Experimental determination and data-driven prediction of homotypic transmembrane domain interfaces
•Homotypic TMD interfaces identified by different techniques share strong similarities.•The GxxxG motif is the feature most strongly associated with interfaces.•Other features include conservation, polarity, coevolution, and depth in the membrane•The role of each of each feature strongly depends on...
Saved in:
Published in | Computational and structural biotechnology journal Vol. 18; pp. 3230 - 3242 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2020
Research Network of Computational and Structural Biotechnology Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Homotypic TMD interfaces identified by different techniques share strong similarities.•The GxxxG motif is the feature most strongly associated with interfaces.•Other features include conservation, polarity, coevolution, and depth in the membrane•The role of each of each feature strongly depends on the individual protein.•Machine-learning helps predict interfaces from evolutionary sequence data
Interactions between their transmembrane domains (TMDs) frequently support the assembly of single-pass membrane proteins to non-covalent complexes. Yet, the TMD-TMD interactome remains largely uncharted. With a view to predicting homotypic TMD-TMD interfaces from primary structure, we performed a systematic analysis of their physical and evolutionary properties. To this end, we generated a dataset of 50 self-interacting TMDs. This dataset contains interfaces of nine TMDs from bitopic human proteins (Ire1, Armcx6, Tie1, ATP1B1, PTPRO, PTPRU, PTPRG, DDR1, and Siglec7) that were experimentally identified here and combined with literature data. We show that interfacial residues of these homotypic TMD-TMD interfaces tend to be more conserved, coevolved and polar than non-interfacial residues. Further, we suggest for the first time that interface positions are deficient in β-branched residues, and likely to be located deep in the hydrophobic core of the membrane. Overrepresentation of the GxxxG motif at interfaces is strong, but that of (small)xxx(small) motifs is weak. The multiplicity of these features and the individual character of TMD-TMD interfaces, as uncovered here, prompted us to train a machine learning algorithm. The resulting prediction method, THOIPA (www.thoipa.org), excels in the prediction of key interface residues from evolutionary sequence data. |
---|---|
AbstractList | Interactions between their transmembrane domains (TMDs) frequently support the assembly of single-pass membrane proteins to non-covalent complexes. Yet, the TMD-TMD interactome remains largely uncharted. With a view to predicting homotypic TMD-TMD interfaces from primary structure, we performed a systematic analysis of their physical and evolutionary properties. To this end, we generated a dataset of 50 self-interacting TMDs. This dataset contains interfaces of nine TMDs from bitopic human proteins (Ire1, Armcx6, Tie1, ATP1B1, PTPRO, PTPRU, PTPRG, DDR1, and Siglec7) that were experimentally identified here and combined with literature data. We show that interfacial residues of these homotypic TMD-TMD interfaces tend to be more conserved, coevolved and polar than non-interfacial residues. Further, we suggest for the first time that interface positions are deficient in β-branched residues, and likely to be located deep in the hydrophobic core of the membrane. Overrepresentation of the GxxxG motif at interfaces is strong, but that of (small)xxx(small) motifs is weak. The multiplicity of these features and the individual character of TMD-TMD interfaces, as uncovered here, prompted us to train a machine learning algorithm. The resulting prediction method, THOIPA (www.thoipa.org), excels in the prediction of key interface residues from evolutionary sequence data. • Homotypic TMD interfaces identified by different techniques share strong similarities. • The GxxxG motif is the feature most strongly associated with interfaces. • Other features include conservation, polarity, coevolution, and depth in the membrane • The role of each of each feature strongly depends on the individual protein. • Machine-learning helps predict interfaces from evolutionary sequence data Interactions between their transmembrane domains (TMDs) frequently support the assembly of single-pass membrane proteins to non-covalent complexes. Yet, the TMD-TMD interactome remains largely uncharted. With a view to predicting homotypic TMD-TMD interfaces from primary structure, we performed a systematic analysis of their physical and evolutionary properties. To this end, we generated a dataset of 50 self-interacting TMDs. This dataset contains interfaces of nine TMDs from bitopic human proteins (Ire1, Armcx6, Tie1, ATP1B1, PTPRO, PTPRU, PTPRG, DDR1, and Siglec7) that were experimentally identified here and combined with literature data. We show that interfacial residues of these homotypic TMD-TMD interfaces tend to be more conserved, coevolved and polar than non-interfacial residues. Further, we suggest for the first time that interface positions are deficient in β-branched residues, and likely to be located deep in the hydrophobic core of the membrane. Overrepresentation of the GxxxG motif at interfaces is strong, but that of (small)xxx(small) motifs is weak. The multiplicity of these features and the individual character of TMD-TMD interfaces, as uncovered here, prompted us to train a machine learning algorithm. The resulting prediction method, THOIPA ( www.thoipa.org ), excels in the prediction of key interface residues from evolutionary sequence data. •Homotypic TMD interfaces identified by different techniques share strong similarities.•The GxxxG motif is the feature most strongly associated with interfaces.•Other features include conservation, polarity, coevolution, and depth in the membrane•The role of each of each feature strongly depends on the individual protein.•Machine-learning helps predict interfaces from evolutionary sequence data Interactions between their transmembrane domains (TMDs) frequently support the assembly of single-pass membrane proteins to non-covalent complexes. Yet, the TMD-TMD interactome remains largely uncharted. With a view to predicting homotypic TMD-TMD interfaces from primary structure, we performed a systematic analysis of their physical and evolutionary properties. To this end, we generated a dataset of 50 self-interacting TMDs. This dataset contains interfaces of nine TMDs from bitopic human proteins (Ire1, Armcx6, Tie1, ATP1B1, PTPRO, PTPRU, PTPRG, DDR1, and Siglec7) that were experimentally identified here and combined with literature data. We show that interfacial residues of these homotypic TMD-TMD interfaces tend to be more conserved, coevolved and polar than non-interfacial residues. Further, we suggest for the first time that interface positions are deficient in β-branched residues, and likely to be located deep in the hydrophobic core of the membrane. Overrepresentation of the GxxxG motif at interfaces is strong, but that of (small)xxx(small) motifs is weak. The multiplicity of these features and the individual character of TMD-TMD interfaces, as uncovered here, prompted us to train a machine learning algorithm. The resulting prediction method, THOIPA (www.thoipa.org), excels in the prediction of key interface residues from evolutionary sequence data. |
Author | Zeng, Bo Frishman, Dmitrij Berner, Nicola Teese, Mark George Langosch, Dieter Xiao, Yao |
Author_xml | – sequence: 1 givenname: Yao surname: Xiao fullname: Xiao, Yao organization: Center for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany – sequence: 2 givenname: Bo surname: Zeng fullname: Zeng, Bo organization: Department of Bioinformatics, Wissenschaftszentrum, Weihenstephan, Maximus-von-Imhof-Forum 3, Freising 85354, Germany – sequence: 3 givenname: Nicola surname: Berner fullname: Berner, Nicola organization: Center for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany – sequence: 4 givenname: Dmitrij surname: Frishman fullname: Frishman, Dmitrij organization: Department of Bioinformatics, Wissenschaftszentrum, Weihenstephan, Maximus-von-Imhof-Forum 3, Freising 85354, Germany – sequence: 5 givenname: Dieter surname: Langosch fullname: Langosch, Dieter organization: Center for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany – sequence: 6 givenname: Mark George surname: Teese fullname: Teese, Mark George email: mark.teese@tum.de organization: Center for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany |
BookMark | eNp9kc1q3TAQhU1JadI0L9CVl93YGUm2bEEplJA2gUA37VroZ5zI2JIr6V6at49ubijNptqM0Mz5xJzzvjrxwWNVfSTQEiD8cm5N0nNLgUILogXWv6nOKABpgA1w8s_9tLpIaYZyRsIFg3fVKWMUBCVwVunrPxtGt6LPaqktZoyr8yq74GvlbW1VVo2Nbo--3iJaZ55bYaofwhry4-ZMnaPyacVVl4q1Datyvna-oCZlMH2o3k5qSXjxUs-rX9-uf17dNHc_vt9efb1rTCfG3PBhnMigei5G2wtGcaJC624A0mlqwOAIggiGo6ZE9FZQYRAHppXoUXNk7Ly6PXJtULPcylIqPsqgnHx-CPFeqpidWVBCP42dtUJzxrpihlATndigOBWoBVWF9eXI2nZ6RWuKPVEtr6CvO949yPuwlwPvBAdaAJ9eADH83mHKcnXJ4LIUi8IuSdpx2hE6dKKM0uOoiSGliNPfbwjIQ9Zyloes5SFrCUKWrIvo81GExdG9wyiTcehNSSiiyWVl9z_5E9SQtKM |
CitedBy_id | crossref_primary_10_1038_s41467_023_38317_8 crossref_primary_10_1016_j_ygeno_2022_110462 crossref_primary_10_1016_j_bbamem_2021_183712 crossref_primary_10_3390_membranes11070512 crossref_primary_10_1007_s12551_023_01098_x crossref_primary_10_1016_j_ooc_2023_100033 |
