Two-way magnetic resonance tuning and enhanced subtraction imaging for non-invasive and quantitative biological imaging

Distance-dependent magnetic resonance tuning (MRET) technology enables the sensing and quantitative imaging of biological targets in vivo, with the advantage of deep tissue penetration and fewer interactions with the surroundings as compared with those of fluorescence-based Förster resonance energy...

Full description

Saved in:
Bibliographic Details
Published inNature nanotechnology Vol. 15; no. 6; pp. 482 - 490
Main Authors Wang, Zhongling, Xue, Xiangdong, Lu, Hongwei, He, Yixuan, Lu, Ziwei, Chen, Zhijie, Yuan, Ye, Tang, Na, Dreyer, Courtney A., Quigley, Lizabeth, Curro, Nicholas, Lam, Kit S., Walton, Jeffrey H., Lin, Tzu-yin, Louie, Angelique Y., Gilbert, Dustin A., Liu, Kai, Ferrara, Katherine W., Li, Yuanpei
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.06.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Distance-dependent magnetic resonance tuning (MRET) technology enables the sensing and quantitative imaging of biological targets in vivo, with the advantage of deep tissue penetration and fewer interactions with the surroundings as compared with those of fluorescence-based Förster resonance energy transfer. However, applications of MRET technology in vivo are currently limited by the moderate contrast enhancement and stability of T 1 -based MRET probes. Here we report a new two-way magnetic resonance tuning (TMRET) nanoprobe with dually activatable T 1 and T 2 magnetic resonance signals that is coupled with dual-contrast enhanced subtraction imaging. This integrated platform achieves a substantially improved contrast enhancement with minimal background signal and can be used to quantitatively image molecular targets in tumours and to sensitively detect very small intracranial brain tumours in patient-derived xenograft models. The high tumour-to-normal tissue ratio offered by TMRET in combination with dual-contrast enhanced subtraction imaging provides new opportunities for molecular diagnostics and image-guided biomedical applications. A distance-dependent two-way magnetic resonance tuning platform combined with dual-contrast enhanced subtraction imaging enables quantitative sensing and imaging in deep tissues with minimal background noise.
AbstractList Distance-dependent magnetic resonance tuning (MRET) technology enables the sensing and quantitative imaging of biological targets in vivo, with the advantage of deep tissue penetration and less interactions with the surroundings as compared to fluorescence-based Förster resonance energy transfer (FRET). However, applications of MRET technology in vivo are currently limited by the moderate contrast enhancement and stability of T 1 -based MRET probes. Here we report a new two-way magnetic resonance tuning (t-MRET) nanoprobe with dually activatable T 1 and T 2 magnetic resonance signals that is coupled with dual-contrast enhanced subtraction imaging (DESI). This integrated platform achieves substantially improved contrast enhancement with minimal background signal and can be used to quantitatively image molecular targets in tumours and to sensitively detect very small intracranial brain tumours in patient-derived xenograft models. The high tumour-to-normal tissue ratio offered by t-MRET in combination with DESI provides new opportunities for molecular diagnostics and image-guided biomedical applications.
Distance-dependent magnetic resonance tuning (MRET) technology enables the sensing and quantitative imaging of biological targets in vivo, with the advantage of deep tissue penetration and fewer interactions with the surroundings as compared with those of fluorescence-based Förster resonance energy transfer. However, applications of MRET technology in vivo are currently limited by the moderate contrast enhancement and stability of T1-based MRET probes. Here we report a new two-way magnetic resonance tuning (TMRET) nanoprobe with dually activatable T1 and T2 magnetic resonance signals that is coupled with dual-contrast enhanced subtraction imaging. This integrated platform achieves a substantially improved contrast enhancement with minimal background signal and can be used to quantitatively image molecular targets in tumours and to sensitively detect very small intracranial brain tumours in patient-derived xenograft models. The high tumour-to-normal tissue ratio offered by TMRET in combination with dual-contrast enhanced subtraction imaging provides new opportunities for molecular diagnostics and image-guided biomedical applications.A distance-dependent two-way magnetic resonance tuning platform combined with dual-contrast enhanced subtraction imaging enables quantitative sensing and imaging in deep tissues with minimal background noise.
Distance-dependent magnetic resonance tuning (MRET) technology enables the sensing and quantitative imaging of biological targets in vivo, with the advantage of deep tissue penetration and fewer interactions with the surroundings as compared with those of fluorescence-based Förster resonance energy transfer. However, applications of MRET technology in vivo are currently limited by the moderate contrast enhancement and stability of T -based MRET probes. Here we report a new two-way magnetic resonance tuning (TMRET) nanoprobe with dually activatable T and T magnetic resonance signals that is coupled with dual-contrast enhanced subtraction imaging. This integrated platform achieves a substantially improved contrast enhancement with minimal background signal and can be used to quantitatively image molecular targets in tumours and to sensitively detect very small intracranial brain tumours in patient-derived xenograft models. The high tumour-to-normal tissue ratio offered by TMRET in combination with dual-contrast enhanced subtraction imaging provides new opportunities for molecular diagnostics and image-guided biomedical applications.
