Application of mesoporous silica nanoparticles as drug delivery carriers for chemotherapeutic agents

•Structural and geometrical features of mesoporous silica can benefit drug delivery.•Coupled with therapeutic agents, targeting for a host of cancers is possible.•Several shortcomings of existing therapies are shown to be overcome. Recently, remarkable efforts have focused on research towards enhanc...

Full description

Saved in:
Bibliographic Details
Published inDrug discovery today Vol. 25; no. 8; pp. 1513 - 1520
Main Authors Alyassin, Yasmine, Sayed, Elshaimaa G., Mehta, Prina, Ruparelia, Ketan, Arshad, Muhammad S., Rasekh, Manoochehr, Shepherd, Jennifer, Kucuk, Israfil, Wilson, Philippe B., Singh, Neenu, Chang, Ming-Wei, Fatouros, Dimitrios G., Ahmad, Zeeshan
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.08.2020
Online AccessGet full text

Cover

Loading…
Abstract •Structural and geometrical features of mesoporous silica can benefit drug delivery.•Coupled with therapeutic agents, targeting for a host of cancers is possible.•Several shortcomings of existing therapies are shown to be overcome. Recently, remarkable efforts have focused on research towards enhancing and delivering efficacious and advanced therapeutic agents. Even though this involves significant challenges, innovative techniques and materials have been explored to overcome these. The advantageous properties of mesoporous silica nanoparticles (MSNs), such as unique morphologies and geometries, makes then favorable for use for various drug delivery targeting purposes, particularly in cancer therapy. As we discuss here, MSNs have been utilized over the past few decades to improve the efficiency of anticancer drugs by enhancing their solubility to render them suitable for application, reducing adverse effects, and improving their anticancer cytotoxic efficiency.
AbstractList Recently, remarkable efforts have focused on research towards enhancing and delivering efficacious and advanced therapeutic agents. Even though this involves significant challenges, innovative techniques and materials have been explored to overcome these. The advantageous properties of mesoporous silica nanoparticles (MSNs), such as unique morphologies and geometries, makes then favorable for use for various drug delivery targeting purposes, particularly in cancer therapy. As we discuss here, MSNs have been utilized over the past few decades to improve the efficiency of anticancer drugs by enhancing their solubility to render them suitable for application, reducing adverse effects, and improving their anticancer cytotoxic efficiency.
Recently, remarkable efforts have focused on research towards enhancing and delivering efficacious and advanced therapeutic agents. Even though this involves significant challenges, innovative techniques and materials have been explored to overcome these. The advantageous properties of mesoporous silica nanoparticles (MSNs), such as unique morphologies and geometries, makes then favorable for use for various drug delivery targeting purposes, particularly in cancer therapy. As we discuss here, MSNs have been utilized over the past few decades to improve the efficiency of anticancer drugs by enhancing their solubility to render them suitable for application, reducing adverse effects, and improving their anticancer cytotoxic efficiency.Recently, remarkable efforts have focused on research towards enhancing and delivering efficacious and advanced therapeutic agents. Even though this involves significant challenges, innovative techniques and materials have been explored to overcome these. The advantageous properties of mesoporous silica nanoparticles (MSNs), such as unique morphologies and geometries, makes then favorable for use for various drug delivery targeting purposes, particularly in cancer therapy. As we discuss here, MSNs have been utilized over the past few decades to improve the efficiency of anticancer drugs by enhancing their solubility to render them suitable for application, reducing adverse effects, and improving their anticancer cytotoxic efficiency.
•Structural and geometrical features of mesoporous silica can benefit drug delivery.•Coupled with therapeutic agents, targeting for a host of cancers is possible.•Several shortcomings of existing therapies are shown to be overcome. Recently, remarkable efforts have focused on research towards enhancing and delivering efficacious and advanced therapeutic agents. Even though this involves significant challenges, innovative techniques and materials have been explored to overcome these. The advantageous properties of mesoporous silica nanoparticles (MSNs), such as unique morphologies and geometries, makes then favorable for use for various drug delivery targeting purposes, particularly in cancer therapy. As we discuss here, MSNs have been utilized over the past few decades to improve the efficiency of anticancer drugs by enhancing their solubility to render them suitable for application, reducing adverse effects, and improving their anticancer cytotoxic efficiency.
Author Rasekh, Manoochehr
Ahmad, Zeeshan
Sayed, Elshaimaa G.
Arshad, Muhammad S.
Kucuk, Israfil
Shepherd, Jennifer
Wilson, Philippe B.
Mehta, Prina
Ruparelia, Ketan
Singh, Neenu
Fatouros, Dimitrios G.
Alyassin, Yasmine
Chang, Ming-Wei
Author_xml – sequence: 1
  givenname: Yasmine
  surname: Alyassin
  fullname: Alyassin, Yasmine
  organization: Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
– sequence: 2
  givenname: Elshaimaa G.
  surname: Sayed
  fullname: Sayed, Elshaimaa G.
  organization: Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
– sequence: 3
  givenname: Prina
  surname: Mehta
  fullname: Mehta, Prina
  organization: Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
– sequence: 4
  givenname: Ketan
  surname: Ruparelia
  fullname: Ruparelia, Ketan
  organization: Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
– sequence: 5
  givenname: Muhammad S.
  surname: Arshad
  fullname: Arshad, Muhammad S.
  organization: Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
– sequence: 6
  givenname: Manoochehr
  surname: Rasekh
  fullname: Rasekh, Manoochehr
  organization: Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
– sequence: 7
  givenname: Jennifer
  orcidid: 0000-0002-3790-0323
  surname: Shepherd
  fullname: Shepherd, Jennifer
  organization: Department of Engineering, University of Leicester, Leicester, LE1 7RH, UK
– sequence: 8
  givenname: Israfil
  surname: Kucuk
  fullname: Kucuk, Israfil
  organization: Institute of Nanotechnology, Gebze Technical University, 41400 Gebze, Turkey
– sequence: 9
  givenname: Philippe B.
  orcidid: 0000-0003-0207-2246
  surname: Wilson
  fullname: Wilson, Philippe B.
  organization: School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Southwell, NG25 0QF, UK
– sequence: 10
  givenname: Neenu
  surname: Singh
  fullname: Singh, Neenu
  organization: Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
– sequence: 11
  givenname: Ming-Wei
  orcidid: 0000-0002-0137-8895
  surname: Chang
  fullname: Chang, Ming-Wei
  organization: Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey, BT37 0QB, UK
– sequence: 12
  givenname: Dimitrios G.
  surname: Fatouros
  fullname: Fatouros, Dimitrios G.
