Increased plasma serotonin metabolite 5-hydroxyindole acetic acid concentrations are associated with impaired systolic and late diastolic forward flows during cardiac cycle and elevated resistive index at popliteal artery and renal insufficiency in type 2 diabetic patients with microalbuminuria
Although lower extremity arterial disease is frequently accompanied by diabetes mellitus, the association of circulating biomarkers with flow components during the cardiac cycle in lower-leg arteries has yet to be fully elucidated. We enrolled 165 type 2 diabetic patients with normal ankle-brachial...
Saved in:
Published in | Endocrine Journal Vol. 63; no. 1; pp. 69 - 76 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
The Japan Endocrine Society
2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0918-8959 1348-4540 1348-4540 |
DOI | 10.1507/endocrj.EJ15-0343 |
Cover
Abstract | Although lower extremity arterial disease is frequently accompanied by diabetes mellitus, the association of circulating biomarkers with flow components during the cardiac cycle in lower-leg arteries has yet to be fully elucidated. We enrolled 165 type 2 diabetic patients with normal ankle-brachial index (ABI 1.0-1.4), comprising 106 normoalbuminuric and 59 microalbuminuric patients, and 40 age-matched nondiabetic subjects consecutively admitted to our hospital. Serum high sensitivity C-reactive protein (hsCRP) level and plasma von Willebrand factor ristocetin cofactor activity (VWF) and vasoconstrictor serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA) concentrations were measured. An automatic device was used to measure ABI and brachial-ankle pulse wave velocity (baPWV). Flow components during the cardiac cycle, total flow volume, and resistive index at popliteal artery were evaluated using gated magnetic resonance imaging. Although estimated glomerular filtration rate (eGFR), early diastolic flow reversal, heart rate, and ABI were similar between the groups, diabetic patients had higher log hsCRP (p<0.001), VWF (p<0.001), 5-HIAA (p=0.002), resistive index (p<0.001) and baPWV (p<0.001) and lower systolic (p=0.026) and late diastolic (p<0.001) forward flows and total flow volume (p<0.001) than nondiabetic subjects. Multivariate analyses demonstrated that 5-HIAA in microalbuminuric patients showed higher associations with systolic and late diastolic forward flows during the cardiac cycle, total flow volume and resistive index at popliteal artery, and eGFR compared to normoalbuminuric patients. In microalbuminuric patients, 5-HIAA was a significant independent determinant among these factors. Thus, increased plasma 5-HIAA levels are involved in the pathogenesis of impaired blood flow in lower extremities and renal insufficiency in diabetic patients with microalbuminuria. |
---|---|
AbstractList | Although lower extremity arterial disease is frequently accompanied by diabetes mellitus, the association of circulating biomarkers with flow components during the cardiac cycle in lower-leg arteries has yet to be fully elucidated. We enrolled 165 type 2 diabetic patients with normal ankle-brachial index (ABI 1.0-1.4), comprising 106 normoalbuminuric and 59 microalbuminuric patients, and 40 age-matched nondiabetic subjects consecutively admitted to our hospital. Serum high sensitivity C-reactive protein (hsCRP) level and plasma von Willebrand factor ristocetin cofactor activity (VWF) and vasoconstrictor serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA) concentrations were measured. An automatic device was used to measure ABI and brachial-ankle pulse wave velocity (baPWV). Flow components during the cardiac cycle, total flow volume, and resistive index at popliteal artery were evaluated using gated magnetic resonance imaging. Although estimated glomerular filtration rate (eGFR), early diastolic flow reversal, heart rate, and ABI were similar between the groups, diabetic patients had higher log hsCRP (p<0.001), VWF (p<0.001), 5-HIAA (p=0.002), resistive index (p<0.001) and baPWV (p<0.001) and lower systolic (p=0.026) and late diastolic (p<0.001) forward flows and total flow volume (p<0.001) than nondiabetic subjects. Multivariate