Disruption of PAMP-Induced MAP Kinase Cascade by a Pseudomonas syringae Effector Activates Plant Immunity Mediated by the NB-LRR Protein SUMM2

Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) serves as a primary plant defense response against microbial pathogens, with MEKK1, MKK1/MKK2, and MPK4 functioning as a MAP kinase cascade downstream of PAMP receptors. Plant Resistance (R) proteins sense specific pathogen effect...

Full description

Saved in:
Bibliographic Details
Published inCell host & microbe Vol. 11; no. 3; pp. 253 - 263
Main Authors Zhang, Zhibin, Wu, Yaling, Gao, Minghui, Zhang, Jie, Kong, Qing, Liu, Yanan, Ba, Hongping, Zhou, Jianmin, Zhang, Yuelin
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.03.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) serves as a primary plant defense response against microbial pathogens, with MEKK1, MKK1/MKK2, and MPK4 functioning as a MAP kinase cascade downstream of PAMP receptors. Plant Resistance (R) proteins sense specific pathogen effectors to initiate a second defense mechanism, termed effector-triggered immunity (ETI). In a screen for suppressors of the mkk1 mkk2 autoimmune phenotype, we identify the nucleotide-binding leucine-rich repeat (NB-LRR) protein SUMM2 and find that the MEKK1-MKK1/MKK2-MPK4 cascade negatively regulates SUMM2-mediated immunity. Further, the MEKK1-MKK1/MKK2-MPK4 cascade positively regulates basal defense targeted by the Pseudomonas syringae pathogenic effector HopAI1, which inhibits MPK4 kinase activity. Inactivation of MPK4 by HopAI1 results in activation of SUMM2-mediated defense responses. Our data suggest that SUMM2 is an R protein that becomes active when the MEKK1-MKK1/MKK2-MPK4 cascade is disrupted by pathogens, supporting the hypothesis that R proteins evolved to protect plants when microbial effectors suppress basal resistance. ► The MEKK1-MKK1/MKK2-MPK4 kinase cascade is required for basal defense ► MEKK1-MKK1/MKK2-MPK4 cascade negatively regulates NB-LRR protein SUMM2-mediated immunity ► The bacterial pathogenic effector HopAI1 targets MPK4 kinase activity ► Inactivation of MPK4 by HopAI1 activates SUMM2-mediated immune responses
AbstractList Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) serves as a primary plant defense response against microbial pathogens, with MEKK1, MKK1/MKK2, and MPK4 functioning as a MAP kinase cascade downstream of PAMP receptors. Plant Resistance (R) proteins sense specific pathogen effectors to initiate a second defense mechanism, termed effector-triggered immunity (ETI). In a screen for suppressors of the mkk1 mkk2 autoimmune phenotype, we identify the nucleotide-binding leucine-rich repeat (NB-LRR) protein SUMM2 and find that the MEKK1-MKK1/MKK2-MPK4 cascade negatively regulates SUMM2-mediated immunity. Further, the MEKK1-MKK1/MKK2-MPK4 cascade positively regulates basal defense targeted by the Pseudomonas syringae pathogenic effector HopAI1, which inhibits MPK4 kinase activity. Inactivation of MPK4 by HopAI1 results in activation of SUMM2-mediated defense responses. Our data suggest that SUMM2 is an R protein that becomes active when the MEKK1-MKK1/MKK2-MPK4 cascade is disrupted by pathogens, supporting the hypothesis that R proteins evolved to protect plants when microbial effectors suppress basal resistance.
Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) serves as a primary plant defense response against microbial pathogens, with MEKK1, MKK1/MKK2, and MPK4 functioning as a MAP kinase cascade downstream of PAMP receptors. Plant Resistance (R) proteins sense specific pathogen effectors to initiate a second defense mechanism, termed effector-triggered immunity (ETI). In a screen for suppressors of the mkk1 mkk2 autoimmune phenotype, we identify the nucleotide-binding leucine-rich repeat (NB-LRR) protein SUMM2 and find that the MEKK1-MKK1/MKK2-MPK4 cascade negatively regulates SUMM2-mediated immunity. Further, the MEKK1-MKK1/MKK2-MPK4 cascade positively regulates basal defense targeted by the Pseudomonas syringae pathogenic effector HopAI1, which inhibits MPK4 kinase activity. Inactivation of MPK4 by HopAI1 results in activation of SUMM2-mediated defense responses. Our data suggest that SUMM2 is an R protein that becomes active when the MEKK1-MKK1/MKK2-MPK4 cascade is disrupted by pathogens, supporting the hypothesis that R proteins evolved to protect plants when microbial effectors suppress basal resistance.Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) serves as a primary plant defense response against microbial pathogens, with MEKK1, MKK1/MKK2, and MPK4 functioning as a MAP kinase cascade downstream of PAMP receptors. Plant Resistance (R) proteins sense specific pathogen effectors to initiate a second defense mechanism, termed effector-triggered immunity (ETI). In a screen for suppressors of the mkk1 mkk2 autoimmune phenotype, we identify the nucleotide-binding leucine-rich repeat (NB-LRR) protein SUMM2 and find that the MEKK1-MKK1/MKK2-MPK4 cascade negatively regulates SUMM2-mediated immunity. Further, the MEKK1-MKK1/MKK2-MPK4 cascade positively regulates basal defense targeted by the Pseudomonas syringae pathogenic effector HopAI1, which inhibits MPK4 kinase activity. Inactivation of MPK4 by HopAI1 results in activation of SUMM2-mediated defense responses. Our data suggest that SUMM2 is an R protein that becomes active when the MEKK1-MKK1/MKK2-MPK4 cascade is disrupted by pathogens, supporting the hypothesis that R proteins evolved to protect plants when microbial effectors suppress basal resistance.
Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) serves as a primary plant defense response against microbial pathogens, with MEKK1, MKK1/MKK2, and MPK4 functioning as a MAP kinase cascade downstream of PAMP receptors. Plant Resistance (R) proteins sense specific pathogen effectors to initiate a second defense mechanism, termed effector-triggered immunity (ETI). In a screen for suppressors of the mkk1 mkk2 autoimmune phenotype, we identify the nucleotide-binding leucine-rich repeat (NB-LRR) protein SUMM2 and find that the MEKK1-MKK1/MKK2-MPK4 cascade negatively regulates SUMM2-mediated immunity. Further, the MEKK1-MKK1/MKK2-MPK4 cascade positively regulates basal defense targeted by the Pseudomonas syringae pathogenic effector HopAI1, which inhibits MPK4 kinase activity. Inactivation of MPK4 by HopAI1 results in activation of SUMM2-mediated defense responses. Our data suggest that SUMM2 is an R protein that becomes active when the MEKK1-MKK1/MKK2-MPK4 cascade is disrupted by pathogens, supporting the hypothesis that R proteins evolved to protect plants when microbial effectors suppress basal resistance. ► The MEKK1-MKK1/MKK2-MPK4 kinase cascade is required for basal defense ► MEKK1-MKK1/MKK2-MPK4 cascade negatively regulates NB-LRR protein SUMM2-mediated immunity ► The bacterial pathogenic effector HopAI1 targets MPK4 kinase activity ► Inactivation of MPK4 by HopAI1 activates SUMM2-mediated immune responses
Author Wu, Yaling
Kong, Qing
Gao, Minghui
Zhang, Zhibin
Ba, Hongping
Zhang, Jie
Zhou, Jianmin
Zhang, Yuelin
Liu, Yanan
Author_xml – sequence: 1
  givenname: Zhibin
  surname: Zhang