Cites_doi | 10.1016/j.jmb.2010.06.062 10.1016/j.febslet.2005.05.071 10.1021/acs.biochem.5b00495 10.1016/j.jmb.2008.10.058 10.1016/j.cell.2012.04.012 10.1006/jmbi.2001.5353 10.1021/ja303483k 10.1016/j.celrep.2019.03.017 10.1110/ps.ps.10501 10.1002/prot.20766 10.1016/j.bbamem.2016.11.017 10.1016/j.jmb.2009.11.054 10.1186/s12859-015-0677-y 10.1016/j.jmb.2007.09.056 10.1016/j.febslet.2014.08.031 10.1002/pro.5560070423 10.1186/1472-6807-6-13 10.1128/JVI.02052-13 10.1007/s10822-017-0047-0 10.1002/pmic.200900258 10.1021/bi400222r 10.1093/bioinformatics/18.suppl_1.S71 10.1073/pnas.96.3.863 10.1186/1471-2105-10-312 10.1093/nar/gks1169 10.7554/eLife.12125 10.1006/jmbi.2001.5007 10.7554/eLife.03430 10.1073/pnas.97.11.5796 10.1016/j.abb.2014.07.031 10.1021/acs.biochem.5b01239 10.1006/jmbi.1996.0595 10.1371/journal.pone.0177866 10.1002/pro.713 10.1073/pnas.0501234102 10.1002/prot.25419 10.1016/j.jmb.2006.09.065 10.1016/j.jmb.2004.06.042 10.1002/prot.22850 10.1016/j.jmb.2009.12.023 10.1021/ja505017f 10.1186/1471-2105-15-85 10.1093/bioinformatics/btt645 10.1074/jbc.M603233200 10.1371/journal.pcbi.1007318 10.1074/jbc.M206287200 10.1016/j.jmb.2004.08.083 10.1016/j.jmb.2006.10.029 10.1186/1471-2148-8-327 10.1002/pro.5560020106 10.1093/protein/gzh072 10.1093/bioinformatics/btt247 10.1016/j.jsb.2019.02.009 10.1016/j.jmb.2004.09.011 10.1074/jbc.M314168200 10.1093/bioinformatics/bth143 10.1073/pnas.1319944111 10.1074/jbc.M400847200 10.1093/bioinformatics/btm515 10.1006/jmbi.1999.3488 10.1126/science.276.5309.131 10.1038/ncomms8196 10.1021/bi00166a002 10.1007/s10994-006-6226-1 10.1016/j.sbi.2010.10.003 10.1371/journal.pone.0028766 10.1016/j.jmb.2005.09.084 10.1016/j.bpj.2010.08.031 10.1016/j.str.2015.01.009 10.1073/pnas.1111471108 10.1073/pnas.161280798 10.1146/annurev.bb.15.060186.001541 10.1002/prot.22859 10.1016/j.cell.2019.02.001 10.1016/j.jsb.2016.02.005 10.1110/ps.03323604 10.1021/bi010357v 10.1021/bi701066h 10.1186/1471-2105-12-244 10.1002/pro.154 10.1002/prot.22194 10.1073/pnas.0702515104 10.1073/pnas.0605878103 10.1111/febs.13793 10.1016/j.chemphyslip.2009.07.009 10.1126/scisignal.2000547 10.1016/j.jmb.2016.09.005 |
ContentType | Journal Article |
Copyright | 2020 The Author(s) 2020 The Author(s) 2020 |
Copyright_xml | – notice: 2020 The Author(s) – notice: 2020 The Author(s) 2020 |
DBID | 6I. AAFTH AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1016/j.csbj.2020.09.035 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2001-0370 |
EndPage | 3242 |
ExternalDocumentID | oai_doaj_org_article_05f84dd9b63343329af2f37a629eb92a 10_1016_j_csbj_2020_09_035 S2001037020304190 |
GroupedDBID | 0R~ 0SF 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADRAZ AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE IPNFZ KQ8 M41 M48 M~E NCXOZ O9- OK1 RIG ROL RPM SSZ AAHBH AAYXX ADVLN AKRWK CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c498t-678f17a5698d5932ef29bb47014b2c0ce809193e8b2195d929cee73ba95eb6e33 |
IEDL.DBID | RPM |
ISSN | 2001-0370 |
IngestDate | Tue Oct 22 15:12:00 EDT 2024 Tue Sep 17 20:49:35 EDT 2024 Thu Jul 25 09:15:12 EDT 2024 Fri Aug 23 00:59:27 EDT 2024 Sat Sep 09 15:40:42 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | TMD interactions Co-evolution Protein-protein interaction Transmembrane GxxxG Machine learning |
Language | English |
License | This is an open access article under the CC BY license. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c498t-678f17a5698d5932ef29bb47014b2c0ce809193e8b2195d929cee73ba95eb6e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649602/ |
PMID | 33209210 |
PQID | 2462412749 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_05f84dd9b63343329af2f37a629eb92a pubmedcentral_primary_oai_pubmedcentral_nih_gov_7649602 proquest_miscellaneous_2462412749 crossref_primary_10_1016_j_csbj_2020_09_035 elsevier_sciencedirect_doi_10_1016_j_csbj_2020_09_035 |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Computational and structural biotechnology journal |
PublicationYear | 2020 |
Publisher | Elsevier B.V Research Network of Computational and Structural Biotechnology Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Research Network of Computational and Structural Biotechnology – name: Elsevier |
References | Polyansky, Volynsky, Efremov (b0200) 2012; 134 Lawrie, Sulistijo, MacKenzie (b0310) 2010; 396 Ried, Scharnagl, Langosch (b0315) 2016; 55 Donnelly, Overington, Ruffle, Nugent, Blundell (b0385) 1993; 2 Caffrey, Somaroo, Hughes, Mintseris, Huang (b0340) 2004; 13 Polyansky, Chugunov, Volynsky, Krylov, Nolde (b0205) 2014; 30 Bowie (b0410) 2011; 21 Eyre, Partridge, Thornton (b0390) 2004; 17 Weinstein, Elazar, Fleishman (b0230) 2019; 15 Finger, Escher, Schneider (b0185) 2009; 2 Geurts, Ernst, Wehenkel (b0375) 2006; 63 MacKenzie, Prestegard, Engelman (b0125) 1997; 276 Hopf, Colwell, Sheridan, Rost, Sander (b0350) 2012; 149 Steindorf D, Schneider D (2017) In vivo selection of heterotypically interacting transmembrane helices: Complementary helix surfaces, rather than conserved interaction motifs, drive formation of transmembrane hetero-dimers. Biochim Biophys Acta Biomembr 1859(2):245-56. http://dx.doi.org/https://doi.org/10.1016/j.bbamem.2016.11.017. Zhang, Kulp, Schramm, Mravic, Samish (b0060) 2015; 23 Marks, Colwell, Sheridan, Hopf, Pagnani (b0070) 2011; 6 Fuchs, Martin-Galiano, Kalman, Fleishman, Ben-Tal (b0355) 2007; 23 Elazar A, Weinstein J, Biran I, Fridman Y, Bibi E, et al. (2016) Mutational scanning reveals the determinants of protein insertion and association energetics in the plasma membrane. eLife 5:e12125. http://dx.doi.org/10.7554/eLife.12125. Lomize AL, Pogozheva ID (2017) TMDOCK: An energy-based method for modeling α-helical dimers in membranes. J Mol Biol 429(3):390-8. http://dx.doi.org/https://doi.org/10.1016/j.jmb.2016.09.005. Bocharov, Mineev, Pavlov, Akimov, Kuznetsov (b0015) 1859; 4 Pan L, Fu T-M, Zhao W, Zhao L, Chen W, et al. (2019) Higher-order clustering of the transmembrane anchor of DR5 drives signaling. Cell 176(6):1477-89.e14. http://dx.doi.org/10.1016/j.cell.2019.02.001. Fuchs, Kirschner, Frishman (b0430) 2009; 74 Smith, Song, Shekar, Groesbeek, Ziliox (b0090) 2001; 40 Sulistijo, MacKenzie (b0330) 2006; 364 Wang, Barth (b0215) 2015; 6 Barth, Schonbrun, Baker (b0240) 2007; 104 Illergard, Kauko, Elofsson (b0395) 2011; 79 Kaján, Hopf, Kalaš, Marks, Rost (b0455) 2014; 15 Hopf TA, Schärfe CPI, Rodrigues JPGLM, Green AG, Kohlbacher O, et al. (2014) Sequence co-evolution gives 3D contacts and structures of protein complexes. eLife 3:e03430. http://dx.doi.org/10.7554/eLife.03430. Khadria, Mueller, Stefely, Tan, Pagliarini (b0320) 2014; 136 Noordeen, Carafoli, Hohenester, Horton, Leitinger (b0275) 2006; 281 Eilers, Shekar, Shieh, Smith, Fleming (b0085) 2000; 97 Leeds, Boyd, Huber, Sonoda, Luu (b0165) 2001; 313 Plotkowski, Kim, Phillips, Partridge, Deber (b0305) 2007; 46 Quint, Widmaier, Minde, Hornburg, Langosch (b0425) 2010; 99 Fagerberg, Jonasson, von Heijne, Uhlén, Berglund (b0005) 2010; 10 Cho H, Stanzione F, Oak A, Kim GH, Yerneni S, et al. (2019) Intrinsic structural features of the human IRE1α transmembrane domain sense membrane lipid saturation. Cell Rep 27(1):307-20.e5. http://dx.doi.org/10.1016/j.celrep.2019.03.017. Lensink, Wodak (b0260) 2010; 78 Ridder, Skupjen, Unterreitmeier, Langosch (b0145) 2005; 354 Zhu, Metcalf, Streu, Billings, DeGrado (b0285) 2010; 401 Kohlway, Pirakitikulr, Barrera, Potapova, Engelman (b0325) 2014; 88 Doura, Fleming (b0105) 2004; 343 Mueller, Subramaniam, Senes (b0210) 2014; 111 Dawson, Weinger, Engelman (b0135) 2002; 316 Unterreitmeier, Fuchs, Schäffler, Heym, Frishman (b0150) 2007; 374 Xue, Dobbs, Honavar (b0345) 2011; 12 Cao, Ng, Jusoh, Tai, Siu (b0225) 2017; 31 Bordag, Keller (b0415) 2010; 163 Hönigschmid, Frishman (b0420) 2016; 194 Li, Wimley (b0370) 1818; 2 Teixeira, Mendenhall, Heinze, Weiner, Skwark (b0080) 2017; 12 Senes, Gerstein, Engelman (b0170) 2000; 296 Senes, Ubarretxena-Belandia, Engelman (b0095) 2001; 98 Li, Gorelik, Nanda, Law, Lear (b0290) 2004; 279 Barwe, Kim, Rajasekaran, Bowie, Rajasekaran (b0190) 2007; 365 Langosch, Arkin (b0380) 2009; 18 Morcos, Pagnani, Lunt, Bertolino, Marks (b0075) 2011; 108 Walters, DeGrado (b0055) 2006; 103 Lemmon MA, Flanagan JM, Treutlein HR, Zhang J, Engelman DM (1992) Sequence specificity in the dimerization of transmembrane α-helices. Biochemistry 31(51):12719-25. http://dx.doi.org/10.1021/bi00166a002. Herrmann, Panitz, Unterreitmeier, Fuchs, Frishman (b0160) 2009; 385 Langosch, Brosig, Kolmar, Fritz (b0025) 1996; 263 Avila-Herrera, Pollard (b0365) 2015; 16 Bugge, Lindorff-Larsen, Kragelund (b0010) 2016; 283 Kozma, Simon, Tusnády (b0335) 2013; 41 Chin, Sachs, Engelman (b0195) 2005; 579 Gerber, Sal-Man, Shai (b0280) 2004; 279 LaPointe, Taylor, Subramaniam, Khadria, Rayment (b0295) 2013; 52 Valley, Lewis (b0020) 1859; 9 Schneider, Engelman (b0140) 2004; 343 Engelman, Steitz, Goldman (b0450) 1986; 15 Kim, Jeon, Oberai, Yang, Schmidt (b0130) 2005; 102 Hong (b0100) 2014; 564 Wei, Liu, Hu, Zuo, Kai (b0300) 2011; 20 Herrmann, Fuchs, Panitz, Eckert, Unterreitmeier (b0155) 2010; 396 Schneider, Engelman (b0040) 2003; 278 Zeng B, Hönigschmid P, Frishman D (2019) Residue co-evolution helps predict interaction