analyses demonstrated that 5-HIAA in microalbuminuric patients showed higher associations with systolic and late diastolic forward flows during the cardiac cycle, total flow volume and resistive index at popliteal artery, and eGFR compared to normoalbuminuric patients. In microalbuminuric patients, 5-HIAA was a significant independent determinant among these factors. Thus, increased plasma 5-HIAA levels are involved in the pathogenesis of impaired blood flow in lower extremities and renal insufficiency in diabetic patients with microalbuminuria.Although lower extremity arterial disease is frequently accompanied by diabetes mellitus, the association of circulating biomarkers with flow components during the cardiac cycle in lower-leg arteries has yet to be fully elucidated. We enrolled 165 type 2 diabetic patients with normal ankle-brachial index (ABI 1.0-1.4), comprising 106 normoalbuminuric and 59 microalbuminuric patients, and 40 age-matched nondiabetic subjects consecutively admitted to our hospital. Serum high sensitivity C-reactive protein (hsCRP) level and plasma von Willebrand factor ristocetin cofactor activity (VWF) and vasoconstrictor serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA) concentrations were measured. An automatic device was used to measure ABI and brachial-ankle pulse wave velocity (baPWV). Flow components during the cardiac cycle, total flow volume, and resistive index at popliteal artery were evaluated using gated magnetic resonance imaging. Although estimated glomerular filtration rate (eGFR), early diastolic flow reversal, heart rate, and ABI were similar between the groups, diabetic patients had higher log hsCRP (p<0.001), VWF (p<0.001), 5-HIAA (p=0.002), resistive index (p<0.001) and baPWV (p<0.001) and lower systolic (p=0.026) and late diastolic (p<0.001) forward flows and total flow volume (p<0.001) than nondiabetic subjects. Multivariate analyses demonstrated that 5-HIAA in microalbuminuric patients showed higher associations with systolic and late diastolic forward flows during the cardiac cycle, total flow volume and resistive index at popliteal artery, and eGFR compared to normoalbuminuric patients. In microalbuminuric patients, 5-HIAA was a significant independent determinant among these factors. Thus, increased plasma 5-HIAA levels are involved in the pathogenesis of impaired blood flow in lower extremities and renal insufficiency in diabetic patients with microalbuminuria. Although lower extremity arterial disease is frequently accompanied by diabetes mellitus, the association of circulating biomarkers with flow components during the cardiac cycle in lower-leg arteries has yet to be fully elucidated. We enrolled 165 type 2 diabetic patients with normal ankle-brachial index (ABI 1.0-1.4), comprising 106 normoalbuminuric and 59 microalbuminuric patients, and 40 age-matched nondiabetic subjects consecutively admitted to our hospital. Serum high sensitivity C-reactive protein (hsCRP) level and plasma von Willebrand factor ristocetin cofactor activity (VWF) and vasoconstrictor serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA) concentrations were measured. An automatic device was used to measure ABI and brachial-ankle pulse wave velocity (baPWV). Flow components during the cardiac cycle, total flow volume, and resistive index at popliteal artery were evaluated using gated magnetic resonance imaging. Although estimated glomerular filtration rate (eGFR), early diastolic flow reversal, heart rate, and ABI were similar between the groups, diabetic patients had higher log hsCRP (p<0.001), VWF (p<0.001), 5-HIAA (p=0.002), resistive index (p<0.001) and baPWV (p<0.001) and lower systolic (p=0.026) and late diastolic (p<0.001) forward flows and total flow volume (p<0.001) than nondiabetic subjects. Multivariate analyses demonstrated that 5-HIAA in microalbuminuric patients showed higher associations with systolic and late diastolic forward flows during the cardiac cycle, total flow volume and resistive index at popliteal artery, and eGFR compared to normoalbuminuric patients. In microalbuminuric patients, 5-HIAA was a significant independent determinant among these factors. Thus, increased plasma 5-HIAA levels are involved in the pathogenesis of impaired blood flow in lower extremities and renal insufficiency in diabetic patients with microalbuminuria. |