  fullname: Zhang, Zhibin
  organization: National Institute of Biological Sciences, Zhongguancun Life Science Park, Number 7 Science Park Road, Beijing 102206, People's Republic of China
– sequence: 2
  givenname: Yaling
  surname: Wu
  fullname: Wu, Yaling
  organization: National Institute of Biological Sciences, Zhongguancun Life Science Park, Number 7 Science Park Road, Beijing 102206, People's Republic of China
– sequence: 3
  givenname: Minghui
  surname: Gao
  fullname: Gao, Minghui
  organization: National Institute of Biological Sciences, Zhongguancun Life Science Park, Number 7 Science Park Road, Beijing 102206, People's Republic of China
– sequence: 4
  givenname: Jie
  surname: Zhang
  fullname: Zhang, Jie
  organization: National Institute of Biological Sciences, Zhongguancun Life Science Park, Number 7 Science Park Road, Beijing 102206, People's Republic of China
– sequence: 5
  givenname: Qing
  surname: Kong
  fullname: Kong, Qing
  organization: National Institute of Biological Sciences, Zhongguancun Life Science Park, Number 7 Science Park Road, Beijing 102206, People's Republic of China
– sequence: 6
  givenname: Yanan
  surname: Liu
  fullname: Liu, Yanan
  organization: National Institute of Biological Sciences, Zhongguancun Life Science Park, Number 7 Science Park Road, Beijing 102206, People's Republic of China
– sequence: 7
  givenname: Hongping
  surname: Ba
  fullname: Ba, Hongping
  organization: National Institute of Biological Sciences, Zhongguancun Life Science Park, Number 7 Science Park Road, Beijing 102206, People's Republic of China
– sequence: 8
  givenname: Jianmin
  surname: Zhou
  fullname: Zhou, Jianmin
  organization: National Institute of Biological Sciences, Zhongguancun Life Science Park, Number 7 Science Park Road, Beijing 102206, People's Republic of China
– sequence: 9
  givenname: Yuelin
  surname: Zhang
  fullname: Zhang, Yuelin
  email: yuelin.zhang@ubc.ca
  organization: National Institute of Biological Sciences, Zhongguancun Life Science Park, Number 7 Science Park Road, Beijing 102206, People's Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22423965$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uEzEUhS1URNvAC7BA3sFmgn8yzozEJg0tRCQwKnRteew71FHGDranUl6CZ66HtBsWka5ky_7O0dU5l-jMeQcIvaVkSgkVH7dTfe_7KSOUTQnNU75AF7Tms0IQUZ_9u9OCU1ado8sYt4SUJZnTV-icsRnjtSgv0N_PNoZhn6x32He4WWyaYuXMoMHgzaLB36xTEfBSRa0M4PaAFW4iDMb3Pv_geAjW_VaAr7sOdPIBL3SyDypBxM1OuYRXfT84mw54A8bmdzOapHvA36-K9e0tboJPYB3-ebfZsNfoZad2Ed48nRN0d3P9a_m1WP_4slou1oWe1VUqBOVVBa2BeVmRrtWaCqq4qExNdEs0EWVbG8GAdhQEr7mmpqtIy1lVtzMiGJ-g90ffffB_BohJ9jZq2OWNwQ9R1qymOb2KZvLDSZLOOS8ZnWd6gt49oUPbg5H7YHsVDvI57QxUR0AHH2OATmqb1Jh9CsruJCVyLFZu5VisHIuVhOYZpew_6bP7SdGnowhylA8Wgozagsvd2pDLksbbU_JH-Q66tA
CitedBy_id crossref_primary_10_1038_s41477_021_01028_3
crossref_primary_10_3389_fpls_2023_1307294
crossref_primary_10_1111_tpj_13808
crossref_primary_10_1007_s11032_022_01302_y
crossref_primary_10_3389_fpls_2022_951318
crossref_primary_10_1007_s44154_022_00045_2
crossref_primary_10_1093_pcp_pcw098
crossref_primary_10_1094_MPMI_11_15_0246_R
crossref_primary_10_1093_plphys_kiae593
crossref_primary_10_1016_j_plantsci_2018_01_008
crossref_primary_10_1146_annurev_arplant_042817_040540
crossref_primary_10_1093_femsre_fuaa035
crossref_primary_10_1371_journal_pgen_1003465
crossref_primary_10_1093_femsre_fuw026
crossref_primary_10_1105_tpc_113_112102
crossref_primary_10_1104_pp_114_250985
crossref_primary_10_1371_journal_ppat_1007728
crossref_primary_10_3390_pathogens12111306
crossref_primary_10_1016_j_mib_2015_10_006
crossref_primary_10_1038_s41477_024_01768_y
crossref_primary_10_1094_MPMI_10_23_0177_HH
crossref_primary_10_1111_nph_17218
crossref_primary_10_1105_tpc_16_00654
crossref_primary_10_1016_j_jgg_2023_05_005
crossref_primary_10_1016_j_devcel_2024_11_020
crossref_primary_10_1371_journal_pgen_1007708
crossref_primary_10_1111_nph_17442
crossref_primary_10_1038_srep26951
crossref_primary_10_3389_fpls_2022_824422
crossref_primary_10_1111_plb_12164
crossref_primary_10_1126_sciadv_ads3718
crossref_primary_10_1038_s41467_020_18600_8
crossref_primary_10_3389_fmicb_2023_1275032
crossref_primary_10_1007_s00018_018_2839_3
crossref_primary_10_1007_s00018_020_03515_w
crossref_primary_10_4161_15592324_2014_976155
crossref_primary_10_1186_1471_2229_14_166
crossref_primary_10_1002_pld3_359
crossref_primary_10_1002_1873_3468_14872
crossref_primary_10_1007_s12033_012_9619_3
crossref_primary_10_1111_tpj_12381
crossref_primary_10_53518_mjavl_959168
crossref_primary_10_1093_plcell_koae223
crossref_primary_10_1093_plphys_kiae574
crossref_primary_10_1093_plphys_kiab186
crossref_primary_10_1186_s43141_022_00313_8
crossref_primary_10_1111_ppa_12983
crossref_primary_10_1093_plcell_koac041
crossref_primary_10_3389_fmicb_2019_01208
crossref_primary_10_3389_fpls_2018_00977
crossref_primary_10_1007_s11103_015_0391_1
crossref_primary_10_1111_tpj_12391
crossref_primary_10_1016_j_jgg_2012_11_003
crossref_primary_10_1104_pp_112_212431
crossref_primary_10_1111_nph_17387
crossref_primary_10_3389_fmicb_2014_00548
crossref_primary_10_1016_j_pbi_2013_06_017
crossref_primary_10_38001_ijlsb_938954
crossref_primary_10_3389_fgene_2022_894048
crossref_primary_10_1016_j_molp_2014_12_022
crossref_primary_10_1094_MPMI_34_1
crossref_primary_10_1111_nph_15523
crossref_primary_10_3389_fpls_2015_00780
crossref_primary_10_1111_nph_14678
crossref_primary_10_15252_embj_201488645
crossref_primary_10_1104_pp_114_242404
crossref_primary_10_1146_annurev_phyto_080615_100204
crossref_primary_10_1111_mpp_13461
crossref_primary_10_1093_jxb_erae020
crossref_primary_10_1093_pcp_pcaa071
crossref_primary_10_1007_s10142_018_0593_0
crossref_primary_10_1038_s41477_020_0748_6
crossref_primary_10_1111_nph_14302
crossref_primary_10_1042_EBC20210097
crossref_primary_10_1074_mcp_RA117_000135
crossref_primary_10_1371_journal_pgen_1007628
crossref_primary_10_3390_plants12030590
crossref_primary_10_1080_15592324_2018_1507404
crossref_primary_10_1038_s41467_022_30180_3
crossref_primary_10_1146_annurev_arplant_050213_040012
crossref_primary_10_1016_j_jplph_2012_06_008
crossref_primary_10_1371_journal_pone_0073091
crossref_primary_10_1111_plb_12084
crossref_primary_10_1073_pnas_1915339117
crossref_primary_10_1111_tpj_13798
crossref_primary_10_3390_ijms22041543
crossref_primary_10_1111_tpj_14763
crossref_primary_10_1080_15592324_2017_1356533
crossref_primary_10_1094_MPMI_35_2
crossref_primary_10_1104_pp_15_00278
crossref_primary_10_3389_fpls_2020_584471
crossref_primary_10_3390_ijms22094709
crossref_primary_10_1371_journal_pone_0057714
crossref_primary_10_1111_tpj_16155
crossref_primary_10_1016_j_pbi_2021_102030
crossref_primary_10_1093_jxb_erv440
crossref_primary_10_1186_s12870_014_0298_z
crossref_primary_10_1371_journal_pone_0191015
crossref_primary_10_15252_embj_201694248
crossref_primary_10_3390_biom11081122
crossref_primary_10_1016_j_micpath_2019_04_042
crossref_primary_10_1073_pnas_1211757110
crossref_primary_10_1111_plb_13625
crossref_primary_10_4161_psb_28944
crossref_primary_10_1016_j_gene_2013_11_034
crossref_primary_10_1080_15592324_2018_1526000
crossref_primary_10_1016_j_plantsci_2025_112410
crossref_primary_10_1104_pp_114_245944