Distance-dependent magnetic resonance tuning (MRET) technology enables the sensing and quantitative imaging of biological targets in vivo, with the advantage of deep tissue penetration and fewer interactions with the surroundings as compared with those of fluorescence-based Förster resonance energy transfer. However, applications of MRET technology in vivo are currently limited by the moderate contrast enhancement and stability of T1-based MRET probes. Here we report a new two-way magnetic resonance tuning (TMRET) nanoprobe with dually activatable T1 and T2 magnetic resonance signals that is coupled with dual-contrast enhanced subtraction imaging. This integrated platform achieves a substantially improved contrast enhancement with minimal background signal and can be used to quantitatively image molecular targets in tumours and to sensitively detect very small intracranial brain tumours in patient-derived xenograft models. The high tumour-to-normal tissue ratio offered by TMRET in combination with dual-contrast enhanced subtraction imaging provides new opportunities for molecular diagnostics and image-guided biomedical applications.Distance-dependent magnetic resonance tuning (MRET) technology enables the sensing and quantitative imaging of biological targets in vivo, with the advantage of deep tissue penetration and fewer interactions with the surroundings as compared with those of fluorescence-based Förster resonance energy transfer. However, applications of MRET technology in vivo are currently limited by the moderate contrast enhancement and stability of T1-based MRET probes. Here we report a new two-way magnetic resonance tuning (TMRET) nanoprobe with dually activatable T1 and T2 magnetic resonance signals that is coupled with dual-contrast enhanced subtraction imaging. This integrated platform achieves a substantially improved contrast enhancement with minimal background signal and can be used to quantitatively image molecular targets in tumours and to sensitively detect very small intracranial brain tumours in patient-derived xenograft models. The high tumour-to-normal tissue ratio offered by TMRET in combination with dual-contrast enhanced subtraction imaging provides new opportunities for molecular diagnostics and image-guided biomedical applications.
Distance-dependent magnetic resonance tuning (MRET) technology enables the sensing and quantitative imaging of biological targets in vivo, with the advantage of deep tissue penetration and fewer interactions with the surroundings as compared with those of fluorescence-based Förster resonance energy transfer. However, applications of MRET technology in vivo are currently limited by the moderate contrast enhancement and stability of T 1 -based MRET probes. Here we report a new two-way magnetic resonance tuning (TMRET) nanoprobe with dually activatable T 1 and T 2 magnetic resonance signals that is coupled with dual-contrast enhanced subtraction imaging. This integrated platform achieves a substantially improved contrast enhancement with minimal background signal and can be used to quantitatively image molecular targets in tumours and to sensitively detect very small intracranial brain tumours in patient-derived xenograft models. The high tumour-to-normal tissue ratio offered by TMRET in combination with dual-contrast enhanced subtraction imaging provides new opportunities for molecular diagnostics and image-guided biomedical applications. A distance-dependent two-way magnetic resonance tuning platform combined with dual-contrast enhanced subtraction imaging enables quantitative sensing and imaging in deep tissues with minimal background noise.
Author Lu, Ziwei
Yuan, Ye
He, Yixuan
Liu, Kai
Chen, Zhijie
Quigley, Lizabeth
Xue, Xiangdong
Li, Yuanpei
Wang, Zhongling
Ferrara, Katherine W.
Louie, Angelique Y.
Dreyer, Courtney A.
Lin, Tzu-yin
Lu, Hongwei
Tang, Na
Walton, Jeffrey H.
Curro, Nicholas
Gilbert, Dustin A.
Lam, Kit S.
AuthorAffiliation 1 Department of Radiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China
6 Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
7 Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Sacramento, California, 95817, USA
3 Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China
2 Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California, 95817, USA
5 Department of Physics, Georgetown University, Washington, DC 20057, USA
9 Department of Biomedical Engineering, University of California Davis, Davis, California, 95616, USA
8 UC Davis NMR Facility, Davis, California, 95616, USA
10 Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
4 Department of Physics, University of California, Davi
AuthorAffiliation_xml – name: 2 Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California, 95817, USA
– name: 4 Department of Physics, University of California, Davis, California 95616, USA
– name: 5 Department of Physics, Georgetown University, Washington, DC 20057, USA
– name: 9 Department of Biomedical Engineering, University of California Davis, Davis, California, 95616, USA
– name: 8 UC Davis NMR Facility, Davis, California, 95616, USA
– name: 10 Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
– name: 6 Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
– name: 3 Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China
– name: 1 Department of Radiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China
– name: 7 Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Sacramento, California, 95817, USA
Author_xml – sequence: 1
  givenname: Zhongling
  surname: Wang
  fullname: Wang, Zhongling
  organization: Department of Radiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis
– sequence: 2
  givenname: Xiangdong
  orcidid: 0000-0002-3709-072X
  surname: Xue
  fullname: Xue, Xiangdong
  organization: Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis
– sequence: 3
  givenname: Hongwei
  surname: Lu
  fullname: Lu, Hongwei
  organization: Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis
– sequence: 4
  givenname: Yixuan
  surname: He
  fullname: He, Yixuan
  organization: Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis
– sequence: 5
  givenname: Ziwei
  surname: Lu
  fullname: Lu, Ziwei
  organization: Department of Radiology, First Affiliated Hospital of Soochow University
– sequence: 6
  givenname: Zhijie
  orcidid: 0000-0002-3594-5560
  surname: Chen
  fullname: Chen, Zhijie
  organization: Department of Physics, University of California, Department of Physics, Georgetown University
– sequence: 7
  givenname: Ye
  surname: Yuan
  fullname: Yuan, Ye
  organization: Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis
– sequence: 8
  givenname: Na
  surname: Tang
  fullname: Tang, Na
  organization: Department of Radiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University
– sequence: 9
  givenname: Courtney A.