Author | Saito, Jun Suzuki, Eiji Takeda, Jun Tajima, Yoshitaka Takami, Kazuhisa Horikawa, Yukio |
Author_xml | – sequence: 1 fullname: Takami, Kazuhisa organization: Department of Internal Medicine, Kizawa Memorial Hospital, Minokamo 505-8503, Japan – sequence: 1 fullname: Takeda, Jun organization: Department of Diabetes and Endocrinology, Gifu University School of Medicine, Gifu 501-1194, Japan – sequence: 1 fullname: Suzuki, Eiji organization: Department of Diabetes and Endocrinology, Gifu Prefectural General Medical Center, Gifu 500-8717, Japan – sequence: 1 fullname: Tajima, Yoshitaka organization: Department of Diabetes and Endocrinology, Gifu Prefectural General Medical Center, Gifu 500-8717, Japan – sequence: 1 fullname: Saito, Jun organization: Department of Diabetes and Endocrinology, Gifu Prefectural General Medical Center, Gifu 500-8717, Japan – sequence: 1 fullname: Horikawa, Yukio organization: Department of Diabetes and Endocrinology, Gifu University School of Medicine, Gifu 501-1194, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26567921$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ksFu1DAQhgMqotvCA3BBvsElxY6TeHNEVSlFlbjAOXKcSXdWjh1sb9u8PZPd7R44cLHl8f_N_KOZi-zMeQdZ9kHwK1Fx9QVc703YXt38EFXOZSlfZyshy3VeViU_y1a8Eet83VTNeXYR45ZzKatSvs3Oi7qqVVOI1atPd84E0BF6NlkdR80iBJ-8Q8dGSLrzFhOwKt_MffDPM1JJC0wbSGjowp4Z7wy4FHRC7yLTgb5j9AZ1oqxPmDYMx0ljoFecY6KMRLqeWRKwHvUxNPjwpEPPBuufIut3Ad0DMxRBbZiZzVKWKLDwuM8cIGJM-AiMTMEz04lNflrsaksuEoR5DwRwFEAXd8OABsGZmV4szROwYqnf7XuZyD-1EQ-ORzTBa9vtRnTkRL_L3gzaRnh_vC-z399ufl1_z-9_3t5df73PTdmsU656ULIBJVTDB10MWpV6EEM3KFOVXaeaztScG2U476CvQcqm5J0RjSwqotbyMvt8yDsF_2cHMbUjRgPWagd-F1uh6kKWhZAVST8epbtuhL6dAo46zO3LcEmgDgJqJcYAQ2sw7adEw0LbCt4ua9Qe16hd1qhd1ohI8Q_5kvx_zO2B2cakH-BE0CSQZnciatmK5TiRJ4XZ6EAy-RdI8_Em |
CitedBy_id | crossref_primary_10_1186_s12967_022_03629_8 crossref_primary_10_1007_s00702_018_1908_y crossref_primary_10_1007_s40200_022_01096_y crossref_primary_10_1016_j_aca_2019_07_004 crossref_primary_10_1016_j_vph_2024_107412 crossref_primary_10_1016_j_arr_2021_101256 crossref_primary_10_1002_efd2_70048 crossref_primary_10_1016_j_heliyon_2023_e17844 crossref_primary_10_1080_0886022X_2021_1937219 crossref_primary_10_1155_2017_7680576 crossref_primary_10_1155_2022_5700249 |
Cites_doi | 10.1097/00004872-200105000-00012 10.2337/diabetes.51.4.1157 10.1111/j.1365-2362.1988.tb01030.x 10.1161/01.CIR.100.5.483 10.1517/13543784.13.7.865 10.1161/01.HYP.9.3.277 10.1002/jmri.1880050608 10.1161/HYPERTENSIONAHA.109.134031 10.1007/s00125-012-2517-1 10.1016/j.diabres.2011.06.020 10.2337/dc10-0939 10.1016/j.atherosclerosis.2006.09.005 10.1016/j.jacc.2009.12.003 10.1016/0049-3848(94)90231-3 10.2337/diacare.22.11.1851 10.1097/00005344-199000163-00002 10.1111/j.1748-1716.2010.02081.x 10.2337/diabetes.52.2.448 10.1536/ihj.13-377 10.2337/dc07-0410 10.1161/CIR.0b013e318276fbcb 10.1097/FJC.0b013e3180325af3 10.1161/01.CIR.103.9.1238 10.1016/S0002-8703(99)70313-3 10.1161/HYPERTENSIONAHA.108.126615 10.1253/circj.71.995 10.1016/S0168-8227(02)00105-5 10.1001/jama.295.2.180 10.3758/BRM.41.4.1149 10.1053/j.ajkd.2008.12.034 10.2337/diacare.24.12.2107 10.1016/j.lab.2004.03.014 10.1148/radiology.206.3.9494498 10.1016/j.metabol.2009.03.009 10.1111/j.2040-1124.2010.00074.x |
ContentType | Journal Article |
Copyright | The Japan Endocrine Society |
Copyright_xml | – notice: The Japan Endocrine Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1507/endocrj.EJ15-0343 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1348-4540 |
EndPage | 76 |
ExternalDocumentID | 26567921 10_1507_endocrj_EJ15_0343 article_endocrj_63_1_63_EJ15_0343_article_char_en |
Genre | Journal Article |
GroupedDBID | --- .55 .GJ 29G 2WC 3O- 53G 5GY 5RE AAEJM AAFWJ ACPRK ADBBV AENEX AFPKN AJJEV ALMA_UNASSIGNED_HOLDINGS BAWUL BKOMP CS3 DIK DU5 E3Z EBD EBS EJD EMOBN F5P GROUPED_DOAJ JMI JSF JSH KQ8 MOJWN OK1 OVT P2P RJT RNS RPM RZJ SV3 TKC TR2 X7M XSB ZGI ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c498t-7de739e71790fa2fa74af1fbf7c54bb79bc600c7c00bed6e33940bc19325e7183 |