crossref_primary_10_1016_j_bbrc_2013_11_008
crossref_primary_10_1016_j_chom_2017_02_004
crossref_primary_10_3389_fpls_2019_00644
crossref_primary_10_1016_j_semcdb_2016_05_002
crossref_primary_10_1093_mp_ssu060
crossref_primary_10_1111_jipb_12845
crossref_primary_10_1111_nph_20117
crossref_primary_10_1371_journal_pone_0132051
crossref_primary_10_15252_embr_202153817
crossref_primary_10_3389_fpls_2017_01687
crossref_primary_10_1038_s41467_020_19033_z
crossref_primary_10_1016_j_pbi_2012_03_004
crossref_primary_10_1038_nri_2016_77
crossref_primary_10_1007_s00425_018_2956_0
crossref_primary_10_1094_MPMI_08_20_0239_IA
crossref_primary_10_1186_gb_2014_15_6_r87
crossref_primary_10_1146_annurev_phyto_080614_120132
crossref_primary_10_15252_embj_2020104915
crossref_primary_10_1007_s11103_020_00986_0
crossref_primary_10_1111_pce_14837
crossref_primary_10_1016_j_tplants_2019_05_005
crossref_primary_10_3389_fpls_2023_932923
crossref_primary_10_3390_ijms24021480
crossref_primary_10_1038_nrmicro_2018_17
crossref_primary_10_3389_fpls_2016_00260
crossref_primary_10_3389_fpls_2021_764978
crossref_primary_10_1371_journal_ppat_1003883
crossref_primary_10_1093_plphys_kiab590
crossref_primary_10_1104_pp_114_254292
crossref_primary_10_1016_j_xplc_2023_100659
crossref_primary_10_1038_s41598_017_01029_3
crossref_primary_10_3389_fpls_2022_938876
crossref_primary_10_1371_journal_ppat_1008401
crossref_primary_10_15252_embr_201745324
crossref_primary_10_3390_ijms23137450
crossref_primary_10_4161_psb_22991
crossref_primary_10_1016_j_chom_2017_03_005
crossref_primary_10_1111_jipb_13150
crossref_primary_10_1093_hr_uhac012
crossref_primary_10_1111_tpj_15809
crossref_primary_10_1016_j_gene_2014_04_060
crossref_primary_10_1111_nph_15665
crossref_primary_10_1016_j_gene_2013_07_107
crossref_primary_10_1093_pcp_pcv063
crossref_primary_10_1016_j_phytochem_2014_07_015
crossref_primary_10_1111_nph_19212
crossref_primary_10_1105_tpc_112_109074
crossref_primary_10_3389_fpls_2020_618835
crossref_primary_10_1111_jipb_12978
crossref_primary_10_1111_nph_16861
crossref_primary_10_1038_s41477_018_0216_8
crossref_primary_10_1038_s41438_021_00556_5
crossref_primary_10_1111_nph_12022
crossref_primary_10_1371_journal_pgen_1004015
crossref_primary_10_3389_fpls_2022_1038866
crossref_primary_10_1111_tpj_15945
crossref_primary_10_1146_annurev_arplant_081519_035901
crossref_primary_10_1016_j_pbi_2018_04_019
crossref_primary_10_1016_j_plantsci_2018_03_010
crossref_primary_10_1111_pbi_13979
crossref_primary_10_3186_jjphytopath_81_322
crossref_primary_10_3389_fpls_2015_01183
crossref_primary_10_1016_j_redox_2016_12_009
crossref_primary_10_3390_ijms160715903
crossref_primary_10_1080_15592324_2022_2046412
crossref_primary_10_1016_j_mib_2014_10_009
crossref_primary_10_3389_fpls_2016_01717
crossref_primary_10_1016_j_pbi_2014_04_002
crossref_primary_10_1093_pcp_pct055
crossref_primary_10_1111_mpp_13176
crossref_primary_10_15252_embr_201642704
crossref_primary_10_1093_jxb_erac018
crossref_primary_10_3389_fpls_2016_00864
crossref_primary_10_3390_ijms160819248
crossref_primary_10_1104_pp_112_199810
crossref_primary_10_1105_tpc_15_00774
crossref_primary_10_1016_j_plaphy_2019_01_018
crossref_primary_10_1094_MPMI_08_17_0203_FI
crossref_primary_10_1146_annurev_phyto_082712_102314
crossref_primary_10_1371_journal_pgen_1007235
crossref_primary_10_3389_fimmu_2020_612452
crossref_primary_10_1111_jipb_13215
crossref_primary_10_1111_mpp_13050
crossref_primary_10_1094_MPMI_08_13_0218_TA
crossref_primary_10_3389_fpls_2015_00024
crossref_primary_10_1002_1873_3468_13977
crossref_primary_10_1016_j_tplants_2020_02_008
crossref_primary_10_1093_pcp_pcad068
crossref_primary_10_1093_plcell_koac143
crossref_primary_10_5511_plantbiotechnology_20_0503a
crossref_primary_10_1016_j_molcel_2014_02_021
crossref_primary_10_1094_MPMI_06_17_0145_CR
crossref_primary_10_1371_journal_pone_0295202
crossref_primary_10_1093_plphys_kiab164
crossref_primary_10_15252_embj_201591807
crossref_primary_10_1093_jxb_erv508
crossref_primary_10_1016_j_fbr_2022_10_002
crossref_primary_10_1007_s12275_024_00114_3
crossref_primary_10_1111_ppl_12434
crossref_primary_10_3390_microorganisms9051029
crossref_primary_10_1038_s41467_022_29373_7
crossref_primary_10_26508_lsa_202302090
crossref_primary_10_1111_febs_13613
crossref_primary_10_1111_nph_18989
crossref_primary_10_3389_fpls_2022_881212
crossref_primary_10_1016_j_chom_2024_06_004
crossref_primary_10_1016_j_mcpro_2024_100738
crossref_primary_10_1111_1462_2920_13884
crossref_primary_10_1016_j_xplc_2022_100415
crossref_primary_10_1016_j_tplants_2012_06_011
crossref_primary_10_1515_infl_2015_0002
crossref_primary_10_1093_jxb_erx338
crossref_primary_10_3390_genes12111759
crossref_primary_10_1093_jxb_erw485
crossref_primary_10_3389_fpls_2018_00152
crossref_primary_10_1016_j_bbamcr_2022_119347
crossref_primary_10_1016_j_molp_2023_11_011
crossref_primary_10_48130_frures_0024_0022
crossref_primary_10_3390_ijms21217954
crossref_primary_10_1242_jcs_209353
crossref_primary_10_3389_fpls_2018_01913
crossref_primary_10_1038_s41467_020_18228_8
crossref_primary_10_1371_journal_pgen_1010500
crossref_primary_10_1021_acs_jproteome_8b00345
crossref_primary_10_1111_tpj_13391
crossref_primary_10_1094_MPMI_09_21_0220_SC
crossref_primary_10_1111_nph_19139
crossref_primary_10_1038_s44319_024_00240_4
crossref_primary_10_1186_s12284_014_0038_x
crossref_primary_10_12677_HJAS_2023_134045
crossref_primary_10_1016_j_freeradbiomed_2018_01_011
crossref_primary_10_1038_ncomms10159
crossref_primary_10_1111_nph_13717
crossref_primary_10_1111_febs_16549
crossref_primary_10_3389_fpls_2015_00170
crossref_primary_10_1016_j_chom_2013_02_007
crossref_primary_10_1146_annurev_phyto_082712_102321
crossref_primary_10_1016_j_celrep_2018_11_011
crossref_primary_10_15252_embj_201487923
Cites_doi 10.1146/annurev.arplant.57.032905.105346
10.1016/j.molcel.2004.06.023
10.1104/pp.108.120006
10.1016/j.cub.2008.07.085
10.1094/MPMI-19-1151
10.1016/S0092-8674(03)00036-9
10.1073/pnas.1230660100
10.1104/pp.105.073510
10.1038/415977a
10.1016/S0092-8674(03)00040-0
10.1105/tpc.014894
10.1016/S1360-1385(02)02302-6
10.1038/cr.2008.300
10.1104/pp.111.182089
10.1074/jbc.M605293200
10.1016/j.chom.2008.02.010
10.1016/j.cell.2006.02.008
10.1016/S0968-0004(98)01311-5
10.1104/pp.106.081257
10.1105/tpc.106.044016
10.1105/tpc.105.039982
10.1046/j.1365-313X.2002.01413.x
10.1093/pcp/pcq135
10.1105/tpc.110.077164
10.1074/jbc.M605319200
10.1073/pnas.0602577103
10.1016/j.cell.2007.12.031
10.1105/tpc.109.071746
10.1073/pnas.1431173100
10.1016/j.chom.2007.03.006
10.1016/j.chom.2011.01.009
10.1016/j.chom.2010.01.009
10.1016/j.chom.2011.01.010
10.1104/pp.110.158501
10.1093/emboj/19.15.4004
10.1046/j.1365-313X.1997.11061187.x
10.1126/science.1138960
10.1126/science.1111404
10.1126/science.1085671
10.1105/tpc.10.9.1439
10.1111/j.1365-313X.2004.02219.x
10.1126/science.1148110
10.1104/pp.003533
10.1105/tpc.110.075697
10.1073/pnas.0502425102
10.1104/pp.106.091389
10.1038/ng.911
10.1094/MPMI-18-0570
10.1016/S0092-8674(00)00213-0
10.1038/sj.emboj.7600737
10.1038/emboj.2008.147
10.1038/nature05286
10.1016/S0014-5793(98)01197-1
10.1105/tpc.110.075358
10.1016/S0092-8674(02)00661-X
ContentType Journal Article
Copyright 2012 Elsevier Inc.