sites in α-helical membrane proteins. J Struct Biol 206(2):156-69. http://dx.doi.org/https://doi.org/10.1016/j.jsb.2019.02.009. Stevens, Arkin (b0045) 2001; 10 Adamian, Liang (b0235) 2006; 6 Beuming, Weinstein (b0050) 2004; 20 Kirrbach, Krugliak, Ried, Pagel, Arkin (b0175) 2013; 29 Asadabadi, Abdolmaleki (b0250) 2013; 5 Pupko, Bell, Mayrose, Glaser, Ben-Tal (b0445) 2002; 18 Brosig, Langosch (b0115) 1998; 7 Chellgren, Creamer (b0405) 2005; 62 Caporaso, Smit, Easton, Hunter, Huttley (b0360) 2008; 8 Louppe, Wehenkel, Sutera, Geurts (b0460) 2013; 1 Russ, Engelman (b0030) 1999; 96 Doura, Kobus, Dubrovsky, Hibbard, Fleming (b0110) 2004; 341 Mineev, Goncharuk, Arseniev (b0435) 2014; 588 Bordner (b0255) 2009; 10 Lensink, Velankar, Baek, Heo, Seok (b0265) 2018; 86 Teese, Langosch (b0180) 2015; 54 Illergard (10.1016/j.csbj.2020.09.035_b0395) 2011; 79 Eilers (10.1016/j.csbj.2020.09.035_b0085) 2000; 97 Zhang (10.1016/j.csbj.2020.09.035_b0060) 2015; 23 Brosig (10.1016/j.csbj.2020.09.035_b0115) 1998; 7 Ridder (10.1016/j.csbj.2020.09.035_b0145) 2005; 354 Cao (10.1016/j.csbj.2020.09.035_b0225) 2017; 31 Hong (10.1016/j.csbj.2020.09.035_b0100) 2014; 564 Langosch (10.1016/j.csbj.2020.09.035_b0025) 1996; 263 Lensink (10.1016/j.csbj.2020.09.035_b0260) 2010; 78 Wei (10.1016/j.csbj.2020.09.035_b0300) 2011; 20 Xue (10.1016/j.csbj.2020.09.035_b0345) 2011; 12 Teixeira (10.1016/j.csbj.2020.09.035_b0080) 2017; 12 Unterreitmeier (10.1016/j.csbj.2020.09.035_b0150) 2007; 374 Li (10.1016/j.csbj.2020.09.035_b0370) 1818; 2 Lensink (10.1016/j.csbj.2020.09.035_b0265) 2018; 86 10.1016/j.csbj.2020.09.035_b0220 Fagerberg (10.1016/j.csbj.2020.09.035_b0005) 2010; 10 Quint (10.1016/j.csbj.2020.09.035_b0425) 2010; 99 10.1016/j.csbj.2020.09.035_b0065 Asadabadi (10.1016/j.csbj.2020.09.035_b0250) 2013; 5 Stevens (10.1016/j.csbj.2020.09.035_b0045) 2001; 10 Marks (10.1016/j.csbj.2020.09.035_b0070) 2011; 6 Doura (10.1016/j.csbj.2020.09.035_b0110) 2004; 341 Kim (10.1016/j.csbj.2020.09.035_b0130) 2005; 102 Plotkowski (10.1016/j.csbj.2020.09.035_b0305) 2007; 46 Finger (10.1016/j.csbj.2020.09.035_b0185) 2009; 2 Geurts (10.1016/j.csbj.2020.09.035_b0375) 2006; 63 Ried (10.1016/j.csbj.2020.09.035_b0315) 2016; 55 Mineev (10.1016/j.csbj.2020.09.035_b0435) 2014; 588 Senes (10.1016/j.csbj.2020.09.035_b0095) 2001; 98 Fuchs (10.1016/j.csbj.2020.09.035_b0355) 2007; 23 Kirrbach (10.1016/j.csbj.2020.09.035_b0175) 2013; 29 Mueller (10.1016/j.csbj.2020.09.035_b0210) 2014; 111 Schneider (10.1016/j.csbj.2020.09.035_b0040) 2003; 278 Doura (10.1016/j.csbj.2020.09.035_b0105) 2004; 343 10.1016/j.csbj.2020.09.035_b0400 Wang (10.1016/j.csbj.2020.09.035_b0215) 2015; 6 Hopf (10.1016/j.csbj.2020.09.035_b0350) 2012; 149 Fuchs (10.1016/j.csbj.2020.09.035_b0430) 2009; 74 Caporaso (10.1016/j.csbj.2020.09.035_b0360) 2008; 8 Louppe (10.1016/j.csbj.2020.09.035_b0460) 2013; 1 Russ (10.1016/j.csbj.2020.09.035_b0030) 1999; 96 Chin (10.1016/j.csbj.2020.09.035_b0195) 2005; 579 Eyre (10.1016/j.csbj.2020.09.035_b0390) 2004; 17 Avila-Herrera (10.1016/j.csbj.2020.09.035_b0365) 2015; 16 Chellgren (10.1016/j.csbj.2020.09.035_b0405) 2005; 62 Bordag (10.1016/j.csbj.2020.09.035_b0415) 2010; 163 Smith (10.1016/j.csbj.2020.09.035_b0090) 2001; 40 Barth (10.1016/j.csbj.2020.09.035_b0240) 2007; 104 Khadria (10.1016/j.csbj.2020.09.035_b0320) 2014; 136 Engelman (10.1016/j.csbj.2020.09.035_b0450) 1986; 15 Hönigschmid (10.1016/j.csbj.2020.09.035_b0420) 2016; 194 Kaján (10.1016/j.csbj.2020.09.035_b0455) 2014; 15 Herrmann (10.1016/j.csbj.2020.09.035_b0155) 2010; 396 Teese (10.1016/j.csbj.2020.09.035_b0180) 2015; 54 10.1016/j.csbj.2020.09.035_b0440 Senes (10.1016/j.csbj.2020.09.035_b0170) 2000; 296 Polyansky (10.1016/j.csbj.2020.09.035_b0205) 2014; 30 Leeds (10.1016/j.csbj.2020.09.035_b0165) 2001; 313 10.1016/j.csbj.2020.09.035_b0245 10.1016/j.csbj.2020.09.035_b0120 MacKenzie (10.1016/j.csbj.2020.09.035_b0125) 1997; 276 Zhu (10.1016/j.csbj.2020.09.035_b0285) 2010; 401 Langosch (10.1016/j.csbj.2020.09.035_b0380) 2009; 18 Bugge (10.1016/j.csbj.2020.09.035_b0010) 2016; 283 Weinstein (10.1016/j.csbj.2020.09.035_b0230) 2019; 15 LaPointe (10.1016/j.csbj.2020.09.035_b0295) 2013; 52 Kozma (10.1016/j.csbj.2020.09.035_b0335) 2013; 41 Herrmann (10.1016/j.csbj.2020.09.035_b0160) 2009; 385 Lawrie (10.1016/j.csbj.2020.09.035_b0310) 2010; 396 Li (10.1016/j.csbj.2020.09.035_b0290) 2004; 279 Adamian (10.1016/j.csbj.2020.09.035_b0235) 2006; 6 Dawson (10.1016/j.csbj.2020.09.035_b0135) 2002; 316 Bordner (10.1016/j.csbj.2020.09.035_b0255) 2009; 10 Noordeen (10.1016/j.csbj.2020.09.035_b0275) 2006; 281 Valley (10.1016/j.csbj.2020.09.035_b0020) 1859; 9 Beuming (10.1016/j.csbj.2020.09.035_b0050) 2004; 20 Barwe (10.1016/j.csbj.2020.09.035_b0190) 2007; 365 Gerber (10.1016/j.csbj.2020.09.035_b0280) 2004; 279 Schneider (10.1016/j.csbj.2020.09.035_b0140) 2004; 343 Bocharov (10.1016/j.csbj.2020.09.035_b0015) 1859; 4 Bowie (10.1016/j.csbj.2020.09.035_b0410) 2011; 21 Walters (10.1016/j.csbj.2020.09.035_b0055) 2006; 103 10.1016/j.csbj.2020.09.035_b0270 Donnelly (10.1016/j.csbj.2020.09.035_b0385) 1993; 2 Kohlway (10.1016/j.csbj.2020.09.035_b0325) 2014; 88 10.1016/j.csbj.2020.09.035_b0035 Pupko (10.1016/j.csbj.2020.09.035_b0445) 2002; 18 Morcos (10.1016/j.csbj.2020.09.035_b0075) 2011; 108 Sulistijo (10.1016/j.csbj.2020.09.035_b0330) 2006; 364 Caffrey (10.1016/j.csbj.2020.09.035_b0340) 2004; 13 Polyansky (10.1016/j.csbj.2020.09.035_b0200) 2012; 134 |
References_xml | – volume: 30 start-page: 889 year: 2014 end-page: 890 ident: b0205 article-title: PREDDIMER: A web server for prediction of transmembrane helical dimers publication-title: Bioinformatics contributor: fullname: Nolde – volume: 86 start-page: 257 year: 2018 end-page: 273 ident: b0265 article-title: The challenge of modeling protein assemblies: the CASP12-CAPRI experiment publication-title: Proteins Struct Funct Bioinformat contributor: fullname: Seok – volume: 279 start-page: 26666 year: 2004 end-page: 26673 ident: b0290 article-title: Dimerization of the transmembrane domain of integrin αIIb subunit in cell membranes publication-title: J Biol Chem contributor: fullname: Lear – volume: 13 start-page: 190 year: 2004 end-page: 202 ident: b0340 article-title: Are protein-protein interfaces more conserved in sequence than the rest of the protein surface? publication-title: Protein Sci contributor: fullname: Huang – volume: 364 start-page: 974 year: 2006 end-page: 990 ident: b0330 article-title: Sequence dependence of BNIP3 transmembrane domain dimerization implicates side-chain hydrogen bonding and a tandem GxxxG motif in specific helix-helix interactions publication-title: J Mol Biol contributor: fullname: MacKenzie – volume: 8 start-page: 327 year: 2008 ident: b0360 article-title: Detecting coevolution without phylogenetic trees? Tree-ignorant metrics of coevolution perform as well as tree-aware metrics publication-title: BMC Evol Biol contributor: fullname: Huttley – volume: 354 start-page: 894 year: 2005 end-page: 902 ident: b0145 article-title: Tryptophan supports interaction of transmembrane helices publication-title: J Mol Biol contributor: fullname: Langosch – volume: 1 start-page: 431 year: 2013 end-page: 439 ident: b0460 article-title: Understanding variable importances in forests of randomized trees publication-title: Adv Neur Inform Proc Syst contributor: fullname: Geurts – volume: 278 start-page: 3105 year: 2003 end-page: 3111 ident: b0040 article-title: GALLEX, a measurement of heterologous association of transmembrane helices in a biological membrane publication-title: J Biol Chem contributor: fullname: Engelman – volume: 29 start-page: 1623 year: 2013 end-page: 1630 ident: b0175 article-title: Self-interaction of transmembrane helices representing pre-clusters from the human single-span membrane proteins publication-title: Bioinformatics contributor: fullname: Arkin – volume: 15 start-page: 85 year: 2014 ident: b0455 article-title: FreeContact: Fast and free software for protein contact prediction from residue co-evolution publication-title: BMC Bioinf contributor: fullname: Rost – volume: 99 start-page: 2541 year: 2010 end-page: 2549 ident: b0425 article-title: Residue-specific side-chain packing determines the backbone dynamics of transmembrane model helices publication-title: Biophys J contributor: fullname: Langosch – volume: 18 start-page: S71 year: 2002 end-page: S77 ident: b0445 article-title: Rate4Site: An algorithmic tool for the identification of functional regions in proteins by surface mapping of evolutionary determinants within their homologues publication-title: Bioinformatics contributor: fullname: Ben-Tal – volume: 18 start-page: 1343 year: 2009 end-page: 1358 ident: b0380 article-title: Interaction and conformational dynamics of membrane-spanning protein helices publication-title: Protein Sci contributor: fullname: Arkin – volume: 54 start-page: 5125 year: 2015 end-page: 5135 ident: b0180 article-title: Role of GxxxG motifs in transmembrane domain interactions publication-title: Biochemistry contributor: fullname: Langosch – volume: 15 year: 2019 ident: b0230 article-title: A lipophilicity-based energy function for membrane-protein modelling and design publication-title: PLoS Comput Biol contributor: fullname: Fleishman – volume: 12 year: 2017 ident: b0080 article-title: Membrane protein contact and