Experimental determination and data-driven prediction of homotypic transmembrane domain interfaces

•Homotypic TMD interfaces identified by different techniques share strong similarities.•The GxxxG motif is the feature most strongly associated with interfaces.•Other features include conservation, polarity, coevolution, and depth in the membrane•The role of each of each feature strongly depends on...

Full description

Saved in:
Bibliographic Details
Published inComputational and structural biotechnology journal Vol. 18; pp. 3230 - 3242
Main Authors Xiao, Yao, Zeng, Bo, Berner, Nicola, Frishman, Dmitrij, Langosch, Dieter, Teese, Mark George
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2020
Research Network of Computational and Structural Biotechnology
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Homotypic TMD interfaces identified by different techniques share strong similarities.•The GxxxG motif is the feature most strongly associated with interfaces.•Other features include conservation, polarity, coevolution, and depth in the membrane•The role of each of each feature strongly depends on the individual protein.•Machine-learning helps predict interfaces from evolutionary sequence data Interactions between their transmembrane domains (TMDs) frequently support the assembly of single-pass membrane proteins to non-covalent complexes. Yet, the TMD-TMD interactome remains largely uncharted. With a view to predicting homotypic TMD-TMD interfaces from primary structure, we performed a systematic analysis of their physical and evolutionary properties. To this end, we generated a dataset of 50 self-interacting TMDs. This dataset contains interfaces of nine TMDs from bitopic human proteins (Ire1, Armcx6, Tie1, ATP1B1, PTPRO, PTPRU, PTPRG, DDR1, and Siglec7) that were experimentally identified here and combined with literature data. We show that interfacial residues of these homotypic TMD-TMD interfaces tend to be more conserved, coevolved and polar than non-interfacial residues. Further, we suggest for the first time that interface positions are deficient in β-branched residues, and likely to be located deep in the hydrophobic core of the membrane. Overrepresentation of the GxxxG motif at interfaces is strong, but that of (small)xxx(small) motifs is weak. The multiplicity of these features and the individual character of TMD-TMD interfaces, as uncovered here, prompted us to train a machine learning algorithm. The resulting prediction method, THOIPA (www.thoipa.org), excels in the prediction of key interface residues from evolutionary sequence data.
AbstractList Interactions between their transmembrane domains (TMDs) frequently support the assembly of single-pass membrane proteins to non-covalent complexes. Yet, the TMD-TMD interactome remains largely uncharted. With a view to predicting homotypic TMD-TMD interfaces from primary structure, we performed a systematic analysis of their physical and evolutionary properties. To this end, we generated a dataset of 50 self-interacting TMDs. This dataset contains interfaces of nine TMDs from bitopic human proteins (Ire1, Armcx6, Tie1, ATP1B1, PTPRO, PTPRU, PTPRG, DDR1, and Siglec7) that were experimentally identified here and combined with literature data. We show that interfacial residues of these homotypic TMD-TMD interfaces tend to be more conserved, coevolved and polar than non-interfacial residues. Further, we suggest for the first time that interface positions are deficient in β-branched residues, and likely to be located deep in the hydrophobic core of the membrane. Overrepresentation of the GxxxG motif at interfaces is strong, but that of (small)xxx(small) motifs is weak. The multiplicity of these features and the individual character of TMD-TMD interfaces, as uncovered here, prompted us to train a machine learning algorithm. The resulting prediction method, THOIPA (www.thoipa.org), excels in the prediction of key interface residues from evolutionary sequence data.
• Homotypic TMD interfaces identified by different techniques share strong similarities. • The GxxxG motif is the feature most strongly associated with interfaces. • Other features include conservation, polarity, coevolution, and depth in the membrane • The role of each of each feature strongly depends on the individual protein. • Machine-learning helps predict interfaces from evolutionary sequence data Interactions between their transmembrane domains (TMDs) frequently support the assembly of single-pass membrane proteins to non-covalent complexes. Yet, the TMD-TMD interactome remains largely uncharted. With a view to predicting homotypic TMD-TMD interfaces from primary structure, we performed a systematic analysis of their physical and evolutionary properties. To this end, we generated a dataset of 50 self-interacting TMDs. This dataset contains interfaces of nine TMDs from bitopic human proteins (Ire1, Armcx6, Tie1, ATP1B1, PTPRO, PTPRU, PTPRG, DDR1, and Siglec7) that were experimentally identified here and combined with literature data. We show that interfacial residues of these homotypic TMD-TMD interfaces tend to be more conserved, coevolved and polar than non-interfacial residues. Further, we suggest for the first time that interface positions are deficient in β-branched residues, and likely to be located deep in the hydrophobic core of the membrane. Overrepresentation of the GxxxG motif at interfaces is strong, but that of (small)xxx(small) motifs is weak. The multiplicity of these features and the individual character of TMD-TMD interfaces, as uncovered here, prompted us to train a machine learning algorithm. The resulting prediction method, THOIPA ( www.thoipa.org ), excels in the prediction of key interface residues from evolutionary sequence data.
•Homotypic TMD interfaces identified by different techniques share strong similarities.•The GxxxG motif is the feature most strongly associated with interfaces.•Other features include conservation, polarity, coevolution, and depth in the membrane•The role of each of each feature strongly depends on the individual protein.•Machine-learning helps predict interfaces from evolutionary sequence data Interactions between their transmembrane domains (TMDs) frequently support the assembly of single-pass membrane proteins to non-covalent complexes. Yet, the TMD-TMD interactome remains largely uncharted. With a view to predicting homotypic TMD-TMD interfaces from primary structure, we performed a systematic analysis of their physical and evolutionary properties. To this end, we generated a dataset of 50 self-interacting TMDs. This dataset contains interfaces of nine TMDs from bitopic human proteins (Ire1, Armcx6, Tie1, ATP1B1, PTPRO, PTPRU, PTPRG, DDR1, and Siglec7) that were experimentally identified here and combined with literature data. We show that interfacial residues of these homotypic TMD-TMD interfaces tend to be more conserved, coevolved and polar than non-interfacial residues. Further, we suggest for the first time that interface positions are deficient in β-branched residues, and likely to be located deep in the hydrophobic core of the membrane. Overrepresentation of the GxxxG motif at interfaces is strong, but that of (small)xxx(small) motifs is weak. The multiplicity of these features and the individual character of TMD-TMD interfaces, as uncovered here, prompted us to train a machine learning algorithm. The resulting prediction method, THOIPA (www.thoipa.org), excels in the prediction of key interface residues from evolutionary sequence data.
Author Zeng, Bo
Frishman, Dmitrij
Berner, Nicola
Teese, Mark George
Langosch, Dieter
Xiao, Yao
Author_xml – sequence: 1
  givenname: Yao
  surname: Xiao
  fullname: Xiao, Yao
  organization: Center for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
– sequence: 2
  givenname: Bo
  surname: Zeng
  fullname: Zeng, Bo
  organization: Department of Bioinformatics, Wissenschaftszentrum, Weihenstephan, Maximus-von-Imhof-Forum 3, Freising 85354, Germany
– sequence: 3
  givenname: Nicola
  surname: Berner
  fullname: Berner, Nicola
  organization: Center for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
– sequence: 4
  givenname: Dmitrij
  surname: Frishman
  fullname: Frishman, Dmitrij
  organization: Department of Bioinformatics, Wissenschaftszentrum, Weihenstephan, Maximus-von-Imhof-Forum 3, Freising 85354, Germany
– sequence: 5
  givenname: Dieter
  surname: Langosch
  fullname: Langosch, Dieter
  organization: Center for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
– sequence: 6
  givenname: Mark George
  surname: Teese
  fullname: Teese, Mark George
  email: mark.teese@tum.de
  organization: Center for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
BookMark eNp9kc1q3TAQhU1JadI0L9CVl93YGUm2bEEplJA2gUA37VroZ5zI2JIr6V6at49ubijNptqM0Mz5xJzzvjrxwWNVfSTQEiD8cm5N0nNLgUILogXWv6nOKABpgA1w8s_9tLpIaYZyRsIFg3fVKWMUBCVwVunrPxtGt6LPaqktZoyr8yq74GvlbW1VVo2Nbo--3iJaZ55bYaofwhry4-ZMnaPyacVVl4q1Datyvna-oCZlMH2o3k5qSXjxUs-rX9-uf17dNHc_vt9efb1rTCfG3PBhnMigei5G2wtGcaJC624A0mlqwOAIggiGo6ZE9FZQYRAHppXoUXNk7Ly6PXJtULPcylIqPsqgnHx-CPFeqpidWVBCP42dtUJzxrpihlATndigOBWoBVWF9eXI2nZ6RWuKPVEtr6CvO949yPuwlwPvBAdaAJ9eADH83mHKcnXJ4LIUi8IuSdpx2hE6dKKM0uOoiSGliNPfbwjIQ9Zyloes5SFrCUKWrIvo81GExdG9wyiTcehNSSiiyWVl9z_5E9SQtKM
CitedBy_id crossref_primary_10_1038_s41467_023_38317_8
crossref_primary_10_1016_j_ygeno_2022_110462