  surname: Dreyer
  fullname: Dreyer, Courtney A.
  organization: Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis
– sequence: 10
  givenname: Lizabeth
  surname: Quigley
  fullname: Quigley, Lizabeth
  organization: Department of Materials Science and Engineering, University of Tennessee
– sequence: 11
  givenname: Nicholas
  surname: Curro
  fullname: Curro, Nicholas
  organization: Department of Physics, University of California
– sequence: 12
  givenname: Kit S.
  orcidid: 0000-0002-3076-6969
  surname: Lam
  fullname: Lam, Kit S.
  organization: Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis
– sequence: 13
  givenname: Jeffrey H.
  orcidid: 0000-0002-2359-955X
  surname: Walton
  fullname: Walton, Jeffrey H.
  organization: Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, UC Davis NMR Facility
– sequence: 14
  givenname: Tzu-yin
  surname: Lin
  fullname: Lin, Tzu-yin
  organization: Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis
– sequence: 15
  givenname: Angelique Y.
  surname: Louie
  fullname: Louie, Angelique Y.
  organization: Department of Biomedical Engineering, University of California Davis
– sequence: 16
  givenname: Dustin A.
  orcidid: 0000-0003-3747-3883
  surname: Gilbert
  fullname: Gilbert, Dustin A.
  organization: Department of Materials Science and Engineering, University of Tennessee
– sequence: 17
  givenname: Kai
  orcidid: 0000-0001-9413-6782
  surname: Liu
  fullname: Liu, Kai
  organization: Department of Physics, University of California, Department of Physics, Georgetown University
– sequence: 18
  givenname: Katherine W.
  orcidid: 0000-0002-4976-9107
  surname: Ferrara
  fullname: Ferrara, Katherine W.
  organization: Department of Radiology, Stanford University
– sequence: 19
  givenname: Yuanpei
  orcidid: 0000-0002-4015-646X
  surname: Li
  fullname: Li, Yuanpei
  email: lypli@ucdavis.edu
  organization: Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32451501$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1rHSEUhqUkNMltf0A3ZaCbbmz8HMdNoYR-QaCbZC2OoxPDXE3UuZf8-zi5yU0baHChHJ_3-B58T8BBiMEC8AGjLxjR7jQzzFsOEUEQtaKD_A04xoJ1kFLJD_bnThyBk5yvEeJEEvYWHFHCOOYIH4PtxTbCrb5r1noMtnjTJJtj0MHYpszBh7HRYWhsuFpKQ5PnviRtio-h8VWzAC6mpjqDPmx09hv7oLiddSi-6LIUeh-nOHqjpyfRO3Do9JTt-8d9BS5_fL84-wXP__z8ffbtHBomuwI56QwWAyEOY9cj1FvHa8Wx3gkjWm0ck8wQq6m07aBxHbGlEhvGBkQd0XQFvu763sz92g7Ghmp_Ujep-kh3Kmqv_r0J_kqNcaMERYLVZivw-bFBirezzUWtfTZ2mnSwcc6KMNRKTohEFf30Ar2Ocwp1vEoJjiimVLxO4bqkpKxSH__2vTf89HMVwDvApJhzsm6PYKSWdKhdOlRNh1rSoXjViBca8_BDcRndT68qyU6Z6ythtOnZ9P9F9615z-8
CitedBy_id crossref_primary_10_1002_ange_202318948
crossref_primary_10_1002_adfm_202100386
crossref_primary_10_1016_j_matt_2024_101957
crossref_primary_10_1039_D1RA09067D
crossref_primary_10_1021_acs_nanolett_4c01389
crossref_primary_10_1016_j_talanta_2024_126867
crossref_primary_10_1039_D1BM01506K
crossref_primary_10_1016_j_addr_2023_114822
crossref_primary_10_1021_acsami_2c15295
crossref_primary_10_1002_adhm_202403099
crossref_primary_10_1088_2516_1091_ac3111
crossref_primary_10_1186_s12951_021_01006_z
crossref_primary_10_1002_anie_202418015
crossref_primary_10_1039_D2NR04979A
crossref_primary_10_1021_cbmi_3c00026
crossref_primary_10_1039_D2TB00600F
crossref_primary_10_1021_acsnano_4c07374
crossref_primary_10_1038_s41578_024_00767_x
crossref_primary_10_1039_D3TB00068K
crossref_primary_10_1115_1_4053007
crossref_primary_10_1002_smll_202104783
crossref_primary_10_1038_s41467_022_29586_w
crossref_primary_10_1002_ange_202014348
crossref_primary_10_1002_ange_202418015
crossref_primary_10_1021_acsanm_5c00425