ISSN | 0918-8959 1348-4540 |
IngestDate | Thu Jul 10 18:43:18 EDT 2025 Mon Jul 21 05:47:52 EDT 2025 Tue Jul 01 01:17:27 EDT 2025 Thu Apr 24 23:06:33 EDT 2025 Wed Sep 03 06:30:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c498t-7de739e71790fa2fa74af1fbf7c54bb79bc600c7c00bed6e33940bc19325e7183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/endocrj/63/1/63_EJ15-0343/_article/-char/en |
PMID | 26567921 |
PQID | 1762342135 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1762342135 pubmed_primary_26567921 crossref_citationtrail_10_1507_endocrj_EJ15_0343 crossref_primary_10_1507_endocrj_EJ15_0343 jstage_primary_article_endocrj_63_1_63_EJ15_0343_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-00-00 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan |
PublicationTitle | Endocrine Journal |
PublicationTitleAlternate | Endocr J |
PublicationYear | 2016 |
Publisher | The Japan Endocrine Society |
Publisher_xml | – name: The Japan Endocrine Society |
References | 18. Bhatt DL, Steg PG, Ohman EM, Hirsch AT, Ikeda Y, et al. (2006) International prevalence, recognition, and treatment of cardiovascular risk factors in outpatients with atherothrombosis. JAMA 295:180-189. 14. From AM, Scott CG, Chen HH (2010) The development of heart failure in patients with diabetes mellitus and pre-clinical diastolic dysfunction a population-based study. J Am Coll Cardiol 55:300-305. 6. Barradas MA, Gill DS, Fonseca VA, Mikhailidis DP, Dandona P (1988) Intraplatelet serotonin in patients with diabetes mellitus and peripheral vascular disease. Eur J Clin Invest 18:399-404. 27. Stacey RB, Bertoni AG, Eng J, Bluemke DA, Hundley WG, et al. (2010) Modification of the effect of glycemic status on aortic distensibility by age in the multi-ethnic study of atherosclerosis. Hypertension 55:26-32. 30. McEniery CM, McDonnell BJ, So A, Aitken S, Bolton CE, et al. (2009) Aortic calcification is associated with aortic stiffness and isolated systolic hypertension in healthy individuals. Hypertension 53:524-531. 33. Miyazaki M, Higashi Y, Goto C, Chayama K, Yoshizumi M, et al. (2007) Sarpogrelate hydrochloride, a selective 5-HT2A antagonist, improves vascular function in patients with peripheral arterial disease. J Cardiovasc Pharmacol 49:221-227. 21. Committee of the Japan Diabetes Society on the Diagnostic Criteria of Diabetes Mellitus, Seino Y, Nanjo K, Tajima N, Kadowaki T, et al. (2010) Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J Diabetes Investig 1:212-228. 5. Vikenes K, Farstad M, Nordrehaug JE (1999) Serotonin is associated with coronary artery disease and cardiac events. Circulation 100:483-489. 1. Tyce GM (1990) Origin and metabolism of serotonin. J Cardiovasc Pharmacol 16 Suppl 3: S1-S7. 22. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, et al. (2009) Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 53:982-992. 32. Doggrell SA (2004) Sarpogrelate: cardiovascular and renal clinical potential. Expert Opin Investig Drugs 13:865-874. 16. Rizzoni D, Porteri E, Guelfi D, Muiesan ML, Piccoli A, et al. (2001) Endothelial dysfunction in small resistance arteries of patients with non-insulin-dependent diabetes mellitus. J Hypertens 19:913-919. 29. Taniwaki H, Kawagishi T, Emoto M, Shoji T, Kanda H, et al. (1999) Correlation between the intima-media thickness of the carotid artery and aortic pulse-wave velocity in patients with type 2 diabetes. Vessel wall properties in type 2 diabetes. Diabetes Care 22:1851- 1857. 20. Aboyans V, Criqui MH, Abraham P, Allison MA, Creager MA, et al. (2012) Measurement and interpretation of the ankle-brachial index: a scientific statement from the American Heart Association. Circulation 126:2890-2909. 13. London GM, Guerin AP (1999) Influence of arterial pulse and reflected waves on blood pressure and cardiac function. Am Heart J 138:220-224. 8. Fukui M, Ose H, Hasegawa G, Yoshikawa T, Nakamura N (2007) Association between urinary albumin excretion and plasma 5-hydroxyindole-3-acetic acid concentration in men with type 2 diabetes. Diabetes Care 30:2649-2651. 