  organization: Department of Pharmaceutical Technology, Aristotle University of Thessaloniki, School of Pharmacy, 54124, Thessaloniki, Greece
– sequence: 13
  givenname: Zeeshan
  surname: Ahmad
  fullname: Ahmad, Zeeshan
  email: zahmad@dmu.ac.uk
  organization: Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32561300$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9r3DAQxUVJaf6036AEHXOxO5JlWc6hEELbBAK9tGehlcaJFttyJDmw3z7abnLJoTlpQO_3hnnvlBzNYUZCvjKoGTD5bVu7uDqfag4capA1gPxATpjqVNWqhh-VuWn7Sgohj8lpSlsAxvtWfiLHDW8lawBOiLtaltFbk32YaRjohCksIYY10eT3H3Q2c1hMzN6OmKhJtKy9pw5H_4RxR62J0WNMdAiR2gecQn7AaBZcC0HNPc45fSYfBzMm_PLynpG_P3_8ub6p7n7_ur2-uqus6FWu5NCrxgnujFMbgQ5Vo6DtRduD7axAKwapOsvdpjVCYieNgw6Ab5iTDR9Mc0YuDr5LDI8rpqwnnyyOo5mxXKS5YC3voZeiSM9fpOtmQqeX6CcTd_o1mSK4PAhsDClFHLT1-V9MORo_agZ6X4Pe6kMNel-DBqlLDQUWb-BX_3ew7wcMS0hPJVWdrMfZovMRbdYu-P8bPANzxqXH
CitedBy_id crossref_primary_10_1016_j_cap_2024_10_010
crossref_primary_10_3390_ma15030970
crossref_primary_10_1016_j_jddst_2023_104353
crossref_primary_10_3390_cancers12082073
crossref_primary_10_1016_j_jddst_2022_104033
crossref_primary_10_2139_ssrn_4150456
crossref_primary_10_3390_biomedicines9010073
crossref_primary_10_3390_ma15175926
crossref_primary_10_1016_j_foodchem_2022_135110
crossref_primary_10_1021_acs_jpca_1c06941
crossref_primary_10_3389_fmolb_2021_670792
crossref_primary_10_1007_s11033_022_07953_6
crossref_primary_10_1016_j_micromeso_2021_111007
crossref_primary_10_34133_bmef_0035
crossref_primary_10_1039_D1NA00738F
crossref_primary_10_1186_s12917_021_02927_5
crossref_primary_10_3389_fchem_2021_629635
crossref_primary_10_1002_adhm_202201884
crossref_primary_10_1016_j_colsurfb_2022_112872
crossref_primary_10_1007_s11051_023_05813_3
crossref_primary_10_1007_s12633_023_02748_1
crossref_primary_10_1016_j_ijbiomac_2022_01_063
crossref_primary_10_1016_j_ijpx_2022_100116
crossref_primary_10_1021_acsomega_3c04750
crossref_primary_10_1007_s11051_023_05712_7
crossref_primary_10_1016_j_actbio_2020_09_009
crossref_primary_10_1016_j_jddst_2022_104042
crossref_primary_10_1016_j_microc_2021_106601
crossref_primary_10_1016_j_micromeso_2022_112274
crossref_primary_10_1007_s42247_021_00236_z
crossref_primary_10_3390_molecules27196328
crossref_primary_10_1021_acs_nanolett_4c03613
crossref_primary_10_3390_ma17122870
crossref_primary_10_1080_17435889_2024_2348438
crossref_primary_10_3390_ijms21218291
crossref_primary_10_1021_acsami_1c06818
crossref_primary_10_1002_smll_202409713
crossref_primary_10_1021_acs_nanolett_2c00330
crossref_primary_10_3390_pharmaceutics15122785
crossref_primary_10_1016_j_medengphy_2024_104160
crossref_primary_10_1016_j_jhazmat_2023_132653
crossref_primary_10_1016_j_ijbiomac_2023_128482
crossref_primary_10_1016_j_jtice_2021_06_053
crossref_primary_10_1063_5_0149009
crossref_primary_10_1007_s12094_024_03577_3
crossref_primary_10_1002_admi_202201356
crossref_primary_10_2174_2211738511666230327123627
crossref_primary_10_1186_s12943_021_01346_2
crossref_primary_10_1016_j_jddst_2024_106031
crossref_primary_10_1039_D1QM00851J
crossref_primary_10_1016_j_addr_2021_04_026
crossref_primary_10_5306_wjco_v15_i6_667
crossref_primary_10_1021_acs_biomac_2c00354
crossref_primary_10_1039_D3RA00866E
crossref_primary_10_1080_00222348_2023_2223849
crossref_primary_10_1016_j_heliyon_2023_e18490
crossref_primary_10_1007_s00425_021_03734_w
crossref_primary_10_1016_j_jiec_2024_08_036
crossref_primary_10_1016_j_apsusc_2024_160633
crossref_primary_10_5812_amh_112274
crossref_primary_10_3389_fmolb_2022_783494
crossref_primary_10_1016_j_apsadv_2021_100163
crossref_primary_10_1002_smll_202408898
crossref_primary_10_1089_hs_2022_0014
crossref_primary_10_31436_jop_v4i2_264
crossref_primary_10_3390_catal12020183
crossref_primary_10_1016_j_jddst_2023_104970
crossref_primary_10_1016_j_micromeso_2025_113603
crossref_primary_10_2147_IJN_S290537
crossref_primary_10_1002_smsc_202000056
crossref_primary_10_1208_s12249_022_02237_5
crossref_primary_10_1016_j_jddst_2020_102236
crossref_primary_10_1208_s12249_022_02469_5
crossref_primary_10_3390_molecules28052013
crossref_primary_10_3390_pharmaceutics14122703
crossref_primary_10_3390_nano12162848
crossref_primary_10_1016_j_molstruc_2022_132922
crossref_primary_10_2174_1567201818666210813142007
crossref_primary_10_1016_j_heliyon_2022_e09577
crossref_primary_10_1016_j_jconrel_2021_07_029
crossref_primary_10_1016_j_micromeso_2023_112708
crossref_primary_10_1007_s12666_021_02489_y
crossref_primary_10_3390_molecules26195905
crossref_primary_10_1002_ptr_7389
crossref_primary_10_1016_j_ijbiomac_2023_123336
crossref_primary_10_1002_biot_202300078
crossref_primary_10_1016_j_ijbiomac_2021_03_087
crossref_primary_10_3390_pharmaceutics15041214
crossref_primary_10_2174_2211738511666230818092706
crossref_primary_10_1007_s11051_023_05690_w
crossref_primary_10_1142_S1088424620500546
Cites_doi 10.1002/adfm.201402755
10.1021/acsomega.8b02909
10.1016/j.msec.2016.11.040
10.3390/bioengineering4010003
10.3389/fpls.2016.01667
10.1002/chem.201703188
10.1016/j.actbio.2017.11.007
10.1016/j.msec.2017.11.040
10.1016/j.colsurfb.2016.10.049
10.1158/1538-7445.AM2018-4122
10.2147/IJN.S202210
10.1016/bs.acr.2017.11.003
10.1039/C4TB01030B
10.1038/srep45846
10.1088/1361-6528/aaff9e
10.3390/molecules23010047
10.20892/j.issn.2095-3941.2017.0052
10.1016/j.drudis.2017.10.022
10.1016/j.micromeso.2017.07.021
10.1002/anie.201104765
10.1016/j.jddst.2018.01.020
10.1016/j.ccr.2016.04.019
10.1002/jbm.a.36410
10.1002/cmdc.201800019
10.1039/C7CS00219J
10.1080/17425247.2019.1575806
10.3390/ijms20040929
10.1016/j.apsusc.2015.03.151
10.1016/j.colsurfb.2018.12.038
10.1016/j.ijpharm.2017.10.043
10.1016/j.jfda.2014.01.002
10.1016/j.colsurfb.2017.03.024
10.1016/j.jcis.2018.01.072
10.1002/adhm.201200116
10.1016/j.addr.2012.10.002
10.1016/j.biomaterials.2013.07.075
10.1021/nn103130q
10.1016/bs.enz.2018.07.005
10.1039/C8NR07667G
10.1186/s40580-019-0193-2
10.3109/1061186X.2011.622404
10.1016/j.ctrv.2015.10.010
10.1016/j.apsb.2018.01.007
10.1016/j.micromeso.2018.12.026
10.1021/acsami.5b11730
10.1016/j.addr.2013.09.001
10.1016/j.jconrel.2018.03.031
10.1016/j.nano.2015.10.018
10.1021/nn200809t
10.1016/j.ijbiomac.2018.09.058
10.1002/smll.201301926
10.1016/j.bios.2014.01.042
10.1016/j.ijpharm.2014.04.067
10.1021/acs.molpharmaceut.7b00109
10.1002/jbm.a.36770
10.3390/pharmaceutics11020077
10.1039/C7RA01028A
10.1080/17425247.2016.1211637
10.1039/C6BM00449K
10.1016/j.colsurfa.2019.03.030
10.1016/j.msec.2019.03.028
10.3390/nano7070189
10.1080/03639045.2019.1629688
10.1007/s12274-018-2078-9
10.1016/j.eururo.2019.01.049
10.2147/IJN.S213974
10.1016/S0928-0987(00)00114-7
10.2217/nnm-2018-0242
10.2174/0929867325666180501101044
10.1016/j.biopha.2019.109614
10.1208/s12249-017-0740-2
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.drudis.2020.06.006
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Pharmacy, Therapeutics, & Pharmacology
EISSN 1878-5832
EndPage 1520
ExternalDocumentID 32561300
10_1016_j_drudis_2020_06_006
S1359644620302312
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATCM
AAXUO
AAYOK
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABOCM
ABUDA
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IH2
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPCBC
SSP
SSU
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