Copyright © 2012 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2012 Elsevier Inc.
– notice: Copyright © 2012 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
DOI 10.1016/j.chom.2012.01.015
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE
AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1934-6069
EndPage 263
ExternalDocumentID 22423965
10_1016_j_chom_2012_01_015
S1931312812000571
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
5GY
62-
6I.
6J9
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHFR
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
HVGLF
HZ~
IHE
IXB
JIG
K97
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
53G
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
OZT
ZBA
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7S9
L.6
7X8
ID FETCH-LOGICAL-c498t-61388ebde7580fbcc161a368d90cb0c065b9d62e1f1e6393c1df80b3289b40623
IEDL.DBID IXB
ISSN 1931-3128
1934-6069
IngestDate Fri Jul 11 00:33:24 EDT 2025
Wed Jul 02 04:49:52 EDT 2025
Mon Jul 21 06:01:05 EDT 2025
Tue Jul 01 02:44:15 EDT 2025
Thu Apr 24 23:04:10 EDT 2025
Fri Feb 23 02:30:38 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2012 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c498t-61388ebde7580fbcc161a368d90cb0c065b9d62e1f1e6393c1df80b3289b40623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1931312812000571
PMID 22423965
PQID 1733521719
PQPubID 24069
PageCount 11
ParticipantIDs proquest_miscellaneous_929119381
proquest_miscellaneous_1733521719
pubmed_primary_22423965
crossref_citationtrail_10_1016_j_chom_2012_01_015
crossref_primary_10_1016_j_chom_2012_01_015
elsevier_sciencedirect_doi_10_1016_j_chom_2012_01_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-03-15
PublicationDateYYYYMMDD 2012-03-15
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell host & microbe
PublicationTitleAlternate Cell Host Microbe
PublicationYear 2012
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Asai, Tena, Plotnikova, Willmann, Chiu, Gomez-Gomez, Boller, Ausubel, Sheen (bib2) 2002; 415
Krasileva, Dahlbeck, Staskawicz (bib27) 2010; 22
Suarez-Rodriguez, Adams-Phillips, Liu, Wang, Su, Jester, Zhang, Bent, Krysan (bib45) 2007; 143
Mackey, Belkhadir, Alonso, Ecker, Dangl (bib33) 2003; 112
Van der Biezen, Jones (bib51) 1998; 23
Beck, Komis, Muller, Menzel, Samaj (bib5) 2010; 22
Qiu, Zhou, Yun, Nielsen, Fiil, Petersen, Mackinlay, Loake, Mundy, Morris (bib42) 2008; 148
Gao, Liu, Bi, Zhang, Cheng, Chen, Zhang (bib18) 2008; 18
Cui, Wang, Xue, Chu, Yan, Fu, Chen, Innes, Zhou (bib14) 2011; 7
Zhang, Shao, Li, Cui, Chen, Li, Zou, Long, Lan, Chai (bib56) 2007; 1
Bendahmane, Farnham, Moffett, Baulcombe (bib6) 2002; 32
Bartsch, Gobbato, Bednarek, Debey, Schultze, Bautor, Parker (bib4) 2006; 18
Bi, Cheng, Li, Zhang (bib7) 2010; 153
Chung, da Cunha, Wu, Gao, Cherkis, Afzal, Mackey, Dangl (bib13) 2011; 9
Chisholm, Coaker, Day, Staskawicz (bib12) 2006; 124
Howles, Lawrence, Finnegan, McFadden, Ayliffe, Dodds, Ellis (bib20) 2005; 18
Nakagami, Soukupova, Schikora, Zarsky, Hirt (bib38) 2006; 281
Axtell, Staskawicz (bib3) 2003; 112
Kosetsu, Matsunaga, Nakagami, Colcombet, Sasabe, Soyano, Takahashi, Hirt, Machida (bib26) 2010; 22
Teige, Scheikl, Eulgem, Doczi, Ichimura, Shinozaki, Dangl, Hirt (bib48) 2004; 15
Walter, Chaban, Schutze, Batistic, Weckermann, Nake, Blazevic, Grefen, Schumacher, Oecking (bib52) 2004; 40
Thordal-Christensen, Zhang, Wei, Collinge (bib49) 1997; 11
Trujillo, Ichimura, Casais, Shirasu (bib50) 2008; 18
Shao, Golstein, Ade, Stoutemyer, Dixon, Innes (bib44) 2003; 301
(bib34) 2002; 7
Li, Xu, Zhou, Zhang, Long, Li, Chen, Zhou, Shao (bib29) 2007; 315
Liu, Elmore, Lin, Coaker (bib31) 2011; 9
Parker, Holub, Frost, Falk, Gunn, Daniels (bib39) 1996; 8
Li, Lin, Zhang, Zou, Zhang, Tang, Zhou (bib28) 2005; 102
Dodds, Lawrence, Catanzariti, Teh, Wang, Ayliffe, Kobe, Ellis (bib17) 2006; 103
Deslandes, Olivier, Peeters, Feng, Khounlotham, Boucher, Somssich, Genin, Marco (bib15) 2003; 100
Hauck, Thilmony, He (bib19) 2003; 100
Petersen, Brodersen, Naested, Andreasson, Lindhart, Johansen, Nielsen, Lacy, Austin, Parker (bib40) 2000; 103
Mackey, Holt, Wiig, Dangl (bib32) 2002; 108
Rooney, Van't Klooster, van der Hoorn, Joosten, Jones, de Wit (bib43) 2005; 308
Tameling, Vossen, Albrecht, Lengauer, Berden, Haring, Cornelissen, Takken (bib47) 2006; 140
Djamei, Pitzschke, Nakagami, Rajh, Hirt (bib16) 2007; 318
Caplan, Mamillapalli, Burch-Smith, Czymmek, Dinesh-Kumar (bib11) 2008; 132
Zhang, Tessaro, Lassner, Li (bib55) 2003; 15
Warren, Henk, Mowery, Holub, Innes (bib54) 1998; 10
Qiu, Fiil, Petersen, Nielsen, Botanga, Thorgrimsen, Palma, Suarez-Rodriguez, Sandbech-Clausen, Lichota (bib41) 2008; 27
Mizoguchi, Ichimura, Irie, Morris, Giraudat, Matsumoto, Shinozaki (bib36) 1998; 437
Mucyn, Clemente, Andriotis, Balmuth, Oldroyd, Staskawicz, Rathjen (bib37) 2006; 18
Ichimura, Casais, Peck, Shinozaki, Shirasu (bib21) 2006; 281
Wang, Li, Hou, Wang, Li, Ren, Chen, Tang, Zhou (bib53) 2010; 22
Cao, Schneeberger, Ossowski, Gunther, Bender, Fitz, Koenig, Lanz, Stegle, Lippert (bib9) 2011; 43
Jander, Norris, Rounsley, Bush, Levin, Last (bib22) 2002; 129
Andreasson, Jenkins, Brodersen, Thorgrimsen, Petersen, Zhu, Qiu, Micheelsen, Rocher, Petersen (bib1) 2005; 24
Takahashi, Soyano, Kosetsu, Sasabe, Machida (bib46) 2010; 51
Jing, Xu, Xu, Li, Li, Ding, Zhang (bib24) 2011; 157
Caplan, Padmanabhan, Dinesh-Kumar (bib10) 2008; 3
Lindeberg, Cartinhour, Myers, Schechter, Schneider, Collmer (bib30) 2006; 19
Jia, McAdams, Bryan, Hershey, Valent (bib23) 2000; 19
Mishina, Zeier (bib35) 2006; 141
Jones, Dangl (bib25) 2006; 444
Boller, Felix (bib8) 2009; 60
Jones (10.1016/j.chom.2012.01.015_bib25) 2006; 444
Caplan (10.1016/j.chom.2012.01.015_bib10) 2008; 3
Mucyn (10.1016/j.chom.2012.01.015_bib37) 2006; 18
Hauck (10.1016/j.chom.2012.01.015_bib19) 2003; 100
Lindeberg (10.1016/j.chom.2012.01.015_bib30) 2006; 19
Li (10.1016/j.chom.2012.01.015_bib28) 2005; 102
Deslandes (10.1016/j.chom.2012.01.015_bib15) 2003; 100
Mizoguchi (10.1016/j.chom.2012.01.015_bib36) 1998; 437
Jing (10.1016/j.chom.2012.01.015_bib24) 2011; 157