19. Yamazaki T, Goto S, Shigematsu H, Shimada K, Uchiyama S, et al. (2007) Prevalence, awareness and treatment of cardiovascular risk factors in patients at high risk of atherothrombosis in Japan. Circ J 71:995-1003. 28. Bruno RM, Penno G, Daniele G, Pucci L, Lucchesi D, et al. (2012) Type 2 diabetes mellitus worsens arterial stiffness in hypertensive patients through endothelial dysfunction. Diabetologia 55:1847-1855. 2. Malyszko J, Urano T, Knofler R, Taminato A, Yoshimi T, et al. (1994) Daily variations of platelet aggregation in relation to blood and plasma serotonin in diabetes. Thromb Res 75:569-576. 23. McCauley TR, Pena CS, Holland CK, Price TB, Gore JC (1995) Validation of volume flow measurements with cine phase-contrast MR imaging for peripheral arterial waveforms. J Magn Reson Imaging 5:663-668. 12. Suzuki E, Kashiwagi A, Nishio Y, Egawa K, Shimizu S, et al. (2001) Increased arterial wall stiffness limits flow volume in the lower extremities in type 2 diabetic patients. Diabetes Care 24:2107-2114. 7. Hara K, Hirowatari Y, Shimura Y, Takahashi H (2011) Serotonin levels in platelet-poor plasma and whole blood in people with type 2 diabetes with chronic kidney disease. Diabetes Res Clin Pract 94:167-171. 25. Faul F, Erdfelder E, Buchner A, Lang AG (2009) Statistical power analyses using G∗Power 3.1: tests for correlation and regression analyses. Behav Res Methods 41:1149-1160. 17. Rizzoni D, Porteri E, Guelfi D, Muiesan ML, Valentini U, et al. (2001) Structural alterations in subcutaneous small arteries of normotensive and hypertensive patients with non-insulin-dependent diabetes mellitus. Circulation 103:1238-1244. 26. Lalande S, Hofman PL, Baldi JC (2010) Effect of reduced total blood flow on left ventricular volumes and kinetics in type 2 diabetes. Acta Physiol (Oxf) 199:23-30. 4. Hara K, Hirowatari Y, Yoshika M, Komiyama Y, Tsuka Y, et al. (2004) The ratio of plasma to whole-blood serotonin may be a novel marker of atherosclerotic cardiovascular disease. J Lab Clin Med 144:31-37. 34. Nagayama D, Ohira M, Saiki A, Shirai K, Tatsuno I (2014) Sarpogrelate hydrochloride decreases cardio-ankle vascular index accompanied by increased serum lipoprotein lipase mass in type 2 diabetic patients. Int Heart J 55:337-341. 9. Fukui M, Shiraishi E, Tanaka M, Senmaru T, Sakabe K, et al. (2009) Plasma serotonin is a predictor for deterioration of urinary albumin excretion in men with type 2 diabetes mellitus. Metabolism 58:1076-1079. 3. Ban Y, Watanabe T, Miyazaki A, Nakano Y, Tobe T, et al. (2007) Impact of increased plasma serotonin levels and carotid atherosclerosis on vascular dementia. Atherosclerosis 195:153-159. 35. Takahashi T, Yano M, Minami J, Haraguchi T, Koga N, et al. (2002) Sarpogrelate hydrochloride, a serotonin2A receptor antagonist, reduces albuminuria in diabetic patients with early-stage diabetic nephropathy. Diabetes Res Clin Pract 58:123-129. 24. Halpern EJ, Merton DA, Forsberg F (1998) Effect of distal resistance on Doppler US flow patterns. Radiology 206:761-766. 31. Stehouwer CD, Gall MA, Twisk JW, Knudsen E, Emeis JJ, et al. (2002) Increased urinary albumin excretion, endothelial dysfunction, and chronic low-grade inflammation in type 2 diabetes: progressive, interrelated, and independently associated with risk of death. Diabetes 51:1157-1165. 10. Thompson LP, Webb RC (1987) Vascular responsiveness to serotonin metabolites in mineralocorticoid hypertension. Hypertension 9:277-281. 11. Takahara M, Kaneto H, Iida O, Gorogawa S, Katakami N, et al. (2010) The influence of glycemic control on the prognosis of Japanese patients undergoing percutaneous transluminal angioplasty for critical limb ischemia. Diabetes Care 33:2538-2542. 15. Kimoto E, Shoji T, Shinohara K, Inaba M, Okuno Y, et al. (2003) Preferential stiffening of central over peripheral arteries in type 2 diabetes. Diabetes 52:448-452. 