crossref_primary_10_1016_j_bbamem_2021_183712
crossref_primary_10_3390_membranes11070512
crossref_primary_10_1007_s12551_023_01098_x
crossref_primary_10_1016_j_ooc_2023_100033
Cites_doi 10.1016/j.jmb.2010.06.062
10.1016/j.febslet.2005.05.071
10.1021/acs.biochem.5b00495
10.1016/j.jmb.2008.10.058
10.1016/j.cell.2012.04.012
10.1006/jmbi.2001.5353
10.1021/ja303483k
10.1016/j.celrep.2019.03.017
10.1110/ps.ps.10501
10.1002/prot.20766
10.1016/j.bbamem.2016.11.017
10.1016/j.jmb.2009.11.054
10.1186/s12859-015-0677-y
10.1016/j.jmb.2007.09.056
10.1016/j.febslet.2014.08.031
10.1002/pro.5560070423
10.1186/1472-6807-6-13
10.1128/JVI.02052-13
10.1007/s10822-017-0047-0
10.1002/pmic.200900258
10.1021/bi400222r
10.1093/bioinformatics/18.suppl_1.S71
10.1073/pnas.96.3.863
10.1186/1471-2105-10-312
10.1093/nar/gks1169
10.7554/eLife.12125
10.1006/jmbi.2001.5007
10.7554/eLife.03430
10.1073/pnas.97.11.5796
10.1016/j.abb.2014.07.031
10.1021/acs.biochem.5b01239
10.1006/jmbi.1996.0595
10.1371/journal.pone.0177866
10.1002/pro.713
10.1073/pnas.0501234102
10.1002/prot.25419
10.1016/j.jmb.2006.09.065
10.1016/j.jmb.2004.06.042
10.1002/prot.22850
10.1016/j.jmb.2009.12.023
10.1021/ja505017f
10.1186/1471-2105-15-85
10.1093/bioinformatics/btt645
10.1074/jbc.M603233200
10.1371/journal.pcbi.1007318
10.1074/jbc.M206287200
10.1016/j.jmb.2004.08.083
10.1016/j.jmb.2006.10.029
10.1186/1471-2148-8-327
10.1002/pro.5560020106
10.1093/protein/gzh072
10.1093/bioinformatics/btt247
10.1016/j.jsb.2019.02.009
10.1016/j.jmb.2004.09.011
10.1074/jbc.M314168200
10.1093/bioinformatics/bth143
10.1073/pnas.1319944111
10.1074/jbc.M400847200
10.1093/bioinformatics/btm515
10.1006/jmbi.1999.3488
10.1126/science.276.5309.131
10.1038/ncomms8196
10.1021/bi00166a002
10.1007/s10994-006-6226-1
10.1016/j.sbi.2010.10.003
10.1371/journal.pone.0028766
10.1016/j.jmb.2005.09.084
10.1016/j.bpj.2010.08.031
10.1016/j.str.2015.01.009
10.1073/pnas.1111471108
10.1073/pnas.161280798
10.1146/annurev.bb.15.060186.001541
10.1002/prot.22859
10.1016/j.cell.2019.02.001
10.1016/j.jsb.2016.02.005
10.1110/ps.03323604
10.1021/bi010357v
10.1021/bi701066h
10.1186/1471-2105-12-244
10.1002/pro.154
10.1002/prot.22194
10.1073/pnas.0702515104
10.1073/pnas.0605878103
10.1111/febs.13793
10.1016/j.chemphyslip.2009.07.009
10.1126/scisignal.2000547
10.1016/j.jmb.2016.09.005
ContentType Journal Article
Copyright 2020 The Author(s)
2020 The Author(s) 2020
Copyright_xml – notice: 2020 The Author(s)
– notice: 2020 The Author(s) 2020
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.csbj.2020.09.035
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2001-0370
EndPage 3242
ExternalDocumentID oai_doaj_org_article_05f84dd9b63343329af2f37a629eb92a
10_1016_j_csbj_2020_09_035
S2001037020304190
GroupedDBID 0R~
0SF
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
KQ8
M41
M48
M~E
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
AAHBH
AAYXX
ADVLN
AKRWK
CITATION
7X8
5PM
ID FETCH-LOGICAL-c498t-678f17a5698d5932ef29bb47014b2c0ce809193e8b2195d929cee73ba95eb6e33
IEDL.DBID RPM
ISSN 2001-0370
IngestDate Tue Oct 22 15:12:00 EDT 2024
Tue Sep 17 20:49:35 EDT 2024
Thu Jul 25 09:15:12 EDT 2024
Fri Aug 23 00:59:27 EDT 2024
Sat Sep 09 15:40:42 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords TMD interactions
Co-evolution
Protein-protein interaction
Transmembrane
GxxxG
Machine learning
Language English
License This is an open access article under the CC BY license.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c498t-678f17a5698d5932ef29bb47014b2c0ce809193e8b2195d929cee73ba95eb6e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649602/
PMID 33209210
PQID 2462412749
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_05f84dd9b63343329af2f37a629eb92a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7649602
proquest_miscellaneous_2462412749
crossref_primary_10_1016_j_csbj_2020_09_035
elsevier_sciencedirect_doi_10_1016_j_csbj_2020_09_035
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Computational and structural biotechnology journal
PublicationYear 2020
Publisher Elsevier B.V
Research Network of Computational and Structural Biotechnology
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Research Network of Computational and Structural Biotechnology
– name: Elsevier
References Polyansky, Volynsky, Efremov (b0200) 2012; 134
Lawrie, Sulistijo, MacKenzie (b0310) 2010; 396
Ried, Scharnagl, Langosch (b0315) 2016; 55
Donnelly, Overington, Ruffle, Nugent, Blundell (b0385) 1993; 2
Caffrey, Somaroo, Hughes, Mintseris, Huang (b0340) 2004; 13
Polyansky, Chugunov, Volynsky, Krylov, Nolde (b0205) 2014; 30
Bowie (b0410) 2011; 21
Eyre, Partridge, Thornton (b0390) 2004; 17
Weinstein, Elazar, Fleishman (b0230) 2019; 15
Finger, Escher, Schneider (b0185) 2009; 2
Geurts, Ernst, Wehenkel (b0375) 2006; 63
MacKenzie, Prestegard, Engelman (b0125) 1997; 276
Hopf, Colwell, Sheridan, Rost, Sander (b0350) 2012; 149
Steindorf D, Schneider D (2017) In vivo selection of heterotypically interacting transmembrane helices: Complementary helix surfaces, rather than conserved interaction motifs, drive formation of transmembrane hetero-dimers. Biochim Biophys Acta Biomembr 1859(2):245-56. http://dx.doi.org/https://doi.org/10.1016/j.bbamem.2016.11.017.
Zhang, Kulp, Schramm, Mravic, Samish (b0060) 2015; 23
Marks, Colwell, Sheridan, Hopf, Pagnani (b0070) 2011; 6
Fuchs, Martin-Galiano, Kalman, Fleishman, Ben-Tal (b0355) 2007; 23
Elazar A, Weinstein J, Biran I, Fridman Y, Bibi E, et al. (2016) Mutational scanning reveals the determinants of protein insertion and association energetics in the plasma membrane. eLife 5:e12125. http://dx.doi.org/10.7554/eLife.12125.
Lomize AL, Pogozheva ID (2017) TMDOCK: An energy-based method for modeling α-helical dimers in membranes. J Mol Biol 429(3):390-8. http://dx.doi.org/https://doi.org/10.1016/j.jmb.2016.09.005.
Bocharov, Mineev, Pavlov, Akimov, Kuznetsov (b0015) 1859; 4
Pan L, Fu T-M, Zhao W, Zhao L, Chen W, et al. (2019) Higher-order clustering of the transmembrane anchor of DR5 drives signaling. Cell 176(6):1477-89.e14. http://dx.doi.org/10.1016/j.cell.2019.02.001.
Fuchs, Kirschner, Frishman (b0430) 2009; 74
Smith, Song, Shekar, Groesbeek, Ziliox (b0090) 2001; 40
Sulistijo, MacKenzie (b0330) 2006; 364
Wang, Barth (b0215) 2015; 6
Barth, Schonbrun, Baker (b0240) 2007; 104
Illergard, Kauko, Elofsson (b0395) 2011; 79
Kaján, Hopf, Kalaš, Marks, Rost (b0455) 2014; 15
Hopf TA, Schärfe CPI, Rodrigues JPGLM, Green AG, Kohlbacher O, et al. (2014) Sequence co-evolution gives 3D contacts and structures of protein complexes. eLife 3:e03430. http://dx.doi.org/10.7554/eLife.03430.
Khadria, Mueller, Stefely, Tan, Pagliarini (b0320) 2014; 136
Noordeen, Carafoli, Hohenester, Horton, Leitinger (b0275) 2006; 281
Eilers, Shekar, Shieh, Smith, Fleming (b0085) 2000; 97
Leeds, Boyd, Huber, Sonoda, Luu (b0165) 2001; 313
Plotkowski, Kim, Phillips, Partridge, Deber (b0305) 2007; 46
Quint, Widmaier, Minde, Hornburg, Langosch (b0425) 2010; 99
Fagerberg, Jonasson, von Heijne, Uhlén, Berglund (b0005) 2010; 10
Cho H, Stanzione F, Oak A, Kim GH, Yerneni S, et al. (2019) Intrinsic structural features of the human IRE1α transmembrane domain sense membrane lipid saturation. Cell Rep 27(1):307-20.e5. http://dx.doi.org/10.1016/j.celrep.2019.03.017.
Lensink, Wodak (b0260) 2010; 78
Ridder, Skupjen, Unterreitmeier, Langosch (b0145) 2005; 354
Zhu, Metcalf, Streu, Billings, DeGrado (b0285) 2010; 401
Kohlway, Pirakitikulr, Barrera, Potapova, Engelman (b0325) 2014; 88
Doura, Fleming (b0105) 2004; 343
Mueller, Subramaniam, Senes (b0210) 2014; 111
Dawson, Weinger, Engelman (b0135) 2002; 316
Unterreitmeier, Fuchs, Schäffler, Heym, Frishman (b0150) 2007; 374
Xue, Dobbs, Honavar (b0345) 2011; 12
Cao, Ng, Jusoh, Tai, Siu (b0225) 2017; 31
Bordag, Keller (b0415) 2010; 163
Hönigschmid, Frishman (b0420) 2016; 194
Li, Wimley (b0370) 1818; 2
Teixeira, Mendenhall, Heinze, Weiner, Skwark (b0080) 2017; 12
Senes, Gerstein, Engelman (b0170) 2000; 296
Senes, Ubarretxena-Belandia, Engelman (b0095) 2001; 98
Li, Gorelik, Nanda, Law, Lear (b0290) 2004; 279
Barwe, Kim, Rajasekaran, Bowie, Rajasekaran (b0190) 2007; 365
Langosch, Arkin (b0380) 2009; 18
Morcos, Pagnani, Lunt, Bertolino, Marks (b0075) 2011; 108
Walters, DeGrado (b0055) 2006; 103
Lemmon MA, Flanagan JM, Treutlein HR, Zhang J, Engelman DM (1992) Sequence specificity in the dimerization of transmembrane α-helices. Biochemistry 31(51):12719-25. http://dx.doi.org/­10.1021/bi00166a002.
Herrmann, Panitz, Unterreitmeier, Fuchs, Frishman (b0160) 2009; 385
Langosch, Brosig, Kolmar, Fritz (b0025) 1996; 263
Avila-Herrera, Pollard (b0365) 2015; 16
Bugge, Lindorff-Larsen, Kragelund (b0010) 2016; 283
Kozma, Simon, Tusnády (b0335) 2013; 41
Chin, Sachs, Engelman (b0195) 2005; 579
Gerber, Sal-Man, Shai (b0280) 2004; 279
LaPointe, Taylor, Subramaniam, Khadria, Rayment (b0295) 2013; 52
Valley, Lewis (b0020) 1859; 9
Schneider, Engelman (b0140) 2004; 343
Engelman, Steitz, Goldman (b0450) 1986; 15
Kim, Jeon, Oberai, Yang, Schmidt (b0130) 2005; 102
Hong (b0100) 2014; 564
Wei, Liu, Hu, Zuo, Kai (b0300) 2011; 20
Herrmann, Fuchs, Panitz, Eckert, Unterreitmeier (b0155) 2010; 396
Schneider, Engelman (b0040) 2003; 278
Zeng B, Hönigschmid P, Frishman D (2019) Residue co-evolution helps predict interaction sites in α-helical membrane proteins. J Struct Biol 206(2):156-69. http://dx.doi.org/https://doi.org/10.1016/j.jsb.2019.02.009.