Qiu (10.1016/j.chom.2012.01.015_bib41) 2008; 27
Asai (10.1016/j.chom.2012.01.015_bib2) 2002; 415
Boller (10.1016/j.chom.2012.01.015_bib8) 2009; 60
Jander (10.1016/j.chom.2012.01.015_bib22) 2002; 129
Qiu (10.1016/j.chom.2012.01.015_bib42) 2008; 148
Zhang (10.1016/j.chom.2012.01.015_bib56) 2007; 1
Bi (10.1016/j.chom.2012.01.015_bib7) 2010; 153
Rooney (10.1016/j.chom.2012.01.015_bib43) 2005; 308
Walter (10.1016/j.chom.2012.01.015_bib52) 2004; 40
Teige (10.1016/j.chom.2012.01.015_bib48) 2004; 15
Mackey (10.1016/j.chom.2012.01.015_bib32) 2002; 108
Mishina (10.1016/j.chom.2012.01.015_bib35) 2006; 141
Mackey (10.1016/j.chom.2012.01.015_bib33) 2003; 112
Petersen (10.1016/j.chom.2012.01.015_bib40) 2000; 103
Thordal-Christensen (10.1016/j.chom.2012.01.015_bib49) 1997; 11
Trujillo (10.1016/j.chom.2012.01.015_bib50) 2008; 18
Howles (10.1016/j.chom.2012.01.015_bib20) 2005; 18
Bendahmane (10.1016/j.chom.2012.01.015_bib6) 2002; 32
Liu (10.1016/j.chom.2012.01.015_bib31) 2011; 9
Krasileva (10.1016/j.chom.2012.01.015_bib27) 2010; 22
Van der Biezen (10.1016/j.chom.2012.01.015_bib51) 1998; 23
Kosetsu (10.1016/j.chom.2012.01.015_bib26) 2010; 22
Gao (10.1016/j.chom.2012.01.015_bib18) 2008; 18
Cui (10.1016/j.chom.2012.01.015_bib14) 2011; 7
Tameling (10.1016/j.chom.2012.01.015_bib47) 2006; 140
Jia (10.1016/j.chom.2012.01.015_bib23) 2000; 19
Andreasson (10.1016/j.chom.2012.01.015_bib1) 2005; 24
Caplan (10.1016/j.chom.2012.01.015_bib11) 2008; 132
Parker (10.1016/j.chom.2012.01.015_bib39) 1996; 8
Nakagami (10.1016/j.chom.2012.01.015_bib38) 2006; 281
Chung (10.1016/j.chom.2012.01.015_bib13) 2011; 9
Chisholm (10.1016/j.chom.2012.01.015_bib12) 2006; 124
Dodds (10.1016/j.chom.2012.01.015_bib17) 2006; 103
Suarez-Rodriguez (10.1016/j.chom.2012.01.015_bib45) 2007; 143
Warren (10.1016/j.chom.2012.01.015_bib54) 1998; 10
Cao (10.1016/j.chom.2012.01.015_bib9) 2011; 43
Axtell (10.1016/j.chom.2012.01.015_bib3) 2003; 112
Bartsch (10.1016/j.chom.2012.01.015_bib4) 2006; 18
Shao (10.1016/j.chom.2012.01.015_bib44) 2003; 301
Beck (10.1016/j.chom.2012.01.015_bib5) 2010; 22
Li (10.1016/j.chom.2012.01.015_bib29) 2007; 315
Takahashi (10.1016/j.chom.2012.01.015_bib46) 2010; 51
Djamei (10.1016/j.chom.2012.01.015_bib16) 2007; 318
(10.1016/j.chom.2012.01.015_bib34) 2002; 7
Zhang (10.1016/j.chom.2012.01.015_bib55) 2003; 15
Ichimura (10.1016/j.chom.2012.01.015_bib21) 2006; 281
Wang (10.1016/j.chom.2012.01.015_bib53) 2010; 22
References_xml – volume: 22
  start-page: 755
  year: 2010
  end-page: 771
  ident: bib5
  article-title: Arabidopsis homologs of nucleus- and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essential for microtubule organization
  publication-title: Plant Cell
– volume: 15
  start-page: 2647
  year: 2003
  end-page: 2653
  ident: bib55
  article-title: Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance
  publication-title: Plant Cell
– volume: 315
  start-page: 1000
  year: 2007
  end-page: 1003
  ident: bib29
  article-title: The phosphothreonine lyase activity of a bacterial type III effector family
  publication-title: Science
– volume: 148
  start-page: 212
  year: 2008
  end-page: 222
  ident: bib42
  article-title: Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1
  publication-title: Plant Physiol.
– volume: 103
  start-page: 8888
  year: 2006
  end-page: 8893
  ident: bib17
  article-title: Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 100
  start-page: 8024
  year: 2003
  end-page: 8029
  ident: bib15
  article-title: Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 108
  start-page: 743
  year: 2002
  end-page: 754
  ident: bib32
  article-title: RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis
  publication-title: Cell
– volume: 18
  start-page: 2792
  year: 2006
  end-page: 2806
  ident: bib37
  article-title: The tomato NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity
  publication-title: Plant Cell
– volume: 103
  start-page: 1111
  year: 2000
  end-page: 1120
  ident: bib40
  article-title: Arabidopsis map kinase 4 negatively regulates systemic acquired resistance
  publication-title: Cell
– volume: 22
  start-page: 3778
  year: 2010
  end-page: 3790
  ident: bib26
  article-title: The MAP kinase MPK4 is required for cytokinesis in Arabidopsis thaliana
  publication-title: Plant Cell
– volume: 15
  start-page: 141
  year: 2004
  end-page: 152
  ident: bib48
  article-title: The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis
  publication-title: Mol. Cell
– volume: 3
  start-page: 126
  year: 2008
  end-page: 135
  ident: bib10
  article-title: Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming
  publication-title: Cell Host Microbe
– volume: 22
  start-page: 2033
  year: 2010
  end-page: 2044
  ident: bib53
  article-title: A Pseudomonas syringae ADP-ribosyltransferase inhibits Arabidopsis mitogen-activated protein kinase kinases
  publication-title: Plant Cell
– volume: 9
  start-page: 125
  year: 2011
  end-page: 136
  ident: bib13
  article-title: Specific threonine phosphorylation of a host target by two unrelated type III effectors activates a host innate immune receptor in plants
  publication-title: Cell Host Microbe
– volume: 143
  start-page: 661
  year: 2007
  end-page: 669
  ident: bib45
  article-title: MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants
  publication-title: Plant Physiol.
– volume: 141
  start-page: 1666
  year: 2006
  end-page: 1675
  ident: bib35
  article-title: The Arabidopsis flavin-dependent monooxygenase FMO1 is an essential component of biologically induced systemic acquired resistance
  publication-title: Plant Physiol.
– volume: 140
  start-page: 1233
  year: 2006
  end-page: 1245
  ident: bib47
  article-title: Mutations in the NB-ARC domain of I-2 that impair ATP hydrolysis cause autoactivation
  publication-title: Plant Physiol.
– volume: 157
  start-page: 973
  year: 2011
  end-page: 980
  ident: bib24
  article-title: Brush and spray: a high throughput systemic acquired resistance assay suitable for large-scale genetic screening
  publication-title: Plant Physiol.