structure prediction using co-evolution in conjunction with machine learning publication-title: PLoS ONE contributor: fullname: Skwark – volume: 136 start-page: 14068 year: 2014 end-page: 14077 ident: b0320 article-title: A gly-zipper motif mediates homodimerization of the transmembrane domain of the mitochondrial kinase ADCK3 publication-title: J Am Chem Soc contributor: fullname: Pagliarini – volume: 2 start-page: 55 year: 1993 end-page: 70 ident: b0385 article-title: Modeling α-helical transmembrane domains: The calculation and use of substitution tables for lipid-facing residues publication-title: Protein Sci contributor: fullname: Blundell – volume: 10 start-page: 1141 year: 2010 end-page: 1149 ident: b0005 article-title: Prediction of the human membrane proteome publication-title: Proteomics contributor: fullname: Berglund – volume: 88 start-page: 628 year: 2014 end-page: 642 ident: b0325 article-title: Hepatitis C virus RNA replication and virus particle assembly require specific dimerization of the NS4A protein transmembrane domain publication-title: J Virol contributor: fullname: Engelman – volume: 111 start-page: E888 year: 2014 end-page: E895 ident: b0210 article-title: A frequent, GxxxG-mediated, transmembrane association motif is optimized for the formation of interhelical Cα-H hydrogen bonds publication-title: Proc Natl Acad Sci USA contributor: fullname: Senes – volume: 96 start-page: 863 year: 1999 end-page: 868 ident: b0030 article-title: TOXCAT: A measure of transmembrane helix association in a biological membrane publication-title: Proc Natl Acad Sci USA contributor: fullname: Engelman – volume: 163 start-page: 1 year: 2010 end-page: 26 ident: b0415 article-title: α-Helical transmembrane peptides: A “Divide and Conquer” approach to membrane proteins publication-title: Chem Phys Lipids contributor: fullname: Keller – volume: 20 start-page: 1814 year: 2011 end-page: 1823 ident: b0300 article-title: The dimerization interface of the glycoprotein Ibβ transmembrane domain corresponds to polar residues within a leucine zipper motif publication-title: Protein Sci contributor: fullname: Kai – volume: 374 start-page: 705 year: 2007 end-page: 718 ident: b0150 article-title: Phenylalanine promotes interaction of transmembrane domains via GxxxG motifs publication-title: J Mol Biol contributor: fullname: Frishman – volume: 149 start-page: 1607 year: 2012 end-page: 1621 ident: b0350 article-title: Three-dimensional structures of membrane proteins from genomic sequencing publication-title: Cell contributor: fullname: Sander – volume: 4 start-page: 561 year: 1859 end-page: 576 ident: b0015 article-title: (2017) Helix-helix interactions in membrane domains of bitopic proteins: Specificity and role of lipid environment publication-title: Biochim Biophys Acta, Biomembr contributor: fullname: Kuznetsov – volume: 316 start-page: 799 year: 2002 end-page: 805 ident: b0135 article-title: Motifs of serine and threonine can drive association of transmembrane helices publication-title: J Mol Biol contributor: fullname: Engelman – volume: 103 start-page: 13658 year: 2006 end-page: 13663 ident: b0055 article-title: Helix-packing motifs in membrane proteins publication-title: Proc Natl Acad Sci USA contributor: fullname: DeGrado – volume: 2 start-page: 183 year: 1818 end-page: 193 ident: b0370 article-title: Hristova K (2012) Transmembrane helix dimerization: Beyond the search for sequence motifs publication-title: Biochim Biophys Acta, Biomembr contributor: fullname: Wimley – volume: 7 start-page: 1052 year: 1998 end-page: 1056 ident: b0115 article-title: The dimerization motif of the glycophorin A transmembrane segment in membranes: Importance of glycine residues publication-title: Protein Sci contributor: fullname: Langosch – volume: 97 start-page: 5796 year: 2000 end-page: 5801 ident: b0085 article-title: Internal packing of helical membrane proteins publication-title: Proc Natl Acad Sci USA contributor: fullname: Fleming – volume: 74 start-page: 857 year: 2009 end-page: 871 ident: b0430 article-title: Prediction of helix-helix contacts and interacting helices in polytopic membrane proteins using neural networks publication-title: Proteins Struct Funct Bioinf contributor: fullname: Frishman – volume: 20 start-page: 1822 year: 2004 end-page: 1835 ident: b0050 article-title: A knowledge-based scale for the analysis and prediction of buried and exposed faces of transmembrane domain proteins publication-title: Bioinformatics contributor: fullname: Weinstein – volume: 401 start-page: 882 year: 2010 end-page: 891 ident: b0285 article-title: Specificity for homooligomer versus heterooligomer formation in integrin transmembrane helices publication-title: J Mol Biol contributor: fullname: DeGrado – volume: 23 start-page: 3312 year: 2007 end-page: 3319 ident: b0355 article-title: Co-evolving residues in membrane proteins publication-title: Bioinformatics contributor: fullname: Ben-Tal – volume: 6 year: 2011 ident: b0070 article-title: Protein 3D structure computed from evolutionary sequence variation publication-title: PLoS ONE contributor: fullname: Pagnani – volume: 579 start-page: 3855 year: 2005 end-page: 3858 ident: b0195 article-title: Transmembrane homodimerization of receptor-like protein tyrosine phosphatases publication-title: FEBS Lett contributor: fullname: Engelman – volume: 343 start-page: 1487 year: 2004 end-page: 1497 ident: b0105 article-title: Complex interactions at the helix-helix interface stabilize the glycophorin A transmembrane dimer publication-title: J Mol Biol contributor: fullname: Fleming – volume: 46 start-page: 12164 year: 2007 end-page: 12173 ident: b0305 article-title: Transmembrane domain of myelin protein zero can form dimers: Possible implications for myelin construction publication-title: Biochemistry contributor: fullname: Deber – volume: 79 start-page: 79 year: 2011 end-page: 91 ident: b0395 article-title: Why are polar residues within the membrane core evolutionary conserved? publication-title: Proteins Struct Funct Bioinformat contributor: fullname: Elofsson – volume: 55 start-page: 1287 year: 2016 end-page: 1290 ident: b0315 article-title: Entrapment of water at the transmembrane helix-helix Interface of Quiescin Sulfhydryl Oxidase 2 publication-title: Biochemistry contributor: fullname: Langosch – volume: 108 start-page: E1293 year: 2011 end-page: E1301 ident: b0075 article-title: Direct-coupling analysis of residue coevolution captures native contacts across many protein families publication-title: Proc Natl Acad Sci USA contributor: fullname: Marks – volume: 63 start-page: 3 year: 2006 end-page: 42 ident: b0375 article-title: Extremely randomized trees publication-title: Machine Learning contributor: fullname: Wehenkel – volume: 10 start-page: 312 year: 2009 ident: b0255 article-title: Predicting protein-protein binding sites in membrane proteins publication-title: BMC Bioinf contributor: fullname: Bordner – volume: 396 start-page: 924 year: 2010 end-page: 936 ident: b0310 article-title: Intermonomer hydrogen bonds enhance GxxxG-driven dimerization of the BNIP3 transmembrane domain: Roles for sequence context in helix-helix association in membranes publication-title: J Mol Biol contributor: fullname: MacKenzie – volume: 365 start-page: 706 year: 2007 end-page: 714 ident: b0190 article-title: Janus model of the Na, K-ATPase β-subunit transmembrane domain: distinct faces mediate α/β assembly and β-β homo-oligomerization publication-title: J Mol Biol contributor: fullname: Rajasekaran – volume: 23 start-page: 527 year: 2015 end-page: 541 ident: b0060 article-title: The membrane- and soluble-protein helix-helix interactome: Similar geometry via different interactions publication-title: Structure contributor: fullname: Samish – volume: 283 start-page: 4424 year: 2016 end-page: 4451 ident: b0010 article-title: Understanding single-pass transmembrane receptor signaling from a structural viewpoint—what are we missing? publication-title: FEBS J contributor: fullname: Kragelund – volume: 341 start-page: 991 year: 2004 end-page: 998 ident: b0110 article-title: Sequence context modulates the stability of a GxxxG-mediated transmembrane helix-helix dimer publication-title: J Mol Biol contributor: fullname: Fleming – volume: 31 start-page: 855 year: 2017 end-page: 865 ident: b0225 article-title: TMDIM: an improved algorithm for the structure prediction of transmembrane domains of bitopic dimers publication-title: J Comput Aided Mol Des contributor: fullname: Siu – volume: 16 start-page: 268 year: 2015 ident: b0365 article-title: Coevolutionary analyses require phylogenetically deep alignments and better null models to accurately detect inter-protein contacts within and between species publication-title: BMC Bioinf contributor: fullname: Pollard – volume: 134 start-page: 14390 year: 2012 end-page: 14400 ident: b0200 article-title: Multistate organization of transmembrane helical protein dimers governed by the host membrane publication-title: J Am Chem Soc contributor: fullname: Efremov – volume: 104 start-page: 15682 year: 2007 end-page: 15687 ident: b0240 article-title: Toward high-resolution prediction and design of transmembrane helical protein structures publication-title: Proc Natl Acad Sci USA contributor: fullname: Baker – volume: 