Nucleobase-mediated general acid-base catalysis in the Varkud satellite ribozyme
Existing evidence suggests that the Varkud satellite (VS) ribozyme accelerates the cleavage of a specific phosphodiester bond using general acid-base catalysis. The key functionalities are the nucleobases of adenine 756 in helix VI of the ribozyme, and guanine 638 in the substrate stem loop. This re...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 107; no. 26; pp. 11751 - 11756 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
29.06.2010
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Existing evidence suggests that the Varkud satellite (VS) ribozyme accelerates the cleavage of a specific phosphodiester bond using general acid-base catalysis. The key functionalities are the nucleobases of adenine 756 in helix VI of the ribozyme, and guanine 638 in the substrate stem loop. This results in a bell-shaped dependence of reaction rate on pH, corresponding to groups with pK a = 5.2 and 8.4. However, it is not possible from those data to determine which nucleobase is the acid, and which the base. We have therefore made substrates in which the 5′ oxygen of the scissile phosphate is replaced by sulfur. This labilizes the leaving group, removing the requirement for general acid catalysis. This substitution restores full activity to the highly impaired A756G ribozyme, consistent with general acid catalysis by A756 in the unmodified ribozyme. The pH dependence of the cleavage of the phosphorothiolate-modified substrates is consistent with general base catalysis by nucleobase at position 638. We conclude that cleavage of the substrate by the VS ribozyme is catalyzed by deprotonation of the 2′-O nucleophile by G638 and protonation of the 5′-O leaving group by A756. |
---|---|
AbstractList | Existing evidence suggests that the Varkud satellite (VS) ribozyme accelerates the cleavage of a specific phosphodiester bond using general acid-base catalysis. The key functionalities are the nucleobases of adenine 756 in helix VI of the ribozyme, and guanine 638 in the substrate stem loop. This results in a bell-shaped dependence of reaction rate on pH, corresponding to groups with p K a = 5.2 and 8.4. However, it is not possible from those data to determine which nucleobase is the acid, and which the base. We have therefore made substrates in which the 5′ oxygen of the scissile phosphate is replaced by sulfur. This labilizes the leaving group, removing the requirement for general acid catalysis. This substitution restores full activity to the highly impaired A756G ribozyme, consistent with general acid catalysis by A756 in the unmodified ribozyme. The pH dependence of the cleavage of the phosphorothiolate-modified substrates is consistent with general base catalysis by nucleobase at position 638. We conclude that cleavage of the substrate by the VS ribozyme is catalyzed by deprotonation of the 2′-O nucleophile by G638 and protonation of the 5′-O leaving group by A756. Existing evidence suggests that the Varkud satellite (VS) ribozyme accelerates the cleavage of a specific phosphodiester bond using general acid-base catalysis. The key functionalities are the nucleobases of adenine 756 in helix VI of the ribozyme, and guanine 638 in the substrate stem