Nucleobase-mediated general acid-base catalysis in the Varkud satellite ribozyme

Existing evidence suggests that the Varkud satellite (VS) ribozyme accelerates the cleavage of a specific phosphodiester bond using general acid-base catalysis. The key functionalities are the nucleobases of adenine 756 in helix VI of the ribozyme, and guanine 638 in the substrate stem loop. This re...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 107; no. 26; pp. 11751 - 11756
Main Authors Wilson, Timothy J., Li, Nan-Sheng, Lu, Jun, Frederiksen, John K., Piccirilli, Joseph A., Lilley, David M. J., Uhlenbeck, Olke C.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 29.06.2010
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Existing evidence suggests that the Varkud satellite (VS) ribozyme accelerates the cleavage of a specific phosphodiester bond using general acid-base catalysis. The key functionalities are the nucleobases of adenine 756 in helix VI of the ribozyme, and guanine 638 in the substrate stem loop. This results in a bell-shaped dependence of reaction rate on pH, corresponding to groups with pK a = 5.2 and 8.4. However, it is not possible from those data to determine which nucleobase is the acid, and which the base. We have therefore made substrates in which the 5′ oxygen of the scissile phosphate is replaced by sulfur. This labilizes the leaving group, removing the requirement for general acid catalysis. This substitution restores full activity to the highly impaired A756G ribozyme, consistent with general acid catalysis by A756 in the unmodified ribozyme. The pH dependence of the cleavage of the phosphorothiolate-modified substrates is consistent with general base catalysis by nucleobase at position 638. We conclude that cleavage of the substrate by the VS ribozyme is catalyzed by deprotonation of the 2′-O nucleophile by G638 and protonation of the 5′-O leaving group by A756.
AbstractList Existing evidence suggests that the Varkud satellite (VS) ribozyme accelerates the cleavage of a specific phosphodiester bond using general acid-base catalysis. The key functionalities are the nucleobases of adenine 756 in helix VI of the ribozyme, and guanine 638 in the substrate stem loop. This results in a bell-shaped dependence of reaction rate on pH, corresponding to groups with p K a  = 5.2 and 8.4. However, it is not possible from those data to determine which nucleobase is the acid, and which the base. We have therefore made substrates in which the 5′ oxygen of the scissile phosphate is replaced by sulfur. This labilizes the leaving group, removing the requirement for general acid catalysis. This substitution restores full activity to the highly impaired A756G ribozyme, consistent with general acid catalysis by A756 in the unmodified ribozyme. The pH dependence of the cleavage of the phosphorothiolate-modified substrates is consistent with general base catalysis by nucleobase at position 638. We conclude that cleavage of the substrate by the VS ribozyme is catalyzed by deprotonation of the 2′-O nucleophile by G638 and protonation of the 5′-O leaving group by A756.
Existing evidence suggests that the Varkud satellite (VS) ribozyme accelerates the cleavage of a specific phosphodiester bond using general acid-base catalysis. The key functionalities are the nucleobases of adenine 756 in helix VI of the ribozyme, and guanine 638 in the substrate stem loop. This results in a bell-shaped dependence of reaction rate on pH, corresponding to groups with pK sub(a)A =A 5.2 and 8.4. However, it is not possible from those data to determine which nucleobase is the acid, and which the base. We have therefore made substrates in which the 5' oxygen of the scissile phosphate is replaced by sulfur. This labilizes the leaving group, removing the requirement for general acid catalysis. This substitution restores full activity to the highly impaired A756G ribozyme, consistent with general acid catalysis by A756 in the unmodified ribozyme. The pH dependence of the cleavage of the phosphorothiolate-modified substrates is consistent with general base catalysis by nucleobase at position 638. We conclude that cleavage of the substrate by the VS ribozyme is catalyzed by deprotonation of the 2'-O nucleophile by G638 and protonation of the 5'-O leaving group by A756.