Stevens, Arkin (b0045) 2001; 10
Adamian, Liang (b0235) 2006; 6
Beuming, Weinstein (b0050) 2004; 20
Kirrbach, Krugliak, Ried, Pagel, Arkin (b0175) 2013; 29
Asadabadi, Abdolmaleki (b0250) 2013; 5
Pupko, Bell, Mayrose, Glaser, Ben-Tal (b0445) 2002; 18
Brosig, Langosch (b0115) 1998; 7
Chellgren, Creamer (b0405) 2005; 62
Caporaso, Smit, Easton, Hunter, Huttley (b0360) 2008; 8
Louppe, Wehenkel, Sutera, Geurts (b0460) 2013; 1
Russ, Engelman (b0030) 1999; 96
Doura, Kobus, Dubrovsky, Hibbard, Fleming (b0110) 2004; 341
Mineev, Goncharuk, Arseniev (b0435) 2014; 588
Bordner (b0255) 2009; 10
Lensink, Velankar, Baek, Heo, Seok (b0265) 2018; 86
Teese, Langosch (b0180) 2015; 54
Illergard (10.1016/j.csbj.2020.09.035_b0395) 2011; 79
Eilers (10.1016/j.csbj.2020.09.035_b0085) 2000; 97
Zhang (10.1016/j.csbj.2020.09.035_b0060) 2015; 23
Brosig (10.1016/j.csbj.2020.09.035_b0115) 1998; 7
Ridder (10.1016/j.csbj.2020.09.035_b0145) 2005; 354
Cao (10.1016/j.csbj.2020.09.035_b0225) 2017; 31
Hong (10.1016/j.csbj.2020.09.035_b0100) 2014; 564
Langosch (10.1016/j.csbj.2020.09.035_b0025) 1996; 263
Lensink (10.1016/j.csbj.2020.09.035_b0260) 2010; 78
Wei (10.1016/j.csbj.2020.09.035_b0300) 2011; 20
Xue (10.1016/j.csbj.2020.09.035_b0345) 2011; 12
Teixeira (10.1016/j.csbj.2020.09.035_b0080) 2017; 12
Unterreitmeier (10.1016/j.csbj.2020.09.035_b0150) 2007; 374
Li (10.1016/j.csbj.2020.09.035_b0370) 1818; 2
Lensink (10.1016/j.csbj.2020.09.035_b0265) 2018; 86
10.1016/j.csbj.2020.09.035_b0220
Fagerberg (10.1016/j.csbj.2020.09.035_b0005) 2010; 10
Quint (10.1016/j.csbj.2020.09.035_b0425) 2010; 99
10.1016/j.csbj.2020.09.035_b0065
Asadabadi (10.1016/j.csbj.2020.09.035_b0250) 2013; 5
Stevens (10.1016/j.csbj.2020.09.035_b0045) 2001; 10
Marks (10.1016/j.csbj.2020.09.035_b0070) 2011; 6
Doura (10.1016/j.csbj.2020.09.035_b0110) 2004; 341
Kim (10.1016/j.csbj.2020.09.035_b0130) 2005; 102
Plotkowski (10.1016/j.csbj.2020.09.035_b0305) 2007; 46
Finger (10.1016/j.csbj.2020.09.035_b0185) 2009; 2
Geurts (10.1016/j.csbj.2020.09.035_b0375) 2006; 63
Ried (10.1016/j.csbj.2020.09.035_b0315) 2016; 55
Mineev (10.1016/j.csbj.2020.09.035_b0435) 2014; 588
Senes (10.1016/j.csbj.2020.09.035_b0095) 2001; 98
Fuchs (10.1016/j.csbj.2020.09.035_b0355) 2007; 23
Kirrbach (10.1016/j.csbj.2020.09.035_b0175) 2013; 29
Mueller (10.1016/j.csbj.2020.09.035_b0210) 2014; 111
Schneider (10.1016/j.csbj.2020.09.035_b0040) 2003; 278
Doura (10.1016/j.csbj.2020.09.035_b0105) 2004; 343
10.1016/j.csbj.2020.09.035_b0400
Wang (10.1016/j.csbj.2020.09.035_b0215) 2015; 6
Hopf (10.1016/j.csbj.2020.09.035_b0350) 2012; 149
Fuchs (10.1016/j.csbj.2020.09.035_b0430) 2009; 74
Caporaso (10.1016/j.csbj.2020.09.035_b0360) 2008; 8
Louppe (10.1016/j.csbj.2020.09.035_b0460) 2013; 1
Russ (10.1016/j.csbj.2020.09.035_b0030) 1999; 96
Chin (10.1016/j.csbj.2020.09.035_b0195) 2005; 579
Eyre (10.1016/j.csbj.2020.09.035_b0390) 2004; 17
Avila-Herrera (10.1016/j.csbj.2020.09.035_b0365) 2015; 16
Chellgren (10.1016/j.csbj.2020.09.035_b0405) 2005; 62
Bordag (10.1016/j.csbj.2020.09.035_b0415) 2010; 163
Smith (10.1016/j.csbj.2020.09.035_b0090) 2001; 40
Barth (10.1016/j.csbj.2020.09.035_b0240) 2007; 104
Khadria (10.1016/j.csbj.2020.09.035_b0320) 2014; 136
Engelman (10.1016/j.csbj.2020.09.035_b0450) 1986; 15
Hönigschmid (10.1016/j.csbj.2020.09.035_b0420) 2016; 194
Kaján (10.1016/j.csbj.2020.09.035_b0455) 2014; 15
Herrmann (10.1016/j.csbj.2020.09.035_b0155) 2010; 396
Teese (10.1016/j.csbj.2020.09.035_b0180) 2015; 54
10.1016/j.csbj.2020.09.035_b0440
Senes (10.1016/j.csbj.2020.09.035_b0170) 2000; 296
Polyansky (10.1016/j.csbj.2020.09.035_b0205) 2014; 30
Leeds (10.1016/j.csbj.2020.09.035_b0165) 2001; 313
10.1016/j.csbj.2020.09.035_b0245
10.1016/j.csbj.2020.09.035_b0120
MacKenzie (10.1016/j.csbj.2020.09.035_b0125) 1997; 276
Zhu (10.1016/j.csbj.2020.09.035_b0285) 2010; 401
Langosch (10.1016/j.csbj.2020.09.035_b0380) 2009; 18
Bugge (10.1016/j.csbj.2020.09.035_b0010) 2016; 283
Weinstein (10.1016/j.csbj.2020.09.035_b0230) 2019; 15
LaPointe (10.1016/j.csbj.2020.09.035_b0295) 2013; 52
Kozma (10.1016/j.csbj.2020.09.035_b0335) 2013; 41
Herrmann (10.1016/j.csbj.2020.09.035_b0160) 2009; 385
Lawrie (10.1016/j.csbj.2020.09.035_b0310) 2010; 396
Li (10.1016/j.csbj.2020.09.035_b0290) 2004; 279
Adamian (10.1016/j.csbj.2020.09.035_b0235) 2006; 6
Dawson (10.1016/j.csbj.2020.09.035_b0135) 2002; 316
Bordner (10.1016/j.csbj.2020.09.035_b0255) 2009; 10
Noordeen (10.1016/j.csbj.2020.09.035_b0275) 2006; 281
Valley (10.1016/j.csbj.2020.09.035_b0020) 1859; 9
Beuming (10.1016/j.csbj.2020.09.035_b0050) 2004; 20
Barwe (10.1016/j.csbj.2020.09.035_b0190) 2007; 365
Gerber (10.1016/j.csbj.2020.09.035_b0280) 2004; 279
Schneider (10.1016/j.csbj.2020.09.035_b0140) 2004; 343
Bocharov (10.1016/j.csbj.2020.09.035_b0015) 1859; 4
Bowie (10.1016/j.csbj.2020.09.035_b0410) 2011; 21
Walters (10.1016/j.csbj.2020.09.035_b0055) 2006; 103
10.1016/j.csbj.2020.09.035_b0270
Donnelly (10.1016/j.csbj.2020.09.035_b0385) 1993; 2
Kohlway (10.1016/j.csbj.2020.09.035_b0325) 2014; 88
10.1016/j.csbj.2020.09.035_b0035
Pupko (10.1016/j.csbj.2020.09.035_b0445) 2002; 18
Morcos (10.1016/j.csbj.2020.09.035_b0075) 2011; 108
Sulistijo (10.1016/j.csbj.2020.09.035_b0330) 2006; 364
Caffrey (10.1016/j.csbj.2020.09.035_b0340) 2004; 13
Polyansky (10.1016/j.csbj.2020.09.035_b0200) 2012; 134
References_xml – volume: 30
  start-page: 889
  year: 2014
  end-page: 890
  ident: b0205
  article-title: PREDDIMER: A web server for prediction of transmembrane helical dimers
  publication-title: Bioinformatics
  contributor:
    fullname: Nolde
– volume: 86
  start-page: 257
  year: 2018
  end-page: 273
  ident: b0265
  article-title: The challenge of modeling protein assemblies: the CASP12-CAPRI experiment
  publication-title: Proteins Struct Funct Bioinformat
  contributor:
    fullname: Seok
– volume: 279
  start-page: 26666
  year: 2004
  end-page: 26673
  ident: b0290
  article-title: Dimerization of the transmembrane domain of integrin αIIb subunit in cell membranes
  publication-title: J Biol Chem
  contributor:
    fullname: Lear
– volume: 13
  start-page: 190
  year: 2004
  end-page: 202
  ident: b0340
  article-title: Are protein-protein interfaces more conserved in sequence than the rest of the protein surface?