ID FETCH-LOGICAL-c498t-6f983d42dad8b4ede8380594590c7c4ec4f687c2db5a46e76ad07002b1d632fa3
IEDL.DBID .~1
ISSN 1359-6446
1878-5832
IngestDate Fri Jul 11 15:20:26 EDT 2025
Wed Feb 19 02:29:09 EST 2025
Tue Jul 01 04:30:58 EDT 2025
Thu Apr 24 23:09:28 EDT 2025
Fri Feb 23 02:47:46 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c498t-6f983d42dad8b4ede8380594590c7c4ec4f687c2db5a46e76ad07002b1d632fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0137-8895
0000-0002-3790-0323
0000-0003-0207-2246
PMID 32561300
PQID 2415290964
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2415290964
pubmed_primary_32561300
crossref_citationtrail_10_1016_j_drudis_2020_06_006
crossref_primary_10_1016_j_drudis_2020_06_006
elsevier_sciencedirect_doi_10_1016_j_drudis_2020_06_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Drug discovery today
PublicationTitleAlternate Drug Discov Today
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Naz (bib0100) 2019; 14
Popova (bib0205) 2018; 44
Tian (bib0245) 2019; 570
Watermann, Brieger (bib0135) 2017; 7
Gary-Bobo (bib0170) 2011; 50
Mo (bib0350) 2016; 8
Feng (bib0180) 2016; 319
Singh (bib0250) 2016; 7
Li (bib0155) 2012; 1
Sayed (bib0275) 2018; 278
Cui (bib0345) 2013; 34
Sayed (bib0010) 2017; 18
Chen (bib0160) 2018; 11
Vallet-Regí (bib0015) 2017; 23
Du, X (bib0230) 2015; 345
Vallet-Regí (bib0075) 2018; 23
Amreddy, Babu, Muralidharan, Panneerselvam, Srivastava, Ahmed (bib0200) 2018; 137
Wong (bib0215) 2017; 23
Xiao (bib0150) 2014; 10
Zhu (bib0185) 2014; 22
Poonia (bib0130) 2017; 23
Perera (bib0300) 2019; 77
Mehta (bib0360) 2019; 2
Gayam, Wu (bib0175) 2014; 2
Du, Fu, Ren, Li, Guo (bib0305) 2020; 121
Kim (bib0220) 2011; 5
Taratula (bib0320) 2011; 19
Wang (bib0290) 2019; 45
Krishna, Mayer (bib0265) 2000; 11
Li (bib0325) 2017; 5
Luo (bib0085) 2019; 100
Maeda (bib0120) 2013; 65
Aquib, Farooq, Banerjee, Akhtar, Filli, Boakye-Yiadom, Kesse, Raza, Maviah, Mavlyanova, Wang (bib0190) 2019; 107
Yang, Yu (bib0125) 2016; 12
Kesse (bib0340) 2019; 11
Samykutty (bib0065) 2018; 78
Dilnawaz (bib0110) 2018; 26
Meng (bib0140) 2011; 5
Gisbert-Garzarán (bib0225) 2017; 4
Kumar (bib0335) 2017; 150
Fang (bib0080) 2019; 14
Lin (bib0105) 2018; 536
Vallet-Regi (bib0355) 2018; 43
Ricci (bib0050) 2018; 516
Jia, Yang, Wang, Chen, Yuan, Chen (bib0195) 2018; 13
Xin (bib0235) 2017; 14
Tian (bib0330) 2017; 154
Castillo (bib0005) 2017; 14
Rehman (bib0055) 2017; 72
Wen (bib0210) 2017; 46
Li (bib0025) 2019; 16
Liu (bib0310) 2019; 175
Montalvo-Quiros (bib0045) 2019; 11
Chen (bib0060) 2019; 122
Rivero-Buceta (bib0315) 2019; 4
Chi (bib0285) 2019; 30
Bhavsar (bib0295) 2019; 279
Martínez-Carmona (bib0070) 2018; 65
Rasekh (bib0365) 2017; 14
Zhang (bib0090) 2019; 14
Wong (bib0280) 2017; 7
Castillo, Vallet-Regí (bib0035) 2019; 20
Frederiks (bib0255) 2015; 41
Palanikumar (bib0240) 2015; 25
Fang (bib0165) 2014; 57
Gonzalez (bib0040) 2018; 256
Monem (bib0145) 2014; 470
Navya (bib0030) 2019; 6
Zhao (bib0095) 2018; 84
Vilaça (bib0020) 2017; 7
Zhou (bib0115) 2018; 8
Kirtane (bib0270) 2013; 65
Olov (bib0260) 2018; 106
Yang (10.1016/j.drudis.2020.06.006_bib0125) 2016; 12
Liu (10.1016/j.drudis.2020.06.006_bib0310) 2019; 175
Rasekh (10.1016/j.drudis.2020.06.006_bib0365) 2017; 14
Vallet-Regí (10.1016/j.drudis.2020.06.006_bib0075) 2018; 23
Meng (10.1016/j.drudis.2020.06.006_bib0140) 2011; 5
Navya (10.1016/j.drudis.2020.06.006_bib0030) 2019; 6
Sayed (10.1016/j.drudis.2020.06.006_bib0010) 2017; 18
Wong (10.1016/j.drudis.2020.06.006_bib0280) 2017; 7
Xin (10.1016/j.drudis.2020.06.006_bib0235) 2017; 14
Du (10.1016/j.drudis.2020.06.006_bib0230) 2015; 345
Gisbert-Garzarán (10.1016/j.drudis.2020.06.006_bib0225) 2017; 4
Tian (10.1016/j.drudis.2020.06.006_bib0245) 2019; 570
Gary-Bobo (10.1016/j.drudis.2020.06.006_bib0170) 2011; 50
Gonzalez (10.1016/j.drudis.2020.06.006_bib0040) 2018; 256
Castillo (10.1016/j.drudis.2020.06.006_bib0035) 2019; 20
Kesse (10.1016/j.drudis.2020.06.006_bib0340) 2019; 11
Kim (10.1016/j.drudis.2020.06.006_bib0220) 2011; 5
Luo (10.1016/j.drudis.2020.06.006_bib0085) 2019; 100
Vallet-Regí (10.1016/j.drudis.2020.06.006_bib0015) 2017; 23
Feng (10.1016/j.drudis.2020.06.006_bib0180) 2016; 319
Wang (10.1016/j.drudis.2020.06.006_bib0290) 2019; 45
Popova (10.1016/j.drudis.2020.06.006_bib0205) 2018; 44
Zhou (10.1016/j.drudis.2020.06.006_bib0115) 2018; 8
Zhang (10.1016/j.drudis.2020.06.006_bib0090) 2019; 14
Taratula (10.1016/j.drudis.2020.06.006_bib0320) 2011; 19
Fang (10.1016/j.drudis.2020.06.006_bib0080) 2019; 14
Watermann (10.1016/j.drudis.2020.06.006_bib0135) 2017; 7
Kirtane (10.1016/j.drudis.2020.06.006_bib0270) 2013; 65
Chen (10.1016/j.drudis.2020.06.006_bib0060) 2019; 122
Chen (10.1016/j.drudis.2020.06.006_bib0160) 2018; 11
Aquib (10.1016/j.drudis.2020.06.006_bib0190) 2019; 107
Amreddy (10.1016/j.drudis.2020.06.006_bib0200) 2018; 137
Palanikumar (10.1016/j.drudis.2020.06.006_bib0240) 2015; 25
Mehta (10.1016/j.drudis.2020.06.006_bib0360) 2019; 2
Li (10.1016/j.drudis.2020.06.006_bib0155) 2012; 1
Vallet-Regi (10.1016/j.drudis.2020.06.006_bib0355) 2018; 43
Lin (10.1016/j.drudis.2020.06.006_bib0105) 2018; 536
Ricci (10.1016/j.drudis.2020.06.006_bib0050) 2018; 516
Jia (10.1016/j.drudis.2020.06.006_bib0195) 2018; 13
Singh (10.1016/j.drudis.2020.06.006_bib0250) 2016; 7
Vilaça (10.1016/j.drudis.2020.06.006_bib0020) 2017; 7
Perera (10.1016/j.drudis.2020.06.006_bib0300) 2019; 77
Samykutty (10.1016/j.drudis.2020.06.006_bib0065) 2018; 78
Xiao (10.1016/j.drudis.2020.06.006_bib0150) 2014; 10
Rehman (10.1016/j.drudis.2020.06.006_bib0055) 2017; 72
Chi (10.1016/j.drudis.2020.06.006_bib0285) 2019; 30
Du (10.1016/j.drudis.2020.06.006_bib0305) 2020; 121
Poonia (10.1016/j.drudis.2020.06.006_bib0130) 2017; 23
Montalvo-Quiros (10.1016/j.drudis.2020.06.006_bib0045) 2019; 11
Tian (10.1016/j.drudis.2020.06.006_bib0330) 2017; 154
Li (10.1016/j.drudis.2020.06.006_bib0325) 2017; 5
Mo (10.1016/j.drudis.2020.06.006_bib0350) 2016; 8
Wong (10.1016/j.drudis.2020.06.006_bib0215) 2017; 23
Wen (10.1016/j.drudis.2020.06.006_bib0210) 2017; 46
Sayed (10.1016/j.drudis.2020.06.006_bib0275) 2018; 278
Zhu (10.1016/j.drudis.2020.06.006_bib0185) 2014; 22
Krishna (10.1016/j.drudis.2020.06.006_bib0265) 2000; 11
Zhao (10.1016/j.drudis.2020.06.006_bib0095) 2018; 84
Naz (10.1016/j.drudis.2020.06.006_bib0100) 2019; 14
Bhavsar (10.1016/j.drudis.2020.06.006_bib0295) 2019; 279
Martínez-Carmona (10.1016/j.drudis.2020.06.006_bib0070) 2018; 65
Dilnawaz (10.1016/j.drudis.2020.06.006_bib0110) 2018; 26
Gayam (10.1016/j.drudis.2020.06.006_bib0175) 2014; 2
Cui (10.1016/j.drudis.2020.06.006_bib0345) 2013; 34
Monem (10.1016/j.drudis.2020.06.006_bib0145) 2014; 470
Fang (10.1016/j.drudis.2020.06.006_bib0165) 2014; 57
Frederiks (10.1016/j.drudis.2020.06.006_bib0255) 2015; 41
Castillo (10.1016/j.drudis.2020.06.006_bib0005) 2017; 14
Olov (10.1016/j.drudis.2020.06.006_bib0260) 2018; 106
Li (10.1016/j.drudis.2020.06.006_bib0025) 2019; 16
Kumar (10.1016/j.drudis.2020.06.006_bib0335) 2017; 150
Maeda (10.1016/j.drudis.2020.06.006_bib0120) 2013; 65
Rivero-Buceta (10.1016/j.drudis.2020.06.006_bib0315) 2019; 4
References_xml – volume: 516
  start-page: 484
  year: 2018
  end-page: 497
  ident: bib0050
  article-title: Hyaluronated mesoporous silica nanoparticles for active targeting: Influence of conjugation method and hyaluronic acid molecular weight on the nanovector properties
  publication-title: J. Colloid Interface Sci.