Existing evidence suggests that the Varkud satellite (VS) ribozyme accelerates the cleavage of a specific phosphodiester bond using general acid-base catalysis. The key functionalities are the nucleobases of adenine 756 in helix VI of the ribozyme, and guanine 638 in the substrate stem loop. This results in a bell-shaped dependence of reaction rate on pH, corresponding to groups with pK a = 5.2 and 8.4. However, it is not possible from those data to determine which nucleobase is the acid, and which the base. We have therefore made substrates in which the 5′ oxygen of the scissile phosphate is replaced by sulfur. This labilizes the leaving group, removing the requirement for general acid catalysis. This substitution restores full activity to the highly impaired A756G ribozyme, consistent with general acid catalysis by A756 in the unmodified ribozyme. The pH dependence of the cleavage of the phosphorothiolate-modified substrates is consistent with general base catalysis by nucleobase at position 638. We conclude that cleavage of the substrate by the VS ribozyme is catalyzed by deprotonation of the 2′-O nucleophile by G638 and protonation of the 5′-O leaving group by A756.
Existing evidence suggests that the Varkud satellite (VS) ribozyme accelerates the cleavage of a specific phosphodiester bond using general acid-base catalysis. The key functionalities are the nucleobases of adenine 756 in helix VI of the ribozyme, and guanine 638 in the substrate stem loop. This results in a bell-shaped dependence of reaction rate on pH, corresponding to groups with p K a  = 5.2 and 8.4. However, it is not possible from those data to determine which nucleobase is the acid, and which the base. We have therefore made substrates in which the 5′ oxygen of the scissile phosphate is replaced by sulfur. This labilizes the leaving group, removing the requirement for general acid catalysis. This substitution restores full activity to the highly impaired A756G ribozyme, consistent with general acid catalysis by A756 in the unmodified ribozyme. The pH dependence of the cleavage of the phosphorothiolate-modified substrates is consistent with general base catalysis by nucleobase at position 638. We conclude that cleavage of the substrate by the VS ribozyme is catalyzed by deprotonation of the 2′-O nucleophile by G638 and protonation of the 5′-O leaving group by A756.
Existing evidence suggests that the Varkud satellite (VS) ribozyme accelerates the cleavage of a specific phosphodiester bond using general acid-base catalysis. The key functionalities are the nucleobases of adenine 756 in helix VI of the ribozyme, and guanine 638 in the substrate stem loop. This results in a bell-shaped dependence of reaction rate on pH, corresponding to groups with pK... = 5.2 and 8.4. However, it is not possible from those data to determine which nucleobase is the acid, and which the base. We have therefore made substrates in which the 5' oxygen of the scissile phosphate is replaced by sulfur. This labilizes the leaving group, removing the requirement for general acid catalysis. This substitution restores full activity to the highly impaired A756G ribozyme, consistent with general acid catalysis by A756 in the unmodified ribozyme. The pH dependence of the cleavage of the phosphorothiolate-modified substrates is consistent with general base catalysis by nucleobase at position 638. We conclude that cleavage of the substrate by the VS ribozyme is catalyzed by deprotonation of the 2'-O nucleophile by G638 and protonation of the 5'-O leaving group by A756. (ProQuest: ... denotes formulae/symbols omitted.)
Author Lilley, David M. J.
Wilson, Timothy J.
Li, Nan-Sheng
Lu, Jun
Frederiksen, John K.
Uhlenbeck, Olke C.
Piccirilli, Joseph A.
Author_xml – sequence: 1
  givenname: Timothy J.
  surname: Wilson
  fullname: Wilson, Timothy J.
– sequence: 2
  givenname: Nan-Sheng
  surname: Li
  fullname: Li, Nan-Sheng
– sequence: 3
  givenname: Jun
  surname: Lu
  fullname: Lu, Jun
– sequence: 4
  givenname: John K.
  surname: Frederiksen
  fullname: Frederiksen, John K.
– sequence: 5
  givenname: Joseph A.
  surname: Piccirilli
  fullname: Piccirilli, Joseph A.
– sequence: 6
  givenname: David M. J.
  surname: Lilley
  fullname: Lilley, David M. J.