  publication-title: Protein Sci
  contributor:
    fullname: Huang
– volume: 364
  start-page: 974
  year: 2006
  end-page: 990
  ident: b0330
  article-title: Sequence dependence of BNIP3 transmembrane domain dimerization implicates side-chain hydrogen bonding and a tandem GxxxG motif in specific helix-helix interactions
  publication-title: J Mol Biol
  contributor:
    fullname: MacKenzie
– volume: 8
  start-page: 327
  year: 2008
  ident: b0360
  article-title: Detecting coevolution without phylogenetic trees? Tree-ignorant metrics of coevolution perform as well as tree-aware metrics
  publication-title: BMC Evol Biol
  contributor:
    fullname: Huttley
– volume: 354
  start-page: 894
  year: 2005
  end-page: 902
  ident: b0145
  article-title: Tryptophan supports interaction of transmembrane helices
  publication-title: J Mol Biol
  contributor:
    fullname: Langosch
– volume: 1
  start-page: 431
  year: 2013
  end-page: 439
  ident: b0460
  article-title: Understanding variable importances in forests of randomized trees
  publication-title: Adv Neur Inform Proc Syst
  contributor:
    fullname: Geurts
– volume: 278
  start-page: 3105
  year: 2003
  end-page: 3111
  ident: b0040
  article-title: GALLEX, a measurement of heterologous association of transmembrane helices in a biological membrane
  publication-title: J Biol Chem
  contributor:
    fullname: Engelman
– volume: 29
  start-page: 1623
  year: 2013
  end-page: 1630
  ident: b0175
  article-title: Self-interaction of transmembrane helices representing pre-clusters from the human single-span membrane proteins
  publication-title: Bioinformatics
  contributor:
    fullname: Arkin
– volume: 15
  start-page: 85
  year: 2014
  ident: b0455
  article-title: FreeContact: Fast and free software for protein contact prediction from residue co-evolution
  publication-title: BMC Bioinf
  contributor:
    fullname: Rost
– volume: 99
  start-page: 2541
  year: 2010
  end-page: 2549
  ident: b0425
  article-title: Residue-specific side-chain packing determines the backbone dynamics of transmembrane model helices
  publication-title: Biophys J
  contributor:
    fullname: Langosch
– volume: 18
  start-page: S71
  year: 2002
  end-page: S77
  ident: b0445
  article-title: Rate4Site: An algorithmic tool for the identification of functional regions in proteins by surface mapping of evolutionary determinants within their homologues
  publication-title: Bioinformatics
  contributor:
    fullname: Ben-Tal
– volume: 18
  start-page: 1343
  year: 2009
  end-page: 1358
  ident: b0380
  article-title: Interaction and conformational dynamics of membrane-spanning protein helices
  publication-title: Protein Sci
  contributor:
    fullname: Arkin
– volume: 54
  start-page: 5125
  year: 2015
  end-page: 5135
  ident: b0180
  article-title: Role of GxxxG motifs in transmembrane domain interactions
  publication-title: Biochemistry
  contributor:
    fullname: Langosch
– volume: 15
  year: 2019
  ident: b0230
  article-title: A lipophilicity-based energy function for membrane-protein modelling and design
  publication-title: PLoS Comput Biol
  contributor:
    fullname: Fleishman
– volume: 12
  year: 2017
  ident: b0080
  article-title: Membrane protein contact and structure prediction using co-evolution in conjunction with machine learning
  publication-title: PLoS ONE
  contributor:
    fullname: Skwark
– volume: 136
  start-page: 14068
  year: 2014
  end-page: 14077
  ident: b0320
  article-title: A gly-zipper motif mediates homodimerization of the transmembrane domain of the mitochondrial kinase ADCK3
  publication-title: J Am Chem Soc
  contributor:
    fullname: Pagliarini
– volume: 2
  start-page: 55
  year: 1993
  end-page: 70
  ident: b0385
  article-title: Modeling α-helical transmembrane domains: The calculation and use of substitution tables for lipid-facing residues
  publication-title: Protein Sci
  contributor:
    fullname: Blundell
– volume: 10
  start-page: 1141
  year: 2010
  end-page: 1149
  ident: b0005
  article-title: Prediction of the human membrane proteome
  publication-title: Proteomics
  contributor:
    fullname: Berglund
– volume: 88
  start-page: 628
  year: 2014
  end-page: 642
  ident: b0325
  article-title: Hepatitis C virus RNA replication and virus particle assembly require specific dimerization of the NS4A protein transmembrane domain
  publication-title: J Virol
  contributor:
    fullname: Engelman
– volume: 111
  start-page: E888
  year: 2014
  end-page: E895
  ident: b0210
  article-title: A frequent, GxxxG-mediated, transmembrane association motif is optimized for the formation of interhelical Cα-H hydrogen bonds
  publication-title: Proc Natl Acad Sci USA
  contributor:
    fullname: Senes
– volume: 96
  start-page: 863
  year: 1999
  end-page: 868
  ident: b0030
  article-title: TOXCAT: A measure of transmembrane helix association in a biological membrane
  publication-title: Proc Natl Acad Sci USA
  contributor:
    fullname: Engelman
– volume: 163
  start-page: 1
  year: 2010
  end-page: 26
  ident: b0415
  article-title: α-Helical transmembrane peptides: A “Divide and Conquer” approach to membrane proteins
  publication-title: Chem Phys Lipids
  contributor:
    fullname: Keller
– volume: 20
  start-page: 1814
  year: 2011
  end-page: 1823
  ident: b0300
  article-title: The dimerization interface of the glycoprotein Ibβ transmembrane domain corresponds to polar residues within a leucine zipper motif
  publication-title: Protein Sci
  contributor:
    fullname: Kai
– volume: 374
  start-page: 705
  year: 2007
  end-page: 718
  ident: b0150
  article-title: Phenylalanine promotes interaction of transmembrane domains via GxxxG motifs
  publication-title: J Mol Biol
  contributor:
    fullname: Frishman
– volume: 149
  start-page: 1607
  year: 2012
  end-page: 1621
  ident: b0350
  article-title: Three-dimensional structures of membrane proteins from genomic sequencing
  publication-title: Cell
  contributor:
    fullname: Sander
– volume: 4
  start-page: 561
  year: 1859
  end-page: 576
  ident: b0015
  article-title: (2017) Helix-helix interactions in membrane domains of bitopic proteins: Specificity and role of lipid environment
  publication-title: Biochim Biophys Acta, Biomembr
  contributor:
    fullname: Kuznetsov
– volume: 316
  start-page: 799
  year: 2002
  end-page: 805
  ident: b0135
  article-title: Motifs of serine and threonine can drive association of transmembrane helices
  publication-title: J Mol Biol
  contributor:
    fullname: Engelman
– volume: 103
  start-page: 13658
  year: 2006
  end-page: 13663
  ident: b0055
  article-title: Helix-packing motifs in membrane proteins
  publication-title: Proc Natl Acad Sci USA
  contributor:
    fullname: DeGrado
– volume: 2
  start-page: 183
  year: 1818
  end-page: 193
  ident: b0370
  article-title: Hristova K (2012) Transmembrane helix dimerization: Beyond the search for sequence motifs
  publication-title: Biochim Biophys Acta, Biomembr
  contributor:
    fullname: Wimley
– volume: 7
  start-page: 1052
  year: 1998
  end-page: 1056
  ident: b0115
  article-title: The dimerization motif of the glycophorin A transmembrane segment in membranes: Importance of glycine residues
  publication-title: Protein Sci
  contributor:
    fullname: Langosch
– volume: 97
  start-page: 5796
  year: 2000
  end-page: 5801
  ident: b0085
  article-title: Internal packing of helical membrane proteins
  publication-title: Proc Natl Acad Sci USA
  contributor:
    fullname: Fleming
– volume: 74
  start-page: 857
  year: 2009
  end-page: 871
  ident: b0430
  article-title: Prediction of helix-helix contacts and interacting helices in polytopic membrane proteins using neural networks
  publication-title: Proteins Struct Funct Bioinf
  contributor:
    fullname: Frishman
– volume: 20
  start-page: 1822
  year: 2004
  end-page: 1835
  ident: b0050
  article-title: A knowledge-based scale for the analysis and prediction of buried and exposed faces of transmembrane domain proteins
  publication-title: Bioinformatics
  contributor:
    fullname: Weinstein
– volume: 401
  start-page: 882
  year: 2010
  end-page: 891
  ident: b0285
  article-title: Specificity for homooligomer versus heterooligomer formation in integrin transmembrane helices
  publication-title: J Mol Biol
  contributor:
    fullname: DeGrado
– volume: 23
  start-page: 3312
  year: 2007
  end-page: 3319
  ident: b0355
  article-title: Co-evolving residues in membrane proteins
  publication-title: Bioinformatics
  contributor:
    fullname: Ben-Tal
– volume: 6
  year: 2011
  ident: b0070
  article-title: Protein 3D structure computed from evolutionary sequence variation
  publication-title: PLoS ONE
  contributor:
    fullname: Pagnani
– volume: 579
  start-page: 3855
  year: 2005
  end-page: 3858
  ident: b0195
  article-title: Transmembrane homodimerization of receptor-like protein tyrosine phosphatases
  publication-title: FEBS Lett
  contributor:
    fullname: Engelman
– volume: 343
  start-page: 1487
  year: 2004
  end-page: 1497
  ident: b0105
  article-title: Complex interactions at the helix-helix interface stabilize the glycophorin A transmembrane dimer
  publication-title: J Mol Biol
  contributor:
    fullname: Fleming
– volume: 46
  start-page: 12164
  year: 2007
  end-page: 12173
  ident: b0305
  article-title: Transmembrane domain of myelin protein zero can form dimers: Possible implications for myelin construction
  publication-title: Biochemistry
  contributor:
    fullname: Deber
– volume: 79
  start-page: 79
  year: 2011
  end-page: 91
  ident: b0395
  article-title: Why are polar residues within the membrane core evolutionary conserved?
  publication-title: Proteins Struct Funct Bioinformat
  contributor:
    fullname: Elofsson
– volume: 55
  start-page: 1287
  year: 2016
  end-page: 1290
  ident: b0315
  article-title: Entrapment of water at the transmembrane helix-helix Interface of Quiescin Sulfhydryl Oxidase 2
  publication-title: Biochemistry
  contributor:
    fullname: Langosch
– volume: 108
  start-page: E1293
  year: 2011
  end-page: E1301
  ident: b0075
  article-title: Direct-coupling analysis of residue coevolution captures native contacts across many protein families
  publication-title: Proc Natl Acad Sci USA
  contributor:
    fullname: Marks
– volume: 63
  start-page: 3
  year: 2006
  end-page: 42
  ident: b0375
  article-title: Extremely randomized trees
  publication-title: Machine Learning
  contributor:
    fullname: Wehenkel
– volume: 10
  start-page: 312
  year: 2009
  ident: b0255
  article-title: Predicting protein-protein binding sites in membrane proteins
  publication-title: BMC Bioinf
  contributor:
    fullname: Bordner
– volume: 396
  start-page: 924
  year: 2010
  end-page: 936
  ident: b0310
  article-title: Intermonomer hydrogen bonds enhance GxxxG-driven dimerization of the BNIP3 transmembrane domain: Roles for sequence context in helix-helix association in membranes
  publication-title: J Mol Biol
  contributor:
    fullname: MacKenzie
– volume: 365
  start-page: 706
  year: 2007
  end-page: 714
  ident: b0190
  article-title: Janus model of the Na, K-ATPase β-subunit transmembrane domain: distinct faces mediate α/β assembly and β-β homo-oligomerization
  publication-title: J Mol Biol
  contributor:
    fullname: Rajasekaran
– volume: 23
  start-page: 527
  year: 2015
  end-page: 541
  ident: b0060
  article-title: The membrane- and soluble-protein helix-helix interactome: Similar geometry via different interactions
  publication-title: Structure
  contributor:
    fullname: Samish
– volume: 283
  start-page: 4424
  year: 2016
  end-page: 4451
  ident: b0010
  article-title: Understanding single-pass transmembrane receptor signaling from a structural viewpoint—what are we missing?
