoshika M, Komiyama Y, Tsuka Y, et al. (2004) The ratio of plasma to whole-blood serotonin may be a novel marker of atherosclerotic cardiovascular disease. J Lab Clin Med 144:31-37.
34. Nagayama D, Ohira M, Saiki A, Shirai K, Tatsuno I (2014) Sarpogrelate hydrochloride decreases cardio-ankle vascular index accompanied by increased serum lipoprotein lipase mass in type 2 diabetic patients. Int Heart J 55:337-341.
9. Fukui M, Shiraishi E, Tanaka M, Senmaru T, Sakabe K, et al. (2009) Plasma serotonin is a predictor for deterioration of urinary albumin excretion in men with type 2 diabetes mellitus. Metabolism 58:1076-1079.
3. Ban Y, Watanabe T, Miyazaki A, Nakano Y, Tobe T, et al. (2007) Impact of increased plasma serotonin levels and carotid atherosclerosis on vascular dementia. Atherosclerosis 195:153-159.
35. Takahashi T, Yano M, Minami J, Haraguchi T, Koga N, et al. (2002) Sarpogrelate hydrochloride, a serotonin2A receptor antagonist, reduces albuminuria in diabetic patients with early-stage diabetic nephropathy. Diabetes Res Clin Pract 58:123-129.
24. Halpern EJ, Merton DA, Forsberg F (1998) Effect of distal resistance on Doppler US flow patterns. Radiology 206:761-766.
31. Stehouwer CD, Gall MA, Twisk JW, Knudsen E, Emeis JJ, et al. (2002) Increased urinary albumin excretion, endothelial dysfunction, and chronic low-grade inflammation in type 2 diabetes: progressive, interrelated, and independently associated with risk of death. Diabetes 51:1157-1165.
10. Thompson LP, Webb RC (1987) Vascular responsiveness to serotonin metabolites in mineralocorticoid hypertension. Hypertension 9:277-281.
11. Takahara M, Kaneto H, Iida O, Gorogawa S, Katakami N, et al. (2010) The influence of glycemic control on the prognosis of Japanese patients undergoing percutaneous transluminal angioplasty for critical limb ischemia. Diabetes Care 33:2538-2542.
15. Kimoto E, Shoji T, Shinohara K, Inaba M, Okuno Y, et al. (2003) Preferential stiffening of central over peripheral arteries in type 2 diabetes. Diabetes 52:448-452.
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 3. Ban Y, Watanabe T, Miyazaki A, Nakano Y, Tobe T, et al. (2007) Impact of increased plasma serotonin levels and carotid atherosclerosis on vascular dementia. Atherosclerosis 195:153-159.
– reference: 1. Tyce GM (1990) Origin and metabolism of serotonin. J Cardiovasc Pharmacol 16 Suppl 3: S1-S7.
– reference: 2. Malyszko J, Urano T, Knofler R, Taminato A, Yoshimi T, et al. (1994) Daily variations of platelet aggregation in relation to blood and plasma serotonin in diabetes. Thromb Res 75:569-576.
– reference: 9. Fukui M, Shiraishi E, Tanaka M, Senmaru T, Sakabe K, et al. (2009) Plasma serotonin is a predictor for deterioration of urinary albumin excretion in men with type 2 diabetes mellitus. Metabolism 58:1076-1079.
– reference: 11. Takahara M, Kaneto H, Iida O, Gorogawa S, Katakami N, et al. (2010) The influence of glycemic control on the prognosis of Japanese patients undergoing percutaneous transluminal angioplasty for critical limb ischemia. Diabetes Care 33:2538-2542.
– reference: 17. Rizzoni D, Porteri E, Guelfi D, Muiesan ML, Valentini U, et al. (2001) Structural alterations in subcutaneous small arteries of normotensive and hypertensive patients with non-insulin-dependent diabetes mellitus. Circulation 103:1238-1244.
– reference: 27. Stacey RB, Bertoni AG, Eng J, Bluemke DA, Hundley WG, et al. (2010) Modification of the effect of glycemic status on aortic distensibility by age in the multi-ethnic study of atherosclerosis. Hypertension 55:26-32.
– reference: 35. Takahashi T, Yano M, Minami J, Haraguchi T, Koga N, et al. (2002) Sarpogrelate hydrochloride, a serotonin2A receptor antagonist, reduces albuminuria in diabetic patients with early-stage diabetic nephropathy. Diabetes Res Clin Pract 58:123-129.
– reference: 6. Barradas MA, Gill DS, Fonseca VA, Mikhailidis DP, Dandona P (1988) Intraplatelet serotonin in patients with diabetes mellitus and peripheral vascular disease. Eur J Clin Invest 18:399-404.