crossref_primary_10_1016_j_foodchem_2024_138847
crossref_primary_10_1038_s41467_022_29082_1
crossref_primary_10_1016_j_nantod_2022_101524
crossref_primary_10_3389_fchem_2020_572471
crossref_primary_10_1021_acs_analchem_4c06942
crossref_primary_10_3389_fphar_2022_995512
crossref_primary_10_1002_adhm_202301437
crossref_primary_10_1039_D0RA06911F
crossref_primary_10_1038_s41467_024_50688_0
crossref_primary_10_1038_s41467_024_52308_3
crossref_primary_10_1016_j_ccr_2024_216402
crossref_primary_10_1021_acsami_2c07235
crossref_primary_10_1002_anie_202318948
crossref_primary_10_1002_anie_202014348
crossref_primary_10_1007_s12598_023_02443_5
crossref_primary_10_1021_acsnano_0c09223
crossref_primary_10_1002_adfm_202303240
crossref_primary_10_1039_D0CS00260G
crossref_primary_10_1039_D2BM01317G
crossref_primary_10_1021_acsnano_3c12305
crossref_primary_10_1039_D4CC04532G
crossref_primary_10_1016_j_biomaterials_2020_120234
crossref_primary_10_3390_nano15010033
crossref_primary_10_1002_adfm_202101278
crossref_primary_10_1039_D3QI00978E
crossref_primary_10_1016_j_jconrel_2022_03_024
crossref_primary_10_1002_adfm_202315171
crossref_primary_10_34133_research_0286
crossref_primary_10_1038_s41467_022_35655_x
crossref_primary_10_1039_D2NA00485B
crossref_primary_10_1016_j_cej_2024_158788
crossref_primary_10_3390_gels9040286
crossref_primary_10_1039_D3NR05053J
crossref_primary_10_1021_cbmi_3c00104
crossref_primary_10_1039_D2NH00478J
crossref_primary_10_1016_j_cej_2025_159400
crossref_primary_10_1021_acs_chemrev_4c00546
crossref_primary_10_1186_s12951_022_01451_4
crossref_primary_10_1007_s12274_023_6214_9
crossref_primary_10_1039_D3AN00972F
crossref_primary_10_1016_j_addr_2022_114176
crossref_primary_10_26599_NR_2025_94907251
crossref_primary_10_1021_acs_nanolett_3c02466
crossref_primary_10_1021_acs_analchem_4c00334
crossref_primary_10_1016_j_isci_2024_109062
crossref_primary_10_1002_adma_202310404
crossref_primary_10_1002_smll_202306912
crossref_primary_10_1038_s41551_024_01286_4
crossref_primary_10_1039_D4SD00132J
crossref_primary_10_1002_VIW_20200141
crossref_primary_10_1021_acsnano_2c12874
crossref_primary_10_2174_1389201024666230821090222
crossref_primary_10_1039_D3BM00789H
crossref_primary_10_1016_j_biomaterials_2022_121852
crossref_primary_10_1002_EXP_20210134
crossref_primary_10_1002_nano_202000169
crossref_primary_10_1016_j_addr_2021_113830
crossref_primary_10_3390_ma16083096
crossref_primary_10_1038_s41566_024_01387_1
crossref_primary_10_1002_ange_202010228
crossref_primary_10_1021_acsbiomaterials_4c00890
crossref_primary_10_1016_j_biomaterials_2024_122745
crossref_primary_10_1021_acsnano_3c10739
crossref_primary_10_1039_D3CC00418J
crossref_primary_10_1002_anie_202010228
crossref_primary_10_1016_j_actbio_2023_04_026
crossref_primary_10_1021_jacs_2c10749
crossref_primary_10_1039_D2NR07009J
crossref_primary_10_1016_j_mtadv_2020_100119
crossref_primary_10_1021_acsnano_4c00516
crossref_primary_10_1007_s12274_023_5679_x
crossref_primary_10_1016_j_ccr_2023_215332
crossref_primary_10_1002_EXP_20210009
crossref_primary_10_3390_nano11082107
crossref_primary_10_1016_j_trac_2024_117848
crossref_primary_10_1002_EXP_20230070
crossref_primary_10_1186_s12951_022_01479_6
crossref_primary_10_1007_s40843_024_3103_x
crossref_primary_10_1007_s11426_022_1461_3
crossref_primary_10_3390_pharmaceutics14112463
crossref_primary_10_1016_j_cis_2024_103166
crossref_primary_10_1002_adma_202308198
Cites_doi 10.1002/pssc.200405493
10.1038/sj.cdd.4401389
10.1111/j.1471-4159.1989.tb02550.x
10.1021/ja056726i
10.1038/nbt1100
10.1007/s11307-015-0918-5
10.1038/nmat2986