– volume: 45
  start-page: 1487
  year: 2019
  end-page: 1495
  ident: bib0290
  article-title: Combined chemo/photothermal therapy based on mesoporous silica-au core-shell nanoparticles for hepatocellular carcinoma treatment
  publication-title: Drug Dev. Ind. Pharm.
– volume: 65
  start-page: 393
  year: 2018
  end-page: 404
  ident: bib0070
  article-title: Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment
  publication-title: Acta Biomater.
– volume: 22
  start-page: 18
  year: 2014
  end-page: 28
  ident: bib0185
  article-title: Cell microenvironment stimuli-responsive controlled-release delivery systems based on mesoporous silica nanoparticles
  publication-title: J. Food Drug Anal.
– volume: 11
  start-page: 265
  year: 2000
  end-page: 283
  ident: bib0265
  article-title: Multidrug resistance (MDR) in cancer: mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs
  publication-title: Eur. J. Pharm. Sci.
– volume: 11
  start-page: 4890
  year: 2018
  end-page: 4904
  ident: bib0160
  article-title: General synthesis of silica-based yolk/shell hybrid nanomaterials and
  publication-title: Nano Res.
– volume: 8
  start-page: 6811
  year: 2016
  end-page: 6825
  ident: bib0350
  article-title: Tailoring particle size of mesoporous silica nanosystem to antagonize glioblastoma and overcome blood–brain barrier
  publication-title: ACS Appl. Mater. Interfaces
– volume: 279
  start-page: 107
  year: 2019
  end-page: 116
  ident: bib0295
  article-title: Formulation and development of smart pH responsive mesoporous silica nanoparticles for breast cancer targeted delivery of anastrozole:
  publication-title: Microporous Mesoporous Mater.
– volume: 11
  start-page: 77
  year: 2019
  ident: bib0340
  article-title: Mesoporous silica nanomaterials: versatile nanocarriers for cancer theranostics and drug and gene delivery
  publication-title: Pharmaceutics
– volume: 77
  start-page: 403
  year: 2019
  end-page: 417
  ident: bib0300
  article-title: Gallium-68 prostate-specific membrane antigen positron emission tomography in advanced prostate cancer—updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: a systematic review and meta-analysis
  publication-title: Eur. Urol.
– volume: 122
  start-page: 1090
  year: 2019
  end-page: 1099
  ident: bib0060
  article-title: A self-targeting and controllable drug delivery system constituting mesoporous silica nanoparticles fabricated with a multi-stimuli responsive chitosan-based thin film layer
  publication-title: Int. J. Biol. Macromol.
– volume: 1
  start-page: 567
  year: 2012
  end-page: 572
  ident: bib0155
  article-title: Polyvalent mesoporous silica nanoparticle‐aptamer bioconjugates target breast cancer cells
  publication-title: Adv. Healthc. Mater.
– volume: 319
  start-page: 86
  year: 2016
  end-page: 109
  ident: bib0180
  article-title: The application of mesoporous silica nanoparticle family in cancer theranostics
  publication-title: Coord. Chem. Rev.
– volume: 23
  start-page: 47
  year: 2018
  ident: bib0075
  article-title: Mesoporous silica nanoparticles for drug delivery: current insights
  publication-title: Molecules
– volume: 23
  start-page: 47
  year: 2017
  ident: bib0015
  article-title: Mesoporous silica nanoparticles for drug delivery: current insights
  publication-title: Molecules
– volume: 256
  start-page: 251
  year: 2018
  end-page: 265
  ident: bib0040
  article-title: Comparative study of two silica mesoporous materials (SBA-16 and SBA-15) modified with a hydroxyapatite layer for clindamycin controlled delivery
  publication-title: Microporous Mesoporous Mater.
– volume: 14
  start-page: 5785
  year: 2019
  ident: bib0080
  article-title: Hyaluronic acid-modified mesoporous silica–coated superparamagnetic Fe3O4 nanoparticles for targeted drug delivery
  publication-title: Int. J. Nanomed.
– volume: 65
  start-page: 71
  year: 2013
  end-page: 79
  ident: bib0120
  article-title: The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging
  publication-title: Adv. Drug Deliv. Rev.
– volume: 12
  start-page: 317
  year: 2016
  end-page: 332
  ident: bib0125
  article-title: Advances in silica based nanoparticles for targeted cancer therapy
  publication-title: Nanomedicine
– volume: 345
  start-page: 90
  year: 2015
  end-page: 98
  ident: bib0230
  article-title: Layer-by-layer engineering fluorescent polyelectrolyte coated mesoporous silica nanoparticles as pH-sensitive nanocarriers for controlled release
  publication-title: Appl. Surf. Sci.
– volume: 536
  start-page: 272
  year: 2018
  end-page: 282
  ident: bib0105
  article-title: PEGylated lipid bilayer coated mesoporous silica nanoparticles for co-delivery of paclitaxel and curcumin: Design, characterization and its cytotoxic effect
  publication-title: Int. J. Pharm.
– volume: 23
  start-page: 315
  year: 2017
  end-page: 322
  ident: bib0130
  article-title: Mesoporous silica nanoparticles: a smart nanosystem for management of breast cancer
  publication-title: Drug Discov. Today
– volume: 50
  start-page: 11425
  year: 2011
  end-page: 11429
  ident: bib0170
  article-title: Mannose‐functionalized mesoporous silica nanoparticles for efficient two‐photon photodynamic therapy of solid tumors
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 77
  year: 2017
  end-page: 88
  ident: bib0325
  article-title: Combined bortezomib-based chemotherapy and p53 gene therapy using hollow mesoporous silica nanospheres for p53 mutant non-small cell lung cancer treatment
  publication-title: Biomater. Sci.
– volume: 43
  start-page: 101
  year: 2018
  end-page: 122
  ident: bib0355
  article-title: Controlled release with emphasis on ultrasound-induced release
  publication-title: Enzymes
– volume: 7
  start-page: 1667
  year: 2016
  ident: bib0250
  article-title: Lead phytochemicals for anticancer drug development
  publication-title: Front. Plant Sci.
– volume: 5
  start-page: 3568
  year: 2011
  end-page: 3576
  ident: bib0220
  article-title: Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery
  publication-title: ACS Nano
– volume: 175
  start-page: 477
  year: 2019
  end-page: 486
  ident: bib0310
  article-title: Cancer cell membrane-cloaked mesoporous silica nanoparticles with a pH-sensitive gatekeeper for cancer treatment
  publication-title: Colloids Surf. B Biointerfaces
– volume: 107
  start-page: 2643
  year: 2019
  end-page: 2666
  ident: bib0190
  article-title: Targeted and stimuli-responsive mesoporous silica nanoparticles for drug delivery and theranostic use
  publication-title: J Biomed Mat Res A
– volume: 137
  start-page: 115
  year: 2018
  end-page: 170
  ident: bib0200
  article-title: Recent advances in nanoparticle-based cancer drug and gene delivery
  publication-title: Adv. Cancer Res.
