Application of mesoporous silica nanoparticles as drug delivery carriers for chemotherapeutic agents
•Structural and geometrical features of mesoporous silica can benefit drug delivery.•Coupled with therapeutic agents, targeting for a host of cancers is possible.•Several shortcomings of existing therapies are shown to be overcome. Recently, remarkable efforts have focused on research towards enhanc...
Saved in:
Published in | Drug discovery today Vol. 25; no. 8; pp. 1513 - 1520 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.08.2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | •Structural and geometrical features of mesoporous silica can benefit drug delivery.•Coupled with therapeutic agents, targeting for a host of cancers is possible.•Several shortcomings of existing therapies are shown to be overcome.
Recently, remarkable efforts have focused on research towards enhancing and delivering efficacious and advanced therapeutic agents. Even though this involves significant challenges, innovative techniques and materials have been explored to overcome these. The advantageous properties of mesoporous silica nanoparticles (MSNs), such as unique morphologies and geometries, makes then favorable for use for various drug delivery targeting purposes, particularly in cancer therapy. As we discuss here, MSNs have been utilized over the past few decades to improve the efficiency of anticancer drugs by enhancing their solubility to render them suitable for application, reducing adverse effects, and improving their anticancer cytotoxic efficiency. |
---|---|
AbstractList | Recently, remarkable efforts have focused on research towards enhancing and delivering efficacious and advanced therapeutic agents. Even though this involves significant challenges, innovative techniques and materials have been explored to overcome these. The advantageous properties of mesoporous silica nanoparticles (MSNs), such as unique morphologies and geometries, makes then favorable for use for various drug delivery targeting purposes, particularly in cancer therapy. As we discuss here, MSNs have been utilized over the past few decades to improve the efficiency of anticancer drugs by enhancing their solubility to render them suitable for application, reducing adverse effects, and improving their anticancer cytotoxic efficiency. Recently, remarkable efforts have focused on research towards enhancing and delivering efficacious and advanced therapeutic agents. Even though this involves significant challenges, innovative techniques and materials have been explored to overcome these. The advantageous properties of mesoporous silica nanoparticles (MSNs), such as unique morphologies and geometries, makes then favorable for use for various drug delivery targeting purposes, particularly in cancer therapy. As we discuss here, MSNs have been utilized over the past few decades to improve the efficiency of anticancer drugs by enhancing their solubility to render them suitable for application, reducing adverse effects, and improving their anticancer cytotoxic efficiency.Recently, remarkable efforts have focused on research towards enhancing and delivering efficacious and advanced therapeutic agents. Even though this involves significant challenges, innovative techniques and materials have been explored to overcome these. The advantageous properties of mesoporous silica nanoparticles (MSNs), such as unique morphologies and geometries, makes then favorable for use for various drug delivery targeting purposes, particularly in cancer therapy. As we discuss here, MSNs have been utilized over the past few decades to improve the efficiency of anticancer drugs by enhancing their solubility to render them suitable for application, reducing adverse effects, and improving their anticancer cytotoxic efficiency. •Structural and geometrical features of mesoporous silica can benefit drug delivery.•Coupled with therapeutic agents, targeting for a host of cancers is possible.•Several shortcomings of existing therapies are shown to be overcome. Recently, remarkable efforts have focused on research towards enhancing and delivering efficacious and advanced therapeutic agents. Even though this involves significant challenges, innovative techniques and materials have been explored to overcome these. The advantageous properties of mesoporous silica nanoparticles (MSNs), such as unique morphologies and geometries, makes then favorable for use for various drug delivery targeting purposes, particularly in cancer therapy. As we discuss here, MSNs have been utilized over the past few decades to improve the efficiency of anticancer drugs by enhancing their solubility to render them suitable for application, reducing adverse effects, and improving their anticancer cytotoxic efficiency. |
Author | Rasekh, Manoochehr Ahmad, Zeeshan Sayed, Elshaimaa G. Arshad, Muhammad S. Kucuk, Israfil Shepherd, Jennifer Wilson, Philippe B. Mehta, Prina Ruparelia, Ketan Singh, Neenu Fatouros, Dimitrios G. Alyassin, Yasmine Chang, Ming-Wei |
Author_xml | – sequence: 1 givenname: Yasmine surname: Alyassin fullname: Alyassin, Yasmine organization: Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK – sequence: 2 givenname: Elshaimaa G. surname: Sayed fullname: Sayed, Elshaimaa G. organization: Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK – sequence: 3 givenname: Prina surname: Mehta fullname: Mehta, Prina organization: Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK – sequence: 4 givenname: Ketan surname: Ruparelia fullname: Ruparelia, Ketan organization: Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK – sequence: 5 givenname: Muhammad S. surname: Arshad fullname: Arshad, Muhammad S. organization: Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK – sequence: 6 givenname: Manoochehr surname: Rasekh fullname: Rasekh, Manoochehr organization: Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK – sequence: 7 givenname: Jennifer orcidid: 0000-0002-3790-0323 surname: Shepherd fullname: Shepherd, Jennifer organization: Department of Engineering, University of Leicester, Leicester, LE1 7RH, UK – sequence: 8 givenname: Israfil surname: Kucuk fullname: Kucuk, Israfil organization: Institute of Nanotechnology, Gebze Technical University, 41400 Gebze, Turkey – sequence: 9 givenname: Philippe B. orcidid: 0000-0003-0207-2246 surname: Wilson fullname: Wilson, Philippe B. organization: School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Southwell, NG25 0QF, UK – sequence: 10 givenname: Neenu surname: Singh fullname: Singh, Neenu organization: Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK – sequence: 11 givenname: Ming-Wei orcidid: 0000-0002-0137-8895 surname: Chang fullname: Chang, Ming-Wei organization: Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey, BT37 0QB, UK – sequence: 12 givenname: Dimitrios G. surname: Fatouros fullname: Fatouros, Dimitrios G. organization: Department of Pharmaceutical Technology, Aristotle University of Thessaloniki, School of Pharmacy, 54124, Thessaloniki, Greece – sequence: 13 givenname: Zeeshan surname: Ahmad fullname: Ahmad, Zeeshan email: zahmad@dmu.ac.uk organization: Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32561300$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9r3DAQxUVJaf6036AEHXOxO5JlWc6hEELbBAK9tGehlcaJFttyJDmw3z7abnLJoTlpQO_3hnnvlBzNYUZCvjKoGTD5bVu7uDqfag4capA1gPxATpjqVNWqhh-VuWn7Sgohj8lpSlsAxvtWfiLHDW8lawBOiLtaltFbk32YaRjohCksIYY10eT3H3Q2c1hMzN6OmKhJtKy9pw5H_4RxR62J0WNMdAiR2gecQn7AaBZcC0HNPc45fSYfBzMm_PLynpG_P3_8ub6p7n7_ur2-uqus6FWu5NCrxgnujFMbgQ5Vo6DtRduD7axAKwapOsvdpjVCYieNgw6Ab5iTDR9Mc0YuDr5LDI8rpqwnnyyOo5mxXKS5YC3voZeiSM9fpOtmQqeX6CcTd_o1mSK4PAhsDClFHLT1-V9MORo_agZ6X4Pe6kMNel-DBqlLDQUWb-BX_3ew7wcMS0hPJVWdrMfZovMRbdYu-P8bPANzxqXH |