10.1038/nbt935
10.1038/s41467-018-06093-5
10.1038/nnano.2006.51
10.1038/nbt1066
10.1038/nbt945
10.1021/acsnano.7b03075
10.1038/nbt896
10.3762/bjnano.1.22
10.1038/nbt.3828
10.1016/j.addr.2013.09.008
10.1038/s41551-017-0057
10.1021/nn302393e
10.1038/nmat4846
10.1016/j.biomaterials.2015.07.033
10.1021/mp300128b
10.1021/ja077058z
10.1021/nn302317j
10.1021/bc300214z
10.1002/(SICI)1522-2594(199908)42:2<379::AID-MRM20>3.0.CO;2-L
10.1016/j.biomaterials.2017.02.037
10.1038/ncomms5712
10.1038/nmat3776
10.1038/s41551-017-0062
10.1038/nature01060
10.1016/j.biomaterials.2011.05.050
10.1103/PhysRevLett.92.017201
10.1016/S0021-9258(19)81074-8
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
The Author(s), under exclusive licence to Springer Nature Limited 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7U5
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
L6V
L7M
LK8
M0S
M1P
M7P
M7S
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOI 10.1038/s41565-020-0678-5
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database (ProQuest)
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest Central Student
MEDLINE
MEDLINE - Academic
ProQuest Central Student

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-3395
EndPage 490
ExternalDocumentID PMC7307456
32451501
10_1038_s41565_020_0678_5
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Science Foundation (NSF)
  grantid: DMR-1828420; ECCS-1611424
  funderid: https://doi.org/10.13039/100000001
– fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
  grantid: R01CA199668; R01HD086195
  funderid: https://doi.org/10.13039/100000054
– fundername: NCI NIH HHS
  grantid: R01 CA232845
– fundername: NCI NIH HHS
  grantid: R01 CA199668
– fundername: NIBIB NIH HHS
  grantid: R01 EB028646
– fundername: NICHD NIH HHS
  grantid: R01 HD086195
– fundername: NCI NIH HHS
  grantid: P30 CA093373
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
5M7
5S5
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
L6V
LK8
M1P
M7P
M7S
MM.
NNMJJ
O9-
ODYON
P2P
P62
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PJZUB
PPXIY
PQGLB
7QO
7U5
7XB
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
K9.
L7M
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c498t-528c17d22f11fb00bef58c1f4bf7c76acf494c2ea39e6da10056391c44d03f2a3
IEDL.DBID 7X7
ISSN 1748-3387
1748-3395
IngestDate Thu Aug 21 18:43:03 EDT 2025
Thu Jul 10 22:34:12 EDT 2025
Wed Aug 13 06:29:01 EDT 2025
Fri Jul 25 08:54:40 EDT 2025
Mon Jul 21 05:50:53 EDT 2025
Tue Jul 01 01:56:30 EDT 2025
Thu Apr 24 23:02:10 EDT 2025
Fri Feb 21 02:41:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c498t-528c17d22f11fb00bef58c1f4bf7c76acf494c2ea39e6da10056391c44d03f2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Y.L., X.X. and Z.W. conceived the idea and designed the t-MRET nanoprobe. Z.W. conducted most of the experiments, X.X. assisted with part of the experiments. X.X. and Z.W. analyzed the data. X.X. led the revisions of the manuscript. H.L. worked on POP materials and animal experiments. Y.X. assisted with animal studies. Z.W. and L.W. conducted the DESI process. Z.C., L. Q., N.C., D.A.G., X.X. and K.L. performed magnetic characterization and assisted with the explanation of T2 quench mechanism. Y.Y. assisted with MRI studies. N.T. assisted with the MRI data analysis. T.L. assisted with the design and data analysis of biological experiments. K.S., A.L. and K.F. provided valuable suggestions on the project methodology. X.X., Y.L. and Z.W. wrote the paper and all authors commented on the manuscript. Y.L. supervised the whole project.