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: 3. Ban Y, Watanabe T, Miyazaki A, Nakano Y, Tobe T, et al. (2007) Impact of increased plasma serotonin levels and carotid atherosclerosis on vascular dementia. Atherosclerosis 195:153-159. – reference: 1. Tyce GM (1990) Origin and metabolism of serotonin. J Cardiovasc Pharmacol 16 Suppl 3: S1-S7. – reference: 2. Malyszko J, Urano T, Knofler R, Taminato A, Yoshimi T, et al. (1994) Daily variations of platelet aggregation in relation to blood and plasma serotonin in diabetes. Thromb Res 75:569-576. – reference: 9. Fukui M, Shiraishi E, Tanaka M, Senmaru T, Sakabe K, et al. (2009) Plasma serotonin is a predictor for deterioration of urinary albumin excretion in men with type 2 diabetes mellitus. Metabolism 58:1076-1079. – reference: 11. Takahara M, Kaneto H, Iida O, Gorogawa S, Katakami N, et al. (2010) The influence of glycemic control on the prognosis of Japanese patients undergoing percutaneous transluminal angioplasty for critical limb ischemia. Diabetes Care 33:2538-2542. – reference: 17. Rizzoni D, Porteri E, Guelfi D, Muiesan ML, Valentini U, et al. (2001) Structural alterations in subcutaneous small arteries of normotensive and hypertensive patients with non-insulin-dependent diabetes mellitus. Circulation 103:1238-1244. – reference: 27. Stacey RB, Bertoni AG, Eng J, Bluemke DA, Hundley WG, et al. (2010) Modification of the effect of glycemic status on aortic distensibility by age in the multi-ethnic study of atherosclerosis. Hypertension 55:26-32. – reference: 35. Takahashi T, Yano M, Minami J, Haraguchi T, Koga N, et al. (2002) Sarpogrelate hydrochloride, a serotonin2A receptor antagonist, reduces albuminuria in diabetic patients with early-stage diabetic nephropathy. Diabetes Res Clin Pract 58:123-129. – reference: 6. Barradas MA, Gill DS, Fonseca VA, Mikhailidis DP, Dandona P (1988) Intraplatelet serotonin in patients with diabetes mellitus and peripheral vascular disease. Eur J Clin Invest 18:399-404. – reference: 34. Nagayama D, Ohira M, Saiki A, Shirai K, Tatsuno I (2014) Sarpogrelate hydrochloride decreases cardio-ankle vascular index accompanied by increased serum lipoprotein lipase mass in type 2 diabetic patients. Int Heart J 55:337-341. – reference: 22. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, et al. (2009) Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 53:982-992. – reference: 14. From AM, Scott CG, Chen HH (2010) The development of heart failure in patients with diabetes mellitus and pre-clinical diastolic dysfunction a population-based study. J Am Coll Cardiol 55:300-305. – reference: 8. Fukui M, Ose H, Hasegawa G, Yoshikawa T, Nakamura N (2007) Association between urinary albumin excretion and plasma 5-hydroxyindole-3-acetic acid concentration in men with type 2 diabetes. Diabetes Care 30:2649-2651. – reference: 10. Thompson LP, Webb RC (1987) Vascular responsiveness to serotonin metabolites in mineralocorticoid hypertension. Hypertension 9:277-281. – reference: 23. McCauley TR, Pena CS, Holland CK, Price TB, Gore JC (1995) Validation of volume flow measurements with cine phase-contrast MR imaging for peripheral arterial waveforms. J Magn Reson Imaging 5:663-668. – reference: 18. Bhatt DL, Steg PG, Ohman EM, Hirsch AT, Ikeda Y, et al. (2006) International prevalence, recognition, and treatment of cardiovascular risk factors in outpatients with atherothrombosis. JAMA 295:180-189. – reference: 7. Hara K, Hirowatari Y, Shimura Y, Takahashi H (2011) Serotonin levels in platelet-poor plasma and whole blood in people with type 2 diabetes with chronic kidney disease. Diabetes Res Clin Pract 94:167-171. – reference: 20. Aboyans V, Criqui MH, Abraham P, Allison MA, Creager MA, et al. (2012) Measurement and interpretation of the ankle-brachial index: a scientific statement from the American Heart Association. Circulation 126:2890-2909. – reference: 31. Stehouwer CD, Gall MA, Twisk JW, Knudsen E, Emeis JJ, et al. (2002) Increased urinary albumin excretion, endothelial dysfunction, and chronic low-grade inflammation in type 2 diabetes: progressive, interrelated, and independently associated with risk of death. Diabetes 51:1157-1165. – reference: 21. Committee of the Japan Diabetes Society on the Diagnostic Criteria of Diabetes Mellitus, Seino Y, Nanjo K, Tajima N, Kadowaki T, et al. (2010) Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J Diabetes Investig 1:212-228. – reference: 12. Suzuki E, Kashiwagi A, Nishio Y, Egawa K, Shimizu S, et