– sequence: 7
  givenname: Olke C.
  surname: Uhlenbeck
  fullname: Uhlenbeck, Olke C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20547881$$D View this record in MEDLINE/PubMed
BookMark eNpdkc9vFCEcxYmpsdvq2ZOGePE09suvgbmYNI1Vk0Y9qFfCANOyzsIKMybrX1_GXdvqCcL38328l3eCjmKKHqHnBN4QkOxsG02pN-BUiPrwCK0IdKRpeQdHaAVAZaM45cfopJQ1AHRCwRN0TEFwqRRZoS-fZjv61Jvim413wUze4WsffTYjNja4ZhlhayYz7kooOEQ83Xj83eQfs8Ol8uMYJo9z6NPv3cY_RY8HMxb_7HCeom-X775efGiuPr__eHF-1VjeqamRnVOWGNpSq6ThyjE6CKd4C4pQQpRthWVEUjJA2w09o713ngvGe9dzaA07RW_3utu5r8atj1O1rLc5bEze6WSC_ncSw42-Tr807QBaJarA64NATj9nXya9CcXWNCb6NBctRf1OKqoq-eo_cp3mHGs6LaRipGN_oLM9ZHMqJfvhzgoBvXSll670fVd14-XDBHf833IqgA_AsnkvJzVtNSFSLMiLPbIuU8oPJCTlhHN2CyG9pgI
CitedBy_id crossref_primary_10_1021_jacs_5b11791
crossref_primary_10_1146_annurev_biochem_060409_092741
crossref_primary_10_1021_jo4028374
crossref_primary_10_1038_nchembio_2333
crossref_primary_10_1021_acs_joc_7b01484
crossref_primary_10_1021_jp300845h
crossref_primary_10_1038_s41557_019_0391_x
crossref_primary_10_1039_D0CB00207K
crossref_primary_10_1093_nar_gkz737
crossref_primary_10_1021_ja3070528
crossref_primary_10_1073_pnas_1611191114
crossref_primary_10_1021_ar200262x
crossref_primary_10_1021_bi500826n
crossref_primary_10_1039_D2CC00660J
crossref_primary_10_1021_cr400476k
crossref_primary_10_1261_rna_046144_114
crossref_primary_10_1038_nchembio_1929
crossref_primary_10_1093_nar_gkr250
crossref_primary_10_1261_rna_067470_118
crossref_primary_10_1021_acs_joc_1c01059
crossref_primary_10_1042_BST0390641
crossref_primary_10_1021_acs_accounts_1c00052
crossref_primary_10_1021_ja3067429
crossref_primary_10_1261_rna_052076_115
crossref_primary_10_1016_j_bmcl_2016_07_076
crossref_primary_10_12688_f1000research_19324_1
crossref_primary_10_1021_acs_biochem_9b01047
crossref_primary_10_1093_nar_gkq1265
crossref_primary_10_1021_ar200131t
crossref_primary_10_1016_j_tibs_2015_09_001
crossref_primary_10_1021_acs_chemrev_0c00713
crossref_primary_10_1021_ar200098t
crossref_primary_10_1016_j_bbapap_2015_03_007
crossref_primary_10_1093_nar_gkr1018
crossref_primary_10_1002_ange_201609184
crossref_primary_10_1261_rna_2473711
crossref_primary_10_1021_acs_biochem_8b00031
crossref_primary_10_1021_acs_jcim_4c00520
crossref_primary_10_1093_nar_gkw401
crossref_primary_10_1021_ar2000452
crossref_primary_10_1002_wrna_1421
crossref_primary_10_1021_bi401484a
crossref_primary_10_1074_jbc_RA119_008986
crossref_primary_10_1021_ja307021f
crossref_primary_10_1038_nchembio_1587
crossref_primary_10_1021_bi101724h
crossref_primary_10_1021_jp200970d
crossref_primary_10_1042_BST20160158
crossref_primary_10_1016_j_sbi_2011_03_016
crossref_primary_10_3390_molecules22040678
crossref_primary_10_1002_anie_201609184
crossref_primary_10_1007_s11705_016_1558_2
crossref_primary_10_1093_nar_gkq1244
crossref_primary_10_1016_j_cbpa_2014_05_001
crossref_primary_10_1021_acs_biochem_1c00489
crossref_primary_10_1021_ja510387y