– volume: 23
  start-page: 16505
  year: 2017
  end-page: 16515
  ident: bib0215
  article-title: Encapsulating pH‐responsive doxorubicin–phthalocyanine conjugates in mesoporous silica nanoparticles for combined photodynamic therapy and controlled chemotherapy
  publication-title: Chemistry
– volume: 570
  start-page: 386
  year: 2019
  end-page: 395
  ident: bib0245
  article-title: Hollow mesoporous carbon modified with cRGD peptide nanoplatform for targeted drug delivery and chemo-photothermal therapy of prostatic carcinoma
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 19
  start-page: 900
  year: 2011
  end-page: 914
  ident: bib0320
  article-title: Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA
  publication-title: J. Drug Target.
– volume: 470
  start-page: 1
  year: 2014
  end-page: 7
  ident: bib0145
  article-title: Mesoporous silica coated gold nanorods loaded doxorubicin for combined chemo-photothermal therapy
  publication-title: Int. J. Pharm.
– volume: 7
  start-page: 189
  year: 2017
  ident: bib0135
  article-title: Mesoporous silica nanoparticles as drug delivery vehicles in cancer
  publication-title: Nanomaterials
– volume: 13
  start-page: 400
  year: 2018
  end-page: 405
  ident: bib0195
  article-title: Hollow mesoporous silica@metal-organic framework and its applications for pH-responsive doxorubicin drug delivery
  publication-title: ChemMedChem
– volume: 34
  start-page: 8511
  year: 2013
  end-page: 8520
  ident: bib0345
  article-title: Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment
  publication-title: Biomaterials
– volume: 65
  start-page: 1731
  year: 2013
  end-page: 1747
  ident: bib0270
  article-title: Exploiting nanotechnology to overcome tumor drug resistance: challenges and opportunities
  publication-title: Adv. Drug Deliv. Rev.
– volume: 25
  start-page: 957
  year: 2015
  end-page: 965
  ident: bib0240
  article-title: Noncovalent polymer‐gatekeeper in mesoporous silica nanoparticles as a targeted drug delivery platform
  publication-title: Adv. Funct. Mater.
– volume: 154
  start-page: 287
  year: 2017
  end-page: 296
  ident: bib0330
  article-title: pH-responsive poly (acrylic acid)-gated mesoporous silica and its application in oral colon targeted drug delivery for doxorubicin
  publication-title: Colloids Surf. B Biointerfaces
– volume: 278
  start-page: 142
  year: 2018
  end-page: 155
  ident: bib0275
  article-title: Electrosprayed mesoporous particles for improved aqueous solubility of a poorly water soluble anticancer agent:
  publication-title: J. Control. Release
– volume: 26
  start-page: 5745
  year: 2018
  end-page: 5763
  ident: bib0110
  article-title: Multifunctional mesoporous silica nanoparticles for cancer therapy and imaging
  publication-title: Curr. Med. Chem.
– volume: 16
  start-page: 219
  year: 2019
  end-page: 237
  ident: bib0025
  article-title: Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery
  publication-title: Expert Opin. Drug Deliv.
– volume: 14
  start-page: 2533
  year: 2019
  ident: bib0100
  article-title: Enzyme-responsive mesoporous silica nanoparticles for tumor cells and mitochondria multistage–targeted drug delivery
  publication-title: Int. J. Nanomed.
– volume: 14
  start-page: 228
  year: 2017
  ident: bib0235
  article-title: Recent progress on nanoparticle-based drug delivery systems for cancer therapy
  publication-title: Cancer Biol. Med.
– volume: 72
  start-page: 34
  year: 2017
  end-page: 41
  ident: bib0055
  article-title: Amine bridges grafted mesoporous silica, as a prolonged/controlled drug release system for the enhanced therapeutic effect of short life drugs
  publication-title: Mater. Sci. Eng. C
– volume: 84
  start-page: 108
  year: 2018
  end-page: 117
  ident: bib0095
  article-title: TPGS functionalized mesoporous silica nanoparticles for anticancer drug delivery to overcome multidrug resistance
  publication-title: Mater. Sci. Eng. C
– volume: 44
  start-page: 415
  year: 2018
  end-page: 420
  ident: bib0205
  article-title: Polymer-coated mesoporous silica nanoparticles for controlled release of the prodrug sulfasalazine
  publication-title: J. Drug Deliv. Sci. Technol.
– volume: 150
  start-page: 352
  year: 2017
  end-page: 361
  ident: bib0335
  article-title: Mesoporous silica nanoparticle based enzyme responsive system for colon specific drug delivery through guar gum capping
  publication-title: Colloids Surf. B Biointerfaces
– volume: 7
  start-page: 13104
  year: 2017
  end-page: 13111
  ident: bib0020
  article-title: Comparison of different silica microporous structures as drug delivery systems for
  publication-title: RSC Adv.
– volume: 14
  start-page: 229
  year: 2017
  end-page: 243
  ident: bib0005
  article-title: Advances in mesoporous silica-based nanocarriers for co-delivery and combination therapy against cancer
  publication-title: Expert Opin. Drug Deliv.
– volume: 121
  start-page: 109614
  year: 2020
  ident: bib0305
  article-title: PSA targeted dual-modality manganese oxide-mesoporous silica nanoparticles for prostate cancer imaging
  publication-title: Biomed. Pharmacother.
– volume: 57
  start-page: 10
  year: 2014
  end-page: 15
  ident: bib0165
  article-title: pH-controllable drug carrier with SERS activity for targeting cancer cells
  publication-title: Biosens. Bioelectron.
– volume: 106
  start-page: 2272
  year: 2018
  end-page: 2283
  ident: bib0260
  article-title: Combinational drug delivery using nanocarriers for breast cancer treatments: a review
  publication-title: J. Biomed. Mater. Res. A
– volume: 41
  start-page: 935
  year: 2015
  end-page: 950
  ident: bib0255
  article-title: Genetic polymorphisms and paclitaxel-or docetaxel-induced toxicities: a systematic review
  publication-title: Cancer Treat. Rev.
– volume: 11
  start-page: 4531
  year: 2019
  end-page: 4545
  ident: bib0045
  article-title: Cancer cell targeting and therapeutic delivery of silver nanoparticles by mesoporous silica nanocarriers: Insights into the action mechanisms using quantitative proteomics
  publication-title: Nanoscale
– volume: 2
  start-page: 7009
  year: 2014
  end-page: 7016
  ident: bib0175
  article-title: Redox responsive pd (II) templated rotaxane nanovalve capped mesoporous silica nanoparticles: a folic acid mediated biocompatible cancer-targeted drug delivery system
  publication-title: J. Mater. Chem. B
– volume: 18
  start-page: 1507
  year: 2017
  end-page: 1525
  ident: bib0010
  article-title: Porous inorganic drug delivery systems—a review
  publication-title: AAPS PharmSciTech
– volume: 4
  start-page: 1281
  year: 2019
  end-page: 1291
  ident: bib0315
  article-title: PSMA-targeted mesoporous silica nanoparticles for selective intracellular delivery of docetaxel in prostate cancer cells
  publication-title: ACS Omega
– volume: 10
  start-page: 591
  year: 2014
  end-page: 598
  ident: bib0150
  article-title: A dual‐responsive mesoporous silica nanoparticle for tumor-triggered targeting drug delivery
  publication-title: Small
– volume: 7
  start-page: 45846
  year: 2017
  ident: bib0280
  article-title: International incidence and mortality trends of liver cancer: a global profile
  publication-title: Sci. Rep.
– volume: 30
  start-page: 175101
  year: 2019
  ident: bib0285
  article-title: Targeted arsenite-loaded magnetic multifunctional nanoparticles for treatment of hepatocellular carcinoma
  publication-title: Nanotechnology
– volume: 8
  start-page: 165
  year: 2018
  end-page: 177
  ident: bib0115
  article-title: Mesoporous silica nanoparticles for drug and gene delivery
  publication-title: Acta Pharm. Sin. B
– volume: 46
  start-page: 6024
  year: 2017
  end-page: 6045
  ident: bib0210
  article-title: Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems
  publication-title: Chem. Soc. Rev.
– volume: 20
  start-page: 929
  year: 2019
  ident: bib0035
  article-title: Functional mesoporous silica nanocomposites: biomedical applications and biosafety
  publication-title: Int. J. Mol. Sci.
– volume: 78
  start-page: 4122
  year: 2018
  ident: bib0065
  article-title: Acidic tumor microenvironment targeted wormhole-shaped mesoporous silica nanoparticles to detect ovarian cancer by multispectral optoacoustic tomography
  publication-title: Cancer Res.
