Incorporation of ferromagnetic metallic films in planar transmission lines for microwave device applications

We constructed a series of microstrip and coplanar microwave waveguides. These structures use metallic ferromagnets and therefore exhibit strongly frequency-dependent attenuation and phase-shift effects. The lines have maximum attenuation peaks occurring at the ferromagnetic resonance frequency, whi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on magnetics Vol. 37; no. 4; pp. 2392 - 2394
Main Authors Cramer, N., Lucic, D., Walker, D.K., Camley, R.E., Celinski, Z.
Format Journal Article Conference Proceeding
LanguageEnglish
Published New York, NY IEEE 01.07.2001
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We constructed a series of microstrip and coplanar microwave waveguides. These structures use metallic ferromagnets and therefore exhibit strongly frequency-dependent attenuation and phase-shift effects. The lines have maximum attenuation peaks occurring at the ferromagnetic resonance frequency, which increases with applied magnetic field. Such properties are used in band-stop filters. The devices used monocrystalline Fe films grown by molecular beam epitaxy and polycrystalline sputtered permalloy films. For our devices that incorporated Fe the band-stop frequencies ranged from 10-20 GHz for applied fields up to only 80 kA/m (1000 Oersted). For devices using permalloy, the band-stop frequency was in the 5-10 GHz range for applied fields less than 80 kA/m. The maximum power attenuation was about 100 dB/cm, much larger than the previously reported values of 4 dB/cm. The resonance condition also affects the phase of the transmitted wave, strongly changing phase above and below the resonance frequency. The result is a phase-shifter that is tunable with applied magnetic field. We observed phase changes of over 360/spl deg//cm with an applied field of less than 40 kA/m.
AbstractList We constructed a series of microstrip and co-planar microwave waveguides, These structures use metallic ferromagnets and therefore exhibit strongly frequency-dependent attenuation and phase-shift effects. The lines have maximum attenuation peaks occurring at the ferromagnetic resonance frequency, which increases with applied magnetic field. Such properties are used in band-stop filters. The devices used monocrystalline Fe films grown by Molecular Beam Epitaxy and polycrystalline sputtered permalloy films. For our devices that incorporated Fe the band-stop frequencies ranged from 10-20 GHz for applied fields up to only 80 kA/m (1000 Oersted). For devices using permalloy, the band-stop frequency was in the 5-10 GHz range for applied fields less than 80 kA/m. The maximum power attenuation was about 100 dB/cm, much larger than the previously reported values of 4 dB/cm. The resonance condition also affects the phase of the transmitted wave, strongly changing phase above and below the resonance frequency. The result is a phase-shifter that is tunable with applied magnetic field. We observed phase changes of over 360 degree /cm with an applied field of less than 40 kA/m.
We constructed a series of microstrip and coplanar microwave waveguides. These structures use metallic ferromagnets and therefore exhibit strongly frequency-dependent attenuation and phase-shift effects. The lines have maximum attenuation peaks occurring at the ferromagnetic resonance frequency, which increases with applied magnetic field. Such properties are used in band-stop filters. The devices used monocrystalline Fe films grown by molecular beam epitaxy and polycrystalline sputtered permalloy films. For our devices that incorporated Fe the band-stop frequencies ranged from 10-20 GHz for applied fields up to only 80 kA/m (1000 Oersted). For devices using permalloy, the band-stop frequency was in the 5-10 GHz range for applied fields less than 80 kA/m. The maximum power attenuation was about 100 dB/cm, much larger than the previously reported values of 4 dB/cm. The resonance condition also affects the phase of the transmitted wave, strongly changing phase above and below the resonance frequency. The result is a phase-shifter that is tunable with applied magnetic field. We observed phase changes of over 360/spl deg//cm with an applied field of less than 40 kA/m.