loop. This results in a bell-shaped dependence of reaction rate on pH, corresponding to groups with pK sub(a)A =A 5.2 and 8.4. However, it is not possible from those data to determine which nucleobase is the acid, and which the base. We have therefore made substrates in which the 5' oxygen of the scissile phosphate is replaced by sulfur. This labilizes the leaving group, removing the requirement for general acid catalysis. This substitution restores full activity to the highly impaired A756G ribozyme, consistent with general acid catalysis by A756 in the unmodified ribozyme. The pH dependence of the cleavage of the phosphorothiolate-modified substrates is consistent with general base catalysis by nucleobase at position 638. We conclude that cleavage of the substrate by the VS ribozyme is catalyzed by deprotonation of the 2'-O nucleophile by G638 and protonation of the 5'-O leaving group by A756. Existing evidence suggests that the Varkud satellite (VS) ribozyme accelerates the cleavage of a specific phosphodiester bond using general acid-base catalysis. The key functionalities are the nucleobases of adenine 756 in helix VI of the ribozyme, and guanine 638 in the substrate stem loop. This results in a bell-shaped dependence of reaction rate on pH, corresponding to groups with pK a = 5.2 and 8.4. However, it is not possible from those data to determine which nucleobase is the acid, and which the base. We have therefore made substrates in which the 5′ oxygen of the scissile phosphate is replaced by sulfur. This labilizes the leaving group, removing the requirement for general acid catalysis. This substitution restores full activity to the highly impaired A756G ribozyme, consistent with general acid catalysis by A756 in the unmodified ribozyme. The pH dependence of the cleavage of the phosphorothiolate-modified substrates is consistent with general base catalysis by nucleobase at position 638. We conclude that cleavage of the substrate by the VS ribozyme is catalyzed by deprotonation of the 2′-O nucleophile by G638 and protonation of the 5′-O leaving group by A756. Existing evidence suggests that the Varkud satellite (VS) ribozyme accelerates the cleavage of a specific phosphodiester bond using general acid-base catalysis. The key functionalities are the nucleobases of adenine 756 in helix VI of the ribozyme, and guanine 638 in the substrate stem loop. This results in a bell-shaped dependence of reaction rate on pH, corresponding to groups with p K a = 5.2 and 8.4. However, it is not possible from those data to determine which nucleobase is the acid, and which the base. We have therefore made substrates in which the 5′ oxygen of the scissile phosphate is replaced by sulfur. This labilizes the leaving group, removing the requirement for general acid catalysis. This substitution restores full activity to the highly impaired A756G ribozyme, consistent with general acid catalysis by A756 in the unmodified ribozyme. The pH dependence of the cleavage of the phosphorothiolate-modified substrates is consistent with general base catalysis by nucleobase at position 638. We conclude that cleavage of the substrate by the VS ribozyme is catalyzed by deprotonation of the 2′-O nucleophile by G638 and protonation of the 5′-O leaving group by