CitedBy_id | crossref_primary_10_1016_j_cap_2024_10_010 crossref_primary_10_3390_ma15030970 crossref_primary_10_1016_j_jddst_2023_104353 crossref_primary_10_3390_cancers12082073 crossref_primary_10_1016_j_jddst_2022_104033 crossref_primary_10_2139_ssrn_4150456 crossref_primary_10_3390_biomedicines9010073 crossref_primary_10_3390_ma15175926 crossref_primary_10_1016_j_foodchem_2022_135110 crossref_primary_10_1021_acs_jpca_1c06941 crossref_primary_10_3389_fmolb_2021_670792 crossref_primary_10_1007_s11033_022_07953_6 crossref_primary_10_1016_j_micromeso_2021_111007 crossref_primary_10_34133_bmef_0035 crossref_primary_10_1039_D1NA00738F crossref_primary_10_1186_s12917_021_02927_5 crossref_primary_10_3389_fchem_2021_629635 crossref_primary_10_1002_adhm_202201884 crossref_primary_10_1016_j_colsurfb_2022_112872 crossref_primary_10_1007_s11051_023_05813_3 crossref_primary_10_1007_s12633_023_02748_1 crossref_primary_10_1016_j_ijbiomac_2022_01_063 crossref_primary_10_1016_j_ijpx_2022_100116 crossref_primary_10_1021_acsomega_3c04750 crossref_primary_10_1007_s11051_023_05712_7 crossref_primary_10_1016_j_actbio_2020_09_009 crossref_primary_10_1016_j_jddst_2022_104042 crossref_primary_10_1016_j_microc_2021_106601 crossref_primary_10_1016_j_micromeso_2022_112274 crossref_primary_10_1007_s42247_021_00236_z crossref_primary_10_3390_molecules27196328 crossref_primary_10_1021_acs_nanolett_4c03613 crossref_primary_10_3390_ma17122870 crossref_primary_10_1080_17435889_2024_2348438 crossref_primary_10_3390_ijms21218291 crossref_primary_10_1021_acsami_1c06818 crossref_primary_10_1002_smll_202409713 crossref_primary_10_1021_acs_nanolett_2c00330 crossref_primary_10_3390_pharmaceutics15122785 crossref_primary_10_1016_j_medengphy_2024_104160 crossref_primary_10_1016_j_jhazmat_2023_132653 crossref_primary_10_1016_j_ijbiomac_2023_128482 crossref_primary_10_1016_j_jtice_2021_06_053 crossref_primary_10_1063_5_0149009 crossref_primary_10_1007_s12094_024_03577_3 crossref_primary_10_1002_admi_202201356 crossref_primary_10_2174_2211738511666230327123627 crossref_primary_10_1186_s12943_021_01346_2 crossref_primary_10_1016_j_jddst_2024_106031 crossref_primary_10_1039_D1QM00851J crossref_primary_10_1016_j_addr_2021_04_026 crossref_primary_10_5306_wjco_v15_i6_667 crossref_primary_10_1021_acs_biomac_2c00354 crossref_primary_10_1039_D3RA00866E crossref_primary_10_1080_00222348_2023_2223849 crossref_primary_10_1016_j_heliyon_2023_e18490 crossref_primary_10_1007_s00425_021_03734_w crossref_primary_10_1016_j_jiec_2024_08_036 crossref_primary_10_1016_j_apsusc_2024_160633 crossref_primary_10_5812_amh_112274 crossref_primary_10_3389_fmolb_2022_783494 crossref_primary_10_1016_j_apsadv_2021_100163 crossref_primary_10_1002_smll_202408898 crossref_primary_10_1089_hs_2022_0014 crossref_primary_10_31436_jop_v4i2_264 crossref_primary_10_3390_catal12020183 crossref_primary_10_1016_j_jddst_2023_104970 crossref_primary_10_1016_j_micromeso_2025_113603 crossref_primary_10_2147_IJN_S290537 crossref_primary_10_1002_smsc_202000056 crossref_primary_10_1208_s12249_022_02237_5 crossref_primary_10_1016_j_jddst_2020_102236 crossref_primary_10_1208_s12249_022_02469_5 crossref_primary_10_3390_molecules28052013 crossref_primary_10_3390_pharmaceutics14122703 crossref_primary_10_3390_nano12162848 crossref_primary_10_1016_j_molstruc_2022_132922 crossref_primary_10_2174_1567201818666210813142007 crossref_primary_10_1016_j_heliyon_2022_e09577 crossref_primary_10_1016_j_jconrel_2021_07_029 crossref_primary_10_1016_j_micromeso_2023_112708 crossref_primary_10_1007_s12666_021_02489_y crossref_primary_10_3390_molecules26195905 crossref_primary_10_1002_ptr_7389 crossref_primary_10_1016_j_ijbiomac_2023_123336 crossref_primary_10_1002_biot_202300078 crossref_primary_10_1016_j_ijbiomac_2021_03_087 crossref_primary_10_3390_pharmaceutics15041214 crossref_primary_10_2174_2211738511666230818092706 crossref_primary_10_1007_s11051_023_05690_w crossref_primary_10_1142_S1088424620500546 |
Cites_doi | 10.1002/adfm.201402755 10.1021/acsomega.8b02909 10.1016/j.msec.2016.11.040 10.3390/bioengineering4010003 10.3389/fpls.2016.01667 10.1002/chem.201703188 10.1016/j.actbio.2017.11.007 10.1016/j.msec.2017.11.040 10.1016/j.colsurfb.2016.10.049 10.1158/1538-7445.AM2018-4122 10.2147/IJN.S202210 10.1016/bs.acr.2017.11.003 10.1039/C4TB01030B 10.1038/srep45846 10.1088/1361-6528/aaff9e 10.3390/molecules23010047 10.20892/j.issn.2095-3941.2017.0052 10.1016/j.drudis.2017.10.022 10.1016/j.micromeso.2017.07.021 10.1002/anie.201104765 10.1016/j.jddst.2018.01.020 10.1016/j.ccr.2016.04.019 10.1002/jbm.a.36410 10.1002/cmdc.201800019 10.1039/C7CS00219J 10.1080/17425247.2019.1575806 10.3390/ijms20040929 10.1016/j.apsusc.2015.03.151 10.1016/j.colsurfb.2018.12.038 10.1016/j.ijpharm.2017.10.043 10.1016/j.jfda.2014.01.002 10.1016/j.colsurfb.2017.03.024 10.1016/j.jcis.2018.01.072 10.1002/adhm.201200116 10.1016/j.addr.2012.10.002 10.1016/j.biomaterials.2013.07.075 10.1021/nn103130q 10.1016/bs.enz.2018.07.005 10.1039/C8NR07667G 10.1186/s40580-019-0193-2 10.3109/1061186X.2011.622404 10.1016/j.ctrv.2015.10.010 10.1016/j.apsb.2018.01.007 10.1016/j.micromeso.2018.12.026 10.1021/acsami.5b11730 10.1016/j.addr.2013.09.001 10.1016/j.jconrel.2018.03.031 10.1016/j.nano.2015.10.018 10.1021/nn200809t 10.1016/j.ijbiomac.2018.09.058 10.1002/smll.201301926 10.1016/j.bios.2014.01.042 10.1016/j.ijpharm.2014.04.067 10.1021/acs.molpharmaceut.7b00109 10.1002/jbm.a.36770 10.3390/pharmaceutics11020077 10.1039/C7RA01028A 10.1080/17425247.2016.1211637 10.1039/C6BM00449K 10.1016/j.colsurfa.2019.03.030 10.1016/j.msec.2019.03.028 10.3390/nano7070189 10.1080/03639045.2019.1629688 10.1007/s12274-018-2078-9 10.1016/j.eururo.2019.01.049 10.2147/IJN.S213974 10.1016/S0928-0987(00)00114-7 10.2217/nnm-2018-0242 10.2174/0929867325666180501101044 10.1016/j.biopha.2019.109614 10.1208/s12249-017-0740-2 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.drudis.2020.06.006 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1878-5832 |
EndPage | 1520 |
ExternalDocumentID | 32561300 10_1016_j_drudis_2020_06_006 S1359644620302312 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATCM AAXUO AAYOK ABFNM ABFRF ABGSF ABJNI ABMAC ABOCM ABUDA ABXDB ABYKQ ABZDS ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IH2 IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OGGZJ OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SES SEW SPCBC SSP SSU SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 |
ID | FETCH-LOGICAL-c498t-6f983d42dad8b4ede8380594590c7c4ec4f687c2db5a46e76ad07002b1d632fa3 |
IEDL.DBID | .~1 |
ISSN | 1359-6446 1878-5832 |
IngestDate | Fri Jul 11 15:20:26 EDT 2025 Wed Feb 19 02:29:09 EST 2025 Tue Jul 01 04:30:58 EDT 2025 Thu Apr 24 23:09:28 EDT 2025 Fri Feb 23 02:47:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c498t-6f983d42dad8b4ede8380594590c7c4ec4f687c2db5a46e76ad07002b1d632fa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0137-8895 0000-0002-3790-0323 0000-0003-0207-2246 |
PMID | 32561300 |