We constructed a series of microstrip and coplanar microwave waveguides. These structures use metallic ferromagnets and therefore exhibit strongly frequency-dependent attenuation and phase-shift effects. The lines have maximum attenuation peaks occurring at the ferromagnetic resonance frequency, which increases with applied magnetic field. Such properties are used in band-stop filters. The devices used monocrystalline Fe films grown by molecular beam epitaxy and polycrystalline sputtered permalloy films. For our devices that incorporated Fe the band-stop frequencies ranged from 10-20 GHz for applied fields up to only 80 kA/m (1000 Oersted). For devices using permalloy, the band-stop frequency was in the 5-10 GHz range for applied fields less than 80 kA/m. The maximum power attenuation was about 100 dB/cm, much larger than the previously reported values of 4 dB/cm. The resonance condition also affects the phase of the transmitted wave, strongly changing phase above and below the resonance frequency. The result is a phase-shifter that is tunable with applied magnetic field. We observed phase changes of over 360 degree /cm with an applied field of less than 40 kA/m
We constructed a series of microstrip and coplanar microwave waveguides. These structures use metallic ferromagnets and therefore exhibit strongly frequency-dependent attenuation and phase-shift effects. The lines have maximum attenuation peaks occurring at the ferromagnetic resonance frequency, which increases with applied magnetic field. Such properties are used in band-stop filters. The devices used monocrystalline Fe films grown by molecular beam epitaxy and polycrystalline sputtered permalloy films. For our devices that incorporated Fe the band-stop frequencies ranged from 10-20 GHz for applied fields up to only 80 kA/m (1000 Oersted). For devices using permalloy, the band-stop frequency was in the 5-10 GHz range for applied fields less than 80 kA/m. The maximum power attenuation was about 100 dB/cm, much larger than the previously reported values of 4 dB/cm. The resonance condition also affects the phase of the transmitted wave, strongly changing phase above and below the resonance frequency. The result is a phase-shifter that is tunable with applied magnetic field. We observed phase changes of over 360 deg /cm with an applied field of less than 40 kA/m
Author Camley, R.E.
Cramer, N.
Celinski, Z.
Lucic, D.
Walker, D.K.
Author_xml – sequence: 1
  givenname: N.
  surname: Cramer
  fullname: Cramer, N.
  organization: Dept. of Phys., Colorado Univ., Colorado Springs, CO, USA
– sequence: 2
  givenname: D.
  surname: Lucic
  fullname: Lucic, D.
– sequence: 3
  givenname: D.K.
  surname: Walker
  fullname: Walker, D.K.
– sequence: 4
  givenname: R.E.
  surname: Camley
  fullname: Camley, R.E.
– sequence: 5
  givenname: Z.
  surname: Celinski
  fullname: Celinski, Z.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14098182$$DView record in Pascal Francis
BookMark eNqFkc9rFTEQx4NU8LV68OopFKp42JpMsmlylOKPQsGLPS952UlJySbbZF_F_9687sOCh3qaGebz_TI_jslRygkJecvZOefMfAJ2bnrONbwgG24k7xhT5ohsGOO6M1LJV-S41rtWyp6zDYlXyeUy52KXkBPNnnosJU_2NuESHJ1wsTG2xIc4VRoSnaNNttCl2FSnUOteFkPCSn0udAqu5F_2AemID8EhtfPc5I_u9TV56W2s-OYQT8jN1y8_L7931z--XV1-vu6cNHrplJSWa4_e96CE8ML2rq10oZweJdtundCcS2QAI4AdjYORXXiB_Z4b3VackA-r71zy_Q7rMrRBHcY2OeZdHQyXSomesUa-f5YELUEo0P8HlQYOum_g6T_gXd6V1NYdtJYaQBho0McVaseqtaAf5hImW34PnA37Pw7AhvWPjT07GNrqbPTt7i7UJ4FkRq_cu5ULiPi3fTD5Azj9p6M
CODEN IEMGAQ
CitedBy_id crossref_primary_10_1109_TMAG_2019_2894738
crossref_primary_10_1016_j_jmmm_2019_165412
crossref_primary_10_1063_1_3672843
crossref_primary_10_1063_1_1812360
crossref_primary_10_1063_1_3042231
crossref_primary_10_1063_1_4866235
crossref_primary_10_1063_1_1625424
crossref_primary_10_1088_0957_0233_14_5_307
crossref_primary_10_1016_j_jallcom_2024_174314
crossref_primary_10_1109_MMM_2022_3173468