– volume: 100
  start-page: 855
  year: 2019
  end-page: 861
  ident: bib0085
  article-title: Formation of enzymatic/redox-switching nanogates on mesoporous silica nanoparticles for anticancer drug delivery
  publication-title: Mater. Sci. Eng. C
– volume: 14
  start-page: 2010
  year: 2017
  end-page: 2023
  ident: bib0365
  article-title: Facile preparation of drug-loaded tristearin encapsulated superparamagnetic iron oxide nanoparticles using coaxial electrospray processing
  publication-title: Mol. Pharm.
– volume: 14
  start-page: 1443
  year: 2019
  end-page: 1454
  ident: bib0090
  article-title: Mesoporous gold nanoparticles for photothermal controlled anticancer drug delivery
  publication-title: Nanomedicine
– volume: 2
  year: 2019
  ident: bib0360
  article-title: Broad scale and structure fabrication of healthcare materials for drug and emerging therapies via electrohydrodynamic techniques
  publication-title: Adv. Ther.
– volume: 5
  start-page: 4131
  year: 2011
  end-page: 4144
  ident: bib0140
  article-title: Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model
  publication-title: ACS Nano
– volume: 4
  start-page: 3
  year: 2017
  ident: bib0225
  article-title: pH-responsive mesoporous silica and carbon nanoparticles for drug delivery
  publication-title: Bioengineering
– volume: 6
  start-page: 23
  year: 2019
  ident: bib0030
  article-title: Current trends and challenges in cancer management and therapy using designer nanomaterials
  publication-title: Nano Converg.
– volume: 25
  start-page: 957
  year: 2015
  ident: 10.1016/j.drudis.2020.06.006_bib0240
  article-title: Noncovalent polymer‐gatekeeper in mesoporous silica nanoparticles as a targeted drug delivery platform
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201402755
– volume: 4
  start-page: 1281
  year: 2019
  ident: 10.1016/j.drudis.2020.06.006_bib0315
  article-title: PSMA-targeted mesoporous silica nanoparticles for selective intracellular delivery of docetaxel in prostate cancer cells
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b02909
– volume: 72
  start-page: 34
  year: 2017
  ident: 10.1016/j.drudis.2020.06.006_bib0055
  article-title: Amine bridges grafted mesoporous silica, as a prolonged/controlled drug release system for the enhanced therapeutic effect of short life drugs
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2016.11.040
– volume: 4
  start-page: 3
  year: 2017
  ident: 10.1016/j.drudis.2020.06.006_bib0225
  article-title: pH-responsive mesoporous silica and carbon nanoparticles for drug delivery
  publication-title: Bioengineering
  doi: 10.3390/bioengineering4010003
– volume: 7
  start-page: 1667
  year: 2016
  ident: 10.1016/j.drudis.2020.06.006_bib0250
  article-title: Lead phytochemicals for anticancer drug development
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01667
– volume: 23
  start-page: 16505
  year: 2017
  ident: 10.1016/j.drudis.2020.06.006_bib0215
  article-title: Encapsulating pH‐responsive doxorubicin–phthalocyanine conjugates in mesoporous silica nanoparticles for combined photodynamic therapy and controlled chemotherapy
  publication-title: Chemistry
  doi: 10.1002/chem.201703188
– volume: 65
  start-page: 393
  year: 2018
  ident: 10.1016/j.drudis.2020.06.006_bib0070
  article-title: Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.11.007
– volume: 84
  start-page: 108
  year: 2018
  ident: 10.1016/j.drudis.2020.06.006_bib0095
  article-title: TPGS functionalized mesoporous silica nanoparticles for anticancer drug delivery to overcome multidrug resistance
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2017.11.040
– volume: 150
  start-page: 352
  year: 2017
  ident: 10.1016/j.drudis.2020.06.006_bib0335
  article-title: Mesoporous silica nanoparticle based enzyme responsive system for colon specific drug delivery through guar gum capping
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2016.10.049
– volume: 78
  start-page: 4122
  issue: Suppl
  year: 2018
  ident: 10.1016/j.drudis.2020.06.006_bib0065
  article-title: Acidic tumor microenvironment targeted wormhole-shaped mesoporous silica nanoparticles to detect ovarian cancer by multispectral optoacoustic tomography
  publication-title: Cancer Res.
  doi: 10.1158/1538-7445.AM2018-4122
– volume: 14
  start-page: 2533
  year: 2019
  ident: 10.1016/j.drudis.2020.06.006_bib0100
  article-title: Enzyme-responsive mesoporous silica nanoparticles for tumor cells and mitochondria multistage–targeted drug delivery
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S202210
– volume: 137
  start-page: 115
  year: 2018
  ident: 10.1016/j.drudis.2020.06.006_bib0200
  article-title: Recent advances in nanoparticle-based cancer drug and gene delivery
  publication-title: Adv. Cancer Res.
  doi: 10.1016/bs.acr.2017.11.003
– volume: 2
  start-page: 7009
  year: 2014
  ident: 10.1016/j.drudis.2020.06.006_bib0175
  article-title: Redox responsive pd (II) templated rotaxane nanovalve capped mesoporous silica nanoparticles: a folic acid mediated biocompatible cancer-targeted drug delivery system
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C4TB01030B
– volume: 7
  start-page: 45846
  year: 2017
  ident: 10.1016/j.drudis.2020.06.006_bib0280
  article-title: International incidence and mortality trends of liver cancer: a global profile
  publication-title: Sci. Rep.
  doi: 10.1038/srep45846
– volume: 30
  start-page: 175101
  year: 2019
  ident: 10.1016/j.drudis.2020.06.006_bib0285
  article-title: Targeted arsenite-loaded magnetic multifunctional nanoparticles for treatment of hepatocellular carcinoma
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aaff9e
– volume: 23
  start-page: 47
  year: 2018
  ident: 10.1016/j.drudis.2020.06.006_bib0075
  article-title: Mesoporous silica nanoparticles for drug delivery: current insights
  publication-title: Molecules
  doi: 10.3390/molecules23010047
– volume: 14
  start-page: 228
  year: 2017
  ident: 10.1016/j.drudis.2020.06.006_bib0235
  article-title: Recent progress on nanoparticle-based drug delivery systems for cancer therapy
  publication-title: Cancer Biol. Med.
  doi: 10.20892/j.issn.2095-3941.2017.0052
– volume: 23
  start-page: 315
  year: 2017
  ident: 10.1016/j.drudis.2020.06.006_bib0130
  article-title: Mesoporous silica nanoparticles: a smart nanosystem for management of breast cancer
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2017.10.022
– volume: 2
  year: 2019
  ident: 10.1016/j.drudis.2020.06.006_bib0360
  article-title: Broad scale and structure fabrication of healthcare materials for drug and emerging therapies via electrohydrodynamic techniques
  publication-title: Adv. Ther.
– volume: 256
  start-page: 251
  year: 2018
  ident: 10.1016/j.drudis.2020.06.006_bib0040
  article-title: Comparative study of two silica mesoporous materials (SBA-16 and SBA-15) modified with a hydroxyapatite layer for clindamycin controlled delivery
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2017.07.021
– volume: 50
  start-page: 11425
  year: 2011
  ident: 10.1016/j.drudis.2020.06.006_bib0170
  article-title: Mannose‐functionalized mesoporous silica nanoparticles for efficient two‐photon photodynamic therapy of solid tumors
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201104765
– volume: 44
  start-page: 415
  year: 2018
  ident: 10.1016/j.drudis.2020.06.006_bib0205
  article-title: Polymer-coated mesoporous silica nanoparticles for controlled release of the prodrug sulfasalazine
  publication-title: J. Drug Deliv. Sci. Technol.
  doi: 10.1016/j.jddst.2018.01.020
– volume: 319
  start-page: 86
  year: 2016
  ident: 10.1016/j.drudis.2020.06.006_bib0180
  article-title: The application of mesoporous silica nanoparticle family in cancer theranostics
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2016.04.019
– volume: 106
  start-page: 2272
  year: 2018
  ident: 10.1016/j.drudis.2020.06.006_bib0260
  article-title: Combinational drug delivery using nanocarriers for breast cancer treatments: a review
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.36410
– volume: 13
  start-page: 400
  year: 2018
  ident: 10.1016/j.drudis.2020.06.006_bib0195
  article-title: Hollow mesoporous silica@metal-organic framework and its applications for pH-responsive doxorubicin drug delivery
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.201800019
– volume: 46
  start-page: 6024
  year: 2017
  ident: 10.1016/j.drudis.2020.06.006_bib0210
  article-title: Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00219J
– volume: 16
  start-page: 219
  year: 2019
  ident: 10.1016/j.drudis.2020.06.006_bib0025
  article-title: Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery
  publication-title: Expert Opin. Drug Deliv.