A756. Existing evidence suggests that the Varkud satellite (VS) ribozyme accelerates the cleavage of a specific phosphodiester bond using general acid-base catalysis. The key functionalities are the nucleobases of adenine 756 in helix VI of the ribozyme, and guanine 638 in the substrate stem loop. This results in a bell-shaped dependence of reaction rate on pH, corresponding to groups with pK... = 5.2 and 8.4. However, it is not possible from those data to determine which nucleobase is the acid, and which the base. We have therefore made substrates in which the 5' oxygen of the scissile phosphate is replaced by sulfur. This labilizes the leaving group, removing the requirement for general acid catalysis. This substitution restores full activity to the highly impaired A756G ribozyme, consistent with general acid catalysis by A756 in the unmodified ribozyme. The pH dependence of the cleavage of the phosphorothiolate-modified substrates is consistent with general base catalysis by nucleobase at position 638. We conclude that cleavage of the substrate by the VS ribozyme is catalyzed by deprotonation of the 2'-O nucleophile by G638 and protonation of the 5'-O leaving group by A756. (ProQuest: ... denotes formulae/symbols omitted.) |
Author | Lilley, David M. J. Wilson, Timothy J. Li, Nan-Sheng Lu, Jun Frederiksen, John K. Uhlenbeck, Olke C. Piccirilli, Joseph A. |
Author_xml | – sequence: 1 givenname: Timothy J. surname: Wilson fullname: Wilson, Timothy J. – sequence: 2 givenname: Nan-Sheng surname: Li fullname: Li, Nan-Sheng – sequence: 3 givenname: Jun surname: Lu fullname: Lu, Jun – sequence: 4 givenname: John K. surname: Frederiksen fullname: Frederiksen, John K. – sequence: 5 givenname: Joseph A. surname: Piccirilli fullname: Piccirilli, Joseph A. – sequence: 6 givenname: David M. J. surname: Lilley fullname: Lilley, David M. J. – sequence: 7 givenname: Olke C. surname: Uhlenbeck fullname: Uhlenbeck, Olke C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20547881$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkc9vFCEcxYmpsdvq2ZOGePE09suvgbmYNI1Vk0Y9qFfCANOyzsIKMybrX1_GXdvqCcL38328l3eCjmKKHqHnBN4QkOxsG02pN-BUiPrwCK0IdKRpeQdHaAVAZaM45cfopJQ1AHRCwRN0TEFwqRRZoS-fZjv61Jvim413wUze4WsffTYjNja4ZhlhayYz7kooOEQ83Xj83eQfs8Ol8uMYJo9z6NPv3cY_RY8HMxb_7HCeom-X775efGiuPr__eHF-1VjeqamRnVOWGNpSq6ThyjE6CKd4C4pQQpRthWVEUjJA2w09o713ngvGe9dzaA07RW_3utu5r8atj1O1rLc5bEze6WSC_ncSw42-Tr807QBaJarA64NATj9nXya9CcXWNCb6NBctRf1OKqoq-eo_cp3mHGs6LaRipGN_oLM9ZHMqJfvhzgoBvXSll670fVd14-XDBHf833IqgA_AsnkvJzVtNSFSLMiLPbIuU8oPJCTlhHN2CyG9pgI |
CitedBy_id | crossref_primary_10_1021_jacs_5b11791 crossref_primary_10_1146_annurev_biochem_060409_092741 crossref_primary_10_1021_jo4028374 crossref_primary_10_1038_nchembio_2333 crossref_primary_10_1021_acs_joc_7b01484 crossref_primary_10_1021_jp300845h crossref_primary_10_1038_s41557_019_0391_x crossref_primary_10_1039_D0CB00207K crossref_primary_10_1093_nar_gkz737 crossref_primary_10_1021_ja3070528 crossref_primary_10_1073_pnas_1611191114 crossref_primary_10_1021_ar200262x crossref_primary_10_1021_bi500826n crossref_primary_10_1039_D2CC00660J crossref_primary_10_1021_cr400476k crossref_primary_10_1261_rna_046144_114 crossref_primary_10_1038_nchembio_1929 crossref_primary_10_1093_nar_gkr250 