  publication-title: FEBS J
  contributor:
    fullname: Kragelund
– volume: 341
  start-page: 991
  year: 2004
  end-page: 998
  ident: b0110
  article-title: Sequence context modulates the stability of a GxxxG-mediated transmembrane helix-helix dimer
  publication-title: J Mol Biol
  contributor:
    fullname: Fleming
– volume: 31
  start-page: 855
  year: 2017
  end-page: 865
  ident: b0225
  article-title: TMDIM: an improved algorithm for the structure prediction of transmembrane domains of bitopic dimers
  publication-title: J Comput Aided Mol Des
  contributor:
    fullname: Siu
– volume: 16
  start-page: 268
  year: 2015
  ident: b0365
  article-title: Coevolutionary analyses require phylogenetically deep alignments and better null models to accurately detect inter-protein contacts within and between species
  publication-title: BMC Bioinf
  contributor:
    fullname: Pollard
– volume: 134
  start-page: 14390
  year: 2012
  end-page: 14400
  ident: b0200
  article-title: Multistate organization of transmembrane helical protein dimers governed by the host membrane
  publication-title: J Am Chem Soc
  contributor:
    fullname: Efremov
– volume: 104
  start-page: 15682
  year: 2007
  end-page: 15687
  ident: b0240
  article-title: Toward high-resolution prediction and design of transmembrane helical protein structures
  publication-title: Proc Natl Acad Sci USA
  contributor:
    fullname: Baker
– volume: 15
  start-page: 321
  year: 1986
  end-page: 353
  ident: b0450
  article-title: Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins
  publication-title: Annu Rev Biophys Biophys Chem
  contributor:
    fullname: Goldman
– volume: 276
  start-page: 131
  year: 1997
  end-page: 133
  ident: b0125
  article-title: Transmembrane helix dimer: Structure and implications
  publication-title: Science
  contributor:
    fullname: Engelman
– volume: 263
  start-page: 525
  year: 1996
  end-page: 530
  ident: b0025
  article-title: Dimerisation of the glycophorin A transmembrane segment in membranes probed with the ToxR transcription activator
  publication-title: J Mol Biol
  contributor:
    fullname: Fritz
– volume: 6
  start-page: 7196
  year: 2015
  ident: b0215
  article-title: Evolutionary-guided de novo structure prediction of self-associated transmembrane helical proteins with near-atomic accuracy
  publication-title: Nat Comms
  contributor:
    fullname: Barth
– volume: 52
  start-page: 2574
  year: 2013
  end-page: 2585
  ident: b0295
  article-title: Structural organization of FtsB, a transmembrane protein of the bacterial divisome
  publication-title: Biochemistry
  contributor:
    fullname: Rayment
– volume: 194
  start-page: 112
  year: 2016
  end-page: 123
  ident: b0420
  article-title: Accurate prediction of helix interactions and residue contacts in membrane proteins
  publication-title: J Struct Biol
  contributor:
    fullname: Frishman
– volume: 5
  start-page: 148
  year: 2013
  end-page: 157
  ident: b0250
  article-title: Predictions of protein-protein Interfaces within membrane protein complexes
  publication-title: Avicenna J Med Biotechnol
  contributor:
    fullname: Abdolmaleki
– volume: 78
  start-page: 3085
  year: 2010
  end-page: 3095
  ident: b0260
  article-title: Blind predictions of protein interfaces by docking calculations in CAPRI
  publication-title: Proteins Struct Funct Bioinformat
  contributor:
    fullname: Wodak
– volume: 10
  start-page: 2507
  year: 2001
  end-page: 2517
  ident: b0045
  article-title: Substitution rates in α-helical transmembrane proteins
  publication-title: Protein Sci
  contributor:
    fullname: Arkin
– volume: 12
  start-page: 244
  year: 2011
  ident: b0345
  article-title: HomPPI: a class of sequence homology based protein-protein interface prediction methods
  publication-title: BMC Bioinf
  contributor:
    fullname: Honavar
– volume: 21
  start-page: 42
  year: 2011
  end-page: 49
  ident: b0410
  article-title: Membrane protein folding: how important are hydrogen bonds?
  publication-title: Curr Opin Struct Biol
  contributor:
    fullname: Bowie
– volume: 588
  start-page: 3802
  year: 2014
  end-page: 3807
  ident: b0435
  article-title: Toll-like receptor 3 transmembrane domain is able to perform various homotypic interactions: An NMR structural study
  publication-title: FEBS Lett
  contributor:
    fullname: Arseniev
– volume: 296
  start-page: 921
  year: 2000
  end-page: 936
  ident: b0170
  article-title: Statistical analysis of amino acid patterns in transmembrane helices: The GxxxG motif occurs frequently and association with β-branched residues at neighboring positions
  publication-title: J Mol Biol
  contributor:
    fullname: Engelman
– volume: 2
  start-page: 89
  year: 2009
  ident: b0185
  article-title: The single transmembrane domains of human receptor tyrosine kinases encode self-interactions
  publication-title: Sci Signaling
  contributor:
    fullname: Schneider
– volume: 396
  start-page: 452
  year: 2010
  end-page: 461
  ident: b0155
  article-title: Ionic interactions promote transmembrane helix-helix association depending on sequence context
  publication-title: J Mol Biol
  contributor:
    fullname: Unterreitmeier
– volume: 281
  start-page: 22744
  year: 2006
  end-page: 22751
  ident: b0275
  article-title: A transmembrane leucine zipper is required for activation of the dimeric receptor tyrosine kinase DDR1
  publication-title: J Biol Chem
  contributor:
    fullname: Leitinger
– volume: 385
  start-page: 912
  year: 2009
  end-page: 923
  ident: b0160
  article-title: Complex patterns of histidine, hydroxylated amino acids and the GxxxG motif mediate high-affinity transmembrane domain interactions
  publication-title: J Mol Biol
  contributor:
    fullname: Frishman
– volume: 279
  start-page: 21177
  year: 2004
  end-page: 21182
  ident: b0280
  article-title: Two motifs within a transmembrane domain, one for homodimerization and the other for heterodimerization
  publication-title: J Biol Chem
  contributor:
    fullname: Shai
– volume: 98
  start-page: 9056
  year: 2001
  end-page: 9061
  ident: b0095
  article-title: The Cα-H···O hydrogen bond: A determinant of stability and specificity in transmembrane helix interactions
  publication-title: Proc Natl Acad Sci USA
  contributor:
    fullname: Engelman
– volume: 62
  start-page: 411
  year: 2005
  end-page: 420
  ident: b0405
  article-title: Side-chain entropy effects on protein secondary structure formation
  publication-title: Proteins Struct Funct Bioinformat
  contributor:
    fullname: Creamer
– volume: 9
  start-page: 1398
  year: 1859
  end-page: 1416
  ident: b0020
  article-title: Sachs JN (2017) Piecing it together: Unraveling the elusive structure-function relationship in single-pass membrane receptors
  publication-title: Biochim Biophys Acta, Biomembr
  contributor:
    fullname: Lewis
– volume: 40
  start-page: 6553
  year: 2001
  end-page: 6558
  ident: b0090
  article-title: Structure of the transmembrane dimer interface of glycophorin A in membrane bilayers
  publication-title: Biochemistry
  contributor:
    fullname: Ziliox
– volume: 564
  start-page: 297
  year: 2014
  end-page: 313
  ident: b0100
  article-title: Toward understanding driving forces in membrane protein folding
  publication-title: Arch Biochem Biophys
  contributor:
    fullname: Hong
– volume: 17
  start-page: 613
  year: 2004
  end-page: 624
  ident: b0390
  article-title: Computational analysis of α-helical membrane protein structure: implications for the prediction of 3D structural models
  publication-title: Protein Eng Des Sel
  contributor:
    fullname: Thornton
– volume: 6
  start-page: 13
  year: 2006
  ident: b0235
  article-title: Prediction of transmembrane helix orientation in polytopic membrane proteins
  publication-title: BMC Struct Biol
  contributor:
    fullname: Liang
– volume: 313
  start-page: 181
  year: 2001
  end-page: 195
  ident: b0165
  article-title: Genetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random
  publication-title: J Mol Biol
  contributor:
    fullname: Luu
– volume: 102
  start-page: 14278
  year: 2005
  end-page: 14283
  ident: b0130
  article-title: Transmembrane glycine zippers: Physiological and pathological roles in membrane proteins
  publication-title: Proc Natl Acad Sci USA
  contributor:
    fullname: Schmidt
– volume: 41
  year: 2013
  ident: b0335
  article-title: PDBTM: Protein data bank of transmembrane proteins after 8 years
  publication-title: Nucleic Acids Res
  contributor:
    fullname: Tusnády
– volume: 343
  start-page: 799
  year: 2004
  end-page: 804
  ident: b0140
  article-title: Motifs of two small residues can assist but are not sufficient to mediate transmembrane helix interactions
  publication-title: J Mol Biol
  contributor:
    fullname: Engelman
– volume: 401
  start-page: 882
  issue: 5
  year: 2010
  ident: 10.1016/j.csbj.2020.09.035_b0285
  article-title: Specificity for homooligomer versus heterooligomer formation in integrin transmembrane helices
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2010.06.062
  contributor:
    fullname: Zhu
– volume: 579
  start-page: 3855
  issue: 17
  year: 2005
  ident: 10.1016/j.csbj.2020.09.035_b0195
  article-title: Transmembrane homodimerization of receptor-like protein tyrosine phosphatases
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2005.05.071
  contributor:
    fullname: Chin
– volume: 54
  start-page: 5125
  issue: 33
  year: 2015
  ident: 10.1016/j.csbj.2020.09.035_b0180
  article-title: Role of GxxxG motifs in transmembrane domain interactions
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.5b00495
  contributor:
    fullname: Teese
– volume: 1
  start-page: 431
  year: 2013
  ident: 10.1016/j.csbj.2020.09.035_b0460
  article-title: Understanding variable importances in forests of randomized trees
  publication-title: Adv Neur Inform Proc Syst
  contributor:
    fullname: Louppe
– volume: 385
  start-page: 912
  issue: 3
  year: 2009
  ident: 10.1016/j.csbj.2020.09.035_b0160
  article-title: Complex patterns of histidine, hydroxylated amino acids and the GxxxG motif mediate high-affinity transmembrane domain interactions
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2008.10.058
  contributor:
    fullname: Herrmann
– volume: 149
  start-page: 1607
  issue: 7
  year: 2012
  ident: 10.1016/j.csbj.2020.09.035_b0350
  article-title: Three-dimensional structures of membrane proteins from genomic sequencing
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.012
  contributor:
    fullname: Hopf
– volume: 316
  start-page: 799
  issue: 3
  year: 2002
  ident: 10.1016/j.csbj.2020.09.035_b0135
  article-title: Motifs of serine and threonine can drive association of transmembrane helices
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2001.5353
  contributor:
    fullname: Dawson
– volume: 134
  start-page: 14390
  issue: 35
  year: 2012
  ident: 10.1016/j.csbj.2020.09.035_b0200
  article-title: Multistate organization of transmembrane helical protein dimers governed by the host membrane
  publication-title: J Am Chem Soc
  doi: 10.1021/ja303483k
  contributor:
    fullname: Polyansky
– ident: 10.1016/j.csbj.2020.09.035_b0270
  doi: 10.1016/j.celrep.2019.03.017
– volume: 10
  start-page: 2507
  issue: 12
  year: 2001
  ident: 10.1016/j.csbj.2020.09.035_b0045