crossref_primary_10_1109_TMAG_2008_2002432
crossref_primary_10_1143_JJAP_49_033004
crossref_primary_10_1063_1_2771083
crossref_primary_10_1063_1_5006293
crossref_primary_10_1016_j_jmmm_2008_04_125
crossref_primary_10_1063_1_2957066
crossref_primary_10_1109_TMAG_2009_2022491
crossref_primary_10_1109_TMAG_2003_815894
crossref_primary_10_1109_TMAG_2005_854725
Cites_doi 10.1063/1.92750
10.1063/1.366601
10.1063/1.340868
10.1109/MWSYM.1991.147168
10.1109/75.798029
10.1063/1.366144
10.1016/S0304-8853(96)00428-3
10.1063/1.372883
10.1109/5.4393
10.1109/20.801120
ContentType Journal Article
Conference Proceeding
Copyright 2002 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001
Copyright_xml – notice: 2002 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001
DBID RIA
RIE
IQODW
AAYXX
CITATION
7SP
7U5
8BQ
8FD
JG9
L7M
F28
FR3
DOI 10.1109/20.951182
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
Pascal-Francis
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Materials Research Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Materials Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Applied Sciences
EISSN 1941-0069
EndPage 2394
ExternalDocumentID 2433145281
10_1109_20_951182
14098182
951182
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TN5
TWZ
VH1
VJK
XXG
ABPTK
IQODW
XFK
AAYXX
CITATION
7SP
7U5
8BQ
8FD
JG9
L7M
F28
FR3
ID FETCH-LOGICAL-c498t-644a18feff52633f3a5c11876c8d40bbc38114e022d22ad9c2d07f3e5a5c1dcb3
IEDL.DBID RIE
ISSN 0018-9464
IngestDate Fri Aug 16 10:52:07 EDT 2024
Thu Aug 15 23:19:25 EDT 2024
Sat Aug 17 03:53:30 EDT 2024
Thu Oct 10 15:51:46 EDT 2024
Fri Aug 23 02:01:33 EDT 2024
Sun Oct 29 17:09:31 EDT 2023
Mon Nov 04 11:48:52 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords Ferromagnetic resonance
Microwave device
Coplanar technology
Theoretical study
Ferromagnetic materials
Microwave
Coplanar waveguides
Waveguide
Magnetic thin films
Thin film
Language English
License CC BY 4.0
LinkModel DirectLink
MeetingName Selected Papers from the Eighth Joint Magnetism and Magnetic Materials-International Magnetics Conference (MMM-Intermag), San Antonio, TX, January 7-11, 2001
MergedId FETCHMERGED-LOGICAL-c498t-644a18feff52633f3a5c11876c8d40bbc38114e022d22ad9c2d07f3e5a5c1dcb3
Notes SourceType-Scholarly Journals-2
ObjectType-Feature-2
ObjectType-Conference Paper-1
content type line 23
SourceType-Conference Papers & Proceedings-1
ObjectType-Article-3
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
OpenAccessLink https://doi.org/10.1109/20.951182
PQID 884822392
PQPubID 23500
PageCount 3
ParticipantIDs proquest_miscellaneous_26821285
proquest_miscellaneous_914663500
crossref_primary_10_1109_20_951182
proquest_journals_884822392
proquest_miscellaneous_28423628
ieee_primary_951182
pascalfrancis_primary_14098182
PublicationCentury 2000
PublicationDate 2001-07-01
PublicationDateYYYYMMDD 2001-07-01
PublicationDate_xml – month: 07
  year: 2001
  text: 2001-07-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on magnetics
PublicationTitleAbbrev TMAG
PublicationYear 2001
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref8
ref7
ref9
ref4
ref3
ref6
ref10
ref5
ref2
ref1
References_xml – ident: ref5
  doi: 10.1063/1.92750
– ident: ref7
  doi: 10.1063/1.366601
– ident: ref2
  doi: 10.1063/1.340868
– ident: ref9
  doi: 10.1109/MWSYM.1991.147168
– ident: ref4
  doi: 10.1109/75.798029
– ident: ref3
  doi: 10.1063/1.366144
– ident: ref6
  doi: 10.1016/S0304-8853(96)00428-3
– ident: ref8
  doi: 10.1063/1.372883
– ident: ref1
  doi: 10.1109/5.4393
– ident: ref10
  doi: 10.1109/20.801120
SSID ssj0014510
Score 1.7821276
Snippet We constructed a series of microstrip and coplanar microwave waveguides. These structures use metallic ferromagnets and therefore exhibit strongly...
We constructed a series of microstrip and co-planar microwave waveguides, These structures use metallic ferromagnets and therefore exhibit strongly...