crossref_primary_10_1261_rna_067470_118 crossref_primary_10_1021_acs_joc_1c01059 crossref_primary_10_1042_BST0390641 crossref_primary_10_1021_acs_accounts_1c00052 crossref_primary_10_1021_ja3067429 crossref_primary_10_1261_rna_052076_115 crossref_primary_10_1016_j_bmcl_2016_07_076 crossref_primary_10_12688_f1000research_19324_1 crossref_primary_10_1021_acs_biochem_9b01047 crossref_primary_10_1093_nar_gkq1265 crossref_primary_10_1021_ar200131t crossref_primary_10_1016_j_tibs_2015_09_001 crossref_primary_10_1021_acs_chemrev_0c00713 crossref_primary_10_1021_ar200098t crossref_primary_10_1016_j_bbapap_2015_03_007 crossref_primary_10_1093_nar_gkr1018 crossref_primary_10_1002_ange_201609184 crossref_primary_10_1261_rna_2473711 crossref_primary_10_1021_acs_biochem_8b00031 crossref_primary_10_1021_acs_jcim_4c00520 crossref_primary_10_1093_nar_gkw401 crossref_primary_10_1021_ar2000452 crossref_primary_10_1002_wrna_1421 crossref_primary_10_1021_bi401484a crossref_primary_10_1074_jbc_RA119_008986 crossref_primary_10_1021_ja307021f crossref_primary_10_1038_nchembio_1587 crossref_primary_10_1021_bi101724h crossref_primary_10_1021_jp200970d crossref_primary_10_1042_BST20160158 crossref_primary_10_1016_j_sbi_2011_03_016 crossref_primary_10_3390_molecules22040678 crossref_primary_10_1002_anie_201609184 crossref_primary_10_1007_s11705_016_1558_2 crossref_primary_10_1093_nar_gkq1244 crossref_primary_10_1016_j_cbpa_2014_05_001 crossref_primary_10_1021_acs_biochem_1c00489 crossref_primary_10_1021_ja510387y crossref_primary_10_1021_jacs_9b02141 crossref_primary_10_1039_C6OB01270A crossref_primary_10_1080_15257770_2014_965256 crossref_primary_10_1080_21691401_2021_1890103 crossref_primary_10_1098_rstb_2011_0132 crossref_primary_10_1098_rstb_2011_0131 |
Cites_doi | 10.1016/S1074-5521(02)00130-8 10.1016/j.jmb.2005.04.005 10.1016/0022-2836(77)90275-3 10.1021/cr960427h 10.1016/S0022-2836(02)00521-1 10.1038/nature02522 10.1016/j.jmb.2004.04.067 10.1016/j.str.2008.07.007 10.1073/pnas.0608864104 10.1038/sj.emboj.7601698 10.1093/emboj/20.22.6434 10.1126/science.1076093 10.1021/bi027273m 10.1126/science.287.5457.1493 10.1038/6651 10.1126/science.286.5437.123 10.1038/35071009 10.1261/rna.1102308 10.1006/jmbi.2001.4996 10.1038/nchembio703 10.1073/pnas.0832440100 10.1038/26912 10.1016/j.chembiol.2005.09.006 10.1073/pnas.0305753101 10.1021/ja0502775 10.1021/bi952985g 10.1016/S0022-2836(02)00910-5 10.1016/S0021-9258(18)63395-2 10.1021/bi00186a001 10.1126/science.1129666 10.1261/rna.11706 |
ContentType | Journal Article |
Copyright | copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jun 29, 2010 |
Copyright_xml | – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jun 29, 2010 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7QO 5PM |
DOI | 10.1073/pnas.1004255107 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Biotechnology Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology Research Abstracts |
DatabaseTitleList | Engineering Research Database MEDLINE Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 11756 |