Z. Wang and X. Xue contributed equally to this work.
Author contributions
ORCID 0000-0002-3076-6969
0000-0001-9413-6782
0000-0002-3709-072X
0000-0002-2359-955X
0000-0002-4976-9107
0000-0002-4015-646X
0000-0002-3594-5560
0000-0003-3747-3883
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7307456
PMID 32451501
PQID 2414149934
PQPubID 546299
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7307456
proquest_miscellaneous_2406952290
proquest_journals_2475031337
proquest_journals_2414149934
pubmed_primary_32451501
crossref_primary_10_1038_s41565_020_0678_5
crossref_citationtrail_10_1038_s41565_020_0678_5
springer_journals_10_1038_s41565_020_0678_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nat. Nanotechnol
PublicationTitleAlternate Nat Nanotechnol
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Schuler, Lipman, Eaton (CR5) 2002; 419
Rizzo, Springer, Granada, Piston (CR6) 2004; 22
Ma (CR4) 2017; 35
Sönnichsen, Reinhard, Liphardt, Alivisatos (CR3) 2005; 23
Kato (CR31) 2012; 9
Zhou (CR16) 2017; 11
Köseoğlu, Yıldız, Kim, Muhammed, Aktaş (CR19) 2004; 1
Mizukami (CR10) 2008; 130
Hori, Tummers, Gambhir (CR29) 2017; 1
Maeda (CR26) 2004; 11
Li, Xiao, Zhu, Deng, Lam (CR25) 2014; 66
Mura, Nicolas, Couvreur (CR11) 2013; 12
Jares-Erijman, Jovin (CR8) 2003; 21
Webb, Ash, Leyh, Trentham, Reed (CR21) 1982; 257
Pileblad, Magnusson, Fornstedt (CR27) 1989; 52
Tam (CR13) 2012; 23
Nguyen, Daugherty (CR2) 2005; 23
Li (CR24) 2011; 32
Li (CR30) 2014; 5
Santra (CR17) 2012; 6
Zheng (CR28) 2017; 1
Biskup, Zimmer, Benndorf (CR7) 2004; 22
Xue (CR15) 2018; 9
Liu (CR1) 2006; 1
Wang (CR33) 2017; 127
Lovell (CR14) 2011; 10
Zhang (CR34) 2016; 18
Mørup, Hansen, Frandsen (CR18) 2010; 1
Kuch (CR20) 2004; 92
Choi (CR9) 2017; 16
Xiao (CR32) 2015; 67
Bulte, Brooks, Moskowitz, Bryant, Frank (CR22) 1999; 42
Li (CR23) 2012; 6
Hong (CR12) 2006; 128
NCM Tam (678_CR13) 2012; 23
Y Li (678_CR30) 2014; 5
K Xiao (678_CR32) 2015; 67
MR Webb (678_CR21) 1982; 257
C Biskup (678_CR7) 2004; 22
JW Bulte (678_CR22) 1999; 42
E Pileblad (678_CR27) 1989; 52
S Mizukami (678_CR10) 2008; 130
Y Li (678_CR24) 2011; 32
Z Wang (678_CR33) 2017; 127
R Hong (678_CR12) 2006; 128
JS Choi (678_CR9) 2017; 16
Y Li (678_CR25) 2014; 66
H Maeda (678_CR26) 2004; 11
S Mura (678_CR11) 2013; 12
SS Hori (678_CR29) 2017; 1
Y Li (678_CR23) 2012; 6
J Kato (678_CR31) 2012; 9
Z Zhang (678_CR34) 2016; 18
Y Ma (678_CR4) 2017; 35
X Zheng (678_CR28) 2017; 1
Z Zhou (678_CR16) 2017; 11
X Xue (678_CR15) 2018; 9
W Kuch (678_CR20) 2004; 92
JF Lovell (678_CR14) 2011; 10
AW Nguyen (678_CR2) 2005; 23
B Schuler (678_CR5) 2002; 419
S Santra (678_CR17) 2012; 6
S Mørup (678_CR18) 2010; 1
Y Köseoğlu (678_CR19) 2004; 1
MA Rizzo (678_CR6) 2004; 22
GL Liu (678_CR1) 2006; 1
C Sönnichsen (678_CR3) 2005; 23
EA Jares-Erijman (678_CR8) 2003; 21
References_xml – volume: 1
  start-page: 3511
  year: 2004
  end-page: 3515
  ident: CR19
  article-title: EPR studies on Na-oleate coated Fe O nanoparticles
  publication-title: Phys. Status Solidi C
  doi: 10.1002/pssc.200405493
– volume: 257
  start-page: 3068
  year: 1982
  end-page: 3072
  ident: CR21
  article-title: Electron paramagnetic resonance studies of Mn( ) complexes with myosin subfragment 1 and oxygen 17-labeled ligands
  publication-title: J. Biol. Chem.