crossref_primary_10_1021_jacs_9b02141
crossref_primary_10_1039_C6OB01270A
crossref_primary_10_1080_15257770_2014_965256
crossref_primary_10_1080_21691401_2021_1890103
crossref_primary_10_1098_rstb_2011_0132
crossref_primary_10_1098_rstb_2011_0131
Cites_doi 10.1016/S1074-5521(02)00130-8
10.1016/j.jmb.2005.04.005
10.1016/0022-2836(77)90275-3
10.1021/cr960427h
10.1016/S0022-2836(02)00521-1
10.1038/nature02522
10.1016/j.jmb.2004.04.067
10.1016/j.str.2008.07.007
10.1073/pnas.0608864104
10.1038/sj.emboj.7601698
10.1093/emboj/20.22.6434
10.1126/science.1076093
10.1021/bi027273m
10.1126/science.287.5457.1493
10.1038/6651
10.1126/science.286.5437.123
10.1038/35071009
10.1261/rna.1102308
10.1006/jmbi.2001.4996
10.1038/nchembio703
10.1073/pnas.0832440100
10.1038/26912
10.1016/j.chembiol.2005.09.006
10.1073/pnas.0305753101
10.1021/ja0502775
10.1021/bi952985g
10.1016/S0022-2836(02)00910-5
10.1016/S0021-9258(18)63395-2
10.1021/bi00186a001
10.1126/science.1129666
10.1261/rna.11706
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jun 29, 2010
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jun 29, 2010
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7QO
5PM
DOI 10.1073/pnas.1004255107
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology Research Abstracts
DatabaseTitleList
Engineering Research Database


MEDLINE
Virology and AIDS Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 11756
ExternalDocumentID 2072882311
10_1073_pnas_1004255107
20547881
107_26_11751
20724144
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: 1R56AI081987-01
– fundername: Cancer Research UK
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: B17092
– fundername: Howard Hughes Medical Institute
– fundername: NIAID NIH HHS
  grantid: R56 AI081987
– fundername: Cancer Research UK
  grantid: 11722
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F5P
FRP
GX1
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
AJYGW
AS
DZ
F20
H13
KM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7QO
5PM
ID FETCH-LOGICAL-c498t-79d8c1a262c87a48d32f5d8460812118c65c31721f069fb32bede4534bdb406a3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:20:53 EDT 2024
Fri Oct 25 04:14:24 EDT 2024
Thu Oct 10 20:19:50 EDT 2024
Fri Aug 23 00:41:43 EDT 2024
Sat Sep 28 07:47:40 EDT 2024
Wed Nov 11 00:30:47 EST 2020
Fri Feb 02 07:04:32 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c498t-79d8c1a262c87a48d32f5d8460812118c65c31721f069fb32bede4534bdb406a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: T.J.W., N.-S.L., J.L., J.K.F., J.A.P., and D.M.J.L. designed research; T.J.W., N.-S.L., J.L., and J.K.F. performed research; T.J.W. and D.M.J.L. analyzed data; and T.J.W., J.A.P., and D.M.J.L. wrote the paper.
2Present address: Department of Pathology and Laboratory Medicine, The University of Rochester Medical Center, 601 Elmwood Avenue, Box 626, Rochester, NY 14642.