ExternalDocumentID | 2072882311 10_1073_pnas_1004255107 20547881 107_26_11751 20724144 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: 1R56AI081987-01 – fundername: Cancer Research UK – fundername: Biotechnology and Biological Sciences Research Council grantid: B17092 – fundername: Howard Hughes Medical Institute – fundername: NIAID NIH HHS grantid: R56 AI081987 – fundername: Cancer Research UK grantid: 11722 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F5P FRP GX1 HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZA5 ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO AJYGW AS DZ F20 H13 KM PQEST X XHC ADACV CGR CUY CVF ECM EIF IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7QO 5PM |
ID | FETCH-LOGICAL-c498t-79d8c1a262c87a48d32f5d8460812118c65c31721f069fb32bede4534bdb406a3 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:20:53 EDT 2024 Fri Oct 25 04:14:24 EDT 2024 Thu Oct 10 20:19:50 EDT 2024 Fri Aug 23 00:41:43 EDT 2024 Sat Sep 28 07:47:40 EDT 2024 Wed Nov 11 00:30:47 EST 2020 Fri Feb 02 07:04:32 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c498t-79d8c1a262c87a48d32f5d8460812118c65c31721f069fb32bede4534bdb406a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: T.J.W., N.-S.L., J.L., J.K.F., J.A.P., and D.M.J.L. designed research; T.J.W., N.-S.L., J.L., and J.K.F. performed research; T.J.W. and D.M.J.L. analyzed data; and T.J.W., J.A.P., and D.M.J.L. wrote the paper. 2Present address: Department of Pathology and Laboratory Medicine, The University of Rochester Medical Center, 601 Elmwood Avenue, Box 626, Rochester, NY 14642. Edited by Olke C. Uhlenbeck, Northwestern University, Evanston, IL, and approved May 19, 2010 (received for review March 30, 2010) |
OpenAccessLink | https://europepmc.org/articles/pmc2900685?pdf=render |
PMID | 20547881 |
PQID | 578319328 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_journals_578319328 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2900685 crossref_primary_10_1073_pnas_1004255107 pubmed_primary_20547881 pnas_primary_107_26_11751 jstor_primary_20724144 proquest_miscellaneous_754537828 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2010-06-29 |
PublicationDateYYYYMMDD | 2010-06-29 |
PublicationDate_xml | – month: 06 year: 2010 text: 2010-06-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2010 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | 16990543 - Science. 2006 Sep 22;313(5794):1752-6 11983335 - Chem Biol. 2002 Apr;9(4):465-73 17389378 - Proc Natl Acad Sci U S A. 2007 Apr 3;104(14):5818-23 18697921 - RNA. 2008 Sep;14(9):1942-9 12600192 - Biochemistry. 2003 Mar 4;42(8):2259-65 592404 - J Mol Biol. 1977 Nov;116(4):855-75 11707414 - EMBO J. 2001 Nov 15;20(22):6434-42 16407993 - Nat Chem Biol. 2005 Jun;1(1):45-52 10688799 - Science. 2000 Feb 25;287(5457):1493-7 16601203 - RNA. 2006 Jun;12(6):980-7 9783582 - Nature. 1998 Oct 8;395(6702):567-74 15907933 - J Mol Biol. 2005 Jun 24;349(5):989-1010 11848924 - Chem Rev. 1998 May 7;98(3):1045-1066 11298439 - Nature. 2001 Apr 12;410(6830):780-6 12096902 - J Mol Biol. 2002 Jul 12;320(3):443-54 12376595 - Science. 2002 Nov 15;298(5597):1421-4 17464286 - EMBO J. 2007 May 16;26(10):2489-500 12368096 - J Mol Biol. 2002 Oct 11;323(1):23-34 18786398 - Structure. 2008 Sep 10;16(9):1357-67 11575922 - J Mol Biol. 2001 Sep 28;312(4):663-74 5460889 - J Biol Chem. 1970 Jan 25;245(2):305-28 15201049 - J Mol Biol. 2004 Jul 2;340(2):233-51 16298301 - Chem Biol. 2005 Nov;12(11):1221-6 14755053 - Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1467-72 10506560 - Science. 