PQID | 2415290964 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2415290964 pubmed_primary_32561300 crossref_citationtrail_10_1016_j_drudis_2020_06_006 crossref_primary_10_1016_j_drudis_2020_06_006 elsevier_sciencedirect_doi_10_1016_j_drudis_2020_06_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Drug discovery today |
PublicationTitleAlternate | Drug Discov Today |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Naz (bib0100) 2019; 14 Popova (bib0205) 2018; 44 Tian (bib0245) 2019; 570 Watermann, Brieger (bib0135) 2017; 7 Gary-Bobo (bib0170) 2011; 50 Mo (bib0350) 2016; 8 Feng (bib0180) 2016; 319 Singh (bib0250) 2016; 7 Li (bib0155) 2012; 1 Sayed (bib0275) 2018; 278 Cui (bib0345) 2013; 34 Sayed (bib0010) 2017; 18 Chen (bib0160) 2018; 11 Vallet-Regí (bib0015) 2017; 23 Du, X (bib0230) 2015; 345 Vallet-Regí (bib0075) 2018; 23 Amreddy, Babu, Muralidharan, Panneerselvam, Srivastava, Ahmed (bib0200) 2018; 137 Wong (bib0215) 2017; 23 Xiao (bib0150) 2014; 10 Zhu (bib0185) 2014; 22 Poonia (bib0130) 2017; 23 Perera (bib0300) 2019; 77 Mehta (bib0360) 2019; 2 Gayam, Wu (bib0175) 2014; 2 Du, Fu, Ren, Li, Guo (bib0305) 2020; 121 Kim (bib0220) 2011; 5 Taratula (bib0320) 2011; 19 Wang (bib0290) 2019; 45 Krishna, Mayer (bib0265) 2000; 11 Li (bib0325) 2017; 5 Luo (bib0085) 2019; 100 Maeda (bib0120) 2013; 65 Aquib, Farooq, Banerjee, Akhtar, Filli, Boakye-Yiadom, Kesse, Raza, Maviah, Mavlyanova, Wang (bib0190) 2019; 107 Yang, Yu (bib0125) 2016; 12 Kesse (bib0340) 2019; 11 Samykutty (bib0065) 2018; 78 Dilnawaz (bib0110) 2018; 26 Meng (bib0140) 2011; 5 Gisbert-Garzarán (bib0225) 2017; 4 Kumar (bib0335) 2017; 150 Fang (bib0080) 2019; 14 Lin (bib0105) 2018; 536 Vallet-Regi (bib0355) 2018; 43 Ricci (bib0050) 2018; 516 Jia, Yang, Wang, Chen, Yuan, Chen (bib0195) 2018; 13 Xin (bib0235) 2017; 14 Tian (bib0330) 2017; 154 Castillo (bib0005) 2017; 14 Rehman (bib0055) 2017; 72 Wen (bib0210) 2017; 46 Li (bib0025) 2019; 16 Liu (bib0310) 2019; 175 Montalvo-Quiros (bib0045) 2019; 11 Chen (bib0060) 2019; 122 Rivero-Buceta (bib0315) 2019; 4 Chi (bib0285) 2019; 30 Bhavsar (bib0295) 2019; 279 Martínez-Carmona (bib0070) 2018; 65 Rasekh (bib0365) 2017; 14 Zhang (bib0090) 2019; 14 Wong (bib0280) 2017; 7 Castillo, Vallet-Regí (bib0035) 2019; 20 Frederiks (bib0255) 2015; 41 Palanikumar (bib0240) 2015; 25 Fang (bib0165) 2014; 57 Gonzalez (bib0040) 2018; 256 Monem (bib0145) 2014; 470 Navya (bib0030) 2019; 6 Zhao (bib0095) 2018; 84 Vilaça (bib0020) 2017; 7 Zhou (bib0115) 2018; 8 Kirtane (bib0270) 2013; 65 Olov (bib0260) 2018; 106 Yang (10.1016/j.drudis.2020.06.006_bib0125) 2016; 12 Liu (10.1016/j.drudis.2020.06.006_bib0310) 2019; 175 Rasekh (10.1016/j.drudis.2020.06.006_bib0365) 2017; 14 Vallet-Regí (10.1016/j.drudis.2020.06.006_bib0075) 2018; 23 Meng (10.1016/j.drudis.2020.06.006_bib0140) 2011; 5 Navya (10.1016/j.drudis.2020.06.006_bib0030) 2019; 6 Sayed (10.1016/j.drudis.2020.06.006_bib0010) 2017; 18 Wong (10.1016/j.drudis.2020.06.006_bib0280) 2017; 7 Xin (10.1016/j.drudis.2020.06.006_bib0235) 2017; 14 Du (10.1016/j.drudis.2020.06.006_bib0230) 2015; 345 Gisbert-Garzarán (10.1016/j.drudis.2020.06.006_bib0225) 2017; 4 Tian (10.1016/j.drudis.2020.06.006_bib0245) 2019; 570 Gary-Bobo (10.1016/j.drudis.2020.06.006_bib0170) 2011; 50 Gonzalez (10.1016/j.drudis.2020.06.006_bib0040) 2018; 256 Castillo (10.1016/j.drudis.2020.06.006_bib0035) 2019; 20 Kesse (10.1016/j.drudis.2020.06.006_bib0340) 2019; 11 Kim (10.1016/j.drudis.2020.06.006_bib0220) 2011; 5 Luo (10.1016/j.drudis.2020.06.006_bib0085) 2019; 100 Vallet-Regí (10.1016/j.drudis.2020.06.006_bib0015) 2017; 23 Feng (10.1016/j.drudis.2020.06.006_bib0180) 2016; 319 Wang (10.1016/j.drudis.2020.06.006_bib0290) 2019; 45 Popova (10.1016/j.drudis.2020.06.006_bib0205) 2018; 44 Zhou (10.1016/j.drudis.2020.06.006_bib0115) 2018; 8 Zhang (10.1016/j.drudis.2020.06.006_bib0090) 2019; 14 Taratula (10.1016/j.drudis.2020.06.006_bib0320) 2011; 19 Fang (10.1016/j.drudis.2020.06.006_bib0080) 2019; 14 Watermann (10.1016/j.drudis.2020.06.006_bib0135) 2017; 7 Kirtane (10.1016/j.drudis.2020.06.006_bib0270) 2013; 65 Chen (10.1016/j.drudis.2020.06.006_bib0060) 2019; 122 Chen (10.1016/j.drudis.2020.06.006_bib0160) 2018; 11 Aquib (10.1016/j.drudis.2020.06.006_bib0190) 2019; 107 Amreddy (10.1016/j.drudis.2020.06.006_bib0200) 2018; 137 Palanikumar (10.1016/j.drudis.2020.06.006_bib0240) 2015; 25 Mehta (10.1016/j.drudis.2020.06.006_bib0360) 2019; 2 Li (10.1016/j.drudis.2020.06.006_bib0155) 2012; 1 Vallet-Regi (10.1016/j.drudis.2020.06.006_bib0355) 2018; 43 Lin (10.1016/j.drudis.2020.06.006_bib0105) 2018; 536 Ricci (10.1016/j.drudis.2020.06.006_bib0050) 2018; 516 Jia (10.1016/j.drudis.2020.06.006_bib0195) 2018; 13 Singh (10.1016/j.drudis.2020.06.006_bib0250) 2016; 7 Vilaça (10.1016/j.drudis.2020.06.006_bib0020) 2017; 7 Perera (10.1016/j.drudis.2020.06.006_bib0300) 2019; 77 Samykutty (10.1016/j.drudis.2020.06.006_bib0065) 2018; 78 Xiao (10.1016/j.drudis.2020.06.006_bib0150) 2014; 10 Rehman (10.1016/j.drudis.2020.06.006_bib0055) 2017; 72 Chi (10.1016/j.drudis.2020.06.006_bib0285) 2019; 30 Du (10.1016/j.drudis.2020.06.006_bib0305) 2020; 121 Poonia (10.1016/j.drudis.2020.06.006_bib0130) 2017; 23 Montalvo-Quiros (10.1016/j.drudis.2020.06.006_bib0045) 2019; 11 Tian (10.1016/j.drudis.2020.06.006_bib0330) 2017; 154 Li (10.1016/j.drudis.2020.06.006_bib0325) 2017; 5 Mo (10.1016/j.drudis.2020.06.006_bib0350) 2016; 8 Wong (10.1016/j.drudis.2020.06.006_bib0215) 2017; 23 Wen (10.1016/j.drudis.2020.06.006_bib0210) 2017; 46 Sayed (10.1016/j.drudis.2020.06.006_bib0275) 2018; 278 Zhu (10.1016/j.drudis.2020.06.006_bib0185) 2014; 22 Krishna (10.1016/j.drudis.2020.06.006_bib0265) 2000; 11 Zhao (10.1016/j.drudis.2020.06.006_bib0095) 2018; 84 Naz (10.1016/j.drudis.2020.06.006_bib0100) 2019; 14 Bhavsar (10.1016/j.drudis.2020.06.006_bib0295) 2019; 279 Martínez-Carmona (10.1016/j.drudis.2020.06.006_bib0070) 2018; 65 Dilnawaz (10.1016/j.drudis.2020.06.006_bib0110) 2018; 26 Gayam (10.1016/j.drudis.2020.06.006_bib0175) 2014; 2 Cui (10.1016/j.drudis.2020.06.006_bib0345) 2013; 34 Monem (10.1016/j.drudis.2020.06.006_bib0145) 2014; 470 Fang (10.1016/j.drudis.2020.06.006_bib0165) 2014; 57 Frederiks (10.1016/j.drudis.2020.06.006_bib0255) 2015; 41 Castillo (10.1016/j.drudis.2020.06.006_bib0005) 2017; 14 Olov (10.1016/j.drudis.2020.06.006_bib0260) 2018; 106 Li (10.1016/j.drudis.2020.06.006_bib0025) 2019; 16 Kumar (10.1016/j.drudis.2020.06.006_bib0335) 2017; 150 Maeda (10.1016/j.drudis.2020.06.006_bib0120) 2013; 65 Rivero-Buceta (10.1016/j.drudis.2020.06.006_bib0315) 2019; 4 |