– volume: 11
  start-page: 737
  year: 2004
  end-page: 746
  ident: CR26
  article-title: Effective treatment of advanced solid tumors by the combination of arsenic trioxide and -buthionine-sulfoximine
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4401389
– volume: 52
  start-page: 978
  year: 1989
  end-page: 980
  ident: CR27
  article-title: Reduction of brain glutathione by ‐buthionine sulfoximine potentiates the dopamine‐depleting action of 6‐hydroxydopamine in rat striatum
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.1989.tb02550.x
– volume: 128
  start-page: 1078
  year: 2006
  end-page: 1079
  ident: CR12
  article-title: Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja056726i
– volume: 23
  start-page: 741
  year: 2005
  end-page: 745
  ident: CR3
  article-title: A molecular ruler based on plasmon coupling of single gold and silver nanoparticles
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1100
– volume: 18
  start-page: 569
  year: 2016
  end-page: 578
  ident: CR34
  article-title: Facile synthesis of folic acid-modified iron oxide nanoparticles for targeted MR imaging in pulmonary tumor xenografts
  publication-title: Mol. Imaging Biol.
  doi: 10.1007/s11307-015-0918-5
– volume: 10
  start-page: 324
  year: 2011
  end-page: 332
  ident: CR14
  article-title: Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2986
– volume: 22
  start-page: 220
  year: 2004
  end-page: 224
  ident: CR7
  article-title: FRET between cardiac Na channel subunits measured with a confocal microscope and a streak camera
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt935
– volume: 9
  year: 2018
  ident: CR15
  article-title: Trojan horse nanotheranostics with dual transformability and multifunctionality for highly effective cancer treatment
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06093-5
– volume: 1
  start-page: 47
  year: 2006
  end-page: 52
  ident: CR1
  article-title: A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2006.51
– volume: 23
  start-page: 355
  year: 2005
  end-page: 360
  ident: CR2
  article-title: Evolutionary optimization of fluorescent proteins for intracellular FRET
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1066
– volume: 22
  start-page: 445
  year: 2004
  end-page: 449
  ident: CR6
  article-title: An improved cyan fluorescent protein variant useful for FRET
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt945
– volume: 11
  start-page: 5227
  year: 2017
  end-page: 5232
  ident: CR16
  article-title: T –T dual-modal magnetic resonance imaging: from molecular basis to contrast agents
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03075
– volume: 21
  start-page: 1387
  year: 2003
  end-page: 1395
  ident: CR8
  article-title: FRET imaging
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt896
– volume: 1
  start-page: 182
  year: 2010
  end-page: 190
  ident: CR18
  article-title: Magnetic interactions between nanoparticles
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.1.22
– volume: 35
  start-page: 363
  year: 2017
  end-page: 370
  ident: CR4
  article-title: A FRET sensor enables quantitative measurements of membrane charges in live cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3828
– volume: 66
  start-page: 58
  year: 2014
  end-page: 73
  ident: CR25
  article-title: Stimuli-responsive cross-linked micelles for on-demand drug delivery against cancers
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2013.09.008
– volume: 1
  start-page: 0057
  year: 2017
  ident: CR28
  article-title: Successively activatable ultrasensitive probe for imaging tumour acidity and hypoxia
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-017-0057
– volume: 6
  start-page: 7281
  year: 2012
  end-page: 7294
  ident: CR17
  article-title: Gadolinium-encapsulating iron oxide nanoprobe as activatable NMR/MRI contrast agent
  publication-title: ACS Nano
  doi: 10.1021/nn302393e
– volume: 16
  start-page: 537
  year: 2017
  end-page: 542
  ident: CR9
  article-title: Distance-dependent magnetic resonance tuning as a versatile MRI sensing platform for biological targets
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4846
– volume: 67
  start-page: 183
  year: 2015
  end-page: 193
  ident: CR32
  article-title: Disulfide cross-linked micelles of novel HDAC inhibitor thailandepsin A for the treatment of breast cancer
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.07.033
– volume: 9
  start-page: 1727
  year: 2012
  end-page: 1735
  ident: CR31
  article-title: Disulfide cross-linked micelles for the targeted delivery of vincristine to B-cell lymphoma
  publication-title: Mol. Pharm.
  doi: 10.1021/mp300128b
– volume: 130
  start-page: 794
  year: 2008
  end-page: 795
  ident: CR10
  article-title: Paramagnetic relaxation-based F MRI probe to detect protease activity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja077058z
– volume: 6
  start-page: 9485
  year: 2012
  end-page: 9495
  ident: CR23
  article-title: Probing of the assembly structure and dynamics within nanoparticles during interaction with blood proteins
  publication-title: ACS Nano
  doi: 10.1021/nn302317j
– volume: 23
  start-page: 1726
  year: 2012
  end-page: 1730
  ident: CR13
  article-title: Porphyrin–lipid stabilized gold nanoparticles for surface enhanced Raman scattering based imaging
  publication-title: Bioconj. Chem.