15 start-page: 321 year: 1986 end-page: 353 ident: b0450 article-title: Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins publication-title: Annu Rev Biophys Biophys Chem contributor: fullname: Goldman – volume: 276 start-page: 131 year: 1997 end-page: 133 ident: b0125 article-title: Transmembrane helix dimer: Structure and implications publication-title: Science contributor: fullname: Engelman – volume: 263 start-page: 525 year: 1996 end-page: 530 ident: b0025 article-title: Dimerisation of the glycophorin A transmembrane segment in membranes probed with the ToxR transcription activator publication-title: J Mol Biol contributor: fullname: Fritz – volume: 6 start-page: 7196 year: 2015 ident: b0215 article-title: Evolutionary-guided de novo structure prediction of self-associated transmembrane helical proteins with near-atomic accuracy publication-title: Nat Comms contributor: fullname: Barth – volume: 52 start-page: 2574 year: 2013 end-page: 2585 ident: b0295 article-title: Structural organization of FtsB, a transmembrane protein of the bacterial divisome publication-title: Biochemistry contributor: fullname: Rayment – volume: 194 start-page: 112 year: 2016 end-page: 123 ident: b0420 article-title: Accurate prediction of helix interactions and residue contacts in membrane proteins publication-title: J Struct Biol contributor: fullname: Frishman – volume: 5 start-page: 148 year: 2013 end-page: 157 ident: b0250 article-title: Predictions of protein-protein Interfaces within membrane protein complexes publication-title: Avicenna J Med Biotechnol contributor: fullname: Abdolmaleki – volume: 78 start-page: 3085 year: 2010 end-page: 3095 ident: b0260 article-title: Blind predictions of protein interfaces by docking calculations in CAPRI publication-title: Proteins Struct Funct Bioinformat contributor: fullname: Wodak – volume: 10 start-page: 2507 year: 2001 end-page: 2517 ident: b0045 article-title: Substitution rates in α-helical transmembrane proteins publication-title: Protein Sci contributor: fullname: Arkin – volume: 12 start-page: 244 year: 2011 ident: b0345 article-title: HomPPI: a class of sequence homology based protein-protein interface prediction methods publication-title: BMC Bioinf contributor: fullname: Honavar – volume: 21 start-page: 42 year: 2011 end-page: 49 ident: b0410 article-title: Membrane protein folding: how important are hydrogen bonds? publication-title: Curr Opin Struct Biol contributor: fullname: Bowie – volume: 588 start-page: 3802 year: 2014 end-page: 3807 ident: b0435 article-title: Toll-like receptor 3 transmembrane domain is able to perform various homotypic interactions: An NMR structural study publication-title: FEBS Lett contributor: fullname: Arseniev – volume: 296 start-page: 921 year: 2000 end-page: 936 ident: b0170 article-title: Statistical analysis of amino acid patterns in transmembrane helices: The GxxxG motif occurs frequently and association with β-branched residues at neighboring positions publication-title: J Mol Biol contributor: fullname: Engelman – volume: 2 start-page: 89 year: 2009 ident: b0185 article-title: The single transmembrane domains of human receptor tyrosine kinases encode self-interactions publication-title: Sci Signaling contributor: fullname: Schneider – volume: 396 start-page: 452 year: 2010 end-page: 461 ident: b0155 article-title: Ionic interactions promote transmembrane helix-helix association depending on sequence context publication-title: J Mol Biol contributor: fullname: Unterreitmeier – volume: 281 start-page: 22744 year: 2006 end-page: 22751 ident: b0275 article-title: A transmembrane leucine zipper is required for activation of the dimeric receptor tyrosine kinase DDR1 publication-title: J Biol Chem contributor: fullname: Leitinger – volume: 385 start-page: 912 year: 2009 end-page: 923 ident: b0160 article-title: Complex patterns of histidine, hydroxylated amino acids and the GxxxG motif mediate high-affinity transmembrane domain interactions publication-title: J Mol Biol contributor: fullname: Frishman – volume: 279 start-page: 21177 year: 2004 end-page: 21182 ident: b0280 article-title: Two motifs within a transmembrane domain, one for homodimerization and the other for heterodimerization publication-title: J Biol Chem contributor: fullname: Shai – volume: 98 start-page: 9056 year: 2001 end-page: 9061 ident: b0095 article-title: The Cα-H···O hydrogen bond: A determinant of stability and specificity in transmembrane helix interactions publication-title: Proc Natl Acad Sci USA contributor: fullname: Engelman – volume: 62 start-page: 411 year: 2005 end-page: 420 ident: b0405 article-title: Side-chain entropy effects on protein secondary structure formation publication-title: Proteins Struct Funct Bioinformat contributor: fullname: Creamer – volume: 9 start-page: 1398 year: 1859 end-page: 1416 ident: b0020 article-title: Sachs JN (2017) Piecing it together: Unraveling the elusive structure-function relationship in single-pass membrane receptors publication-title: Biochim Biophys Acta, Biomembr contributor: fullname: Lewis – volume: 40 start-page: 6553 year: 2001 end-page: 6558 ident: b0090 article-title: Structure of the transmembrane dimer interface of glycophorin A in membrane bilayers publication-title: Biochemistry contributor: fullname: Ziliox – volume: 564 start-page: 297 year: 2014 end-page: 313 ident: b0100 article-title: Toward understanding driving forces in membrane protein folding publication-title: Arch Biochem Biophys contributor: fullname: Hong – volume: 17 start-page: 613 year: 2004 end-page: 624 ident: b0390 article-title: Computational analysis of α-helical membrane protein structure: implications for the prediction of 3D structural models publication-title: Protein Eng Des Sel contributor: fullname: Thornton – volume: 6 start-page: 13 year: 2006 ident: b0235 article-title: Prediction of transmembrane helix orientation in polytopic membrane proteins publication-title: BMC Struct Biol contributor: fullname: Liang – volume: 313 start-page: 181 year: 2001 end-page: 195 ident: b0165 article-title: Genetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random publication-title: J Mol Biol contributor: fullname: Luu – volume: 102 start-page: 14278 year: 2005 end-page: 14283 ident: b0130 article-title: Transmembrane glycine zippers: Physiological and pathological roles in membrane proteins publication-title: Proc Natl Acad Sci USA contributor: fullname: Schmidt – volume: 41 year: 2013 ident: b0335 article-title: PDBTM: Protein data bank of transmembrane proteins after 8 years publication-title: Nucleic Acids Res contributor: fullname: Tusnády – volume: 343 start-page: 799 year: 2004 end-page: 804 ident: b0140 article-title: Motifs of two small residues can assist but are not sufficient to mediate transmembrane helix interactions publication-title: J Mol Biol contributor: fullname: Engelman – volume: 401 start-page: 882 issue: 5 year: 2010 ident: 10.1016/j.csbj.2020.09.035_b0285 article-title: Specificity for homooligomer versus heterooligomer formation in integrin transmembrane helices publication-title: J Mol Biol doi: 10.1016/j.jmb.2010.06.062 contributor: fullname: Zhu – volume: 579 start-page: 3855 issue: 17 year: 2005 ident: 10.1016/j.csbj.2020.09.035_b0195 article-title: Transmembrane homodimerization of receptor-like protein tyrosine phosphatases publication-title: FEBS Lett doi: 10.1016/j.febslet.2005.05.071 contributor: fullname: Chin – volume: 54 start-page: 5125 issue: 33 year: 2015 ident: 10.1016/j.csbj.2020.09.035_b0180 article-title: Role of GxxxG motifs in transmembrane domain interactions publication-title: Biochemistry doi: 10.1021/acs.biochem.5b00495 contributor: fullname: Teese – volume: 1 start-page: 431 year: 2013 ident: 10.1016/j.csbj.2020.09.035_b0460 article-title: Understanding variable importances in forests of randomized trees publication-title: Adv Neur Inform Proc Syst contributor: fullname: Louppe – volume: 385 start-page: 912 issue: 3 year: 2009 ident: 10.1016/j.csbj.2020.09.035_b0160 article-title: Complex patterns of histidine, hydroxylated amino acids and the GxxxG motif mediate high-affinity transmembrane domain interactions publication-title: J Mol Biol doi: 10.1016/j.jmb.2008.10.058 contributor: fullname: Herrmann – volume: 149 start-page: 1607 issue: 7 year: 2012 ident: 10.1016/j.csbj.2020.09.035_b0350 article-title: Three-dimensional structures of membrane proteins from genomic sequencing publication-title: Cell doi: 10.1016/j.cell.2012.04.012 contributor: fullname: Hopf – volume: 316 start-page: 799 issue: 3 year: 2002 ident: 10.1016/j.csbj.2020.09.035_b0135 article-title: Motifs of serine and threonine can drive association of transmembrane helices publication-title: J Mol Biol doi: 10.1006/jmbi.2001.5353 contributor: fullname: Dawson – volume: 134 start-page: 14390 issue: 35 year: 2012 ident: 10.1016/j.csbj.2020.09.035_b0200 article-title: Multistate organization of transmembrane helical protein dimers governed by the host membrane publication-title: J Am Chem Soc doi: 10.1021/ja303483k contributor: fullname: Polyansky – ident: 10.1016/j.csbj.2020.09.035_b0270 doi: 10.1016/j.celrep.2019.03.017 – volume: 10 start-page: 2507 issue: 12 year: 2001 ident: 10.1016/j.csbj.2020.09.035_b0045 article-title: Substitution