Edited by Olke C. Uhlenbeck, Northwestern University, Evanston, IL, and approved May 19, 2010 (received for review March 30, 2010)
OpenAccessLink https://europepmc.org/articles/pmc2900685?pdf=render
PMID 20547881
PQID 578319328
PQPubID 42026
PageCount 6
ParticipantIDs proquest_journals_578319328
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2900685
crossref_primary_10_1073_pnas_1004255107
pubmed_primary_20547881
pnas_primary_107_26_11751
jstor_primary_20724144
proquest_miscellaneous_754537828
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2010-06-29
PublicationDateYYYYMMDD 2010-06-29
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-06-29
  day: 29
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2010
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 16990543 - Science. 2006 Sep 22;313(5794):1752-6
11983335 - Chem Biol. 2002 Apr;9(4):465-73
17389378 - Proc Natl Acad Sci U S A. 2007 Apr 3;104(14):5818-23
18697921 - RNA. 2008 Sep;14(9):1942-9
12600192 - Biochemistry. 2003 Mar 4;42(8):2259-65
592404 - J Mol Biol. 1977 Nov;116(4):855-75
11707414 - EMBO J. 2001 Nov 15;20(22):6434-42
16407993 - Nat Chem Biol. 2005 Jun;1(1):45-52
10688799 - Science. 2000 Feb 25;287(5457):1493-7
16601203 - RNA. 2006 Jun;12(6):980-7
9783582 - Nature. 1998 Oct 8;395(6702):567-74
15907933 - J Mol Biol. 2005 Jun 24;349(5):989-1010
11848924 - Chem Rev. 1998 May 7;98(3):1045-1066
11298439 - Nature. 2001 Apr 12;410(6830):780-6
12096902 - J Mol Biol. 2002 Jul 12;320(3):443-54
12376595 - Science. 2002 Nov 15;298(5597):1421-4
17464286 - EMBO J. 2007 May 16;26(10):2489-500
12368096 - J Mol Biol. 2002 Oct 11;323(1):23-34
18786398 - Structure. 2008 Sep 10;16(9):1357-67
11575922 - J Mol Biol. 2001 Sep 28;312(4):663-74
5460889 - J Biol Chem. 1970 Jan 25;245(2):305-28
15201049 - J Mol Biol. 2004 Jul 2;340(2):233-51
16298301 - Chem Biol. 2005 Nov;12(11):1221-6
14755053 - Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1467-72
10506560 - Science. 1999 Oct 1;286(5437):123-6
8634244 - Biochemistry. 1996 May 14;35(19):6026-36
12782785 - Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7003-8
15810830 - J Am Chem Soc. 2005 Apr 13;127(14):5026-7
9660970 - Mol Cell. 1998 May;1(6):873-81
8193116 - Biochemistry. 1994 May 24;33(20):6031-7
10074938 - Nat Struct Biol. 1999 Mar;6(3):212-6
15141216 - Nature. 2004 May 13;429(6988):201-5
Murchie AIH (e_1_3_3_23_2) 1998; 1
Lilley DMJ (e_1_3_3_1_2) 2008
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_21_2
  doi: 10.1016/S1074-5521(02)00130-8
– ident: e_1_3_3_7_2
  doi: 10.1016/j.jmb.2005.04.005
– ident: e_1_3_3_28_2
  doi: 10.1016/0022-2836(77)90275-3
– ident: e_1_3_3_30_2
  doi: 10.1021/cr960427h
– ident: e_1_3_3_12_2
  doi: 10.1016/S0022-2836(02)00521-1
– ident: e_1_3_3_18_2
  doi: 10.1038/nature02522
– ident: e_1_3_3_6_2
  doi: 10.1016/j.jmb.2004.04.067
– start-page: 1