– volume: 318
  start-page: 453
  year: 2007
  end-page: 456
  ident: bib16
  article-title: Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling
  publication-title: Science
– volume: 9
  start-page: 137
  year: 2011
  end-page: 146
  ident: bib31
  article-title: A receptor-like cytoplasmic kinase phosphorylates the host target RIN4, leading to the activation of a plant innate immune receptor
  publication-title: Cell Host Microbe
– volume: 27
  start-page: 2214
  year: 2008
  end-page: 2221
  ident: bib41
  article-title: Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus
  publication-title: EMBO J.
– volume: 102
  start-page: 12990
  year: 2005
  end-page: 12995
  ident: bib28
  article-title: Flagellin induces innate immunity in nonhost interactions that is suppressed by Pseudomonas syringae effectors
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 308
  start-page: 1783
  year: 2005
  end-page: 1786
  ident: bib43
  article-title: Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance
  publication-title: Science
– volume: 281
  start-page: 36969
  year: 2006
  end-page: 36976
  ident: bib21
  article-title: MEKK1 is required for MPK4 activation and regulates tissue-specific and temperature-dependent cell death in Arabidopsis
  publication-title: J. Biol. Chem.
– volume: 18
  start-page: 1038
  year: 2006
  end-page: 1051
  ident: bib4
  article-title: Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the Nudix hydrolase NUDT7
  publication-title: Plant Cell
– volume: 129
  start-page: 440
  year: 2002
  end-page: 450
  ident: bib22
  article-title: Arabidopsis map-based cloning in the post-genome era
  publication-title: Plant Physiol.
– volume: 153
  start-page: 1771
  year: 2010
  end-page: 1779
  ident: bib7
  article-title: Activation of plant immune responses by a gain-of-function mutation in an atypical receptor-like kinase
  publication-title: Plant Physiol.
– volume: 23
  start-page: 454
  year: 1998
  end-page: 456
  ident: bib51
  article-title: Plant disease-resistance proteins and the gene-for-gene concept
  publication-title: Trends Biochem. Sci.
– volume: 444
  start-page: 323
  year: 2006
  end-page: 329
  ident: bib25
  article-title: The plant immune system
  publication-title: Nature
– volume: 112
  start-page: 379
  year: 2003
  end-page: 389
  ident: bib33
  article-title: Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance
  publication-title: Cell
– volume: 18
  start-page: 570
  year: 2005
  end-page: 582
  ident: bib20
  article-title: Autoactive alleles of the flax L6 rust resistance gene induce non-race-specific rust resistance associated with the hypersensitive response
  publication-title: Mol. Plant Microbe Interact.
– volume: 1
  start-page: 175
  year: 2007
  end-page: 185
  ident: bib56
  article-title: A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants
  publication-title: Cell Host Microbe
– volume: 301
  start-page: 1230
  year: 2003
  end-page: 1233
  ident: bib44
  article-title: Cleavage of Arabidopsis PBS1 by a bacterial type III effector
  publication-title: Science
– volume: 24
  start-page: 2579
  year: 2005
  end-page: 2589
  ident: bib1
  article-title: The MAP kinase substrate MKS1 is a regulator of plant defense responses
  publication-title: EMBO J.
– volume: 11
  start-page: 1187
  year: 1997
  end-page: 1194
  ident: bib49
  article-title: Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction
  publication-title: Plant J.
– volume: 32
  start-page: 195
  year: 2002
  end-page: 204
  ident: bib6
  article-title: Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato
  publication-title: Plant J.
– volume: 100
  start-page: 8577
  year: 2003
  end-page: 8582
  ident: bib19
  article-title: A Pseudomonas syringae type III effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis plants
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 60
  start-page: 379
  year: 2009
  end-page: 406
  ident: bib8
  article-title: A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors
  publication-title: Annu. Rev. Plant Biol.
– volume: 19
  start-page: 1151
  year: 2006
  end-page: 1158
  ident: bib30
  article-title: Closing the circle on the discovery of genes encoding Hrp regulon members and type III secretion system effectors in the genomes of three model Pseudomonas syringae strains
  publication-title: Mol. Plant Microbe Interact.
– volume: 22
  start-page: 2444
  year: 2010
  end-page: 2458
  ident: bib27
  article-title: Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector
  publication-title: Plant Cell
– volume: 415
  start-page: 977
  year: 2002
  end-page: 983
  ident: bib2
  article-title: MAP kinase signalling cascade in Arabidopsis innate immunity
  publication-title: Nature
– volume: 281
  start-page: 38697
  year: 2006
  end-page: 38704
  ident: bib38
  article-title: A Mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis
  publication-title: J. Biol. Chem.
– volume: 124
  start-page: 803
  year: 2006
  end-page: 814
  ident: bib12
  article-title: Host-microbe interactions: shaping the evolution of the plant immune response
  publication-title: Cell
– volume: 10
  start-page: 1439
  year: 1998
  end-page: 1452
  ident: bib54
  article-title: A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes
  publication-title: Plant Cell
– volume: 43
  start-page: 956
  year: 2011
  end-page: 963
  ident: bib9
  article-title: Whole-genome sequencing of multiple Arabidopsis thaliana populations
  publication-title: Nat. Genet.
– volume: 8
  start-page: 2033
  year: 1996
  end-page: 2046
  ident: bib39
  article-title: Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes
  publication-title: Plant Cell
– volume: 7
  start-page: 301
  year: 2002
  end-page: 308
  ident: bib34
  article-title: Mitogen-activated protein kinase cascades in plants: a new nomenclature
  publication-title: Trends Plant Sci.
– volume: 112
  start-page: 369
  year: 2003
  end-page: 377
  ident: bib3
  article-title: Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4
  publication-title: Cell
– volume: 51
  start-page: 1766
  year: 2010
  end-page: 1776
  ident: bib46
  article-title: HINKEL kinesin, ANP MAPKKKs and MKK6/ANQ MAPKK, which phosphorylates and activates MPK4 MAPK, constitute a pathway that is required for cytokinesis in Arabidopsis thaliana
  publication-title: Plant Cell Physiol.
– volume: 437
  start-page: 56
  year: 1998
  end-page: 60
  ident: bib36
  article-title: Identification of a possible MAP kinase cascade in Arabidopsis thaliana based on pairwise yeast two-hybrid analysis and functional complementation tests of yeast mutants
  publication-title: FEBS Lett.
– volume: 7
  start-page: 164
  year: 2011
  end-page: 175
  ident: bib14
  article-title: Pseudomonas syringae effector protein AvrB perturbs Arabidopsis hormone signaling by activating MAP kinase 4
  publication-title: Cell Host Microbe
– volume: 132
  start-page: 449
  year: 2008
  end-page: 462
  ident: bib11
  article-title: Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector
  publication-title: Cell
– volume: 18
  start-page: 1190
  year: 2008
  end-page: 1198
  ident: bib18
  article-title: MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants
  publication-title: Cell Res.
– volume: 19
  start-page: 4004
  year: 2000
  end-page: 4014
  ident: bib23
  article-title: Direct interaction of resistance gene and avirulence gene products confers rice blast resistance
  publication-title: EMBO J.
– volume: 18
  start-page: 1396
  year: 2008
  end-page: 1401
  ident: bib50
  article-title: Negative regulation of PAMP-triggered immunity by an E3 ubiquitin ligase triplet in Arabidopsis
  publication-title: Curr. Biol.
– volume: 40
  start-page: 428
  year: 2004
  end-page: 438
  ident: bib52
  article-title: Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation
  publication-title: Plant J.