rates in α-helical transmembrane proteins publication-title: Protein Sci doi: 10.1110/ps.ps.10501 contributor: fullname: Stevens – volume: 62 start-page: 411 issue: 2 year: 2005 ident: 10.1016/j.csbj.2020.09.035_b0405 article-title: Side-chain entropy effects on protein secondary structure formation publication-title: Proteins Struct Funct Bioinformat doi: 10.1002/prot.20766 contributor: fullname: Chellgren – ident: 10.1016/j.csbj.2020.09.035_b0400 doi: 10.1016/j.bbamem.2016.11.017 – volume: 396 start-page: 452 issue: 2 year: 2010 ident: 10.1016/j.csbj.2020.09.035_b0155 article-title: Ionic interactions promote transmembrane helix-helix association depending on sequence context publication-title: J Mol Biol doi: 10.1016/j.jmb.2009.11.054 contributor: fullname: Herrmann – volume: 16 start-page: 268 year: 2015 ident: 10.1016/j.csbj.2020.09.035_b0365 article-title: Coevolutionary analyses require phylogenetically deep alignments and better null models to accurately detect inter-protein contacts within and between species publication-title: BMC Bioinf doi: 10.1186/s12859-015-0677-y contributor: fullname: Avila-Herrera – volume: 374 start-page: 705 issue: 3 year: 2007 ident: 10.1016/j.csbj.2020.09.035_b0150 article-title: Phenylalanine promotes interaction of transmembrane domains via GxxxG motifs publication-title: J Mol Biol doi: 10.1016/j.jmb.2007.09.056 contributor: fullname: Unterreitmeier – volume: 588 start-page: 3802 issue: 21 year: 2014 ident: 10.1016/j.csbj.2020.09.035_b0435 article-title: Toll-like receptor 3 transmembrane domain is able to perform various homotypic interactions: An NMR structural study publication-title: FEBS Lett doi: 10.1016/j.febslet.2014.08.031 contributor: fullname: Mineev – volume: 7 start-page: 1052 issue: 4 year: 1998 ident: 10.1016/j.csbj.2020.09.035_b0115 article-title: The dimerization motif of the glycophorin A transmembrane segment in membranes: Importance of glycine residues publication-title: Protein Sci doi: 10.1002/pro.5560070423 contributor: fullname: Brosig – volume: 6 start-page: 13 year: 2006 ident: 10.1016/j.csbj.2020.09.035_b0235 article-title: Prediction of transmembrane helix orientation in polytopic membrane proteins publication-title: BMC Struct Biol doi: 10.1186/1472-6807-6-13 contributor: fullname: Adamian – volume: 88 start-page: 628 issue: 1 year: 2014 ident: 10.1016/j.csbj.2020.09.035_b0325 article-title: Hepatitis C virus RNA replication and virus particle assembly require specific dimerization of the NS4A protein transmembrane domain publication-title: J Virol doi: 10.1128/JVI.02052-13 contributor: fullname: Kohlway – volume: 31 start-page: 855 issue: 9 year: 2017 ident: 10.1016/j.csbj.2020.09.035_b0225 article-title: TMDIM: an improved algorithm for the structure prediction of transmembrane domains of bitopic dimers publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0047-0 contributor: fullname: Cao – volume: 10 start-page: 1141 issue: 6 year: 2010 ident: 10.1016/j.csbj.2020.09.035_b0005 article-title: Prediction of the human membrane proteome publication-title: Proteomics doi: 10.1002/pmic.200900258 contributor: fullname: Fagerberg – volume: 52 start-page: 2574 issue: 15 year: 2013 ident: 10.1016/j.csbj.2020.09.035_b0295 article-title: Structural organization of FtsB, a transmembrane protein of the bacterial divisome publication-title: Biochemistry doi: 10.1021/bi400222r contributor: fullname: LaPointe – volume: 18 start-page: S71 issue: Suppl 1 year: 2002 ident: 10.1016/j.csbj.2020.09.035_b0445 article-title: Rate4Site: An algorithmic tool for the identification of functional regions in proteins by surface mapping of evolutionary determinants within their homologues publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.suppl_1.S71 contributor: fullname: Pupko – volume: 96 start-page: 863 issue: 3 year: 1999 ident: 10.1016/j.csbj.2020.09.035_b0030 article-title: TOXCAT: A measure of transmembrane helix association in a biological membrane publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.96.3.863 contributor: fullname: Russ – volume: 10 start-page: 312 year: 2009 ident: 10.1016/j.csbj.2020.09.035_b0255 article-title: Predicting protein-protein binding sites in membrane proteins publication-title: BMC Bioinf doi: 10.1186/1471-2105-10-312 contributor: fullname: Bordner – volume: 2 start-page: 183 year: 1818 ident: 10.1016/j.csbj.2020.09.035_b0370 article-title: Hristova K (2012) Transmembrane helix dimerization: Beyond the search for sequence motifs publication-title: Biochim Biophys Acta, Biomembr contributor: fullname: Li – volume: 41 issue: D1 year: 2013 ident: 10.1016/j.csbj.2020.09.035_b0335 article-title: PDBTM: Protein data bank of transmembrane proteins after 8 years publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1169 contributor: fullname: Kozma – ident: 10.1016/j.csbj.2020.09.035_b0035 doi: 10.7554/eLife.12125 – volume: 313 start-page: 181 issue: 1 year: 2001 ident: 10.1016/j.csbj.2020.09.035_b0165 article-title: Genetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random Escherichia coli genomic library publication-title: J Mol Biol doi: 10.1006/jmbi.2001.5007 contributor: fullname: Leeds – ident: 10.1016/j.csbj.2020.09.035_b0065 doi: 10.7554/eLife.03430 – volume: 97 start-page: 5796 issue: 11 year: 2000 ident: 10.1016/j.csbj.2020.09.035_b0085 article-title: Internal packing of helical membrane proteins publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.97.11.5796 contributor: fullname: Eilers – volume: 564 start-page: 297 year: 2014 ident: 10.1016/j.csbj.2020.09.035_b0100 article-title: Toward understanding driving forces in membrane protein folding publication-title: Arch Biochem Biophys doi: 10.1016/j.abb.2014.07.031 contributor: fullname: Hong – volume: 55 start-page: 1287 issue: 9 year: 2016 ident: 10.1016/j.csbj.2020.09.035_b0315 article-title: Entrapment of water at the transmembrane helix-helix Interface of Quiescin Sulfhydryl Oxidase 2 publication-title: Biochemistry doi: 10.1021/acs.biochem.5b01239 contributor: fullname: Ried – volume: 263 start-page: 525 issue: 4 year: 1996 ident: 10.1016/j.csbj.2020.09.035_b0025 article-title: Dimerisation of the glycophorin A transmembrane segment in membranes probed with the ToxR transcription activator publication-title: J Mol Biol doi: 10.1006/jmbi.1996.0595 contributor: fullname: Langosch – volume: 12 issue: 5 year: 2017 ident: 10.1016/j.csbj.2020.09.035_b0080 article-title: Membrane protein contact and structure prediction using co-evolution in conjunction with machine learning publication-title: PLoS ONE doi: 10.1371/journal.pone.0177866 contributor: fullname: Teixeira – volume: 20 start-page: 1814 issue: 11 year: 2011 ident: 10.1016/j.csbj.2020.09.035_b0300 article-title: The dimerization interface of the glycoprotein Ibβ transmembrane domain corresponds to polar residues within a leucine zipper motif publication-title: Protein Sci doi: 10.1002/pro.713 contributor: fullname: Wei – volume: 102 start-page: 14278 issue: 40 year: 2005 ident: 10.1016/j.csbj.2020.09.035_b0130 article-title: Transmembrane glycine zippers: Physiological and pathological roles in membrane proteins publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0501234102 contributor: fullname: Kim – volume: 86 start-page: 257 year: 2018 ident: 10.1016/j.csbj.2020.09.035_b0265 article-title: The challenge of modeling protein assemblies: the CASP12-CAPRI experiment publication-title: Proteins Struct Funct Bioinformat doi: 10.1002/prot.25419 contributor: fullname: Lensink – volume: 364 start-page: 974 issue: 5 year: 2006 ident: 10.1016/j.csbj.2020.09.035_b0330 article-title: Sequence dependence of BNIP3 transmembrane domain dimerization implicates side-chain hydrogen bonding and a tandem GxxxG motif in specific helix-helix interactions publication-title: J Mol Biol doi: 10.1016/j.jmb.2006.09.065 contributor: fullname: Sulistijo – volume: 341 start-page: 991 issue: 4 year: 2004 ident: 10.1016/j.csbj.2020.09.035_b0110 article-title: Sequence context modulates the stability of a GxxxG-mediated transmembrane helix-helix dimer publication-title: J Mol Biol doi: 10.1016/j.jmb.2004.06.042 contributor: fullname: Doura – volume: 78 start-page: 3085 issue: 15 year: 2010 ident: 10.1016/j.csbj.2020.09.035_b0260 article-title: Blind predictions of protein interfaces by docking calculations in CAPRI publication-title: Proteins Struct Funct Bioinformat doi: 10.1002/prot.22850 contributor: fullname: Lensink – volume: 396 start-page: 924 issue: 4 year: 2010 ident: 10.1016/j.csbj.2020.09.035_b0310 article-title: Intermonomer hydrogen bonds enhance GxxxG-driven dimerization of the BNIP3 transmembrane domain: Roles for sequence context in helix-helix association in membranes publication-title: J Mol Biol doi: 10.1016/j.jmb.2009.12.023 contributor: fullname: Lawrie – volume: 136 start-page: 14068 issue: 40 year: 2014 ident: 10.1016/j.csbj.2020.09.035_b0320 article-title: A gly-zipper motif mediates homodimerization of the transmembrane domain of the mitochondrial kinase ADCK3 publication-title: J Am Chem Soc doi: 10.1021/ja505017f contributor: fullname: Khadria – volume: 15 start-page: 85 issue: 1 year: 2014 ident: 10.1016/j.csbj.2020.09.035_b0455 article-title: FreeContact: Fast and free software for protein contact prediction from residue