  doi: 10.1080/17425247.2019.1575806
– volume: 20
  start-page: 929
  year: 2019
  ident: 10.1016/j.drudis.2020.06.006_bib0035
  article-title: Functional mesoporous silica nanocomposites: biomedical applications and biosafety
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20040929
– volume: 345
  start-page: 90
  year: 2015
  ident: 10.1016/j.drudis.2020.06.006_bib0230
  article-title: Layer-by-layer engineering fluorescent polyelectrolyte coated mesoporous silica nanoparticles as pH-sensitive nanocarriers for controlled release
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.03.151
– volume: 175
  start-page: 477
  year: 2019
  ident: 10.1016/j.drudis.2020.06.006_bib0310
  article-title: Cancer cell membrane-cloaked mesoporous silica nanoparticles with a pH-sensitive gatekeeper for cancer treatment
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2018.12.038
– volume: 536
  start-page: 272
  year: 2018
  ident: 10.1016/j.drudis.2020.06.006_bib0105
  article-title: PEGylated lipid bilayer coated mesoporous silica nanoparticles for co-delivery of paclitaxel and curcumin: Design, characterization and its cytotoxic effect
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2017.10.043
– volume: 22
  start-page: 18
  year: 2014
  ident: 10.1016/j.drudis.2020.06.006_bib0185
  article-title: Cell microenvironment stimuli-responsive controlled-release delivery systems based on mesoporous silica nanoparticles
  publication-title: J. Food Drug Anal.
  doi: 10.1016/j.jfda.2014.01.002
– volume: 154
  start-page: 287
  year: 2017
  ident: 10.1016/j.drudis.2020.06.006_bib0330
  article-title: pH-responsive poly (acrylic acid)-gated mesoporous silica and its application in oral colon targeted drug delivery for doxorubicin
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2017.03.024
– volume: 516
  start-page: 484
  year: 2018
  ident: 10.1016/j.drudis.2020.06.006_bib0050
  article-title: Hyaluronated mesoporous silica nanoparticles for active targeting: Influence of conjugation method and hyaluronic acid molecular weight on the nanovector properties
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.01.072
– volume: 1
  start-page: 567
  year: 2012
  ident: 10.1016/j.drudis.2020.06.006_bib0155
  article-title: Polyvalent mesoporous silica nanoparticle‐aptamer bioconjugates target breast cancer cells
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201200116
– volume: 65
  start-page: 71
  year: 2013
  ident: 10.1016/j.drudis.2020.06.006_bib0120
  article-title: The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2012.10.002
– volume: 23
  start-page: 47
  year: 2017
  ident: 10.1016/j.drudis.2020.06.006_bib0015
  article-title: Mesoporous silica nanoparticles for drug delivery: current insights
  publication-title: Molecules
  doi: 10.3390/molecules23010047
– volume: 34
  start-page: 8511
  issue: 33
  year: 2013
  ident: 10.1016/j.drudis.2020.06.006_bib0345
  article-title: Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.07.075
– volume: 5
  start-page: 3568
  year: 2011
  ident: 10.1016/j.drudis.2020.06.006_bib0220
  article-title: Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery
  publication-title: ACS Nano
  doi: 10.1021/nn103130q
– volume: 43
  start-page: 101
  year: 2018
  ident: 10.1016/j.drudis.2020.06.006_bib0355
  article-title: Controlled release with emphasis on ultrasound-induced release
  publication-title: Enzymes
  doi: 10.1016/bs.enz.2018.07.005
– volume: 11
  start-page: 4531
  year: 2019
  ident: 10.1016/j.drudis.2020.06.006_bib0045
  article-title: Cancer cell targeting and therapeutic delivery of silver nanoparticles by mesoporous silica nanocarriers: Insights into the action mechanisms using quantitative proteomics
  publication-title: Nanoscale
  doi: 10.1039/C8NR07667G
– volume: 6
  start-page: 23
  year: 2019
  ident: 10.1016/j.drudis.2020.06.006_bib0030
  article-title: Current trends and challenges in cancer management and therapy using designer nanomaterials
  publication-title: Nano Converg.
  doi: 10.1186/s40580-019-0193-2
– volume: 19
  start-page: 900
  year: 2011
  ident: 10.1016/j.drudis.2020.06.006_bib0320
  article-title: Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA
  publication-title: J. Drug Target.
  doi: 10.3109/1061186X.2011.622404
– volume: 41
  start-page: 935
  year: 2015
  ident: 10.1016/j.drudis.2020.06.006_bib0255
  article-title: Genetic polymorphisms and paclitaxel-or docetaxel-induced toxicities: a systematic review
  publication-title: Cancer Treat. Rev.
  doi: 10.1016/j.ctrv.2015.10.010
– volume: 8
  start-page: 165
  year: 2018
  ident: 10.1016/j.drudis.2020.06.006_bib0115
  article-title: Mesoporous silica nanoparticles for drug and gene delivery
  publication-title: Acta Pharm. Sin. B
  doi: 10.1016/j.apsb.2018.01.007
– volume: 279
  start-page: 107
  year: 2019
  ident: 10.1016/j.drudis.2020.06.006_bib0295
  article-title: Formulation and development of smart pH responsive mesoporous silica nanoparticles for breast cancer targeted delivery of anastrozole: In vitro and in vivo characterizations
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2018.12.026
– volume: 8
  start-page: 6811
  year: 2016
  ident: 10.1016/j.drudis.2020.06.006_bib0350
  article-title: Tailoring particle size of mesoporous silica nanosystem to antagonize glioblastoma and overcome blood–brain barrier
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b11730
– volume: 65
  start-page: 1731
  year: 2013
  ident: 10.1016/j.drudis.2020.06.006_bib0270
  article-title: Exploiting nanotechnology to overcome tumor drug resistance: challenges and opportunities
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2013.09.001
– volume: 278
  start-page: 142
  year: 2018
  ident: 10.1016/j.drudis.2020.06.006_bib0275
  article-title: Electrosprayed mesoporous particles for improved aqueous solubility of a poorly water soluble anticancer agent: In vitro and ex vivo evaluation
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2018.03.031
– volume: 12
  start-page: 317
  year: 2016
  ident: 10.1016/j.drudis.2020.06.006_bib0125
  article-title: Advances in silica based nanoparticles for targeted cancer therapy
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2015.10.018
– volume: 5
  start-page: 4131
  year: 2011
  ident: 10.1016/j.drudis.2020.06.006_bib0140
  article-title: Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model
  publication-title: ACS Nano
  doi: 10.1021/nn200809t
– volume: 122
  start-page: 1090
  year: 2019
  ident: 10.1016/j.drudis.2020.06.006_bib0060
  article-title: A self-targeting and controllable drug delivery system constituting mesoporous silica nanoparticles fabricated with a multi-stimuli responsive chitosan-based thin film layer
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.09.058
– volume: 10
  start-page: 591
  year: 2014
  ident: 10.1016/j.drudis.2020.06.006_bib0150
  article-title: A dual‐responsive mesoporous silica nanoparticle for tumor-triggered targeting drug delivery
  publication-title: Small
  doi: 10.1002/smll.201301926
– volume: 57
  start-page: 10
  year: 2014
  ident: 10.1016/j.drudis.2020.06.006_bib0165
  article-title: pH-controllable drug carrier with SERS activity for targeting cancer cells
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2014.01.042
– volume: 470
  start-page: 1
  year: 2014
  ident: 10.1016/j.drudis.2020.06.006_bib0145
  article-title: Mesoporous silica coated gold nanorods loaded doxorubicin for combined chemo-photothermal therapy
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2014.04.067
– volume: 14
  start-page: 2010
  year: 2017
  ident: 10.1016/j.drudis.2020.06.006_bib0365
  article-title: Facile preparation of drug-loaded tristearin encapsulated superparamagnetic iron oxide nanoparticles using coaxial electrospray processing
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.7b00109
– volume: 107
  start-page: 2643
  year: 2019
  ident: 10.1016/j.drudis.2020.06.006_bib0190
  article-title: Targeted and stimuli-responsive mesoporous silica nanoparticles for drug delivery and theranostic use
  publication-title: J Biomed Mat Res A
  doi: 10.1002/jbm.a.36770
– volume: 11
  start-page: 77
  year: 2019
  ident: 10.1016/j.drudis.2020.06.006_bib0340
  article-title: Mesoporous silica nanomaterials: versatile nanocarriers for cancer theranostics and drug and gene delivery
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics11020077
– volume: 7
  start-page: 13104
  year: 2017
  ident: 10.1016/j.drudis.2020.06.006_bib0020
  article-title: Comparison of different silica microporous structures as drug delivery systems for in vitro models of solid tumors
  publication-title: RSC Adv.