References_xml | – volume: 516 start-page: 484 year: 2018 end-page: 497 ident: bib0050 article-title: Hyaluronated mesoporous silica nanoparticles for active targeting: Influence of conjugation method and hyaluronic acid molecular weight on the nanovector properties publication-title: J. Colloid Interface Sci. – volume: 45 start-page: 1487 year: 2019 end-page: 1495 ident: bib0290 article-title: Combined chemo/photothermal therapy based on mesoporous silica-au core-shell nanoparticles for hepatocellular carcinoma treatment publication-title: Drug Dev. Ind. Pharm. – volume: 65 start-page: 393 year: 2018 end-page: 404 ident: bib0070 article-title: Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment publication-title: Acta Biomater. – volume: 22 start-page: 18 year: 2014 end-page: 28 ident: bib0185 article-title: Cell microenvironment stimuli-responsive controlled-release delivery systems based on mesoporous silica nanoparticles publication-title: J. Food Drug Anal. – volume: 11 start-page: 265 year: 2000 end-page: 283 ident: bib0265 article-title: Multidrug resistance (MDR) in cancer: mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs publication-title: Eur. J. Pharm. Sci. – volume: 11 start-page: 4890 year: 2018 end-page: 4904 ident: bib0160 article-title: General synthesis of silica-based yolk/shell hybrid nanomaterials and publication-title: Nano Res. – volume: 8 start-page: 6811 year: 2016 end-page: 6825 ident: bib0350 article-title: Tailoring particle size of mesoporous silica nanosystem to antagonize glioblastoma and overcome blood–brain barrier publication-title: ACS Appl. Mater. Interfaces – volume: 279 start-page: 107 year: 2019 end-page: 116 ident: bib0295 article-title: Formulation and development of smart pH responsive mesoporous silica nanoparticles for breast cancer targeted delivery of anastrozole: publication-title: Microporous Mesoporous Mater. – volume: 11 start-page: 77 year: 2019 ident: bib0340 article-title: Mesoporous silica nanomaterials: versatile nanocarriers for cancer theranostics and drug and gene delivery publication-title: Pharmaceutics – volume: 77 start-page: 403 year: 2019 end-page: 417 ident: bib0300 article-title: Gallium-68 prostate-specific membrane antigen positron emission tomography in advanced prostate cancer—updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: a systematic review and meta-analysis publication-title: Eur. Urol. – volume: 122 start-page: 1090 year: 2019 end-page: 1099 ident: bib0060 article-title: A self-targeting and controllable drug delivery system constituting mesoporous silica nanoparticles fabricated with a multi-stimuli responsive chitosan-based thin film layer publication-title: Int. J. Biol. Macromol. – volume: 1 start-page: 567 year: 2012 end-page: 572 ident: bib0155 article-title: Polyvalent mesoporous silica nanoparticle‐aptamer bioconjugates target breast cancer cells publication-title: Adv. Healthc. Mater. – volume: 319 start-page: 86 year: 2016 end-page: 109 ident: bib0180 article-title: The application of mesoporous silica nanoparticle family in cancer theranostics publication-title: Coord. Chem. Rev. – volume: 23 start-page: 47 year: 2018 ident: bib0075 article-title: Mesoporous silica nanoparticles for drug delivery: current insights publication-title: Molecules – volume: 23 start-page: 47 year: 2017 ident: bib0015 article-title: Mesoporous silica nanoparticles for drug delivery: current insights publication-title: Molecules – volume: 256 start-page: 251 year: 2018 end-page: 265 ident: bib0040 article-title: Comparative study of two silica mesoporous materials (SBA-16 and SBA-15) modified with a hydroxyapatite layer for clindamycin controlled delivery publication-title: Microporous Mesoporous Mater. – volume: 14 start-page: 5785 year: 2019 ident: bib0080 article-title: Hyaluronic acid-modified mesoporous silica–coated superparamagnetic Fe3O4 nanoparticles for targeted drug delivery publication-title: Int. J. Nanomed. – volume: 65 start-page: 71 year: 2013 end-page: 79 ident: bib0120 article-title: The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging publication-title: Adv. Drug Deliv. Rev. – volume: 12 start-page: 317 year: 2016 end-page: 332 ident: bib0125 article-title: Advances in silica based nanoparticles for targeted cancer therapy publication-title: Nanomedicine – volume: 345 start-page: 90 year: 2015 end-page: 98 ident: bib0230 article-title: Layer-by-layer engineering fluorescent polyelectrolyte coated mesoporous silica nanoparticles as pH-sensitive nanocarriers for controlled release publication-title: Appl. Surf. Sci. – volume: 536 start-page: 272 year: 2018 end-page: 282 ident: bib0105 article-title: PEGylated lipid bilayer coated mesoporous silica nanoparticles for co-delivery of paclitaxel and curcumin: Design, characterization and its cytotoxic effect publication-title: Int. J. Pharm. – volume: 23 start-page: 315 year: 2017 end-page: 322 ident: bib0130 article-title: Mesoporous silica nanoparticles: a smart nanosystem for management of breast cancer publication-title: Drug Discov. Today – volume: 50 start-page: 11425 year: 2011 end-page: 11429 ident: bib0170 article-title: Mannose‐functionalized mesoporous silica nanoparticles for efficient two‐photon photodynamic therapy of solid tumors publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 77 year: 2017 end-page: 88 ident: bib0325 article-title: Combined bortezomib-based chemotherapy and p53 gene therapy using hollow mesoporous silica nanospheres for p53 mutant non-small cell lung cancer treatment publication-title: Biomater. Sci. – volume: 43 start-page: 101 year: 2018 end-page: 122 ident: bib0355 article-title: Controlled release with emphasis on ultrasound-induced release publication-title: Enzymes – volume: 7 start-page: 1667 year: 2016 ident: bib0250 article-title: Lead phytochemicals for anticancer drug development publication-title: Front. Plant Sci. – volume: 5 start-page: 3568 year: 2011 end-page: 3576 ident: bib0220 article-title: Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery publication-title: ACS Nano – volume: 175 start-page: 477 year: 2019 end-page: 486 ident: bib0310 article-title: Cancer cell membrane-cloaked mesoporous silica nanoparticles with a pH-sensitive gatekeeper for cancer treatment publication-title: Colloids Surf. B Biointerfaces – volume: 107 start-page: 2643 year: 2019 end-page: 2666 ident: bib0190 article-title: Targeted and stimuli-responsive mesoporous silica nanoparticles for drug delivery and theranostic use publication-title: J Biomed Mat Res A – volume: 137 start-page: 115 year: 2018 end-page: 170 ident: bib0200 article-title: Recent advances in nanoparticle-based cancer drug and gene delivery publication-title: Adv. Cancer Res. – volume: 23 start-page: 16505 year: 2017 end-page: 16515 ident: bib0215 article-title: Encapsulating pH‐responsive doxorubicin–phthalocyanine conjugates in mesoporous silica nanoparticles for combined photodynamic therapy and controlled chemotherapy publication-title: Chemistry – volume: 570 start-page: 386 year: 2019 end-page: 395 ident: bib0245 article-title: Hollow mesoporous carbon modified with cRGD peptide nanoplatform for targeted drug delivery and chemo-photothermal therapy of prostatic carcinoma publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 19 start-page: 900 year: 2011 end-page: 914 ident: bib0320 article-title: Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA publication-title: J. Drug Target. – volume: 470 start-page: 1 year: 2014 end-page: 7 ident: bib0145 article-title: Mesoporous silica coated gold nanorods loaded doxorubicin for combined chemo-photothermal therapy publication-title: Int. J. Pharm. – volume: 7 start-page: 189 year: 2017 ident: bib0135 article-title: Mesoporous silica nanoparticles as drug delivery vehicles in cancer publication-title: Nanomaterials – volume: 13 start-page: 400 year: 2018 end-page: 405 ident: bib0195 article-title: Hollow mesoporous silica@metal-organic framework and its applications for pH-responsive doxorubicin drug delivery publication-title: ChemMedChem – volume: 34 start-page: 8511 year: 2013 end-page: 8520 ident: bib0345 article-title: Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment publication-title: Biomaterials – volume: 65 start-page: 1731 year: 2013 end-page: 1747 ident: bib0270 article-title: Exploiting