– reference: 34. Nagayama D, Ohira M, Saiki A, Shirai K, Tatsuno I (2014) Sarpogrelate hydrochloride decreases cardio-ankle vascular index accompanied by increased serum lipoprotein lipase mass in type 2 diabetic patients. Int Heart J 55:337-341.
– reference: 22. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, et al. (2009) Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 53:982-992.
– reference: 14. From AM, Scott CG, Chen HH (2010) The development of heart failure in patients with diabetes mellitus and pre-clinical diastolic dysfunction a population-based study. J Am Coll Cardiol 55:300-305.
– reference: 8. Fukui M, Ose H, Hasegawa G, Yoshikawa T, Nakamura N (2007) Association between urinary albumin excretion and plasma 5-hydroxyindole-3-acetic acid concentration in men with type 2 diabetes. Diabetes Care 30:2649-2651.
– reference: 10. Thompson LP, Webb RC (1987) Vascular responsiveness to serotonin metabolites in mineralocorticoid hypertension. Hypertension 9:277-281.
– reference: 23. McCauley TR, Pena CS, Holland CK, Price TB, Gore JC (1995) Validation of volume flow measurements with cine phase-contrast MR imaging for peripheral arterial waveforms. J Magn Reson Imaging 5:663-668.
– reference: 18. Bhatt DL, Steg PG, Ohman EM, Hirsch AT, Ikeda Y, et al. (2006) International prevalence, recognition, and treatment of cardiovascular risk factors in outpatients with atherothrombosis. JAMA 295:180-189.
– reference: 7. Hara K, Hirowatari Y, Shimura Y, Takahashi H (2011) Serotonin levels in platelet-poor plasma and whole blood in people with type 2 diabetes with chronic kidney disease. Diabetes Res Clin Pract 94:167-171.
– reference: 20. Aboyans V, Criqui MH, Abraham P, Allison MA, Creager MA, et al. (2012) Measurement and interpretation of the ankle-brachial index: a scientific statement from the American Heart Association. Circulation 126:2890-2909.
– reference: 31. Stehouwer CD, Gall MA, Twisk JW, Knudsen E, Emeis JJ, et al. (2002) Increased urinary albumin excretion, endothelial dysfunction, and chronic low-grade inflammation in type 2 diabetes: progressive, interrelated, and independently associated with risk of death. Diabetes 51:1157-1165.
– reference: 21. Committee of the Japan Diabetes Society on the Diagnostic Criteria of Diabetes Mellitus, Seino Y, Nanjo K, Tajima N, Kadowaki T, et al. (2010) Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J Diabetes Investig 1:212-228.
– reference: 12. Suzuki E, Kashiwagi A, Nishio Y, Egawa K, Shimizu S, et al. (2001) Increased arterial wall stiffness limits flow volume in the lower extremities in type 2 diabetic patients. Diabetes Care 24:2107-2114.
– reference: 32. Doggrell SA (2004) Sarpogrelate: cardiovascular and renal clinical potential. Expert Opin Investig Drugs 13:865-874.
– reference: 26. Lalande S, Hofman PL, Baldi JC (2010) Effect of reduced total blood flow on left ventricular volumes and kinetics in type 2 diabetes. Acta Physiol (Oxf) 199:23-30.
– reference: 29. Taniwaki H, Kawagishi T, Emoto M, Shoji T, Kanda H, et al. (1999) Correlation between the intima-media thickness of the carotid artery and aortic pulse-wave velocity in patients with type 2 diabetes. Vessel wall properties in type 2 diabetes. Diabetes Care 22:1851- 1857.
– reference: 30. McEniery CM, McDonnell BJ, So A, Aitken S, Bolton CE, et al. (2009) Aortic calcification is associated with aortic stiffness and isolated systolic hypertension in healthy individuals. Hypertension 53:524-531.
– reference: 33. Miyazaki M, Higashi Y, Goto C, Chayama K, Yoshizumi M, et al. (2007) Sarpogrelate hydrochloride, a selective 5-HT2A antagonist, improves vascular function in patients with peripheral arterial disease. J Cardiovasc Pharmacol 49:221-227.
– reference: 24. Halpern EJ, Merton DA, Forsberg F (1998) Effect of distal resistance on Doppler US flow patterns. Radiology 206:761-766.
– reference: 4. Hara K, Hirowatari Y, Yoshika M, Komiyama Y, Tsuka Y, et al. (2004) The ratio of plasma to whole-blood serotonin may be a novel marker of atherosclerotic cardiovascular disease. J Lab Clin Med 144:31-37.
– reference: 28. Bruno RM, Penno G, Daniele G, Pucci L, Lucchesi D, et al. (2012) Type 2 diabetes mellitus worsens arterial stiffness in hypertensive patients through endothelial dysfunction. Diabetologia 55:1847-1855.