  article-title: Substitution rates in α-helical transmembrane proteins
  publication-title: Protein Sci
  doi: 10.1110/ps.ps.10501
  contributor:
    fullname: Stevens
– volume: 62
  start-page: 411
  issue: 2
  year: 2005
  ident: 10.1016/j.csbj.2020.09.035_b0405
  article-title: Side-chain entropy effects on protein secondary structure formation
  publication-title: Proteins Struct Funct Bioinformat
  doi: 10.1002/prot.20766
  contributor:
    fullname: Chellgren
– ident: 10.1016/j.csbj.2020.09.035_b0400
  doi: 10.1016/j.bbamem.2016.11.017
– volume: 396
  start-page: 452
  issue: 2
  year: 2010
  ident: 10.1016/j.csbj.2020.09.035_b0155
  article-title: Ionic interactions promote transmembrane helix-helix association depending on sequence context
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2009.11.054
  contributor:
    fullname: Herrmann
– volume: 16
  start-page: 268
  year: 2015
  ident: 10.1016/j.csbj.2020.09.035_b0365
  article-title: Coevolutionary analyses require phylogenetically deep alignments and better null models to accurately detect inter-protein contacts within and between species
  publication-title: BMC Bioinf
  doi: 10.1186/s12859-015-0677-y
  contributor:
    fullname: Avila-Herrera
– volume: 374
  start-page: 705
  issue: 3
  year: 2007
  ident: 10.1016/j.csbj.2020.09.035_b0150
  article-title: Phenylalanine promotes interaction of transmembrane domains via GxxxG motifs
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2007.09.056
  contributor:
    fullname: Unterreitmeier
– volume: 588
  start-page: 3802
  issue: 21
  year: 2014
  ident: 10.1016/j.csbj.2020.09.035_b0435
  article-title: Toll-like receptor 3 transmembrane domain is able to perform various homotypic interactions: An NMR structural study
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2014.08.031
  contributor:
    fullname: Mineev
– volume: 7
  start-page: 1052
  issue: 4
  year: 1998
  ident: 10.1016/j.csbj.2020.09.035_b0115
  article-title: The dimerization motif of the glycophorin A transmembrane segment in membranes: Importance of glycine residues
  publication-title: Protein Sci
  doi: 10.1002/pro.5560070423
  contributor:
    fullname: Brosig
– volume: 6
  start-page: 13
  year: 2006
  ident: 10.1016/j.csbj.2020.09.035_b0235
  article-title: Prediction of transmembrane helix orientation in polytopic membrane proteins
  publication-title: BMC Struct Biol
  doi: 10.1186/1472-6807-6-13
  contributor:
    fullname: Adamian
– volume: 88
  start-page: 628
  issue: 1
  year: 2014
  ident: 10.1016/j.csbj.2020.09.035_b0325
  article-title: Hepatitis C virus RNA replication and virus particle assembly require specific dimerization of the NS4A protein transmembrane domain
  publication-title: J Virol
  doi: 10.1128/JVI.02052-13
  contributor:
    fullname: Kohlway
– volume: 31
  start-page: 855
  issue: 9
  year: 2017
  ident: 10.1016/j.csbj.2020.09.035_b0225
  article-title: TMDIM: an improved algorithm for the structure prediction of transmembrane domains of bitopic dimers
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0047-0
  contributor:
    fullname: Cao
– volume: 10
  start-page: 1141
  issue: 6
  year: 2010
  ident: 10.1016/j.csbj.2020.09.035_b0005
  article-title: Prediction of the human membrane proteome
  publication-title: Proteomics
  doi: 10.1002/pmic.200900258
  contributor:
    fullname: Fagerberg
– volume: 52
  start-page: 2574
  issue: 15
  year: 2013
  ident: 10.1016/j.csbj.2020.09.035_b0295
  article-title: Structural organization of FtsB, a transmembrane protein of the bacterial divisome
  publication-title: Biochemistry
  doi: 10.1021/bi400222r
  contributor:
    fullname: LaPointe
– volume: 18
  start-page: S71
  issue: Suppl 1
  year: 2002
  ident: 10.1016/j.csbj.2020.09.035_b0445
  article-title: Rate4Site: An algorithmic tool for the identification of functional regions in proteins by surface mapping of evolutionary determinants within their homologues
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.suppl_1.S71
  contributor:
    fullname: Pupko
– volume: 96
  start-page: 863
  issue: 3
  year: 1999
  ident: 10.1016/j.csbj.2020.09.035_b0030
  article-title: TOXCAT: A measure of transmembrane helix association in a biological membrane
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.96.3.863
  contributor:
    fullname: Russ
– volume: 10
  start-page: 312
  year: 2009
  ident: 10.1016/j.csbj.2020.09.035_b0255
  article-title: Predicting protein-protein binding sites in membrane proteins
  publication-title: BMC Bioinf
  doi: 10.1186/1471-2105-10-312
  contributor:
    fullname: Bordner
– volume: 2
  start-page: 183
  year: 1818
  ident: 10.1016/j.csbj.2020.09.035_b0370
  article-title: Hristova K (2012) Transmembrane helix dimerization: Beyond the search for sequence motifs
  publication-title: Biochim Biophys Acta, Biomembr
  contributor:
    fullname: Li
– volume: 41
  issue: D1
  year: 2013
  ident: 10.1016/j.csbj.2020.09.035_b0335
  article-title: PDBTM: Protein data bank of transmembrane proteins after 8 years
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1169
  contributor:
    fullname: Kozma
– ident: 10.1016/j.csbj.2020.09.035_b0035
  doi: 10.7554/eLife.12125
– volume: 313
  start-page: 181
  issue: 1
  year: 2001
  ident: 10.1016/j.csbj.2020.09.035_b0165
  article-title: Genetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random Escherichia coli genomic library
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2001.5007
  contributor:
    fullname: Leeds
– ident: 10.1016/j.csbj.2020.09.035_b0065
  doi: 10.7554/eLife.03430
– volume: 97
  start-page: 5796
  issue: 11
  year: 2000
  ident: 10.1016/j.csbj.2020.09.035_b0085
  article-title: Internal packing of helical membrane proteins
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.97.11.5796
  contributor:
    fullname: Eilers
– volume: 564
  start-page: 297
  year: 2014
  ident: 10.1016/j.csbj.2020.09.035_b0100
  article-title: Toward understanding driving forces in membrane protein folding
  publication-title: Arch Biochem Biophys
  doi: 10.1016/j.abb.2014.07.031
  contributor:
    fullname: Hong
– volume: 55
  start-page: 1287
  issue: 9
  year: 2016
  ident: 10.1016/j.csbj.2020.09.035_b0315
  article-title: Entrapment of water at the transmembrane helix-helix Interface of Quiescin Sulfhydryl Oxidase 2
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.5b01239
  contributor:
    fullname: Ried
– volume: 263
  start-page: 525
  issue: 4
  year: 1996
  ident: 10.1016/j.csbj.2020.09.035_b0025
  article-title: Dimerisation of the glycophorin A transmembrane segment in membranes probed with the ToxR transcription activator
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1996.0595
  contributor:
    fullname: Langosch
– volume: 12
  issue: 5
  year: 2017
  ident: 10.1016/j.csbj.2020.09.035_b0080
  article-title: Membrane protein contact and structure prediction using co-evolution in conjunction with machine learning
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0177866
  contributor:
    fullname: Teixeira
– volume: 20
  start-page: 1814
  issue: 11
  year: 2011
  ident: 10.1016/j.csbj.2020.09.035_b0300
  article-title: The dimerization interface of the glycoprotein Ibβ transmembrane domain corresponds to polar residues within a leucine zipper motif
  publication-title: Protein Sci
  doi: 10.1002/pro.713
  contributor:
    fullname: Wei
– volume: 102
  start-page: 14278
  issue: 40
  year: 2005
  ident: 10.1016/j.csbj.2020.09.035_b0130
  article-title: Transmembrane glycine zippers: Physiological and pathological roles in membrane proteins
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0501234102
  contributor:
    fullname: Kim
– volume: 86
  start-page: 257
  year: 2018
  ident: 10.1016/j.csbj.2020.09.035_b0265
  article-title: The challenge of modeling protein assemblies: the CASP12-CAPRI experiment
  publication-title: Proteins Struct Funct Bioinformat
  doi: 10.1002/prot.25419
  contributor:
    fullname: Lensink
– volume: 364
  start-page: 974
  issue: 5
  year: 2006
  ident: 10.1016/j.csbj.2020.09.035_b0330
  article-title: Sequence dependence of BNIP3 transmembrane domain dimerization implicates side-chain hydrogen bonding and a tandem GxxxG motif in specific helix-helix interactions
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2006.09.065
  contributor:
    fullname: Sulistijo
– volume: 341
  start-page: 991
  issue: 4
  year: 2004
  ident: 10.1016/j.csbj.2020.09.035_b0110
  article-title: Sequence context modulates the stability of a GxxxG-mediated transmembrane helix-helix dimer
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2004.06.042
  contributor:
    fullname: Doura
– volume: 78
  start-page: 3085
  issue: 15
  year: 2010
  ident: 10.1016/j.csbj.2020.09.035_b0260
  article-title: Blind predictions of protein interfaces by docking calculations in CAPRI
  publication-title: Proteins Struct Funct Bioinformat
  doi: 10.1002/prot.22850
  contributor:
    fullname: Lensink
– volume: 396
  start-page: 924
  issue: 4
  year: 2010
  ident: 10.1016/j.csbj.2020.09.035_b0310
  article-title: Intermonomer hydrogen bonds enhance GxxxG-driven dimerization of the BNIP3 transmembrane domain: Roles for sequence context in helix-helix association in membranes
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2009.12.023
  contributor:
    fullname: Lawrie
– volume: 136
  start-page: 14068
  issue: 40
  year: 2014
  ident: 10.1016/j.csbj.2020.09.035_b0320
  article-title: A gly-zipper motif mediates homodimerization of the transmembrane domain of the mitochondrial kinase ADCK3
  publication-title: J Am Chem Soc
  doi: 10.1021/ja505017f
  contributor:
    fullname: Khadria
– volume: 15
  start-page: 85
  issue: 1
  year: 2014
  ident: 10.1016/j.csbj.2020.09.035_b0455
  article-title: FreeContact: Fast and free software for protein contact prediction from residue co-evolution
  publication-title: BMC Bioinf
  doi: 10.1186/1471-2105-15-85
  contributor:
    fullname: Kaján
– volume: 30
  start-page: 889
  issue: 6
  year: 2014
  ident: 10.1016/j.csbj.2020.09.035_b0205
  article-title: PREDDIMER: A web server for prediction of transmembrane helical dimers
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt645
  contributor:
    fullname: Polyansky
– volume: 281
  start-page: 22744
  issue: 32
  year: 2006
  ident: 10.1016/j.csbj.2020.09.035_b0275
  article-title: A transmembrane leucine zipper is required for activation of the dimeric receptor tyrosine kinase DDR1
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M603233200
  contributor:
    fullname: Noordeen
– volume: 15
  issue: 8
  year: 2019
  ident: 10.1016/j.csbj.2020.09.035_b0230
  article-title: A lipophilicity-based energy function for membrane-protein modelling and design
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1007318
  contributor:
    fullname: Weinstein
– volume: 278
  start-page: 3105
  issue: 5
  year: 2003
  ident: 10.1016/j.csbj.2020.09.035_b0040
  article-title: GALLEX, a measurement of heterologous association of transmembrane helices in a biological membrane
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M206287200
  contributor:
    fullname: Schneider
– volume: 343
  start-page: 799
  issue: 4
  year: 2004
  ident: 10.1016/j.csbj.2020.09.035_b0140