nanotechnology to overcome tumor drug resistance: challenges and opportunities publication-title: Adv. Drug Deliv. Rev. – volume: 25 start-page: 957 year: 2015 end-page: 965 ident: bib0240 article-title: Noncovalent polymer‐gatekeeper in mesoporous silica nanoparticles as a targeted drug delivery platform publication-title: Adv. Funct. Mater. – volume: 154 start-page: 287 year: 2017 end-page: 296 ident: bib0330 article-title: pH-responsive poly (acrylic acid)-gated mesoporous silica and its application in oral colon targeted drug delivery for doxorubicin publication-title: Colloids Surf. B Biointerfaces – volume: 278 start-page: 142 year: 2018 end-page: 155 ident: bib0275 article-title: Electrosprayed mesoporous particles for improved aqueous solubility of a poorly water soluble anticancer agent: publication-title: J. Control. Release – volume: 26 start-page: 5745 year: 2018 end-page: 5763 ident: bib0110 article-title: Multifunctional mesoporous silica nanoparticles for cancer therapy and imaging publication-title: Curr. Med. Chem. – volume: 16 start-page: 219 year: 2019 end-page: 237 ident: bib0025 article-title: Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery publication-title: Expert Opin. Drug Deliv. – volume: 14 start-page: 2533 year: 2019 ident: bib0100 article-title: Enzyme-responsive mesoporous silica nanoparticles for tumor cells and mitochondria multistage–targeted drug delivery publication-title: Int. J. Nanomed. – volume: 14 start-page: 228 year: 2017 ident: bib0235 article-title: Recent progress on nanoparticle-based drug delivery systems for cancer therapy publication-title: Cancer Biol. Med. – volume: 72 start-page: 34 year: 2017 end-page: 41 ident: bib0055 article-title: Amine bridges grafted mesoporous silica, as a prolonged/controlled drug release system for the enhanced therapeutic effect of short life drugs publication-title: Mater. Sci. Eng. C – volume: 84 start-page: 108 year: 2018 end-page: 117 ident: bib0095 article-title: TPGS functionalized mesoporous silica nanoparticles for anticancer drug delivery to overcome multidrug resistance publication-title: Mater. Sci. Eng. C – volume: 44 start-page: 415 year: 2018 end-page: 420 ident: bib0205 article-title: Polymer-coated mesoporous silica nanoparticles for controlled release of the prodrug sulfasalazine publication-title: J. Drug Deliv. Sci. Technol. – volume: 150 start-page: 352 year: 2017 end-page: 361 ident: bib0335 article-title: Mesoporous silica nanoparticle based enzyme responsive system for colon specific drug delivery through guar gum capping publication-title: Colloids Surf. B Biointerfaces – volume: 7 start-page: 13104 year: 2017 end-page: 13111 ident: bib0020 article-title: Comparison of different silica microporous structures as drug delivery systems for publication-title: RSC Adv. – volume: 14 start-page: 229 year: 2017 end-page: 243 ident: bib0005 article-title: Advances in mesoporous silica-based nanocarriers for co-delivery and combination therapy against cancer publication-title: Expert Opin. Drug Deliv. – volume: 121 start-page: 109614 year: 2020 ident: bib0305 article-title: PSA targeted dual-modality manganese oxide-mesoporous silica nanoparticles for prostate cancer imaging publication-title: Biomed. Pharmacother. – volume: 57 start-page: 10 year: 2014 end-page: 15 ident: bib0165 article-title: pH-controllable drug carrier with SERS activity for targeting cancer cells publication-title: Biosens. Bioelectron. – volume: 106 start-page: 2272 year: 2018 end-page: 2283 ident: bib0260 article-title: Combinational drug delivery using nanocarriers for breast cancer treatments: a review publication-title: J. Biomed. Mater. Res. A – volume: 41 start-page: 935 year: 2015 end-page: 950 ident: bib0255 article-title: Genetic polymorphisms and paclitaxel-or docetaxel-induced toxicities: a systematic review publication-title: Cancer Treat. Rev. – volume: 11 start-page: 4531 year: 2019 end-page: 4545 ident: bib0045 article-title: Cancer cell targeting and therapeutic delivery of silver nanoparticles by mesoporous silica nanocarriers: Insights into the action mechanisms using quantitative proteomics publication-title: Nanoscale – volume: 2 start-page: 7009 year: 2014 end-page: 7016 ident: bib0175 article-title: Redox responsive pd (II) templated rotaxane nanovalve capped mesoporous silica nanoparticles: a folic acid mediated biocompatible cancer-targeted drug delivery system publication-title: J. Mater. Chem. B – volume: 18 start-page: 1507 year: 2017 end-page: 1525 ident: bib0010 article-title: Porous inorganic drug delivery systems—a review publication-title: AAPS PharmSciTech – volume: 4 start-page: 1281 year: 2019 end-page: 1291 ident: bib0315 article-title: PSMA-targeted mesoporous silica nanoparticles for selective intracellular delivery of docetaxel in prostate cancer cells publication-title: ACS Omega – volume: 10 start-page: 591 year: 2014 end-page: 598 ident: bib0150 article-title: A dual‐responsive mesoporous silica nanoparticle for tumor-triggered targeting drug delivery publication-title: Small – volume: 7 start-page: 45846 year: 2017 ident: bib0280 article-title: International incidence and mortality trends of liver cancer: a global profile publication-title: Sci. Rep. – volume: 30 start-page: 175101 year: 2019 ident: bib0285 article-title: Targeted arsenite-loaded magnetic multifunctional nanoparticles for treatment of hepatocellular carcinoma publication-title: Nanotechnology – volume: 8 start-page: 165 year: 2018 end-page: 177 ident: bib0115 article-title: Mesoporous silica nanoparticles for drug and gene delivery publication-title: Acta Pharm. Sin. B – volume: 46 start-page: 6024 year: 2017 end-page: 6045 ident: bib0210 article-title: Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems publication-title: Chem. Soc. Rev. – volume: 20 start-page: 929 year: 2019 ident: bib0035 article-title: Functional mesoporous silica nanocomposites: biomedical applications and biosafety publication-title: Int. J. Mol. Sci. – volume: 78 start-page: 4122 year: 2018 ident: bib0065 article-title: Acidic tumor microenvironment targeted wormhole-shaped mesoporous silica nanoparticles to detect ovarian cancer by multispectral optoacoustic tomography publication-title: Cancer Res. – volume: 100 start-page: 855 year: 2019 end-page: 861 ident: bib0085 article-title: Formation of enzymatic/redox-switching nanogates on mesoporous silica nanoparticles for anticancer drug delivery publication-title: Mater. Sci. Eng. C – volume: 14 start-page: 2010 year: 2017 end-page: 2023 ident: bib0365 article-title: Facile preparation of drug-loaded tristearin encapsulated superparamagnetic iron oxide nanoparticles using coaxial electrospray processing publication-title: Mol. Pharm. – volume: 14 start-page: 1443 year: 2019 end-page: 1454 ident: bib0090 article-title: Mesoporous gold nanoparticles for photothermal controlled anticancer drug delivery publication-title: Nanomedicine – volume: 2 year: 2019 ident: bib0360 article-title: Broad scale and structure fabrication of healthcare materials for drug and emerging therapies via electrohydrodynamic techniques publication-title: Adv. Ther. – volume: 5 start-page: 4131 year: 2011 end-page: 4144 ident: bib0140 article-title: Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model publication-title: ACS Nano – volume: 4 start-page: 3 year: 2017 ident: bib0225 article-title: pH-responsive mesoporous silica and carbon nanoparticles for drug delivery publication-title: Bioengineering – volume: 6 start-page: 23 year: 2019 ident: bib0030 article-title: Current trends and challenges in cancer management and therapy using designer nanomaterials publication-title: Nano Converg. – volume: 25 start-page: 957 year: 2015 ident: 10.1016/j.drudis.2020.06.006_bib0240 article-title: Noncovalent polymer‐gatekeeper in mesoporous silica nanoparticles as a targeted drug delivery platform publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201402755 – volume: 4 start-page: 1281 year: 2019 ident: 10.1016/j.drudis.2020.06.006_bib0315 article-title: PSMA-targeted mesoporous silica nanoparticles for selective intracellular delivery of docetaxel in prostate cancer cells publication-title: ACS Omega doi: 10.1021/acsomega.8b02909 – volume: 72 start-page: 34 year: 2017 ident: 10.1016/j.drudis.2020.06.006_bib0055 article-title: Amine bridges grafted mesoporous silica, as a prolonged/controlled drug release system for the enhanced therapeutic effect of short life drugs publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2016.11.040 – volume: 4 start-page: 3 year: 2017 ident: 10.1016/j.drudis.2020.06.006_bib0225 article-title: pH-responsive mesoporous silica and carbon nanoparticles for drug delivery publication-title: Bioengineering doi: 10.3390/bioengineering4010003 – volume: 7 start-page: 1667 year: 2016 ident: 10.1016/j.drudis.2020.06.006_bib0250 article-title: Lead phytochemicals for anticancer drug development publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01667 – volume: 23 start-page: 16505 year: 2017 ident: 10.1016/j.drudis.2020.06.006_bib0215 article-title: Encapsulating pH‐responsive doxorubicin–phthalocyanine conjugates in mesoporous silica nanoparticles for combined photodynamic therapy and controlled chemotherapy publication-title: Chemistry doi: 10.1002/chem.201703188 – volume: 65 start-page: 393 year: 2018 ident: 10.1016/j.drudis.2020.06.006_bib0070 article-title: Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.11.007 – volume: 84 start-page: 108 year: 2018 ident: 10.1016/j.drudis.2020.06.006_bib0095 article-title: TPGS functionalized mesoporous silica nanoparticles for anticancer drug delivery to overcome multidrug resistance publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2017.11.040 – volume: 150 start-page: 352 year: 2017 ident: 10.1016/j.drudis.2020.06.006_bib0335 article-title: Mesoporous silica nanoparticle based enzyme responsive system for colon specific drug delivery through guar gum capping publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2016.10.049 – volume: 78 start-page: 4122 issue: Suppl year: 2018 ident: 10.1016/j.drudis.2020.06.006_bib0065 article-title: Acidic tumor microenvironment targeted wormhole-shaped mesoporous silica nanoparticles to detect ovarian cancer by multispectral optoacoustic tomography publication-title: Cancer Res. doi: 10.1158/1538-7445.AM2018-4122 – volume: 14 start-page: 2533 year: 2019 ident: 10.1016/j.drudis.2020.06.006_bib0100 article-title: Enzyme-responsive mesoporous silica nanoparticles for tumor cells and mitochondria multistage–targeted drug delivery publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S202210 – volume: 137 start-page: 115 year: 2018 ident: 10.1016/j.drudis.2020.06.006_bib0200 article-title: Recent advances in nanoparticle-based cancer drug and gene delivery publication-title: Adv. Cancer Res. doi: 10.1016/bs.acr.2017.11.003 – volume: 2 start-page: 7009 year: 2014 ident: 10.1016/j.drudis.2020.06.006_bib0175 article-title: Redox responsive pd (II) templated rotaxane nanovalve capped mesoporous silica nanoparticles: a folic acid mediated biocompatible cancer-targeted drug delivery system publication-title: J. Mater. Chem. B doi: 10.1039/C4TB01030B – volume: 7 start-page: 45846 year: 2017 ident: 10.1016/j.drudis.2020.06.006_bib0280 article-title: International incidence and mortality trends of liver cancer: a global profile publication-title: Sci. Rep. doi: 10.1038/srep45846 – volume: 30 start-page: 175101 year: 2019 ident: 10.1016/j.drudis.2020.06.006_bib0285 article-title: Targeted arsenite-loaded magnetic multifunctional nanoparticles for treatment of hepatocellular carcinoma publication-title: Nanotechnology doi: 10.1088/1361-6528/aaff9e – volume: 23 start-page: 47 year: 2018 ident: 10.1016/j.drudis.2020.06.006_bib0075 article-title: Mesoporous silica nanoparticles for drug delivery: current insights publication-title: Molecules doi: 10.3390/molecules23010047 – volume: 14 start-page: 228 year: 2017 ident: 10.1016/j.drudis.2020.06.006_bib0235 article-title: Recent progress on nanoparticle-based drug delivery systems for cancer therapy publication-title: Cancer Biol. Med. doi: 10.20892/j.issn.2095-3941.2017.0052 – volume: 23 start-page: 315 year: 2017 ident: 10.1016/j.drudis.2020.06.006_bib0130 article-title: Mesoporous silica nanoparticles: a smart nanosystem for management of breast cancer publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2017.10.022 – volume: 2 year: 2019 ident: 10.1016/j.drudis.2020.06.006_bib0360 article-title: Broad scale and structure fabrication of healthcare materials for drug and emerging therapies via electrohydrodynamic techniques publication-title: Adv. Ther. – volume: 256 start-page: 251 year: 2018 ident: 10.1016/j.drudis.2020.06.006_bib0040 article-title: Comparative study of two silica mesoporous materials (SBA-16 and SBA-15) modified with a hydroxyapatite layer for clindamycin controlled delivery publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2017.07.021 – volume: 50 start-page: 11425 year: 2011 ident: 10.1016/j.drudis.2020.06.006_bib0170 article-title: Mannose‐functionalized mesoporous silica nanoparticles for efficient two‐photon photodynamic therapy of solid tumors publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201104765 – volume: 44 start-page: 415 year: 2018 ident: 10.1016/j.drudis.2020.06.006_bib0205 article-title: Polymer-coated mesoporous silica nanoparticles for controlled release of the prodrug sulfasalazine publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2018.01.020 – volume: 319 start-page: 86 year: 2016 ident: 10.1016/j.drudis.2020.06.006_bib0180 article-title: The application of mesoporous silica nanoparticle family in cancer theranostics publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2016.04.019 – volume: 106 start-page: 2272 year: 2018 ident: 10.1016/j.drudis.2020.06.006_bib0260 article-title: Combinational drug delivery using nanocarriers for breast cancer treatments: a review publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.36410 – volume: 13 start-page: 400 year: 2018 ident: 10.1016/j.drudis.2020.06.006_bib0195 article-title: Hollow mesoporous silica@metal-organic framework and its applications for pH-responsive doxorubicin drug delivery publication-title: ChemMedChem doi: 10.1002/cmdc.201800019 – volume: 46 start-page: 6024 year: 2017 ident: 10.1016/j.drudis.2020.06.006_bib0210 article-title: Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00219J – volume: 16 start-page: 219 year: 2019 ident: 10.1016/j.drudis.2020.06.006_bib0025 article-title: Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery publication-title: Expert Opin. Drug Deliv. doi: 10.1080/17425247.2019.1575806 – volume: 20 start-page: 929 year: 2019 ident: 10.1016/j.drudis.2020.06.006_bib0035 