– volume: 60
  start-page: 379
  year: 2009
  ident: 10.1016/j.chom.2012.01.015_bib8
  article-title: A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.57.032905.105346
– volume: 15
  start-page: 141
  year: 2004
  ident: 10.1016/j.chom.2012.01.015_bib48
  article-title: The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2004.06.023
– volume: 148
  start-page: 212
  year: 2008
  ident: 10.1016/j.chom.2012.01.015_bib42
  article-title: Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.120006
– volume: 18
  start-page: 1396
  year: 2008
  ident: 10.1016/j.chom.2012.01.015_bib50
  article-title: Negative regulation of PAMP-triggered immunity by an E3 ubiquitin ligase triplet in Arabidopsis
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2008.07.085
– volume: 19
  start-page: 1151
  year: 2006
  ident: 10.1016/j.chom.2012.01.015_bib30
  article-title: Closing the circle on the discovery of genes encoding Hrp regulon members and type III secretion system effectors in the genomes of three model Pseudomonas syringae strains
  publication-title: Mol. Plant Microbe Interact.
  doi: 10.1094/MPMI-19-1151
– volume: 112
  start-page: 369
  year: 2003
  ident: 10.1016/j.chom.2012.01.015_bib3
  article-title: Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00036-9
– volume: 100
  start-page: 8024
  year: 2003
  ident: 10.1016/j.chom.2012.01.015_bib15
  article-title: Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1230660100
– volume: 140
  start-page: 1233
  year: 2006
  ident: 10.1016/j.chom.2012.01.015_bib47
  article-title: Mutations in the NB-ARC domain of I-2 that impair ATP hydrolysis cause autoactivation
  publication-title: Plant Physiol.
  doi: 10.1104/pp.105.073510
– volume: 415
  start-page: 977
  year: 2002
  ident: 10.1016/j.chom.2012.01.015_bib2
  article-title: MAP kinase signalling cascade in Arabidopsis innate immunity
  publication-title: Nature
  doi: 10.1038/415977a
– volume: 112
  start-page: 379
  year: 2003
  ident: 10.1016/j.chom.2012.01.015_bib33
  article-title: Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00040-0
– volume: 15
  start-page: 2647
  year: 2003
  ident: 10.1016/j.chom.2012.01.015_bib55
  article-title: Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance
  publication-title: Plant Cell
  doi: 10.1105/tpc.014894
– volume: 7
  start-page: 301
  year: 2002
  ident: 10.1016/j.chom.2012.01.015_bib34
  article-title: Mitogen-activated protein kinase cascades in plants: a new nomenclature
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(02)02302-6
– volume: 18
  start-page: 1190
  year: 2008
  ident: 10.1016/j.chom.2012.01.015_bib18
  article-title: MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants
  publication-title: Cell Res.
  doi: 10.1038/cr.2008.300
– volume: 157
  start-page: 973
  year: 2011
  ident: 10.1016/j.chom.2012.01.015_bib24
  article-title: Brush and spray: a high throughput systemic acquired resistance assay suitable for large-scale genetic screening
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.182089
– volume: 281
  start-page: 38697
  year: 2006
  ident: 10.1016/j.chom.2012.01.015_bib38
  article-title: A Mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M605293200
– volume: 3
  start-page: 126
  year: 2008
  ident: 10.1016/j.chom.2012.01.015_bib10
  article-title: Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2008.02.010
– volume: 124
  start-page: 803
  year: 2006
  ident: 10.1016/j.chom.2012.01.015_bib12
  article-title: Host-microbe interactions: shaping the evolution of the plant immune response
  publication-title: Cell
  doi: 10.1016/j.cell.2006.02.008
– volume: 23
  start-page: 454
  year: 1998
  ident: 10.1016/j.chom.2012.01.015_bib51
  article-title: Plant disease-resistance proteins and the gene-for-gene concept
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/S0968-0004(98)01311-5
– volume: 141
  start-page: 1666
  year: 2006
  ident: 10.1016/j.chom.2012.01.015_bib35
  article-title: The Arabidopsis flavin-dependent monooxygenase FMO1 is an essential component of biologically induced systemic acquired resistance
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.081257
– volume: 18
  start-page: 2792
  year: 2006
  ident: 10.1016/j.chom.2012.01.015_bib37
  article-title: The tomato NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.044016
– volume: 18
  start-page: 1038
  year: 2006
  ident: 10.1016/j.chom.2012.01.015_bib4
  article-title: Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the Nudix hydrolase NUDT7
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.039982
– volume: 32
  start-page: 195
  year: 2002
  ident: 10.1016/j.chom.2012.01.015_bib6
  article-title: Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.2002.01413.x
– volume: 51
  start-page: 1766
  year: 2010
  ident: 10.1016/j.chom.2012.01.015_bib46
  article-title: HINKEL kinesin, ANP MAPKKKs and MKK6/ANQ MAPKK, which phosphorylates and activates MPK4 MAPK, constitute a pathway that is required for cytokinesis in Arabidopsis thaliana
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcq135
– volume: 22
  start-page: 3778
  year: 2010
  ident: 10.1016/j.chom.2012.01.015_bib26
  article-title: The MAP kinase MPK4 is required for cytokinesis in Arabidopsis thaliana
  publication-title: Plant Cell
  doi: 10.1105/tpc.110.077164
– volume: 281
  start-page: 36969
  year: 2006
  ident: 10.1016/j.chom.2012.01.015_bib21
  article-title: MEKK1 is required for MPK4 activation and regulates tissue-specific and temperature-dependent cell death in Arabidopsis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M605319200
– volume: 103
  start-page: 8888
  year: 2006
  ident: 10.1016/j.chom.2012.01.015_bib17
  article-title: Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0602577103
– volume: 132
  start-page: 449
  year: 2008
  ident: 10.1016/j.chom.2012.01.015_bib11
  article-title: Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector
  publication-title: Cell
  doi: 10.1016/j.cell.2007.12.031
– volume: 22
  start-page: 755
  year: 2010
  ident: 10.1016/j.chom.2012.01.015_bib5
  article-title: Arabidopsis homologs of nucleus- and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essential for microtubule organization
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.071746
– volume: 100
  start-page: 8577
  year: 2003
  ident: 10.1016/j.chom.2012.01.015_bib19
  article-title: A Pseudomonas syringae type III effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis plants
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1431173100
– volume: 1
  start-page: 175
  year: 2007
  ident: 10.1016/j.chom.2012.01.015_bib56
  article-title: A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2007.03.006
– volume: 9
  start-page: 125
  year: 2011
  ident: 10.1016/j.chom.2012.01.015_bib13
  article-title: Specific threonine phosphorylation of a host target by two unrelated type III effectors activates a host innate immune receptor in plants
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2011.01.009
– volume: 7
  start-page: 164
  year: 2011
  ident: 10.1016/j.chom.2012.01.015_bib14
  article-title: Pseudomonas syringae effector protein AvrB perturbs Arabidopsis hormone signaling by activating MAP kinase 4
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2010.01.009
– volume: 9
  start-page: 137
  year: 2011
  ident: 10.1016/j.chom.2012.01.015_bib31
  article-title: A receptor-like cytoplasmic kinase phosphorylates the host target RIN4, leading to the activation of a plant innate immune receptor
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2011.01.010
– volume: 153
  start-page: 1771
  year: 2010
  ident: 10.1016/j.chom.2012.01.015_bib7
  article-title: Activation of plant immune responses by a gain-of-function mutation in an atypical receptor-like kinase
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.158501
– volume: 19
  start-page: 4004
  year: 2000
  ident: 10.1016/j.chom.2012.01.015_bib23
  article-title: Direct interaction of resistance gene and avirulence gene products confers rice blast resistance
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.15.4004
– volume: 11
  start-page: 1187
  year: 1997
  ident: 10.1016/j.chom.2012.01.015_bib49
  article-title: Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.1997.11061187.x
– volume: 315
  start-page: 1000
  year: 2007
  ident: 10.1016/j.chom.2012.01.015_bib29
  article-title: The phosphothreonine lyase activity of a bacterial type III effector family
  publication-title: Science
  doi: 10.1126/science.1138960
– volume: 308
  start-page: 1783
  year: 2005
  ident: 10.1016/j.chom.2012.01.015_bib43
  article-title: Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance
  publication-title: Science
  doi: 10.1126/science.1111404
– volume: 301
  start-page: 1230
  year: 2003
  ident: 10.1016/j.chom.2012.01.015_bib44
  article-title: Cleavage of Arabidopsis PBS1 by a bacterial type III effector
  publication-title: Science
  doi: 10.1126/science.1085671
– volume: 10
  start-page: 1439
  year: 1998
  ident: 10.1016/j.chom.2012.01.015_bib54
  article-title: A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes
  publication-title: Plant Cell
  doi: 10.1105/tpc.10.9.1439
– volume: 40
  start-page: 428
  year: 2004
  ident: 10.1016/j.chom.2012.01.015_bib52
  article-title: Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2004.02219.x
– volume: 318
  start-page: 453
  year: 2007
  ident: 10.1016/j.chom.2012.01.015_bib16
  article-title: Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling
  publication-title: Science
  doi: 10.1126/science.1148110
– volume: 129
  start-page: 440
  year: 2002
  ident: 10.1016/j.chom.2012.01.015_bib22
  article-title: Arabidopsis map-based cloning in the post-genome era
  publication-title: Plant Physiol.