SourceID proquest
crossref
pascalfrancis
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 2392
SubjectTerms Applied sciences
Attenuation
Coplanar waveguides
Devices
Electronics
Exact sciences and technology
Iron
Magnetic device characterization, design, and modeling
Magnetic devices
Magnetic fields
Magnetic films
Magnetic resonance
Magnetic separation
Magnetism
Microstrip
Microwave devices
Microwaves
Noise levels
Permalloy
Resonant frequency
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Title Incorporation of ferromagnetic metallic films in planar transmission lines for microwave device applications
URI https://ieeexplore.ieee.org/document/951182
https://www.proquest.com/docview/884822392
https://search.proquest.com/docview/26821285
https://search.proquest.com/docview/28423628
https://search.proquest.com/docview/914663500
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELcAaRJ7GNBtWoGBNe01nZPYqf04TSA2aTwNibfIcc4IrU2qJt0k_nru7LSDfaC9RclZSu4uvt_5vhh7LyxopT3NCFMykYUukirVPklzqxHtVsI7Oof8ellcXMkv1-p66LMdamEAICSfwYQuQyy_bt2Kjso-mACHt9n21JhYqrUJGEiVxmqTVNPUeDk0EUqFQfd-Ehc-Mj1hlgplQtoOmeHjFIs_NuRgZc73Yvl2F5oTUnLJ98mqrybu7rfWjf_5AfvsxYA2-ceoHgdsC5oRe_6gB-GIPQs5oK57yWafqaflYtAJ3nruYbls5_amoUpHPgcE6jO88LezecdvG76Y2cYueU_2DvWFDt44wdaOIxTmc8r1-2l_AK-B9iP-MFj-il2dn337dJEMwxgSJ43uE8RNFoUI3qusyHOfW-VoVHnhdC1FVTk0_akEhAR1ltnauKwWU5-DIrraVflrttO0DbxhHBGqokGA6JV7abPCTg2kBpWpmjqJ-HTM3q3lVC5iz40y-CrClJkoIxPHbET83RCs7548Euiv9ejH6kBwtJZwOfytXam1RJyESHHMTjdPkW0UO7ENtKuuzAqNRl6rJyhQtxEN6DHj_6AwaJUQ3wlx-Nd3P2K7McGNcoGP2U6_XMFbRDx9dRJ0_R5wWQDl
link.rule.ids 310,311,315,783,787,792,793,799,23942,23943,25152,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9tTNO2h310m-hgYE17Teckduo8oglUNuAJJN4ix7EnRJtUTTok_nru7LTAxtDeouQsJXcX3-98XwBfubZKKkczwqSIRKayqIyVi-JUK0S7JXeGziGPT7LJmfhxLs_7Ptu-FsZa65PP7IgufSy_asySjsq-5R4OP4VnCKtVFoq11iEDIeNQbxIrmhsv-jZCMc_RwR-FpfeMj5-mQrmQukV2uDDH4q8t2duZgzehgLv17QkpveRytOzKkbn-o3njf37CW3jd4022FxTkHTyx9QBe3elCOIDnPgvUtO9hekhdLee9VrDGMWcXi2amf9VU68hmFqH6FC_cxXTWsouazae61gvWkcVDjaGjN0bAtWUIhtmMsv2u9G_LKks7ErsbLv8AZwf7p98nUT-OITIiV12EyEmjGK1zMsnS1KVaGhpWnhlVCV6WBo1_LCyCgipJdJWbpOJjl1pJdJUp04-wUTe13QSGGFXSKED0y53QSabHuY1zVKdybAQi1CF8WcmpmIeuG4X3VnheJLwITBzCgPi7Jljd3bkn0Nv16MkqT7C1knDR_69toZRApIRYcQi766fINoqe6No2y7ZIMoVmXslHKFC7EQ-oIbB_UORolxDhcf7pwXffhReT0-Oj4ujw5OcWvAzpbpQZvA0b3WJpPyP-6codr_c39rUEMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+transactions+on+magnetics&rft.atitle=Incorporation+of+ferromagnetic+metallic+films+in+planar+transmission+lines+for+microwave+device+applications&rft.au=CRAMER%2C+N&rft.au=LUCIC%2C+D&rft.au=WALKER%2C+D.+K&rft.au=CAMLEY%2C+R.+E&rft.date=2001-07-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0018-9464&rft.eissn=1941-0069&rft.volume=37&rft.issue=4&rft.spage=2392&rft.epage=2394&rft_id=info:doi/10.1109%2F20.951182&rft.externalDBID=n%2Fa&rft.externalDocID=14098182
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9464&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9464&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9464&client=summon