  volume-title: Ribozymes and RNA Catalysis
  year: 2008
  ident: e_1_3_3_1_2
  contributor:
    fullname: Lilley DMJ
– ident: e_1_3_3_14_2
  doi: 10.1016/j.str.2008.07.007
– ident: e_1_3_3_20_2
  doi: 10.1073/pnas.0608864104
– ident: e_1_3_3_9_2
  doi: 10.1038/sj.emboj.7601698
– ident: e_1_3_3_5_2
  doi: 10.1093/emboj/20.22.6434
– ident: e_1_3_3_3_2
  doi: 10.1126/science.1076093
– ident: e_1_3_3_4_2
  doi: 10.1021/bi027273m
– volume: 1
  start-page: 873
  year: 1998
  ident: e_1_3_3_23_2
  article-title: Folding of the hairpin ribozyme in its natural conformation achieves close physical proximity of the loops Molec
  publication-title: Cell
  contributor:
    fullname: Murchie AIH
– ident: e_1_3_3_2_2
  doi: 10.1126/science.287.5457.1493
– ident: e_1_3_3_26_2
  doi: 10.1038/6651
– ident: e_1_3_3_17_2
  doi: 10.1126/science.286.5437.123
– ident: e_1_3_3_24_2
  doi: 10.1038/35071009
– ident: e_1_3_3_15_2
  doi: 10.1261/rna.1102308
– ident: e_1_3_3_10_2
  doi: 10.1006/jmbi.2001.4996
– ident: e_1_3_3_19_2
  doi: 10.1038/nchembio703
– ident: e_1_3_3_22_2
  doi: 10.1073/pnas.0832440100
– ident: e_1_3_3_16_2
  doi: 10.1038/26912
– ident: e_1_3_3_32_2
  doi: 10.1016/j.chembiol.2005.09.006
– ident: e_1_3_3_31_2
  doi: 10.1073/pnas.0305753101
– ident: e_1_3_3_13_2
  doi: 10.1021/ja0502775
– ident: e_1_3_3_25_2
  doi: 10.1021/bi952985g
– ident: e_1_3_3_11_2
  doi: 10.1016/S0022-2836(02)00910-5
– ident: e_1_3_3_27_2
  doi: 10.1016/S0021-9258(18)63395-2
– ident: e_1_3_3_29_2
  doi: 10.1021/bi00186a001
– ident: e_1_3_3_33_2
  doi: 10.1126/science.1129666
– ident: e_1_3_3_8_2
  doi: 10.1261/rna.11706
SSID ssj0009580
Score 2.316228
Snippet Existing evidence suggests that the Varkud satellite (VS) ribozyme accelerates the cleavage of a specific phosphodiester bond using general acid-base...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 11751
SubjectTerms Acids
Base Sequence
Biochemistry
Biological Sciences
Catalysis
Chemical bases
Endoribonucleases - chemistry
Endoribonucleases - genetics
Endoribonucleases - metabolism
Hepatitis delta virus
Hydrogen-Ion Concentration
Kinetics
Molecular Sequence Data
Mutagenesis, Site-Directed
Nucleic Acid Conformation
Nucleobases
Nucleophiles
Oxygen
Phosphates
Phosphorothioate Oligonucleotides - chemistry
Phosphorothioate Oligonucleotides - metabolism
Physical Sciences
Reaction kinetics
Ribonucleic acid
Ribozymes
RNA
RNA, Catalytic - chemistry
RNA, Catalytic - genetics
RNA, Catalytic - metabolism
Substrate Specificity
Title Nucleobase-mediated general acid-base catalysis in the Varkud satellite ribozyme
URI https://www.jstor.org/stable/20724144
http://www.pnas.org/content/107/26/11751.abstract
https://www.ncbi.nlm.nih.gov/pubmed/20547881
https://www.proquest.com/docview/578319328
https://search.proquest.com/docview/754537828
https://pubmed.ncbi.nlm.nih.gov/PMC2900685