– reference: 15. Kimoto E, Shoji T, Shinohara K, Inaba M, Okuno Y, et al. (2003) Preferential stiffening of central over peripheral arteries in type 2 diabetes. Diabetes 52:448-452.
– reference: 5. Vikenes K, Farstad M, Nordrehaug JE (1999) Serotonin is associated with coronary artery disease and cardiac events. Circulation 100:483-489.
– reference: 19. Yamazaki T, Goto S, Shigematsu H, Shimada K, Uchiyama S, et al. (2007) Prevalence, awareness and treatment of cardiovascular risk factors in patients at high risk of atherothrombosis in Japan. Circ J 71:995-1003.
– reference: 25. Faul F, Erdfelder E, Buchner A, Lang AG (2009) Statistical power analyses using G∗Power 3.1: tests for correlation and regression analyses. Behav Res Methods 41:1149-1160.
– reference: 16. Rizzoni D, Porteri E, Guelfi D, Muiesan ML, Piccoli A, et al. (2001) Endothelial dysfunction in small resistance arteries of patients with non-insulin-dependent diabetes mellitus. J Hypertens 19:913-919.
– reference: 13. London GM, Guerin AP (1999) Influence of arterial pulse and reflected waves on blood pressure and cardiac function. Am Heart J 138:220-224.
– ident: 16
  doi: 10.1097/00004872-200105000-00012
– ident: 31
  doi: 10.2337/diabetes.51.4.1157
– ident: 6
  doi: 10.1111/j.1365-2362.1988.tb01030.x
– ident: 5
  doi: 10.1161/01.CIR.100.5.483
– ident: 32
  doi: 10.1517/13543784.13.7.865
– ident: 10
  doi: 10.1161/01.HYP.9.3.277
– ident: 23
  doi: 10.1002/jmri.1880050608
– ident: 27
  doi: 10.1161/HYPERTENSIONAHA.109.134031
– ident: 28
  doi: 10.1007/s00125-012-2517-1
– ident: 7
  doi: 10.1016/j.diabres.2011.06.020
– ident: 11
  doi: 10.2337/dc10-0939
– ident: 3
  doi: 10.1016/j.atherosclerosis.2006.09.005
– ident: 14
  doi: 10.1016/j.jacc.2009.12.003
– ident: 2
  doi: 10.1016/0049-3848(94)90231-3
– ident: 29
  doi: 10.2337/diacare.22.11.1851
– ident: 1
  doi: 10.1097/00005344-199000163-00002
– ident: 26
  doi: 10.1111/j.1748-1716.2010.02081.x
– ident: 15
  doi: 10.2337/diabetes.52.2.448
– ident: 34
  doi: 10.1536/ihj.13-377
– ident: 8
  doi: 10.2337/dc07-0410
– ident: 20
  doi: 10.1161/CIR.0b013e318276fbcb
– ident: 33
  doi: 10.1097/FJC.0b013e3180325af3
– ident: 17
  doi: 10.1161/01.CIR.103.9.1238
– ident: 13
  doi: 10.1016/S0002-8703(99)70313-3
– ident: 30
  doi: 10.1161/HYPERTENSIONAHA.108.126615
– ident: 19
  doi: 10.1253/circj.71.995
– ident: 35
  doi: 10.1016/S0168-8227(02)00105-5
– ident: 18
  doi: 10.1001/jama.295.2.180
– ident: 25
  doi: 10.3758/BRM.41.4.1149
– ident: 22
  doi: 10.1053/j.ajkd.2008.12.034
– ident: 12
  doi: 10.2337/diacare.24.12.2107
– ident: 4
  doi: 10.1016/j.lab.2004.03.014
– ident: 24
  doi: 10.1148/radiology.206.3.9494498
– ident: 9
  doi: 10.1016/j.metabol.2009.03.009
– ident: 21
  doi: 10.1111/j.2040-1124.2010.00074.x
SSID ssj0033543
Score 2.1705825
Snippet Although lower extremity arterial disease is frequently accompanied by diabetes mellitus, the association of circulating biomarkers with flow components during...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 69
SubjectTerms 5-hydroxyindole acetic acid
Aged
Albuminuria - blood
Albuminuria - complications
Albuminuria - physiopathology
Ankle Brachial Index
Blood Flow Velocity
Case-Control Studies
Diabetes Mellitus, Type 2 - blood
Diabetes Mellitus, Type 2 - complications