article-title: Functional mesoporous silica nanocomposites: biomedical applications and biosafety publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20040929 – volume: 345 start-page: 90 year: 2015 ident: 10.1016/j.drudis.2020.06.006_bib0230 article-title: Layer-by-layer engineering fluorescent polyelectrolyte coated mesoporous silica nanoparticles as pH-sensitive nanocarriers for controlled release publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.03.151 – volume: 175 start-page: 477 year: 2019 ident: 10.1016/j.drudis.2020.06.006_bib0310 article-title: Cancer cell membrane-cloaked mesoporous silica nanoparticles with a pH-sensitive gatekeeper for cancer treatment publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2018.12.038 – volume: 536 start-page: 272 year: 2018 ident: 10.1016/j.drudis.2020.06.006_bib0105 article-title: PEGylated lipid bilayer coated mesoporous silica nanoparticles for co-delivery of paclitaxel and curcumin: Design, characterization and its cytotoxic effect publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2017.10.043 – volume: 22 start-page: 18 year: 2014 ident: 10.1016/j.drudis.2020.06.006_bib0185 article-title: Cell microenvironment stimuli-responsive controlled-release delivery systems based on mesoporous silica nanoparticles publication-title: J. Food Drug Anal. doi: 10.1016/j.jfda.2014.01.002 – volume: 154 start-page: 287 year: 2017 ident: 10.1016/j.drudis.2020.06.006_bib0330 article-title: pH-responsive poly (acrylic acid)-gated mesoporous silica and its application in oral colon targeted drug delivery for doxorubicin publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2017.03.024 – volume: 516 start-page: 484 year: 2018 ident: 10.1016/j.drudis.2020.06.006_bib0050 article-title: Hyaluronated mesoporous silica nanoparticles for active targeting: Influence of conjugation method and hyaluronic acid molecular weight on the nanovector properties publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.01.072 – volume: 1 start-page: 567 year: 2012 ident: 10.1016/j.drudis.2020.06.006_bib0155 article-title: Polyvalent mesoporous silica nanoparticle‐aptamer bioconjugates target breast cancer cells publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201200116 – volume: 65 start-page: 71 year: 2013 ident: 10.1016/j.drudis.2020.06.006_bib0120 article-title: The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2012.10.002 – volume: 23 start-page: 47 year: 2017 ident: 10.1016/j.drudis.2020.06.006_bib0015 article-title: Mesoporous silica nanoparticles for drug delivery: current insights publication-title: Molecules doi: 10.3390/molecules23010047 – volume: 34 start-page: 8511 issue: 33 year: 2013 ident: 10.1016/j.drudis.2020.06.006_bib0345 article-title: Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.07.075 – volume: 5 start-page: 3568 year: 2011 ident: 10.1016/j.drudis.2020.06.006_bib0220 article-title: Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery publication-title: ACS Nano doi: 10.1021/nn103130q – volume: 43 start-page: 101 year: 2018 ident: 10.1016/j.drudis.2020.06.006_bib0355 article-title: Controlled release with emphasis on ultrasound-induced release publication-title: Enzymes doi: 10.1016/bs.enz.2018.07.005 – volume: 11 start-page: 4531 year: 2019 ident: 10.1016/j.drudis.2020.06.006_bib0045 article-title: Cancer cell targeting and therapeutic delivery of silver nanoparticles by mesoporous silica nanocarriers: Insights into the action mechanisms using quantitative proteomics publication-title: Nanoscale doi: 10.1039/C8NR07667G – volume: 6 start-page: 23 year: 2019 ident: 10.1016/j.drudis.2020.06.006_bib0030 article-title: Current trends and challenges in cancer management and therapy using designer nanomaterials publication-title: Nano Converg. doi: 10.1186/s40580-019-0193-2 – volume: 19 start-page: 900 year: 2011 ident: 10.1016/j.drudis.2020.06.006_bib0320 article-title: Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA publication-title: J. Drug Target. doi: 10.3109/1061186X.2011.622404 – volume: 41 start-page: 935 year: 2015 ident: 10.1016/j.drudis.2020.06.006_bib0255 article-title: Genetic polymorphisms and paclitaxel-or docetaxel-induced toxicities: a systematic review publication-title: Cancer Treat. Rev. doi: 10.1016/j.ctrv.2015.10.010 – volume: 8 start-page: 165 year: 2018 ident: 10.1016/j.drudis.2020.06.006_bib0115 article-title: Mesoporous silica nanoparticles for drug and gene delivery publication-title: Acta Pharm. Sin. B doi: 10.1016/j.apsb.2018.01.007 – volume: 279 start-page: 107 year: 2019 ident: 10.1016/j.drudis.2020.06.006_bib0295 article-title: Formulation and development of smart pH responsive mesoporous silica nanoparticles for breast cancer targeted delivery of anastrozole: In vitro and in vivo characterizations publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2018.12.026 – volume: 8 start-page: 6811 year: 2016 ident: 10.1016/j.drudis.2020.06.006_bib0350 article-title: Tailoring particle size of mesoporous silica nanosystem to antagonize glioblastoma and overcome blood–brain barrier publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b11730 – volume: 65 start-page: 1731 year: 2013 ident: 10.1016/j.drudis.2020.06.006_bib0270 article-title: Exploiting nanotechnology to overcome tumor drug resistance: challenges and opportunities publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2013.09.001 – volume: 278 start-page: 142 year: 2018 ident: 10.1016/j.drudis.2020.06.006_bib0275 article-title: Electrosprayed mesoporous particles for improved aqueous solubility of a poorly water soluble anticancer agent: In vitro and ex vivo evaluation publication-title: J. Control. Release doi: 10.1016/j.jconrel.2018.03.031 – volume: 12 start-page: 317 year: 2016 ident: 10.1016/j.drudis.2020.06.006_bib0125 article-title: Advances in silica based nanoparticles for targeted cancer therapy publication-title: Nanomedicine doi: 10.1016/j.nano.2015.10.018 – volume: 5 start-page: 4131 year: 2011 ident: 10.1016/j.drudis.2020.06.006_bib0140 article-title: Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model publication-title: ACS Nano doi: 10.1021/nn200809t – volume: 122 start-page: 1090 year: 2019 ident: 10.1016/j.drudis.2020.06.006_bib0060 article-title: A self-targeting and controllable drug delivery system constituting mesoporous silica nanoparticles fabricated with a multi-stimuli responsive chitosan-based thin film layer publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.09.058 – volume: 10 start-page: 591 year: 2014 ident: 10.1016/j.drudis.2020.06.006_bib0150 article-title: A dual‐responsive mesoporous silica nanoparticle for tumor-triggered targeting drug delivery publication-title: Small doi: 10.1002/smll.201301926 – volume: 57 start-page: 10 year: 2014 ident: 10.1016/j.drudis.2020.06.006_bib0165 article-title: pH-controllable drug carrier with SERS activity for targeting cancer cells publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2014.01.042 – volume: 470 start-page: 1 year: 2014 ident: 10.1016/j.drudis.2020.06.006_bib0145 article-title: Mesoporous silica coated gold nanorods loaded doxorubicin for combined chemo-photothermal therapy publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2014.04.067 – volume: 14 start-page: 2010 year: 2017 ident: 10.1016/j.drudis.2020.06.006_bib0365 article-title: Facile preparation of drug-loaded tristearin encapsulated