al. (2001) Increased arterial wall stiffness limits flow volume in the lower extremities in type 2 diabetic patients. Diabetes Care 24:2107-2114. – reference: 32. Doggrell SA (2004) Sarpogrelate: cardiovascular and renal clinical potential. Expert Opin Investig Drugs 13:865-874. – reference: 26. Lalande S, Hofman PL, Baldi JC (2010) Effect of reduced total blood flow on left ventricular volumes and kinetics in type 2 diabetes. Acta Physiol (Oxf) 199:23-30. – reference: 29. Taniwaki H, Kawagishi T, Emoto M, Shoji T, Kanda H, et al. (1999) Correlation between the intima-media thickness of the carotid artery and aortic pulse-wave velocity in patients with type 2 diabetes. Vessel wall properties in type 2 diabetes. Diabetes Care 22:1851- 1857. – reference: 30. McEniery CM, McDonnell BJ, So A, Aitken S, Bolton CE, et al. (2009) Aortic calcification is associated with aortic stiffness and isolated systolic hypertension in healthy individuals. Hypertension 53:524-531. – reference: 33. Miyazaki M, Higashi Y, Goto C, Chayama K, Yoshizumi M, et al. (2007) Sarpogrelate hydrochloride, a selective 5-HT2A antagonist, improves vascular function in patients with peripheral arterial disease. J Cardiovasc Pharmacol 49:221-227. – reference: 24. Halpern EJ, Merton DA, Forsberg F (1998) Effect of distal resistance on Doppler US flow patterns. Radiology 206:761-766. – reference: 4. Hara K, Hirowatari Y, Yoshika M, Komiyama Y, Tsuka Y, et al. (2004) The ratio of plasma to whole-blood serotonin may be a novel marker of atherosclerotic cardiovascular disease. J Lab Clin Med 144:31-37. – reference: 28. Bruno RM, Penno G, Daniele G, Pucci L, Lucchesi D, et al. (2012) Type 2 diabetes mellitus worsens arterial stiffness in hypertensive patients through endothelial dysfunction. Diabetologia 55:1847-1855. – reference: 15. Kimoto E, Shoji T, Shinohara K, Inaba M, Okuno Y, et al. (2003) Preferential stiffening of central over peripheral arteries in type 2 diabetes. Diabetes 52:448-452. – reference: 5. Vikenes K, Farstad M, Nordrehaug JE (1999) Serotonin is associated with coronary artery disease and cardiac events. Circulation 100:483-489. – reference: 19. Yamazaki T, Goto S, Shigematsu H, Shimada K, Uchiyama S, et al. (2007) Prevalence, awareness and treatment of cardiovascular risk factors in patients at high risk of atherothrombosis in Japan. Circ J 71:995-1003. – reference: 25. Faul F, Erdfelder E, Buchner A, Lang AG (2009) Statistical power analyses using G∗Power 3.1: tests for correlation and regression analyses. Behav Res Methods 41:1149-1160. – reference: 16. Rizzoni D, Porteri E, Guelfi D, Muiesan ML, Piccoli A, et al. (2001) Endothelial dysfunction in small resistance arteries of patients with non-insulin-dependent diabetes mellitus. J Hypertens 19:913-919. – reference: 13. London GM, Guerin AP (1999) Influence of arterial pulse and reflected waves on blood pressure and cardiac function. Am Heart J 138:220-224. – ident: 16 doi: 10.1097/00004872-200105000-00012 – ident: 31 doi: 10.2337/diabetes.51.4.1157 – ident: 6 doi: 10.1111/j.1365-2362.1988.tb01030.x – ident: 5 doi: 10.1161/01.CIR.100.5.483 – ident: 32 doi: 10.1517/13543784.13.7.865 – ident: 10 doi: 10.1161/01.HYP.9.3.277 – ident: 23 doi: 10.1002/jmri.1880050608 – ident: 27 doi: 10.1161/HYPERTENSIONAHA.109.134031 – ident: 28 doi: 10.1007/s00125-012-2517-1 – ident: 7 doi: 10.1016/j.diabres.2011.06.020 – ident: 11 doi: 10.2337/dc10-0939 – ident: 3 doi: 10.1016/j.atherosclerosis.2006.09.005 – ident: 14 doi: 10.1016/j.jacc.2009.12.003 – ident: 2 doi: 10.1016/0049-3848(94)90231-3 – ident: 29 doi: 10.2337/diacare.22.11.1851 – ident: 1 doi: 10.1097/00005344-199000163-00002 – ident: 26 doi: 10.1111/j.1748-1716.2010.02081.x – ident: 15 doi: 10.2337/diabetes.52.2.448 – ident: 34 doi: 10.1536/ihj.13-377 – ident: 8 doi: 10.2337/dc07-0410 – ident: 20 doi: 10.1161/CIR.0b013e318276fbcb – ident: 33 doi: 10.1097/FJC.0b013e3180325af3 – ident: 17 doi: 10.1161/01.CIR.103.9.1238 – ident: 13 doi: 10.1016/S0002-8703(99)70313-3 – ident: 30 doi: 10.1161/HYPERTENSIONAHA.108.126615 – ident: 19 doi: 10.1253/circj.71.995 – ident: 35 doi: 10.1016/S0168-8227(02)00105-5 – ident: 18 doi: 10.1001/jama.295.2.180 – ident: 25 doi: 10.3758/BRM.41.4.1149 – ident: 22 doi: 10.1053/j.ajkd.2008.12.034 – ident: 12 doi: 10.2337/diacare.24.12.2107 – ident: 4 doi: 10.1016/j.lab.2004.03.014 – ident: 24 doi: 10.1148/radiology.206.3.9494498 – ident: 9 doi: 10.1016/j.metabol.2009.03.009 – ident: 21 doi: 10.1111/j.2040-1124.2010.00074.x |