Diabetes Mellitus, Type 2 - physiopathology
Diabetic Angiopathies - blood
Diabetic Angiopathies - complications
Diabetic Angiopathies - physiopathology
Diabetic Nephropathies - blood
Diabetic Nephropathies - complications
Diabetic Nephropathies - physiopathology
Diastole
Female
Flow components during cardiac cycle
Heart Rate - physiology
Humans
Hydroxyindoleacetic Acid - blood
Lower extremity arterial disease
Male
Middle Aged
Peripheral vascular resistance
Popliteal Artery - physiopathology
Renal insufficiency
Renal Insufficiency - blood
Renal Insufficiency - physiopathology
Serotonin - metabolism
Systole
Vascular Resistance - physiology
Title Increased plasma serotonin metabolite 5-hydroxyindole acetic acid concentrations are associated with impaired systolic and late diastolic forward flows during cardiac cycle and elevated resistive index at popliteal artery and renal insufficiency in type 2 diabetic patients with microalbuminuria
URI https://www.jstage.jst.go.jp/article/endocrj/63/1/63_EJ15-0343/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/26567921
https://www.proquest.com/docview/1762342135
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Endocrine Journal, 2016, Vol.63(1), pp.69-76
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fb9MwEMfNNhDiBfGb8kuHhIRElZGfTfIGQkXT0JAQmzSeIsdxtpQ2rdYEWP967mzHzTZADF6qLbMTd75PbJ-_d2bsheQudwUvnGQUCidEE3J4EIWOm5c4OovQl-o4n72Po52DcPcwOtzYXPRUS22Tb4vVL-NK_qVX8Rr2K0XJXqJn7U3xAv6M_Yuf2MP4-Vd9jHCTphznjAucBM_4EJ86b8jBSidDY_dSgPEwco5PC1Kr4PKbtIRcSJWlVVQU0VZreaYWxJEMjJsO63TpFEdZkUqdkj5TFmG13zDFAuS4NZdw6kvy22E5nX9fdrGPQlmfGIpTMdW7FBTMru6Mi3x6uXyjlCWF_EEhlYv5gppLuQtIZqrzQp3IWmUFWbYq1YWKEyVlZt9xjI832WFNqN6MRIZKd13VrZZRr3cf8H8gKOKx24hfuy6-8pmWNvBVe1wtee8vstCS4tai9LldtfrE73E1qdZFJ9VMFf0yXx5XDd6z71bR8Z7bNiQPJyr1cN0io6Dte0-9xElSk8xc6rEjIN9spLNPdYOLeXv3IdIjxSjtzTn0ETgXRrNICVikasZke7zrRY4b6KxW55KEGxPMTNlsFGQefVCdjOpkXQkK5sNim-yqH8ceiWA_fLL7bgFiqjQZ3dczOgBsyOsLzTgzk7s2wcXMkfz9Ok3N1_ZvsZumd-GtbtBttiHrO-z6npGS3L3y0sIDGh6w8MAaHjgHD2h4gOCBs_AAwgNreIBMETp4oIMH0KqB4AELDxh4QMEDGh4w8ICCR9Xq4AELDyh4gDdg4QENj6qg4IEz8OBvQPCADx080MGjW3wennvs4P14_92OY05NcUSYJo0TFzIOUhlT6r2S-yWPQ156ZV7GIgrzPE5zgYscEQvXzWUxkkGQhm4uaCEXYa0kuM-26nktHzLw8iIpUy9KZOSHcRTncpRIKdzQS8M0knLA3M4CMmGOFKCTbaYZuRbQaKw9WjscsFe2ykLn0_lT4TfarGzRS9v5gD3vDDLDgZN2Q3kt5-0y83AaGIS-F0QD9kBbqn2Mj6vcOPW9R__fgMfsBr1etNf2CdtqTlr5FNcxTf5MofcTOdJnAQ
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increased+plasma+serotonin+metabolite+5-hydroxyindole+acetic+acid+concentrations+are+associated+with+impaired+systolic+and+late+diastolic+forward+flows+during+cardiac+cycle+and+elevated+resistive+index+at+popliteal+artery+and+renal+insufficiency+in+type+2+diabetic+patients+with+microalbuminuria&rft.jtitle=Endocrine+Journal&rft.au=Takami%2C+Kazuhisa&rft.au=Takeda%2C+Jun&rft.au=Suzuki%2C+Eiji&rft.au=Tajima%2C+Yoshitaka&rft.date=2016&rft.pub=The+Japan+Endocrine+Society&rft.issn=0918-8959&rft.eissn=1348-4540&rft.volume=63&rft.issue=1&rft.spage=69&rft.epage=76&rft_id=info:doi/10.1507%2Fendocrj.EJ15-0343&rft.externalDocID=article_endocrj_63_1_63_EJ15_0343_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-8959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-8959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-8959&client=summon