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB21PXFBlFIIhcoHDu3B3aztxM4RVVSlqFUPLeot8idEsNnVZvcAv56xk2y7iBO3SDNWIs-M5zmeeQb4gC7CBQYZ1cw6KmwI1FTaUCO5dQEfWbqH7PqmvLwXVw_Fww4UYy9MKtq3pjlrf87O2uZ7qq1czOxkrBOb3F6fsyp2NhSTXdhFBx236BumXdX3nTBcfgUTI5-P5JNFq7tYFoB-iq4Y799jeeSzUtOtrNQXJka2U9T_F_L8u4DySUa6eAHPByhJPvafvA87vn0J-0OwduRkYJQ-PYDbm8haPI8Zi6ZWEYSZ5FsvJto2jkYRSb9yIkMJaVqCwJB81csfa0c6nWg7V54sGzP__WvmX8H9xae780s6XKVArajUisrKKTvVrGRWSS2U4ywUDrEHIgLcAipbFpbH3WDIyyoYzox3XqAZjTOY8jU_hL123vo3QCQCitxxnqvKCMFyHbjygflCB4sZV2ZwMk5lvegZM-p00i15HSe0fjRABodpqjd6LJeIKITIIEuqj-NlzcpITF5MMzgaDVIP8dbVuO7wCEVVBmQjxUCJpx-69fN1V0vEihzxEKq87q335LW9F2Qgt-y6UYgc3NsSdM3ExT244tv_HnkEz_qChJKy6h3srZZr_x5xzsocI8L__OU4efcfi9L73Q
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH4a4wAXYMAgGz984DAOblPbiZ0jmpgKrNUO27RbZDsORKNp1bSH7a_n2Um6deICt0jvWZH1vmd_Tt77DPAJIcIFJhnVzBZU2LKkJtOGGsltUeIjC_eQTabp-EJ8v0qudiDpe2FC0b411aD-PRvU1a9QW7mY2WFfJzY8mxyzzHc2JMNH8BjzNRb9IX2jtavazhOGC7Bgolf0kXy4qHXjCwMQqQhGfwMfi72ilRpt7UttaaLXO0X_v3HPhyWU9_akk-dw2c-mLUW5HqxXZmBvHwg9_vN0X8CzjqWSL615D3Zc_RL2unWgIUedWPXnV3A29YLIc78Z0tCFggyW_GzNRNuqoN5EwlciL35Cqpog5ySXenm9LkijgyLoypFlZea3NzP3Gi5Ovp4fj2l3SwO1IlMrKrNC2ZFmKbNKaqEKzsqkQFqDZANPl8qmieX-oFnGaVYazowrnECEmMIgm9B8H3bree3eApHIVeKC81hlRggW65IrVzKX6NLiZi4jOOpjlC9aMY48_ESXPPeRyu8iG8F-iOHGj8USyYoQEUTB9W68zFnqNc-TUQSHfaTzLpWbHJc07lmuioBsrJiD_seKrt183eQSaShHqoUub1pY3HttC68I5BZgNg5e3nvbgjAIMt9d2A_-e-RHeDI-n5zmp9-mPw7haVv3kFKWvYPd1XLt3iOdWpkPIXn-AGKOHOc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSIhLoUBpKA8fOJRDNlnbiZ0jKqzKo6s9UFRxifyEqGx2tcke6K9n7CTb3YpTb5FmrMiab-zPyfgbhN4BRCiDJIsl0SZm2rlYFVLFilNtHDyS0IfsfJqfXbAvl9nlVquvULSvVTWq_8xHdfU71FYu5zoZ6sSS2fkpKfzNhixZGpfcRw8gZ9N8OKhv9HZFd_uEwCLMCBtUfThNlrVsfHEAoBUA6bvwkdSrWonxzt7UlSd6zVPw_x__vF1GubUvTR6jn8OMunKUq9G6VSN9fUvs8U5TfoL2e7aKP3QuB-ierZ-ig349aPBJL1r9_hmaTb0w8sJvinG4jQJMFv_qzFjqysTehMPXIi-CgqsaA_fEP-Tqam1wI4MyaGvxqlKL679z-xxdTD59Pz2L-24NsWaFaGNeGKHHkuRECy6ZMJS4zAC9AdIBp0yh80xTf-B0aV44RYmyxjJAijIKWIWkh2ivXtT2CGEOnCU1lKaiUIyRVDoqrCM2k07Dps4jdDLEqVx2ohxl-JnOaemjVd5EN0KHIY4bP5JyIC2MRSgKrjfjeUlyr32ejSN0PES77FO6KWFpo57tigjhjRVy0f9gkbVdrJuSAx2lQLnA5UUHja3XdhCLEN8BzcbBy3zvWgAKQe67D_3LO498ix7OPk7Kb5-nX4_Ro678IY9J8Qrttau1fQ2sqlVvQv78A15-H2c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nucleobase-mediated+general+acid-base+catalysis+in+the+Varkud+satellite+ribozyme&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Timothy+J.+Wilson&rft.au=Nan-Sheng+Li&rft.au=Jun+Lu&rft.au=John+K.+Frederiksen&rft.date=2010-06-29&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=107&rft.issue=26&rft.spage=11751&rft_id=info:doi/10.1073%2Fpnas.1004255107&rft_id=info%3Apmid%2F20547881&rft.externalDBID=n%2Fa&rft.externalDocID=107_26_11751
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F26.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F26.cover.gif