  doi: 10.1104/pp.003533
– volume: 22
  start-page: 2033
  year: 2010
  ident: 10.1016/j.chom.2012.01.015_bib53
  article-title: A Pseudomonas syringae ADP-ribosyltransferase inhibits Arabidopsis mitogen-activated protein kinase kinases
  publication-title: Plant Cell
  doi: 10.1105/tpc.110.075697
– volume: 102
  start-page: 12990
  year: 2005
  ident: 10.1016/j.chom.2012.01.015_bib28
  article-title: Flagellin induces innate immunity in nonhost interactions that is suppressed by Pseudomonas syringae effectors
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0502425102
– volume: 8
  start-page: 2033
  year: 1996
  ident: 10.1016/j.chom.2012.01.015_bib39
  article-title: Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes
  publication-title: Plant Cell
– volume: 143
  start-page: 661
  year: 2007
  ident: 10.1016/j.chom.2012.01.015_bib45
  article-title: MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.091389
– volume: 43
  start-page: 956
  year: 2011
  ident: 10.1016/j.chom.2012.01.015_bib9
  article-title: Whole-genome sequencing of multiple Arabidopsis thaliana populations
  publication-title: Nat. Genet.
  doi: 10.1038/ng.911
– volume: 18
  start-page: 570
  year: 2005
  ident: 10.1016/j.chom.2012.01.015_bib20
  article-title: Autoactive alleles of the flax L6 rust resistance gene induce non-race-specific rust resistance associated with the hypersensitive response
  publication-title: Mol. Plant Microbe Interact.
  doi: 10.1094/MPMI-18-0570
– volume: 103
  start-page: 1111
  year: 2000
  ident: 10.1016/j.chom.2012.01.015_bib40
  article-title: Arabidopsis map kinase 4 negatively regulates systemic acquired resistance
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00213-0
– volume: 24
  start-page: 2579
  year: 2005
  ident: 10.1016/j.chom.2012.01.015_bib1
  article-title: The MAP kinase substrate MKS1 is a regulator of plant defense responses
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600737
– volume: 27
  start-page: 2214
  year: 2008
  ident: 10.1016/j.chom.2012.01.015_bib41
  article-title: Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus
  publication-title: EMBO J.
  doi: 10.1038/emboj.2008.147
– volume: 444
  start-page: 323
  year: 2006
  ident: 10.1016/j.chom.2012.01.015_bib25
  article-title: The plant immune system
  publication-title: Nature
  doi: 10.1038/nature05286
– volume: 437
  start-page: 56
  year: 1998
  ident: 10.1016/j.chom.2012.01.015_bib36
  article-title: Identification of a possible MAP kinase cascade in Arabidopsis thaliana based on pairwise yeast two-hybrid analysis and functional complementation tests of yeast mutants
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(98)01197-1
– volume: 22
  start-page: 2444
  year: 2010
  ident: 10.1016/j.chom.2012.01.015_bib27
  article-title: Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector
  publication-title: Plant Cell
  doi: 10.1105/tpc.110.075358
– volume: 108
  start-page: 743
  year: 2002
  ident: 10.1016/j.chom.2012.01.015_bib32
  article-title: RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00661-X
SSID ssj0055071
Score 2.499765
Snippet Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) serves as a primary plant defense response against microbial pathogens, with MEKK1,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 253
SubjectTerms Alleles
Arabidopsis - immunology
Arabidopsis - metabolism
Arabidopsis - microbiology
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis Proteins - physiology
Bacterial Proteins - immunology
Bacterial Proteins - metabolism
Carrier Proteins - genetics
Carrier Proteins - metabolism
Carrier Proteins - physiology
Cell Death
DNA Mutational Analysis
Host-Pathogen Interactions
immunity
MAP Kinase Signaling System
mitogen-activated protein kinase
Mutation, Missense
pathogens
phenotype
Plant Diseases - immunology
Plant Diseases - microbiology
Plant Immunity
Protein Kinases - genetics
Protein Kinases - metabolism
Protein Structure, Tertiary
Pseudomonas syringae
Pseudomonas syringae - physiology
receptors
Receptors, Pattern Recognition - metabolism
Title Disruption of PAMP-Induced MAP Kinase Cascade by a Pseudomonas syringae Effector Activates Plant Immunity Mediated by the NB-LRR Protein SUMM2
URI https://dx.doi.org/10.1016/j.chom.2012.01.015
https://www.ncbi.nlm.nih.gov/pubmed/22423965
https://www.proquest.com/docview/1733521719
https://www.proquest.com/docview/929119381
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhUOil9N1t0zKF3opZy5Zfx822IX1sMGkDexN6gkuxw9p72D_R35wZ2Q4UmhwKvthIRpbGM99IM_Mx9kHzwivu4kjlmYiE9jZS3pYRWnKbeqGK2NHWwOYiP78SX7fZ9oit51wYCqucdP-o04O2np4sp9lcXjfN8gdCD57SQRBlm2QhjzwVZUji257O2pjKdfHxZJlH1HpKnBljvIiPhMK7klC6k6hx_22c7gKfwQidPWaPJvQIq3GAT9iRa5-yByOf5OEZ-_Op6Xf7oASg81CvNnVE3Bz4lbBZ1fCtadFowVr1FBUP-gAK6t7tbYfCqHroD7TLpxyMNY27HaxMoD9zPRC70QBfQjrJcIBNoPjA9-JLEEPCxWn0_fISair70LRAyjp5zq7OPv9cn0cT4UJkRFUO6EamZem0dehExF4bg3BQpXlpq9jo2CBa0ZXNE8c9d4hsUsOtL2OdotOmERgk6Qt23Hate8VA-FholRWVtlZwkWmDfp0tEKBo722VLRifZ1qaqRo5kWL8lnPY2S9JqyNpdWTM8cI-H2_7XI-1OO5tnc0LKP-SKInG4t5-7-fVlvir0fmJal237yUvKEGNF7xaMLijDaJNjrJW8gV7OUrK7VATgq5Vnr3-z4G9YQ_pjgLgeHbCjofd3r1FRDTod0HkbwDQUAeu
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF5CSmkvpe-46WMK7akIa_XWoQcnabBry4g0Ad_UXe0uqBQpWDJBf6J_pn-wM3oECk0OhYBPslYsO6P5vtXOzMfYB8lDI7i2LRH4nuVJoyxhVGQhkivXeCK0NX0aSNbB_ML7uvE3e-z3WAtDaZVD7O9jehethyvTYTWnl0Ux_YbUg7t0EETVJn7Ih8zKpW6vcN9Wf16coJE_Os7pl_PjuTVIC1i5F0cNbpjcKNJSaaTLtpF5jsRHuEGkYjuXdo64LGMVOJobrhHD3ZwrE9nSxe2JRAikbgcY9-8h-wgpGiw2R2P4p_5gvD_K5hZNb6jU6ZPKSACF8smcrlcoafH-Gw1vYrsd6p0-Zo8GugqzfkWesD1dPmX3ewHL9hn7dVLU210XdaAykM6S1CIxEFxWSGYpLIsSURKORU1p-CBbEJDWeqcq9H5RQ93SZ0WhoW-iXG1hlnd6a7oGklNqYNHVrzQtJJ2mCD4XH4KkFdZH1ursDFLqM1GUQOjgPGcXd2KGF2y_rEp9wMAztieFH8ZSKY97vsxxI6lCZETSGBX7E8bHlc7yof05qXD8zMY8tx8ZWScj62Q2xx-O-XQ95rJv_nHr3f5owOwvF84QnW4d9360dobvNh3YiFJXuzrjIVXE8ZDHEwY33IP0lqOvRXzCXvaecj1Vh7hyHPiv_nNi79iD-XmyylaL9fKQPaR_KPuO-6_ZfrPd6TdIxxr5tnN_YN_v-n37AwweRE4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disruption+of+PAMP-Induced+MAP+Kinase+Cascade+by+a+Pseudomonas+syringae+Effector+Activates+Plant+Immunity+Mediated+by+the+NB-LRR+Protein+SUMM2&rft.jtitle=Cell+host+%26+microbe&rft.au=Zhang%2C+Zhibin&rft.au=Wu%2C+Yaling&rft.au=Gao%2C+Minghui&rft.au=Zhang%2C+Jie&rft.date=2012-03-15&rft.issn=1931-3128&rft.volume=11&rft.issue=3+p.253-263&rft.spage=253&rft.epage=263&rft_id=info:doi/10.1016%2Fj.chom.2012.01.015&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3128&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3128&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3128&client=summon