  doi: 10.1039/C7RA01028A
– volume: 14
  start-page: 229
  year: 2017
  ident: 10.1016/j.drudis.2020.06.006_bib0005
  article-title: Advances in mesoporous silica-based nanocarriers for co-delivery and combination therapy against cancer
  publication-title: Expert Opin. Drug Deliv.
  doi: 10.1080/17425247.2016.1211637
– volume: 5
  start-page: 77
  year: 2017
  ident: 10.1016/j.drudis.2020.06.006_bib0325
  article-title: Combined bortezomib-based chemotherapy and p53 gene therapy using hollow mesoporous silica nanospheres for p53 mutant non-small cell lung cancer treatment
  publication-title: Biomater. Sci.
  doi: 10.1039/C6BM00449K
– volume: 570
  start-page: 386
  year: 2019
  ident: 10.1016/j.drudis.2020.06.006_bib0245
  article-title: Hollow mesoporous carbon modified with cRGD peptide nanoplatform for targeted drug delivery and chemo-photothermal therapy of prostatic carcinoma
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2019.03.030
– volume: 100
  start-page: 855
  year: 2019
  ident: 10.1016/j.drudis.2020.06.006_bib0085
  article-title: Formation of enzymatic/redox-switching nanogates on mesoporous silica nanoparticles for anticancer drug delivery
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.03.028
– volume: 7
  start-page: 189
  year: 2017
  ident: 10.1016/j.drudis.2020.06.006_bib0135
  article-title: Mesoporous silica nanoparticles as drug delivery vehicles in cancer
  publication-title: Nanomaterials
  doi: 10.3390/nano7070189
– volume: 45
  start-page: 1487
  year: 2019
  ident: 10.1016/j.drudis.2020.06.006_bib0290
  article-title: Combined chemo/photothermal therapy based on mesoporous silica-au core-shell nanoparticles for hepatocellular carcinoma treatment
  publication-title: Drug Dev. Ind. Pharm.
  doi: 10.1080/03639045.2019.1629688
– volume: 11
  start-page: 4890
  year: 2018
  ident: 10.1016/j.drudis.2020.06.006_bib0160
  article-title: General synthesis of silica-based yolk/shell hybrid nanomaterials and in vivo tumor vasculature targeting
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2078-9
– volume: 77
  start-page: 403
  year: 2019
  ident: 10.1016/j.drudis.2020.06.006_bib0300
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2019.01.049
– volume: 14
  start-page: 5785
  year: 2019
  ident: 10.1016/j.drudis.2020.06.006_bib0080
  article-title: Hyaluronic acid-modified mesoporous silica–coated superparamagnetic Fe3O4 nanoparticles for targeted drug delivery
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S213974
– volume: 11
  start-page: 265
  year: 2000
  ident: 10.1016/j.drudis.2020.06.006_bib0265
  article-title: Multidrug resistance (MDR) in cancer: mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/S0928-0987(00)00114-7
– volume: 14
  start-page: 1443
  year: 2019
  ident: 10.1016/j.drudis.2020.06.006_bib0090
  article-title: Mesoporous gold nanoparticles for photothermal controlled anticancer drug delivery
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2018-0242
– volume: 26
  start-page: 5745
  year: 2018
  ident: 10.1016/j.drudis.2020.06.006_bib0110
  article-title: Multifunctional mesoporous silica nanoparticles for cancer therapy and imaging
  publication-title: Curr. Med. Chem.
  doi: 10.2174/0929867325666180501101044
– volume: 121
  start-page: 109614
  year: 2020
  ident: 10.1016/j.drudis.2020.06.006_bib0305
  article-title: PSA targeted dual-modality manganese oxide-mesoporous silica nanoparticles for prostate cancer imaging
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2019.109614
– volume: 18
  start-page: 1507
  year: 2017
  ident: 10.1016/j.drudis.2020.06.006_bib0010
  article-title: Porous inorganic drug delivery systems—a review
  publication-title: AAPS PharmSciTech
  doi: 10.1208/s12249-017-0740-2
SSID ssj0012956
Score 2.5838032
SecondaryResourceType review_article
Snippet •Structural and geometrical features of mesoporous silica can benefit drug delivery.•Coupled with therapeutic agents, targeting for a host of cancers is...
Recently, remarkable efforts have focused on research towards enhancing and delivering efficacious and advanced therapeutic agents. Even though this involves...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1513
Title Application of mesoporous silica nanoparticles as drug delivery carriers for chemotherapeutic agents
URI https://dx.doi.org/10.1016/j.drudis.2020.06.006
https://www.ncbi.nlm.nih.gov/pubmed/32561300
https://www.proquest.com/docview/2415290964
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4huNBD1dLXtgW5UsWJdLO24yTHFQJtQSCkgsTN8ivVVpBFm93DXvrbO-MkuyC1Quoxia04Hnse8TffAHy1Wcox5hIYlgiZyMzglnIFMWHmXglnrLX0H_LiUk1u5NltdrsFx30uDMEqO93f6vSorbs7w242hw_T6fDHSGQlWnPFUyp8EysNS5nTKv_2ew3zQHMWK7hS44Ra9-lzEePl50s_JdJunkYWT6p79Hfz9C_3M5qh01fwsvMf2bgd4mvYCvUevHjEKrgHh1ctHfXqiF1vsquaI3bIrjZE1as34Meb02s2q9h9aGbojs-WDWum9IDVpsagusPOMdMw_JSfzIc7QnOsmDNzKnjXMPR8GUr__nE6FzOUtdW8hZvTk-vjSdJVXUicLItFoqqyEF5yb3xhZfChEAWRumRl6nIng5OVKnLHvc2MVCFXxqPaSLkdoXB5ZcQ72K5ndfgATFlZyDKv0AcIkruRdSo3VkkjK9QbPBuA6Cdbu46SnCpj3Okee_ZLtyLSJCIdIXhqAMm610NLyfFM-7yXo36ytDRajWd6funFrnHX0VGKqQNKQUe_p8TwTw7gfbse1mMRPAZl6cf_fu8n2KWrFmf4GbYX82XYR99nYQ_i4j6AnfH388nlHypJBQ4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB6Cc2h7KE36ch_pFkpOEZZ3VyvpaEKD0yQmUAdyW_al4JLIwbIP_ved0cNOoSGQq3YHrXZm56Gd-Qbgh01ijjGXwLBEyEgmBo-UywgJM_VKOGOtpf-QFxM1vpK_rpPrHTjuamEorbLV_Y1Or7V1-2TQ7ubgfjYb_B6KJEdrrnhMjW-o0_AuoVMlPdgdnZ6NJ5vLBJ7XTVxpfkQEXQVdneblFys_I9xuHtdAntT66P8W6jEPtLZEJ2_gdetCslGzyj3YCeU-vHoALLgPh5cNIvX6iE23BVbVETtkl1us6vVb8KPtBTabF-wuVHP0yOerilUzGmClKTGubtPnmKkYfsoN8-GWEjrWzJkF9byrGDq_DAXg7mFFFzNUuFW9g6uTn9PjcdQ2XoiczLNlpIo8E15yb3xmZfAhExnhuiR57FIng5OFylLHvU2MVCFVxqPmiLkdIn95YcR76JXzMnwEpqzMZJ4W6AYEyd3QOpUaq6SRBaoOnvRBdJutXYtKTs0xbnWXfvZHNyzSxCJdZ-GpPkQbqvsGleOJ-WnHR_2PdGk0HE9Qfu_YrvHg0W2KKQNyQdeuT44RoOzDh0YeNmsRvI7L4k_Pfu83eDGeXpzr89PJ2Wd4SSNN2uEX6C0Xq_AVXaGlPWhF_S8PMge_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+mesoporous+silica+nanoparticles+as+drug+delivery+carriers+for+chemotherapeutic+agents&rft.jtitle=Drug+discovery+today&rft.au=Alyassin%2C+Yasmine&rft.au=Sayed%2C+Elshaimaa+G.&rft.au=Mehta%2C+Prina&rft.au=Ruparelia%2C+Ketan&rft.date=2020-08-01&rft.pub=Elsevier+Ltd&rft.issn=1359-6446&rft.eissn=1878-5832&rft.volume=25&rft.issue=8&rft.spage=1513&rft.epage=1520&rft_id=info:doi/10.1016%2Fj.drudis.2020.06.006&rft.externalDocID=S1359644620302312
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6446&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6446&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6446&client=summon