  article-title: Motifs of two small residues can assist but are not sufficient to mediate transmembrane helix interactions
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2004.08.083
  contributor:
    fullname: Schneider
– volume: 365
  start-page: 706
  issue: 3
  year: 2007
  ident: 10.1016/j.csbj.2020.09.035_b0190
  article-title: Janus model of the Na, K-ATPase β-subunit transmembrane domain: distinct faces mediate α/β assembly and β-β homo-oligomerization
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2006.10.029
  contributor:
    fullname: Barwe
– volume: 8
  start-page: 327
  issue: 1
  year: 2008
  ident: 10.1016/j.csbj.2020.09.035_b0360
  article-title: Detecting coevolution without phylogenetic trees? Tree-ignorant metrics of coevolution perform as well as tree-aware metrics
  publication-title: BMC Evol Biol
  doi: 10.1186/1471-2148-8-327
  contributor:
    fullname: Caporaso
– volume: 2
  start-page: 55
  issue: 1
  year: 1993
  ident: 10.1016/j.csbj.2020.09.035_b0385
  article-title: Modeling α-helical transmembrane domains: The calculation and use of substitution tables for lipid-facing residues
  publication-title: Protein Sci
  doi: 10.1002/pro.5560020106
  contributor:
    fullname: Donnelly
– volume: 17
  start-page: 613
  issue: 8
  year: 2004
  ident: 10.1016/j.csbj.2020.09.035_b0390
  article-title: Computational analysis of α-helical membrane protein structure: implications for the prediction of 3D structural models
  publication-title: Protein Eng Des Sel
  doi: 10.1093/protein/gzh072
  contributor:
    fullname: Eyre
– volume: 29
  start-page: 1623
  issue: 13
  year: 2013
  ident: 10.1016/j.csbj.2020.09.035_b0175
  article-title: Self-interaction of transmembrane helices representing pre-clusters from the human single-span membrane proteins
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt247
  contributor:
    fullname: Kirrbach
– ident: 10.1016/j.csbj.2020.09.035_b0245
  doi: 10.1016/j.jsb.2019.02.009
– volume: 343
  start-page: 1487
  issue: 5
  year: 2004
  ident: 10.1016/j.csbj.2020.09.035_b0105
  article-title: Complex interactions at the helix-helix interface stabilize the glycophorin A transmembrane dimer
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2004.09.011
  contributor:
    fullname: Doura
– volume: 279
  start-page: 26666
  issue: 25
  year: 2004
  ident: 10.1016/j.csbj.2020.09.035_b0290
  article-title: Dimerization of the transmembrane domain of integrin αIIb subunit in cell membranes
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M314168200
  contributor:
    fullname: Li
– volume: 20
  start-page: 1822
  issue: 12
  year: 2004
  ident: 10.1016/j.csbj.2020.09.035_b0050
  article-title: A knowledge-based scale for the analysis and prediction of buried and exposed faces of transmembrane domain proteins
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth143
  contributor:
    fullname: Beuming
– volume: 111
  start-page: E888
  issue: 10
  year: 2014
  ident: 10.1016/j.csbj.2020.09.035_b0210
  article-title: A frequent, GxxxG-mediated, transmembrane association motif is optimized for the formation of interhelical Cα-H hydrogen bonds
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1319944111
  contributor:
    fullname: Mueller
– volume: 5
  start-page: 148
  issue: 3
  year: 2013
  ident: 10.1016/j.csbj.2020.09.035_b0250
  article-title: Predictions of protein-protein Interfaces within membrane protein complexes
  publication-title: Avicenna J Med Biotechnol
  contributor:
    fullname: Asadabadi
– volume: 279
  start-page: 21177
  issue: 20
  year: 2004
  ident: 10.1016/j.csbj.2020.09.035_b0280
  article-title: Two motifs within a transmembrane domain, one for homodimerization and the other for heterodimerization
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M400847200
  contributor:
    fullname: Gerber
– volume: 23
  start-page: 3312
  issue: 24
  year: 2007
  ident: 10.1016/j.csbj.2020.09.035_b0355
  article-title: Co-evolving residues in membrane proteins
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm515
  contributor:
    fullname: Fuchs
– volume: 296
  start-page: 921
  issue: 3
  year: 2000
  ident: 10.1016/j.csbj.2020.09.035_b0170
  article-title: Statistical analysis of amino acid patterns in transmembrane helices: The GxxxG motif occurs frequently and association with β-branched residues at neighboring positions
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1999.3488
  contributor:
    fullname: Senes
– volume: 276
  start-page: 131
  issue: 5309
  year: 1997
  ident: 10.1016/j.csbj.2020.09.035_b0125
  article-title: Transmembrane helix dimer: Structure and implications
  publication-title: Science
  doi: 10.1126/science.276.5309.131
  contributor:
    fullname: MacKenzie
– volume: 4
  start-page: 561
  year: 1859
  ident: 10.1016/j.csbj.2020.09.035_b0015
  article-title: (2017) Helix-helix interactions in membrane domains of bitopic proteins: Specificity and role of lipid environment
  publication-title: Biochim Biophys Acta, Biomembr
  contributor:
    fullname: Bocharov
– volume: 6
  start-page: 7196
  year: 2015
  ident: 10.1016/j.csbj.2020.09.035_b0215
  article-title: Evolutionary-guided de novo structure prediction of self-associated transmembrane helical proteins with near-atomic accuracy
  publication-title: Nat Comms
  doi: 10.1038/ncomms8196
  contributor:
    fullname: Wang
– ident: 10.1016/j.csbj.2020.09.035_b0120
  doi: 10.1021/bi00166a002
– volume: 63
  start-page: 3
  issue: 1
  year: 2006
  ident: 10.1016/j.csbj.2020.09.035_b0375
  article-title: Extremely randomized trees
  publication-title: Machine Learning
  doi: 10.1007/s10994-006-6226-1
  contributor:
    fullname: Geurts
– volume: 21
  start-page: 42
  issue: 1
  year: 2011
  ident: 10.1016/j.csbj.2020.09.035_b0410
  article-title: Membrane protein folding: how important are hydrogen bonds?
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2010.10.003
  contributor:
    fullname: Bowie
– volume: 6
  issue: 12
  year: 2011
  ident: 10.1016/j.csbj.2020.09.035_b0070
  article-title: Protein 3D structure computed from evolutionary sequence variation
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0028766
  contributor:
    fullname: Marks
– volume: 354
  start-page: 894
  issue: 4
  year: 2005
  ident: 10.1016/j.csbj.2020.09.035_b0145
  article-title: Tryptophan supports interaction of transmembrane helices
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2005.09.084
  contributor:
    fullname: Ridder
– volume: 99
  start-page: 2541
  issue: 8
  year: 2010
  ident: 10.1016/j.csbj.2020.09.035_b0425
  article-title: Residue-specific side-chain packing determines the backbone dynamics of transmembrane model helices
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2010.08.031
  contributor:
    fullname: Quint
– volume: 23
  start-page: 527
  issue: 3
  year: 2015
  ident: 10.1016/j.csbj.2020.09.035_b0060
  article-title: The membrane- and soluble-protein helix-helix interactome: Similar geometry via different interactions
  publication-title: Structure
  doi: 10.1016/j.str.2015.01.009
  contributor:
    fullname: Zhang
– volume: 108
  start-page: E1293
  issue: 49
  year: 2011
  ident: 10.1016/j.csbj.2020.09.035_b0075
  article-title: Direct-coupling analysis of residue coevolution captures native contacts across many protein families
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1111471108
  contributor:
    fullname: Morcos
– volume: 98
  start-page: 9056
  issue: 16
  year: 2001
  ident: 10.1016/j.csbj.2020.09.035_b0095
  article-title: The Cα-H···O hydrogen bond: A determinant of stability and specificity in transmembrane helix interactions
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.161280798
  contributor:
    fullname: Senes
– volume: 15
  start-page: 321
  year: 1986
  ident: 10.1016/j.csbj.2020.09.035_b0450
  article-title: Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins
  publication-title: Annu Rev Biophys Biophys Chem
  doi: 10.1146/annurev.bb.15.060186.001541
  contributor:
    fullname: Engelman
– volume: 79
  start-page: 79
  issue: 1
  year: 2011
  ident: 10.1016/j.csbj.2020.09.035_b0395
  article-title: Why are polar residues within the membrane core evolutionary conserved?
  publication-title: Proteins Struct Funct Bioinformat
  doi: 10.1002/prot.22859
  contributor:
    fullname: Illergard
– ident: 10.1016/j.csbj.2020.09.035_b0440
  doi: 10.1016/j.cell.2019.02.001
– volume: 194
  start-page: 112
  issue: 1
  year: 2016
  ident: 10.1016/j.csbj.2020.09.035_b0420
  article-title: Accurate prediction of helix interactions and residue contacts in membrane proteins
  publication-title: J Struct Biol
  doi: 10.1016/j.jsb.2016.02.005
  contributor:
    fullname: Hönigschmid
– volume: 13
  start-page: 190
  issue: 1
  year: 2004
  ident: 10.1016/j.csbj.2020.09.035_b0340
  article-title: Are protein-protein interfaces more conserved in sequence than the rest of the protein surface?
  publication-title: Protein Sci
  doi: 10.1110/ps.03323604
  contributor:
    fullname: Caffrey
– volume: 40
  start-page: 6553
  issue: 22
  year: 2001
  ident: 10.1016/j.csbj.2020.09.035_b0090
  article-title: Structure of the transmembrane dimer interface of glycophorin A in membrane bilayers
  publication-title: Biochemistry
  doi: 10.1021/bi010357v
  contributor:
    fullname: Smith
– volume: 46
  start-page: 12164
  issue: 43
  year: 2007
  ident: 10.1016/j.csbj.2020.09.035_b0305
  article-title: Transmembrane domain of myelin protein zero can form dimers: Possible implications for myelin construction
  publication-title: Biochemistry
  doi: 10.1021/bi701066h
  contributor:
    fullname: Plotkowski
– volume: 12
  start-page: 244
  issue: 1
  year: 2011
  ident: 10.1016/j.csbj.2020.09.035_b0345
  article-title: HomPPI: a class of sequence homology based protein-protein interface prediction methods
  publication-title: BMC Bioinf
  doi: 10.1186/1471-2105-12-244
  contributor:
    fullname: Xue
– volume: 18
  start-page: 1343
  issue: 7
  year: 2009
  ident: 10.1016/j.csbj.2020.09.035_b0380
  article-title: Interaction and conformational dynamics of membrane-spanning protein helices
  publication-title: Protein Sci
  doi: 10.1002/pro.154
  contributor:
    fullname: Langosch
– volume: 74
  start-page: 857
  issue: 4
  year: 2009
  ident: 10.1016/j.csbj.2020.09.035_b0430
  article-title: Prediction of helix-helix contacts and interacting helices in polytopic membrane proteins using neural networks
  publication-title: Proteins Struct Funct Bioinf
  doi: 10.1002/prot.22194
  contributor:
    fullname: Fuchs
– volume: 104
  start-page: 15682
  issue: 40
  year: 2007
  ident: 10.1016/j.csbj.2020.09.035_b0240
  article-title: Toward high-resolution prediction and design of transmembrane helical protein structures
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0702515104
  contributor:
    fullname: Barth
– volume: 103
  start-page: 13658
  issue: 37
  year: 2006
  ident: 10.1016/j.csbj.2020.09.035_b0055
  article-title: Helix-packing motifs in membrane proteins
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0605878103
  contributor:
    fullname: Walters
– volume: 283
  start-page: 4424
  issue: 24
  year: 2016
  ident: 10.1016/j.csbj.2020.09.035_b0010
  article-title: Understanding single-pass transmembrane receptor signaling from a structural viewpoint—what are we missing?