co-evolution publication-title: BMC Bioinf doi: 10.1186/1471-2105-15-85 contributor: fullname: Kaján – volume: 30 start-page: 889 issue: 6 year: 2014 ident: 10.1016/j.csbj.2020.09.035_b0205 article-title: PREDDIMER: A web server for prediction of transmembrane helical dimers publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt645 contributor: fullname: Polyansky – volume: 281 start-page: 22744 issue: 32 year: 2006 ident: 10.1016/j.csbj.2020.09.035_b0275 article-title: A transmembrane leucine zipper is required for activation of the dimeric receptor tyrosine kinase DDR1 publication-title: J Biol Chem doi: 10.1074/jbc.M603233200 contributor: fullname: Noordeen – volume: 15 issue: 8 year: 2019 ident: 10.1016/j.csbj.2020.09.035_b0230 article-title: A lipophilicity-based energy function for membrane-protein modelling and design publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1007318 contributor: fullname: Weinstein – volume: 278 start-page: 3105 issue: 5 year: 2003 ident: 10.1016/j.csbj.2020.09.035_b0040 article-title: GALLEX, a measurement of heterologous association of transmembrane helices in a biological membrane publication-title: J Biol Chem doi: 10.1074/jbc.M206287200 contributor: fullname: Schneider – volume: 343 start-page: 799 issue: 4 year: 2004 ident: 10.1016/j.csbj.2020.09.035_b0140 article-title: Motifs of two small residues can assist but are not sufficient to mediate transmembrane helix interactions publication-title: J Mol Biol doi: 10.1016/j.jmb.2004.08.083 contributor: fullname: Schneider – volume: 365 start-page: 706 issue: 3 year: 2007 ident: 10.1016/j.csbj.2020.09.035_b0190 article-title: Janus model of the Na, K-ATPase β-subunit transmembrane domain: distinct faces mediate α/β assembly and β-β homo-oligomerization publication-title: J Mol Biol doi: 10.1016/j.jmb.2006.10.029 contributor: fullname: Barwe – volume: 8 start-page: 327 issue: 1 year: 2008 ident: 10.1016/j.csbj.2020.09.035_b0360 article-title: Detecting coevolution without phylogenetic trees? Tree-ignorant metrics of coevolution perform as well as tree-aware metrics publication-title: BMC Evol Biol doi: 10.1186/1471-2148-8-327 contributor: fullname: Caporaso – volume: 2 start-page: 55 issue: 1 year: 1993 ident: 10.1016/j.csbj.2020.09.035_b0385 article-title: Modeling α-helical transmembrane domains: The calculation and use of substitution tables for lipid-facing residues publication-title: Protein Sci doi: 10.1002/pro.5560020106 contributor: fullname: Donnelly – volume: 17 start-page: 613 issue: 8 year: 2004 ident: 10.1016/j.csbj.2020.09.035_b0390 article-title: Computational analysis of α-helical membrane protein structure: implications for the prediction of 3D structural models publication-title: Protein Eng Des Sel doi: 10.1093/protein/gzh072 contributor: fullname: Eyre – volume: 29 start-page: 1623 issue: 13 year: 2013 ident: 10.1016/j.csbj.2020.09.035_b0175 article-title: Self-interaction of transmembrane helices representing pre-clusters from the human single-span membrane proteins publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt247 contributor: fullname: Kirrbach – ident: 10.1016/j.csbj.2020.09.035_b0245 doi: 10.1016/j.jsb.2019.02.009 – volume: 343 start-page: 1487 issue: 5 year: 2004 ident: 10.1016/j.csbj.2020.09.035_b0105 article-title: Complex interactions at the helix-helix interface stabilize the glycophorin A transmembrane dimer publication-title: J Mol Biol doi: 10.1016/j.jmb.2004.09.011 contributor: fullname: Doura – volume: 279 start-page: 26666 issue: 25 year: 2004 ident: 10.1016/j.csbj.2020.09.035_b0290 article-title: Dimerization of the transmembrane domain of integrin αIIb subunit in cell membranes publication-title: J Biol Chem doi: 10.1074/jbc.M314168200 contributor: fullname: Li – volume: 20 start-page: 1822 issue: 12 year: 2004 ident: 10.1016/j.csbj.2020.09.035_b0050 article-title: A knowledge-based scale for the analysis and prediction of buried and exposed faces of transmembrane domain proteins publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth143 contributor: fullname: Beuming – volume: 111 start-page: E888 issue: 10 year: 2014 ident: 10.1016/j.csbj.2020.09.035_b0210 article-title: A frequent, GxxxG-mediated, transmembrane association motif is optimized for the formation of interhelical Cα-H hydrogen bonds publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1319944111 contributor: fullname: Mueller – volume: 5 start-page: 148 issue: 3 year: 2013 ident: 10.1016/j.csbj.2020.09.035_b0250 article-title: Predictions of protein-protein Interfaces within membrane protein complexes publication-title: Avicenna J Med Biotechnol contributor: fullname: Asadabadi – volume: 279 start-page: 21177 issue: 20 year: 2004 ident: 10.1016/j.csbj.2020.09.035_b0280 article-title: Two motifs within a transmembrane domain, one for homodimerization and the other for heterodimerization publication-title: J Biol Chem doi: 10.1074/jbc.M400847200 contributor: fullname: Gerber – volume: 23 start-page: 3312 issue: 24 year: 2007 ident: 10.1016/j.csbj.2020.09.035_b0355 article-title: Co-evolving residues in membrane proteins publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm515 contributor: fullname: Fuchs – volume: 296 start-page: 921 issue: 3 year: 2000 ident: 10.1016/j.csbj.2020.09.035_b0170 article-title: Statistical analysis of amino acid patterns in transmembrane helices: The GxxxG motif occurs frequently and association with β-branched residues at neighboring positions publication-title: J Mol Biol doi: 10.1006/jmbi.1999.3488 contributor: fullname: Senes – volume: 276 start-page: 131 issue: 5309 year: 1997 ident: 10.1016/j.csbj.2020.09.035_b0125 article-title: Transmembrane helix dimer: Structure and implications publication-title: Science doi: 10.1126/science.276.5309.131 contributor: fullname: MacKenzie – volume: 4 start-page: 561 year: 1859 ident: 10.1016/j.csbj.2020.09.035_b0015 article-title: (2017) Helix-helix interactions in membrane domains of bitopic proteins: Specificity and role of lipid environment publication-title: Biochim Biophys Acta, Biomembr contributor: fullname: Bocharov – volume: 6 start-page: 7196 year: 2015 ident: 10.1016/j.csbj.2020.09.035_b0215 article-title: Evolutionary-guided de novo structure prediction of self-associated transmembrane helical proteins with near-atomic accuracy publication-title: Nat Comms doi: 10.1038/ncomms8196 contributor: fullname: Wang – ident: 10.1016/j.csbj.2020.09.035_b0120 doi: 10.1021/bi00166a002 – volume: 63 start-page: 3 issue: 1 year: 2006 ident: 10.1016/j.csbj.2020.09.035_b0375 article-title: Extremely randomized trees publication-title: Machine Learning doi: 10.1007/s10994-006-6226-1 contributor: fullname: Geurts – volume: 21 start-page: 42 issue: 1 year: 2011 ident: 10.1016/j.csbj.2020.09.035_b0410 article-title: Membrane protein folding: how important are hydrogen bonds? publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2010.10.003 contributor: fullname: Bowie – volume: 6 issue: 12 year: 2011 ident: 10.1016/j.csbj.2020.09.035_b0070 article-title: Protein 3D structure computed from evolutionary sequence variation publication-title: PLoS ONE doi: 10.1371/journal.pone.0028766 contributor: fullname: Marks – volume: 354 start-page: 894 issue: 4 year: 2005 ident: 10.1016/j.csbj.2020.09.035_b0145 article-title: Tryptophan supports interaction of transmembrane helices publication-title: J Mol Biol doi: 10.1016/j.jmb.2005.09.084 contributor: fullname: Ridder – volume: 99 start-page: 2541 issue: 8 year: 2010 ident: 10.1016/j.csbj.2020.09.035_b0425 article-title: Residue-specific side-chain packing determines the backbone dynamics of transmembrane model helices publication-title: Biophys J doi: 10.1016/j.bpj.2010.08.031 contributor: fullname: Quint – volume: 23 start-page: 527 issue: 3 year: 2015 ident: 10.1016/j.csbj.2020.09.035_b0060 article-title: The membrane- and soluble-protein helix-helix interactome: Similar geometry via different interactions publication-title: Structure doi: 10.1016/j.str.2015.01.009 contributor: fullname: Zhang – volume: 108 start-page: E1293 issue: 49 year: 2011 ident: 10.1016/j.csbj.2020.09.035_b0075 article-title: Direct-coupling analysis of residue coevolution captures native contacts across many protein families publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1111471108 contributor: fullname: Morcos – volume: 98 start-page: 9056 issue: 16 year: 2001 ident: 10.1016/j.csbj.2020.09.035_b0095 article-title: The Cα-H···O hydrogen bond: A determinant of stability and specificity in transmembrane helix interactions publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.161280798 contributor: fullname: Senes – volume: 15 start-page: 321 year: 1986 ident: 10.1016/j.csbj.2020.09.035_b0450 article-title: Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins publication-title: Annu Rev Biophys Biophys Chem doi: 10.1146/annurev.bb.15.060186.001541 contributor: fullname: Engelman – volume: 79 start-page: 79 issue: 1 year: 2011 ident: 10.1016/j.csbj.2020.09.035_b0395 article-title: Why are polar residues within the membrane core evolutionary conserved? publication-title: Proteins Struct Funct Bioinformat doi: 10.1002/prot.22859 contributor: fullname: Illergard – ident: 10.1016/j.csbj.2020.09.035_b0440 doi: 10.1016/j.cell.2019.02.001 – volume: 194 start-page: 112 issue: 1 year: 2016 ident: 10.1016/j.csbj.2020.09.035_b0420 article-title: Accurate prediction of helix interactions and residue contacts in membrane proteins publication-title: J Struct Biol doi: 10.1016/j.jsb.2016.02.005 contributor: fullname: Hönigschmid – volume: 13 start-page: 190 issue: 1 year: 2004 ident: 10.1016/j.csbj.2020.09.035_b0340 article-title: Are protein-protein interfaces more conserved in sequence than the rest of the protein surface? publication-title: Protein Sci doi: 10.1110/ps.03323604 contributor: fullname: Caffrey – volume: 40 start-page: 6553 issue: 22 year: 2001 ident: 10.1016/j.csbj.2020.09.035_b0090 article-title: Structure of the transmembrane dimer interface of glycophorin A in membrane bilayers publication-title: Biochemistry doi: 10.1021/bi010357v contributor: fullname: Smith – volume: 46 start-page: 12164 issue: 43 year: 2007 ident: 10.1016/j.csbj.2020.09.035_b0305 article-title: Transmembrane domain of myelin protein zero can form dimers: Possible implications for myelin construction publication-title: Biochemistry doi: 10.1021/bi701066h contributor: fullname: Plotkowski – volume: 12 start-page: 244 issue: 1 year: 2011 ident: 10.1016/j.csbj.2020.09.035_b0345 article-title: HomPPI: a class of sequence homology based protein-protein interface prediction methods publication-title: BMC Bioinf doi: 10.1186/1471-2105-12-244 contributor: fullname: Xue – volume: 18 start-page: 1343 issue: 7 year: 2009 ident: 10.1016/j.csbj.2020.09.035_b0380 article-title: Interaction and conformational dynamics of membrane-spanning protein helices publication-title: Protein Sci doi: 10.1002/pro.154 contributor: fullname: Langosch – volume: 74 start-page: 857 issue: 4 year: 2009 ident: 10.1016/j.csbj.2020.09.035_b0430 article-title: Prediction of helix-helix contacts and interacting helices in polytopic membrane proteins using neural networks publication-title: Proteins Struct Funct Bioinf doi: 10.1002/prot.22194 contributor: fullname: Fuchs – volume: 104 start-page: 15682 issue: 40 year: 2007 ident: 10.1016/j.csbj.2020.09.035_b0240 article-title: Toward high-resolution prediction and design of transmembrane helical protein structures publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0702515104 contributor: fullname: Barth – volume: 103 start-page: 13658 issue: 37 year: 2006 ident: 10.1016/j.csbj.2020.09.035_b0055 article-title: Helix-packing motifs in membrane proteins publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0605878103 contributor: fullname: Walters – volume: 283 start-page: 4424 issue: 24 year: 2016 ident: 10.1016/j.csbj.2020.09.035_b0010 article-title: Understanding single-pass transmembrane receptor signaling from a structural viewpoint—what are we missing? publication-title: FEBS J doi: 10.1111/febs.13793 contributor: fullname: Bugge – volume: 9 start-page: 1398 year: 1859 ident: 10.1016/j.csbj.2020.09.035_b0020 article-title: Sachs JN (2017) Piecing it together: Unraveling the elusive structure-function relationship in single-pass membrane receptors publication-title: Biochim Biophys Acta, Biomembr contributor: fullname: Valley – volume: 163 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.csbj.2020.09.035_b0415 article-title: α-Helical transmembrane peptides: A “Divide and Conquer” approach to membrane proteins publication-title: Chem Phys Lipids doi: 10.1016/j.chemphyslip.2009.07.009 contributor: fullname: Bordag – volume: 2 start-page: 89 year: 2009 ident: 10.1016/j.csbj.2020.09.035_b0185 article-title: The single transmembrane domains of human receptor tyrosine kinases encode self-interactions publication-title: Sci Signaling doi: 10.1126/scisignal.2000547 contributor: fullname: Finger – ident: 10.1016/j.csbj.2020.09.035_b0220 doi: 10.1016/j.jmb.2016.09.005 |
SSID | ssj0000816930 |
Score | 2.2189102 |
Snippet | •Homotypic TMD interfaces identified by different techniques share strong similarities.•The GxxxG motif is the feature most strongly associated with... • Homotypic TMD interfaces identified by different techniques share strong similarities. • The GxxxG motif is the feature most strongly associated with... Interactions between their transmembrane domains (TMDs) frequently support the assembly of single-pass membrane proteins to non-covalent complexes. Yet, the... |
SourceID | doaj pubmedcentral proquest crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Publisher |
StartPage | 3230 |
SubjectTerms | Co-evolution GxxxG Machine learning Protein-protein interaction TMD interactions Transmembrane |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-QwFA7iSQ_i6i476koEb1I2TZM2Oa6LIoKeFLyF_MQRpjOM48H_3veadmkv68VrW5r0vde87yVfvhByLksfma94kbR3hcBNXEqVsSgtYFcLAJZ1oj539_XNo7h9kk-jo76QE5blgbPhfjOZlAhBu7qqUGtL28RT1dia6-g0z9CI6VEx1Y3BCkVGcIKl5ww1rN8xk8ld_tW9QHHIWRY5lZOs1In3T5LTCHxOqZOjXHS9T_Z6EEn_5M5_I1uxPSC7I2nBQ-KuRtL9NAykF3QDtW2gyAwtwhrHOrpa42pNd2uZ6DPy895Xc083mMcWcQEFdRtpWC7svKWoL7FOSOT6Th6vrx7-3hT9eQqFF1ptCshLqWysrLUKEnBbTFw7Jxqokhz3zEcF4EFXUTkYxmQA4AQZtKmc1TK6OlbVD7LdLtv4k9BSQkOigdxeS-E9d54HDkDdJsuZiuWMXAz2NKssm2EGPtmLQesbtL5h2oD1Z-QSTf7vSZS87i5AIJg-EMxngTAjcnCY6dFDRgXwqvl_Gz8bvGvg18L1EjDq8u3VcFEDvoGyXc9IM3H7pKfTO-38uRPpbmoBxSE_-opPOyY72OE883NCtjfrt_gLsNDGnXZh_wFDHwfV priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcoED4imWAjISNxSUOHZiHyoEqFWFBCdW6s3yk27FJtvsVqL_npk8YCNVSBwTR3Y0Y3u-sT9_BngrCx9zX_Isae8yQYe4lCpiVljErhYBbN6L-nz9Vp0txZdzeX4A03VHowG3t6Z2dJ_Usvv5_tfVzQcc8Md_uVp-6y4x1-P5oFkq78BdLjBTJyrfCPf7mVmR9Agtu4xMojofz9HcXs0sVvWS_rOQtQdJ54TKvQh1-hAejNCSfRz6wiM4iM1juL8nOPgE3MmeoD8LExWGnMNsExjxRbPQ0QzINh3t4fRFbWIXxNq72aw821F0W8c1ptlNZKFd21XDSHWiS0TvegrL05Pvn8-y8ZaFzAutdhlGq1TUVlZaBYloLiaunRM15k6O-9xHhZBCl1E5nNxkQDiFcbUundUyuiqW5TM4bNomPgdWSGxI1BjxKym8587zwBG-22R5rmKxgHeTPc1mENMwE8vs0pD1DVnf5Nqg9RfwiUz-50sSwu5ftN0PM44rk8ukRAjaVWVJUmzaJp7K2lZcR6e5XYCcHGZGTDFgBaxq9c_G30zeNTjgaBcFjdpebw0XFaIeTOb1AuqZ22d_Oi9pVhe9dHddCUwZ-Yv_MsQR3KOnYeHnJRzuuuv4CqHQzr3u-_dv5v4IIw priority: 102 providerName: Scholars Portal |
Title | Experimental determination and data-driven prediction of homotypic transmembrane domain interfaces |
URI | https://dx.doi.org/10.1016/j.csbj.2020.09.035 https://search.proquest.com/docview/2462412749 https://pubmed.ncbi.nlm.nih.gov/PMC7649602 https://doaj.org/article/05f84dd9b63343329af2f37a629eb92a |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXacoED4lMshZWRuKF0E38k9hFWrSqkLRyotOJi2Y5DtyLJKt0e-PedcRKUXDhwySFOYsvjeN7Yb54J-SgzH1LPWVJp7xKBSVxKZSHJLGBXCwA2jaI-m6v88lp83crtEZFjLkwk7Xu3O2t-12fN7iZyK_e1X408sdX3zbrIBQBvtjomxzBAJyF6nH4V6oukQ4JMz-Xyd-4WYkGW9pqmeFwN5yzVDBNnJ_4oyvbP3NIEds5JkxMvdPGMPB3gI_3cN_M5OQrNC_JkIir4krjziWg_LUe6CxqA2qakyAlNyg5nObrvcJ8mFrUVvUFm3p_9ztMDerA61BBKN4GWbW13DUVlia5CCtcrcn1x_mN9mQwnKSReaHVIwCNVWWFlrlUpAbGFimnnRAHxkWM-9UEBbNA8KAcTmCwBMoHvLLizWgaXB85fk5OmbcIbQjMJFYkCvHouhffMeVYygOi2sixVIVuQT2N_mn0vmGFGJtmtQUMYNIRJtQFDLMgX7PK_T6LYdbzRdr_MYHKTykqJstQu5xzl1rStWMULmzMdnGZ2QeRoMDPghh4PwKd2_6z8w2hdAz8V7pRAp7b3d4aJHJANBOx6QYqZ2WctnZfAaI3y3MPofPvfb56Sx9jKfqHnHTk5dPfhPUCfg1vGJQO4boRakkdX6-23n8s4_B8AassKMw |
link.rule.ids | 230,315,730,783,787,867,888,2109,24330,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQAH3ojlaSRuKLuOH0l8hKrVAt2KQ4t6s2zHblNIskqzB_j1jPNACQckuMZJHHvGnm_iz58Reiti64hlNPLSmoiHTVxZFrso1oBdNQBY0on6bE6S9Rn_dC7O95AY98J0pH1rimX1vVxWxWXHrdyWdjXyxFZfNgdpwgF409UNdBPGK-GTJL2bgLOgMEKGLTI9m8temyvIBinpVU3DgTWMUSJp2Do7iUidcP8sME2A55w2OYlDR_fQ17EFPf3k23LXmqX9-Ye44z838T66OyBT_L4vfoD2XPUQ3ZnoFT5C5nByHgDORyZNsC3WVY4D3TTKmzCB4m0TloC6otrjy0D6-7EtLG5DcCxdCVl65XBel7qocBCtaHxghz1GZ0eHpwfraDikIbJcZm0Ewc7HqRaJzHIBYNB5Ko3hKaRehlpiXQaIRDKXGZgbRQ5oDMJyyoyWwpnEMfYE7Vd15Z4iHAuoiKcAGBLBraXG0pwC-tdeU5K5eIHejYZS216LQ40ktSsVLKyChRWRCiy8QB-CLX_fGXS0uwt1c6GGrlZE-IznuTQJY0HJTWpPPUt1QqUzkuoFEqMnqAGS9FADXlX8tfI3o9soGK9hEQY6td5dK8oTAE005XKB0pk_zb50XgJe0il_D17x7L-ffI1urU83x-r448nn5-h2-OL-f9ILtN82O_cSEFZrXnXj6RfBlyin |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9UwELagSAgO7IjHaiRuKO85XpL4CKVPZWnVA5UqLpbt2DSFLErzDvDrGWdBCQcOvSZOYmfGnm-Sz98g9EbE1hHLaOSlNREPm7iyLHZRrAG7agCwpBf1OTpODk_5pzNxNiv11ZP2rSnW1c9yXRXnPbeyKe1m4oltTo7204QD8KabJveb6-gGzFmSzBL1fhHOgsoIGbfJDIwue2kuICOkZFA2DUVrGKNE0rB9dhaVevH-RXCagc8ldXIWi7Z30bdpFAMF5cd615m1_f2PwOOVhnkP3RkRKn43NLmPrrnqAbo90y18iMzBrC4AzidGTbAx1lWOA-00ytuwkOKmDb-C-lO1x-eB_PerKSzuQpAsXQnZeuVwXpe6qHAQr2h9YIk9Qqfbg6_7h9FYrCGyXGZdBEHPx6kWicxyAaDQeSqN4SmkYIZaYl0GyEQylxlYI0UOqAzCc8qMlsKZxDH2GO1VdeWeIBwLeBBPATgkgltLjaU5hSxAe01J5uIVejsZSzWDJoeayGoXKlhZBSsrIhVYeYXeB3v-bRn0tPsDdftdja9bEeEznufSJIwFRTepPfUs1QmVzkiqV0hM3qBGaDJADrhV8d-Hv55cR8G8DT9j4KXWu0tFeQLgiaZcrlC68KlFT5dnwFN6BfDRM55e-cpX6ObJh6368vH48zN0K3R4-Kz0HO117c69AKDVmZf9lPoD6NErJw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+determination+and+data-driven+prediction+of+homotypic+transmembrane+domain+interfaces&rft.jtitle=Computational+and+structural+biotechnology+journal&rft.au=Xiao%2C+Yao&rft.au=Zeng%2C+Bo&rft.au=Berner%2C+Nicola&rft.au=Frishman%2C+Dmitrij&rft.date=2020-01-01&rft.issn=2001-0370&rft.eissn=2001-0370&rft.volume=18&rft.spage=3230&rft.epage=3242&rft_id=info:doi/10.1016%2Fj.csbj.2020.09.035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_csbj_2020_09_035 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2001-0370&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2001-0370&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2001-0370&client=summon |