1999 Oct 1;286(5437):123-6 8634244 - Biochemistry. 1996 May 14;35(19):6026-36 12782785 - Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7003-8 15810830 - J Am Chem Soc. 2005 Apr 13;127(14):5026-7 9660970 - Mol Cell. 1998 May;1(6):873-81 8193116 - Biochemistry. 1994 May 24;33(20):6031-7 10074938 - Nat Struct Biol. 1999 Mar;6(3):212-6 15141216 - Nature. 2004 May 13;429(6988):201-5 Murchie AIH (e_1_3_3_23_2) 1998; 1 Lilley DMJ (e_1_3_3_1_2) 2008 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_21_2 doi: 10.1016/S1074-5521(02)00130-8 – ident: e_1_3_3_7_2 doi: 10.1016/j.jmb.2005.04.005 – ident: e_1_3_3_28_2 doi: 10.1016/0022-2836(77)90275-3 – ident: e_1_3_3_30_2 doi: 10.1021/cr960427h – ident: e_1_3_3_12_2 doi: 10.1016/S0022-2836(02)00521-1 – ident: e_1_3_3_18_2 doi: 10.1038/nature02522 – ident: e_1_3_3_6_2 doi: 10.1016/j.jmb.2004.04.067 – start-page: 1 volume-title: Ribozymes and RNA Catalysis year: 2008 ident: e_1_3_3_1_2 contributor: fullname: Lilley DMJ – ident: e_1_3_3_14_2 doi: 10.1016/j.str.2008.07.007 – ident: e_1_3_3_20_2 doi: 10.1073/pnas.0608864104 – ident: e_1_3_3_9_2 doi: 10.1038/sj.emboj.7601698 – ident: e_1_3_3_5_2 doi: 10.1093/emboj/20.22.6434 – ident: e_1_3_3_3_2 doi: 10.1126/science.1076093 – ident: e_1_3_3_4_2 doi: 10.1021/bi027273m – volume: 1 start-page: 873 year: 1998 ident: e_1_3_3_23_2 article-title: Folding of the hairpin ribozyme in its natural conformation achieves close physical proximity of the loops Molec publication-title: Cell contributor: fullname: Murchie AIH – ident: e_1_3_3_2_2 doi: 10.1126/science.287.5457.1493 – ident: e_1_3_3_26_2 doi: 10.1038/6651 – ident: e_1_3_3_17_2 doi: 10.1126/science.286.5437.123 – ident: e_1_3_3_24_2 doi: 10.1038/35071009 – ident: e_1_3_3_15_2 doi: 10.1261/rna.1102308 – ident: e_1_3_3_10_2 doi: 10.1006/jmbi.2001.4996 – ident: e_1_3_3_19_2 doi: 10.1038/nchembio703 – ident: e_1_3_3_22_2 doi: 10.1073/pnas.0832440100 – ident: e_1_3_3_16_2 doi: 10.1038/26912 – ident: e_1_3_3_32_2 doi: 10.1016/j.chembiol.2005.09.006 – ident: e_1_3_3_31_2 doi: 10.1073/pnas.0305753101 – ident: e_1_3_3_13_2 doi: 10.1021/ja0502775 – ident: e_1_3_3_25_2 doi: 10.1021/bi952985g – ident: e_1_3_3_11_2 doi: 10.1016/S0022-2836(02)00910-5 – ident: e_1_3_3_27_2 doi: 10.1016/S0021-9258(18)63395-2 – ident: e_1_3_3_29_2 doi: 10.1021/bi00186a001 – ident: e_1_3_3_33_2 doi: 10.1126/science.1129666 – ident: e_1_3_3_8_2 doi: 10.1261/rna.11706 |
SSID | ssj0009580 |
Score | 2.316228 |
Snippet | Existing evidence suggests that the Varkud satellite (VS) ribozyme accelerates the cleavage of a specific phosphodiester bond using general acid-base... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 11751 |
SubjectTerms | Acids Base Sequence Biochemistry Biological Sciences Catalysis Chemical bases Endoribonucleases - chemistry Endoribonucleases - genetics Endoribonucleases - metabolism Hepatitis delta virus Hydrogen-Ion Concentration Kinetics Molecular Sequence Data Mutagenesis, Site-Directed Nucleic Acid Conformation Nucleobases Nucleophiles Oxygen Phosphates Phosphorothioate Oligonucleotides - chemistry Phosphorothioate Oligonucleotides - metabolism Physical Sciences Reaction kinetics Ribonucleic acid Ribozymes RNA RNA, Catalytic - chemistry RNA, Catalytic - genetics RNA, Catalytic - metabolism Substrate Specificity |