  publication-title: FEBS J
  doi: 10.1111/febs.13793
  contributor:
    fullname: Bugge
– volume: 9
  start-page: 1398
  year: 1859
  ident: 10.1016/j.csbj.2020.09.035_b0020
  article-title: Sachs JN (2017) Piecing it together: Unraveling the elusive structure-function relationship in single-pass membrane receptors
  publication-title: Biochim Biophys Acta, Biomembr
  contributor:
    fullname: Valley
– volume: 163
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.csbj.2020.09.035_b0415
  article-title: α-Helical transmembrane peptides: A “Divide and Conquer” approach to membrane proteins
  publication-title: Chem Phys Lipids
  doi: 10.1016/j.chemphyslip.2009.07.009
  contributor:
    fullname: Bordag
– volume: 2
  start-page: 89
  year: 2009
  ident: 10.1016/j.csbj.2020.09.035_b0185
  article-title: The single transmembrane domains of human receptor tyrosine kinases encode self-interactions
  publication-title: Sci Signaling
  doi: 10.1126/scisignal.2000547
  contributor:
    fullname: Finger
– ident: 10.1016/j.csbj.2020.09.035_b0220
  doi: 10.1016/j.jmb.2016.09.005
SSID ssj0000816930
Score 2.2189102
Snippet •Homotypic TMD interfaces identified by different techniques share strong similarities.•The GxxxG motif is the feature most strongly associated with...
• Homotypic TMD interfaces identified by different techniques share strong similarities. • The GxxxG motif is the feature most strongly associated with...
Interactions between their transmembrane domains (TMDs) frequently support the assembly of single-pass membrane proteins to non-covalent complexes. Yet, the...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Publisher
StartPage 3230
SubjectTerms Co-evolution
GxxxG
Machine learning
Protein-protein interaction
TMD interactions
Transmembrane
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-QwFA7iSQ_i6i476koEb1I2TZM2Oa6LIoKeFLyF_MQRpjOM48H_3veadmkv68VrW5r0vde87yVfvhByLksfma94kbR3hcBNXEqVsSgtYFcLAJZ1oj539_XNo7h9kk-jo76QE5blgbPhfjOZlAhBu7qqUGtL28RT1dia6-g0z9CI6VEx1Y3BCkVGcIKl5ww1rN8xk8ld_tW9QHHIWRY5lZOs1In3T5LTCHxOqZOjXHS9T_Z6EEn_5M5_I1uxPSC7I2nBQ-KuRtL9NAykF3QDtW2gyAwtwhrHOrpa42pNd2uZ6DPy895Xc083mMcWcQEFdRtpWC7svKWoL7FOSOT6Th6vrx7-3hT9eQqFF1ptCshLqWysrLUKEnBbTFw7Jxqokhz3zEcF4EFXUTkYxmQA4AQZtKmc1TK6OlbVD7LdLtv4k9BSQkOigdxeS-E9d54HDkDdJsuZiuWMXAz2NKssm2EGPtmLQesbtL5h2oD1Z-QSTf7vSZS87i5AIJg-EMxngTAjcnCY6dFDRgXwqvl_Gz8bvGvg18L1EjDq8u3VcFEDvoGyXc9IM3H7pKfTO-38uRPpbmoBxSE_-opPOyY72OE883NCtjfrt_gLsNDGnXZh_wFDHwfV
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcoED4imWAjISNxSUOHZiHyoEqFWFBCdW6s3yk27FJtvsVqL_npk8YCNVSBwTR3Y0Y3u-sT9_BngrCx9zX_Isae8yQYe4lCpiVljErhYBbN6L-nz9Vp0txZdzeX4A03VHowG3t6Z2dJ_Usvv5_tfVzQcc8Md_uVp-6y4x1-P5oFkq78BdLjBTJyrfCPf7mVmR9Agtu4xMojofz9HcXs0sVvWS_rOQtQdJ54TKvQh1-hAejNCSfRz6wiM4iM1juL8nOPgE3MmeoD8LExWGnMNsExjxRbPQ0QzINh3t4fRFbWIXxNq72aw821F0W8c1ptlNZKFd21XDSHWiS0TvegrL05Pvn8-y8ZaFzAutdhlGq1TUVlZaBYloLiaunRM15k6O-9xHhZBCl1E5nNxkQDiFcbUundUyuiqW5TM4bNomPgdWSGxI1BjxKym8587zwBG-22R5rmKxgHeTPc1mENMwE8vs0pD1DVnf5Nqg9RfwiUz-50sSwu5ftN0PM44rk8ukRAjaVWVJUmzaJp7K2lZcR6e5XYCcHGZGTDFgBaxq9c_G30zeNTjgaBcFjdpebw0XFaIeTOb1AuqZ22d_Oi9pVhe9dHddCUwZ-Yv_MsQR3KOnYeHnJRzuuuv4CqHQzr3u-_dv5v4IIw
  priority: 102
  providerName: Scholars Portal
Title Experimental determination and data-driven prediction of homotypic transmembrane domain interfaces
URI https://dx.doi.org/10.1016/j.csbj.2020.09.035
https://search.proquest.com/docview/2462412749
https://pubmed.ncbi.nlm.nih.gov/PMC7649602
https://doaj.org/article/05f84dd9b63343329af2f37a629eb92a
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXacoED4lMshZWRuKF0E38k9hFWrSqkLRyotOJi2Y5DtyLJKt0e-PedcRKUXDhwySFOYsvjeN7Yb54J-SgzH1LPWVJp7xKBSVxKZSHJLGBXCwA2jaI-m6v88lp83crtEZFjLkwk7Xu3O2t-12fN7iZyK_e1X408sdX3zbrIBQBvtjomxzBAJyF6nH4V6oukQ4JMz-Xyd-4WYkGW9pqmeFwN5yzVDBNnJ_4oyvbP3NIEds5JkxMvdPGMPB3gI_3cN_M5OQrNC_JkIir4krjziWg_LUe6CxqA2qakyAlNyg5nObrvcJ8mFrUVvUFm3p_9ztMDerA61BBKN4GWbW13DUVlia5CCtcrcn1x_mN9mQwnKSReaHVIwCNVWWFlrlUpAbGFimnnRAHxkWM-9UEBbNA8KAcTmCwBMoHvLLizWgaXB85fk5OmbcIbQjMJFYkCvHouhffMeVYygOi2sixVIVuQT2N_mn0vmGFGJtmtQUMYNIRJtQFDLMgX7PK_T6LYdbzRdr_MYHKTykqJstQu5xzl1rStWMULmzMdnGZ2QeRoMDPghh4PwKd2_6z8w2hdAz8V7pRAp7b3d4aJHJANBOx6QYqZ2WctnZfAaI3y3MPofPvfb56Sx9jKfqHnHTk5dPfhPUCfg1vGJQO4boRakkdX6-23n8s4_B8AassKMw
link.rule.ids 230,315,730,783,787,867,888,2109,24330,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQAH3ojlaSRuKLuOH0l8hKrVAt2KQ4t6s2zHblNIskqzB_j1jPNACQckuMZJHHvGnm_iz58Reiti64hlNPLSmoiHTVxZFrso1oBdNQBY0on6bE6S9Rn_dC7O95AY98J0pH1rimX1vVxWxWXHrdyWdjXyxFZfNgdpwgF409UNdBPGK-GTJL2bgLOgMEKGLTI9m8temyvIBinpVU3DgTWMUSJp2Do7iUidcP8sME2A55w2OYlDR_fQ17EFPf3k23LXmqX9-Ye44z838T66OyBT_L4vfoD2XPUQ3ZnoFT5C5nByHgDORyZNsC3WVY4D3TTKmzCB4m0TloC6otrjy0D6-7EtLG5DcCxdCVl65XBel7qocBCtaHxghz1GZ0eHpwfraDikIbJcZm0Ewc7HqRaJzHIBYNB5Ko3hKaRehlpiXQaIRDKXGZgbRQ5oDMJyyoyWwpnEMfYE7Vd15Z4iHAuoiKcAGBLBraXG0pwC-tdeU5K5eIHejYZS216LQ40ktSsVLKyChRWRCiy8QB-CLX_fGXS0uwt1c6GGrlZE-IznuTQJY0HJTWpPPUt1QqUzkuoFEqMnqAGS9FADXlX8tfI3o9soGK9hEQY6td5dK8oTAE005XKB0pk_zb50XgJe0il_D17x7L-ffI1urU83x-r448nn5-h2-OL-f9ILtN82O_cSEFZrXnXj6RfBlyin
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9UwELagSAgO7IjHaiRuKO85XpL4CKVPZWnVA5UqLpbt2DSFLErzDvDrGWdBCQcOvSZOYmfGnm-Sz98g9EbE1hHLaOSlNREPm7iyLHZRrAG7agCwpBf1OTpODk_5pzNxNiv11ZP2rSnW1c9yXRXnPbeyKe1m4oltTo7204QD8KabJveb6-gGzFmSzBL1fhHOgsoIGbfJDIwue2kuICOkZFA2DUVrGKNE0rB9dhaVevH-RXCagc8ldXIWi7Z30bdpFAMF5cd615m1_f2PwOOVhnkP3RkRKn43NLmPrrnqAbo90y18iMzBrC4AzidGTbAx1lWOA-00ytuwkOKmDb-C-lO1x-eB_PerKSzuQpAsXQnZeuVwXpe6qHAQr2h9YIk9Qqfbg6_7h9FYrCGyXGZdBEHPx6kWicxyAaDQeSqN4SmkYIZaYl0GyEQylxlYI0UOqAzCc8qMlsKZxDH2GO1VdeWeIBwLeBBPATgkgltLjaU5hSxAe01J5uIVejsZSzWDJoeayGoXKlhZBSsrIhVYeYXeB3v-bRn0tPsDdftdja9bEeEznufSJIwFRTepPfUs1QmVzkiqV0hM3qBGaDJADrhV8d-Hv55cR8G8DT9j4KXWu0tFeQLgiaZcrlC68KlFT5dnwFN6BfDRM55e-cpX6ObJh6368vH48zN0K3R4-Kz0HO117c69AKDVmZf9lPoD6NErJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+determination+and+data-driven+prediction+of+homotypic+transmembrane+domain+interfaces&rft.jtitle=Computational+and+structural+biotechnology+journal&rft.au=Xiao%2C+Yao&rft.au=Zeng%2C+Bo&rft.au=Berner%2C+Nicola&rft.au=Frishman%2C+Dmitrij&rft.date=2020-01-01&rft.issn=2001-0370&rft.eissn=2001-0370&rft.volume=18&rft.spage=3230&rft.epage=3242&rft_id=info:doi/10.1016%2Fj.csbj.2020.09.035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_csbj_2020_09_035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2001-0370&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2001-0370&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2001-0370&client=summon