superparamagnetic iron oxide nanoparticles using coaxial electrospray processing publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.7b00109 – volume: 107 start-page: 2643 year: 2019 ident: 10.1016/j.drudis.2020.06.006_bib0190 article-title: Targeted and stimuli-responsive mesoporous silica nanoparticles for drug delivery and theranostic use publication-title: J Biomed Mat Res A doi: 10.1002/jbm.a.36770 – volume: 11 start-page: 77 year: 2019 ident: 10.1016/j.drudis.2020.06.006_bib0340 article-title: Mesoporous silica nanomaterials: versatile nanocarriers for cancer theranostics and drug and gene delivery publication-title: Pharmaceutics doi: 10.3390/pharmaceutics11020077 – volume: 7 start-page: 13104 year: 2017 ident: 10.1016/j.drudis.2020.06.006_bib0020 article-title: Comparison of different silica microporous structures as drug delivery systems for in vitro models of solid tumors publication-title: RSC Adv. doi: 10.1039/C7RA01028A – volume: 14 start-page: 229 year: 2017 ident: 10.1016/j.drudis.2020.06.006_bib0005 article-title: Advances in mesoporous silica-based nanocarriers for co-delivery and combination therapy against cancer publication-title: Expert Opin. Drug Deliv. doi: 10.1080/17425247.2016.1211637 – volume: 5 start-page: 77 year: 2017 ident: 10.1016/j.drudis.2020.06.006_bib0325 article-title: Combined bortezomib-based chemotherapy and p53 gene therapy using hollow mesoporous silica nanospheres for p53 mutant non-small cell lung cancer treatment publication-title: Biomater. Sci. doi: 10.1039/C6BM00449K – volume: 570 start-page: 386 year: 2019 ident: 10.1016/j.drudis.2020.06.006_bib0245 article-title: Hollow mesoporous carbon modified with cRGD peptide nanoplatform for targeted drug delivery and chemo-photothermal therapy of prostatic carcinoma publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2019.03.030 – volume: 100 start-page: 855 year: 2019 ident: 10.1016/j.drudis.2020.06.006_bib0085 article-title: Formation of enzymatic/redox-switching nanogates on mesoporous silica nanoparticles for anticancer drug delivery publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2019.03.028 – volume: 7 start-page: 189 year: 2017 ident: 10.1016/j.drudis.2020.06.006_bib0135 article-title: Mesoporous silica nanoparticles as drug delivery vehicles in cancer publication-title: Nanomaterials doi: 10.3390/nano7070189 – volume: 45 start-page: 1487 year: 2019 ident: 10.1016/j.drudis.2020.06.006_bib0290 article-title: Combined chemo/photothermal therapy based on mesoporous silica-au core-shell nanoparticles for hepatocellular carcinoma treatment publication-title: Drug Dev. Ind. Pharm. doi: 10.1080/03639045.2019.1629688 – volume: 11 start-page: 4890 year: 2018 ident: 10.1016/j.drudis.2020.06.006_bib0160 article-title: General synthesis of silica-based yolk/shell hybrid nanomaterials and in vivo tumor vasculature targeting publication-title: Nano Res. doi: 10.1007/s12274-018-2078-9 – volume: 77 start-page: 403 year: 2019 ident: 10.1016/j.drudis.2020.06.006_bib0300 publication-title: Eur. Urol. doi: 10.1016/j.eururo.2019.01.049 – volume: 14 start-page: 5785 year: 2019 ident: 10.1016/j.drudis.2020.06.006_bib0080 article-title: Hyaluronic acid-modified mesoporous silica–coated superparamagnetic Fe3O4 nanoparticles for targeted drug delivery publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S213974 – volume: 11 start-page: 265 year: 2000 ident: 10.1016/j.drudis.2020.06.006_bib0265 article-title: Multidrug resistance (MDR) in cancer: mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs publication-title: Eur. J. Pharm. Sci. doi: 10.1016/S0928-0987(00)00114-7 – volume: 14 start-page: 1443 year: 2019 ident: 10.1016/j.drudis.2020.06.006_bib0090 article-title: Mesoporous gold nanoparticles for photothermal controlled anticancer drug delivery publication-title: Nanomedicine doi: 10.2217/nnm-2018-0242 – volume: 26 start-page: 5745 year: 2018 ident: 10.1016/j.drudis.2020.06.006_bib0110 article-title: Multifunctional mesoporous silica nanoparticles for cancer therapy and imaging publication-title: Curr. Med. Chem. doi: 10.2174/0929867325666180501101044 – volume: 121 start-page: 109614 year: 2020 ident: 10.1016/j.drudis.2020.06.006_bib0305 article-title: PSA targeted dual-modality manganese oxide-mesoporous silica nanoparticles for prostate cancer imaging publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2019.109614 – volume: 18 start-page: 1507 year: 2017 ident: 10.1016/j.drudis.2020.06.006_bib0010 article-title: Porous inorganic drug delivery systems—a review publication-title: AAPS PharmSciTech doi: 10.1208/s12249-017-0740-2 |
SSID | ssj0012956 |
Score | 2.5838032 |
SecondaryResourceType | review_article |
Snippet | •Structural and geometrical features of mesoporous silica can benefit drug delivery.•Coupled with therapeutic agents, targeting for a host of cancers is... Recently, remarkable efforts have focused on research towards enhancing and delivering efficacious and advanced therapeutic agents. Even though this involves... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1513 |
Title | Application of mesoporous silica nanoparticles as drug delivery carriers for chemotherapeutic agents |
URI | https://dx.doi.org/10.1016/j.drudis.2020.06.006 https://www.ncbi.nlm.nih.gov/pubmed/32561300 https://www.proquest.com/docview/2415290964 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4huNBD1dLXtgW5UsWJdLO24yTHFQJtQSCkgsTN8ivVVpBFm93DXvrbO-MkuyC1Quoxia04Hnse8TffAHy1Wcox5hIYlgiZyMzglnIFMWHmXglnrLX0H_LiUk1u5NltdrsFx30uDMEqO93f6vSorbs7w242hw_T6fDHSGQlWnPFUyp8EysNS5nTKv_2ew3zQHMWK7hS44Ra9-lzEePl50s_JdJunkYWT6p79Hfz9C_3M5qh01fwsvMf2bgd4mvYCvUevHjEKrgHh1ctHfXqiF1vsquaI3bIrjZE1as34Meb02s2q9h9aGbojs-WDWum9IDVpsagusPOMdMw_JSfzIc7QnOsmDNzKnjXMPR8GUr__nE6FzOUtdW8hZvTk-vjSdJVXUicLItFoqqyEF5yb3xhZfChEAWRumRl6nIng5OVKnLHvc2MVCFXxqPaSLkdoXB5ZcQ72K5ndfgATFlZyDKv0AcIkruRdSo3VkkjK9QbPBuA6Cdbu46SnCpj3Okee_ZLtyLSJCIdIXhqAMm610NLyfFM-7yXo36ytDRajWd6funFrnHX0VGKqQNKQUe_p8TwTw7gfbse1mMRPAZl6cf_fu8n2KWrFmf4GbYX82XYR99nYQ_i4j6AnfH388nlHypJBQ4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB6Cc2h7KE36ch_pFkpOEZZ3VyvpaEKD0yQmUAdyW_al4JLIwbIP_ved0cNOoSGQq3YHrXZm56Gd-Qbgh01ijjGXwLBEyEgmBo-UywgJM_VKOGOtpf-QFxM1vpK_rpPrHTjuamEorbLV_Y1Or7V1-2TQ7ubgfjYb_B6KJEdrrnhMjW-o0_AuoVMlPdgdnZ6NJ5vLBJ7XTVxpfkQEXQVdneblFys_I9xuHtdAntT66P8W6jEPtLZEJ2_gdetCslGzyj3YCeU-vHoALLgPh5cNIvX6iE23BVbVETtkl1us6vVb8KPtBTabF-wuVHP0yOerilUzGmClKTGubtPnmKkYfsoN8-GWEjrWzJkF9byrGDq_DAXg7mFFFzNUuFW9g6uTn9PjcdQ2XoiczLNlpIo8E15yb3xmZfAhExnhuiR57FIng5OFylLHvU2MVCFVxqPmiLkdIn95YcR76JXzMnwEpqzMZJ4W6AYEyd3QOpUaq6SRBaoOnvRBdJutXYtKTs0xbnWXfvZHNyzSxCJdZ-GpPkQbqvsGleOJ-WnHR_2PdGk0HE9Qfu_YrvHg0W2KKQNyQdeuT44RoOzDh0YeNmsRvI7L4k_Pfu83eDGeXpzr89PJ2Wd4SSNN2uEX6C0Xq_AVXaGlPWhF_S8PMge_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+mesoporous+silica+nanoparticles+as+drug+delivery+carriers+for+chemotherapeutic+agents&rft.jtitle=Drug+discovery+today&rft.au=Alyassin%2C+Yasmine&rft.au=Sayed%2C+Elshaimaa+G.&rft.au=Mehta%2C+Prina&rft.au=Ruparelia%2C+Ketan&rft.date=2020-08-01&rft.pub=Elsevier+Ltd&rft.issn=1359-6446&rft.eissn=1878-5832&rft.volume=25&rft.issue=8&rft.spage=1513&rft.epage=1520&rft_id=info:doi/10.1016%2Fj.drudis.2020.06.006&rft.externalDocID=S1359644620302312 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6446&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6446&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6446&client=summon |