Title | Nucleobase-mediated general acid-base catalysis in the Varkud satellite ribozyme |
URI | https://www.jstor.org/stable/20724144 http://www.pnas.org/content/107/26/11751.abstract https://www.ncbi.nlm.nih.gov/pubmed/20547881 https://www.proquest.com/docview/578319328 https://search.proquest.com/docview/754537828 https://pubmed.ncbi.nlm.nih.gov/PMC2900685 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB21PXFBlFIIhcoHDu3B3aztxM4RVVSlqFUPLeot8idEsNnVZvcAv56xk2y7iBO3SDNWIs-M5zmeeQb4gC7CBQYZ1cw6KmwI1FTaUCO5dQEfWbqH7PqmvLwXVw_Fww4UYy9MKtq3pjlrf87O2uZ7qq1czOxkrBOb3F6fsyp2NhSTXdhFBx236BumXdX3nTBcfgUTI5-P5JNFq7tYFoB-iq4Y799jeeSzUtOtrNQXJka2U9T_F_L8u4DySUa6eAHPByhJPvafvA87vn0J-0OwduRkYJQ-PYDbm8haPI8Zi6ZWEYSZ5FsvJto2jkYRSb9yIkMJaVqCwJB81csfa0c6nWg7V54sGzP__WvmX8H9xae780s6XKVArajUisrKKTvVrGRWSS2U4ywUDrEHIgLcAipbFpbH3WDIyyoYzox3XqAZjTOY8jU_hL123vo3QCQCitxxnqvKCMFyHbjygflCB4sZV2ZwMk5lvegZM-p00i15HSe0fjRABodpqjd6LJeIKITIIEuqj-NlzcpITF5MMzgaDVIP8dbVuO7wCEVVBmQjxUCJpx-69fN1V0vEihzxEKq87q335LW9F2Qgt-y6UYgc3NsSdM3ExT244tv_HnkEz_qChJKy6h3srZZr_x5xzsocI8L__OU4efcfi9L73Q |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH4a4wAXYMAgGz984DAOblPbiZ0jmpgKrNUO27RbZDsORKNp1bSH7a_n2Um6deICt0jvWZH1vmd_Tt77DPAJIcIFJhnVzBZU2LKkJtOGGsltUeIjC_eQTabp-EJ8v0qudiDpe2FC0b411aD-PRvU1a9QW7mY2WFfJzY8mxyzzHc2JMNH8BjzNRb9IX2jtavazhOGC7Bgolf0kXy4qHXjCwMQqQhGfwMfi72ilRpt7UttaaLXO0X_v3HPhyWU9_akk-dw2c-mLUW5HqxXZmBvHwg9_vN0X8CzjqWSL615D3Zc_RL2unWgIUedWPXnV3A29YLIc78Z0tCFggyW_GzNRNuqoN5EwlciL35Cqpog5ySXenm9LkijgyLoypFlZea3NzP3Gi5Ovp4fj2l3SwO1IlMrKrNC2ZFmKbNKaqEKzsqkQFqDZANPl8qmieX-oFnGaVYazowrnECEmMIgm9B8H3bree3eApHIVeKC81hlRggW65IrVzKX6NLiZi4jOOpjlC9aMY48_ESXPPeRyu8iG8F-iOHGj8USyYoQEUTB9W68zFnqNc-TUQSHfaTzLpWbHJc07lmuioBsrJiD_seKrt183eQSaShHqoUub1pY3HttC68I5BZgNg5e3nvbgjAIMt9d2A_-e-RHeDI-n5zmp9-mPw7haVv3kFKWvYPd1XLt3iOdWpkPIXn-AGKOHOc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSIhLoUBpKA8fOJRDNlnbiZ0jKqzKo6s9UFRxifyEqGx2tcke6K9n7CTb3YpTb5FmrMiab-zPyfgbhN4BRCiDJIsl0SZm2rlYFVLFilNtHDyS0IfsfJqfXbAvl9nlVquvULSvVTWq_8xHdfU71FYu5zoZ6sSS2fkpKfzNhixZGpfcRw8gZ9N8OKhv9HZFd_uEwCLMCBtUfThNlrVsfHEAoBUA6bvwkdSrWonxzt7UlSd6zVPw_x__vF1GubUvTR6jn8OMunKUq9G6VSN9fUvs8U5TfoL2e7aKP3QuB-ierZ-ig349aPBJL1r9_hmaTb0w8sJvinG4jQJMFv_qzFjqysTehMPXIi-CgqsaA_fEP-Tqam1wI4MyaGvxqlKL679z-xxdTD59Pz2L-24NsWaFaGNeGKHHkuRECy6ZMJS4zAC9AdIBp0yh80xTf-B0aV44RYmyxjJAijIKWIWkh2ivXtT2CGEOnCU1lKaiUIyRVDoqrCM2k07Dps4jdDLEqVx2ohxl-JnOaemjVd5EN0KHIY4bP5JyIC2MRSgKrjfjeUlyr32ejSN0PES77FO6KWFpo57tigjhjRVy0f9gkbVdrJuSAx2lQLnA5UUHja3XdhCLEN8BzcbBy3zvWgAKQe67D_3LO498ix7OPk7Kb5-nX4_Ro678IY9J8Qrttau1fQ2sqlVvQv78A15-H2c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nucleobase-mediated+general+acid-base+catalysis+in+the+Varkud+satellite+ribozyme&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Timothy+J.+Wilson&rft.au=Nan-Sheng+Li&rft.au=Jun+Lu&rft.au=John+K.+Frederiksen&rft.date=2010-06-29&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=107&rft.issue=26&rft.spage=11751&rft_id=info:doi/10.1073%2Fpnas.1004255107&rft_id=info%3Apmid%2F20547881&rft.externalDBID=n%2Fa&rft.externalDocID=107_26_11751 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F26.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F26.cover.gif |