SSID | ssj0033543 |
Score | 2.1705825 |
Snippet | Although lower extremity arterial disease is frequently accompanied by diabetes mellitus, the association of circulating biomarkers with flow components during... |
SourceID | proquest pubmed crossref jstage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 69 |
SubjectTerms | 5-hydroxyindole acetic acid Aged Albuminuria - blood Albuminuria - complications Albuminuria - physiopathology Ankle Brachial Index Blood Flow Velocity Case-Control Studies Diabetes Mellitus, Type 2 - blood Diabetes Mellitus, Type 2 - complications Diabetes Mellitus, Type 2 - physiopathology Diabetic Angiopathies - blood Diabetic Angiopathies - complications Diabetic Angiopathies - physiopathology Diabetic Nephropathies - blood Diabetic Nephropathies - complications Diabetic Nephropathies - physiopathology Diastole Female Flow components during cardiac cycle Heart Rate - physiology Humans Hydroxyindoleacetic Acid - blood Lower extremity arterial disease Male Middle Aged Peripheral vascular resistance Popliteal Artery - physiopathology Renal insufficiency Renal Insufficiency - blood Renal Insufficiency - physiopathology Serotonin - metabolism Systole Vascular Resistance - physiology |
Title | Increased plasma serotonin metabolite 5-hydroxyindole acetic acid concentrations are associated with impaired systolic and late diastolic forward flows during cardiac cycle and elevated resistive index at popliteal artery and renal insufficiency in type 2 diabetic patients with microalbuminuria |
URI | https://www.jstage.jst.go.jp/article/endocrj/63/1/63_EJ15-0343/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/26567921 https://www.proquest.com/docview/1762342135 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Endocrine Journal, 2016, Vol.63(1), pp.69-76 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fb9MwEMfNNhDiBfGb8kuHhIRElZGfTfIGQkXT0JAQmzSeIsdxtpQ2rdYEWP967mzHzTZADF6qLbMTd75PbJ-_d2bsheQudwUvnGQUCidEE3J4EIWOm5c4OovQl-o4n72Po52DcPcwOtzYXPRUS22Tb4vVL-NK_qVX8Rr2K0XJXqJn7U3xAv6M_Yuf2MP4-Vd9jHCTphznjAucBM_4EJ86b8jBSidDY_dSgPEwco5PC1Kr4PKbtIRcSJWlVVQU0VZreaYWxJEMjJsO63TpFEdZkUqdkj5TFmG13zDFAuS4NZdw6kvy22E5nX9fdrGPQlmfGIpTMdW7FBTMru6Mi3x6uXyjlCWF_EEhlYv5gppLuQtIZqrzQp3IWmUFWbYq1YWKEyVlZt9xjI832WFNqN6MRIZKd13VrZZRr3cf8H8gKOKx24hfuy6-8pmWNvBVe1wtee8vstCS4tai9LldtfrE73E1qdZFJ9VMFf0yXx5XDd6z71bR8Z7bNiQPJyr1cN0io6Dte0-9xElSk8xc6rEjIN9spLNPdYOLeXv3IdIjxSjtzTn0ETgXRrNICVikasZke7zrRY4b6KxW55KEGxPMTNlsFGQefVCdjOpkXQkK5sNim-yqH8ceiWA_fLL7bgFiqjQZ3dczOgBsyOsLzTgzk7s2wcXMkfz9Ok3N1_ZvsZumd-GtbtBttiHrO-z6npGS3L3y0sIDGh6w8MAaHjgHD2h4gOCBs_AAwgNreIBMETp4oIMH0KqB4AELDxh4QMEDGh4w8ICCR9Xq4AELDyh4gDdg4QENj6qg4IEz8OBvQPCADx080MGjW3wennvs4P14_92OY05NcUSYJo0TFzIOUhlT6r2S-yWPQ156ZV7GIgrzPE5zgYscEQvXzWUxkkGQhm4uaCEXYa0kuM-26nktHzLw8iIpUy9KZOSHcRTncpRIKdzQS8M0knLA3M4CMmGOFKCTbaYZuRbQaKw9WjscsFe2ykLn0_lT4TfarGzRS9v5gD3vDDLDgZN2Q3kt5-0y83AaGIS-F0QD9kBbqn2Mj6vcOPW9R__fgMfsBr1etNf2CdtqTlr5FNcxTf5MofcTOdJnAQ |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increased+plasma+serotonin+metabolite+5-hydroxyindole+acetic+acid+concentrations+are+associated+with+impaired+systolic+and+late+diastolic+forward+flows+during+cardiac+cycle+and+elevated+resistive+index+at+popliteal+artery+and+renal+insufficiency+in+type+2+diabetic+patients+with+microalbuminuria&rft.jtitle=Endocrine+Journal&rft.au=Takami%2C+Kazuhisa&rft.au=Takeda%2C+Jun&rft.au=Suzuki%2C+Eiji&rft.au=Tajima%2C+Yoshitaka&rft.date=2016&rft.pub=The+Japan+Endocrine+Society&rft.issn=0918-8959&rft.eissn=1348-4540&rft.volume=63&rft.issue=1&rft.spage=69&rft.epage=76&rft_id=info:doi/10.1507%2Fendocrj.EJ15-0343&rft.externalDocID=article_endocrj_63_1_63_EJ15_0343_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-8959&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-8959&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-8959&client=summon |