  doi: 10.1021/bc300214z
– volume: 42
  start-page: 379
  year: 1999
  end-page: 384
  ident: CR22
  article-title: Relaxometry and magnetometry of the MR contrast agent MION-46L
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(SICI)1522-2594(199908)42:2<379::AID-MRM20>3.0.CO;2-L
– volume: 127
  start-page: 25
  year: 2017
  end-page: 35
  ident: CR33
  article-title: Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance-guided focused ultrasound ablation of lung cancer
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.02.037
– volume: 5
  year: 2014
  ident: CR30
  article-title: A smart and versatile theranostic nanomedicine platform based on nanoporphyrin
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5712
– volume: 12
  start-page: 991
  year: 2013
  end-page: 1003
  ident: CR11
  article-title: Stimuli-responsive nanocarriers for drug delivery
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3776
– volume: 1
  start-page: 0062
  year: 2017
  ident: CR29
  article-title: Cancer diagnostics: on-target probes for early detection
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-017-0062
– volume: 419
  start-page: 743
  year: 2002
  end-page: 747
  ident: CR5
  article-title: Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy
  publication-title: Nature
  doi: 10.1038/nature01060
– volume: 32
  start-page: 6633
  year: 2011
  end-page: 6645
  ident: CR24
  article-title: Well-defined, reversible disulfide cross-linked micelles for on-demand paclitaxel delivery
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.05.050
– volume: 92
  start-page: 017201
  year: 2004
  ident: CR20
  article-title: Three-dimensional noncollinear antiferromagnetic order in single-crystalline FeMn ultrathin films
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.017201
– volume: 92
  start-page: 017201
  year: 2004
  ident: 678_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.017201
– volume: 23
  start-page: 355
  year: 2005
  ident: 678_CR2
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1066
– volume: 23
  start-page: 1726
  year: 2012
  ident: 678_CR13
  publication-title: Bioconj. Chem.
  doi: 10.1021/bc300214z
– volume: 21
  start-page: 1387
  year: 2003
  ident: 678_CR8
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt896
– volume: 66
  start-page: 58
  year: 2014
  ident: 678_CR25
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2013.09.008
– volume: 11
  start-page: 5227
  year: 2017
  ident: 678_CR16
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03075
– volume: 128
  start-page: 1078
  year: 2006
  ident: 678_CR12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja056726i
– volume: 67
  start-page: 183
  year: 2015
  ident: 678_CR32
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.07.033
– volume: 22
  start-page: 445
  year: 2004
  ident: 678_CR6
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt945
– volume: 18
  start-page: 569
  year: 2016
  ident: 678_CR34
  publication-title: Mol. Imaging Biol.
  doi: 10.1007/s11307-015-0918-5
– volume: 22
  start-page: 220
  year: 2004
  ident: 678_CR7
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt935
– volume: 1
  start-page: 0057
  year: 2017
  ident: 678_CR28
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-017-0057
– volume: 1
  start-page: 182
  year: 2010
  ident: 678_CR18
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.1.22
– volume: 1
  start-page: 0062
  year: 2017
  ident: 678_CR29
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-017-0062
– volume: 5
  year: 2014
  ident: 678_CR30
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5712
– volume: 1
  start-page: 47
  year: 2006
  ident: 678_CR1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2006.51
– volume: 257
  start-page: 3068
  year: 1982
  ident: 678_CR21
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)81074-8
– volume: 9
  start-page: 1727
  year: 2012
  ident: 678_CR31
  publication-title: Mol. Pharm.
  doi: 10.1021/mp300128b
– volume: 16
  start-page: 537
  year: 2017
  ident: 678_CR9
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4846
– volume: 9
  year: 2018
  ident: 678_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06093-5
– volume: 130
  start-page: 794
  year: 2008
  ident: 678_CR10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja077058z
– volume: 10
  start-page: 324
  year: 2011
  ident: 678_CR14
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2986
– volume: 6
  start-page: 7281
  year: 2012
  ident: 678_CR17
  publication-title: ACS Nano
  doi: 10.1021/nn302393e
– volume: 11
  start-page: 737
  year: 2004
  ident: 678_CR26
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4401389
– volume: 35
  start-page: 363
  year: 2017
  ident: 678_CR4
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3828
– volume: 12
  start-page: 991
  year: 2013
  ident: 678_CR11
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3776
– volume: 42
  start-page: 379
  year: 1999
  ident: 678_CR22
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(SICI)1522-2594(199908)42:2<379::AID-MRM20>3.0.CO;2-L
– volume: 419
  start-page: 743
  year: 2002
  ident: 678_CR5
  publication-title: Nature
  doi: 10.1038/nature01060
– volume: 1
  start-page: 3511
  year: 2004
  ident: 678_CR19
  publication-title: Phys. Status Solidi C
  doi: 10.1002/pssc.200405493
– volume: 52
  start-page: 978
  year: 1989
  ident: 678_CR27
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.1989.tb02550.x
– volume: 6
  start-page: 9485
  year: 2012
  ident: 678_CR23
  publication-title: ACS Nano
  doi: 10.1021/nn302317j
– volume: 32
  start-page: 6633
  year: 2011
  ident: 678_CR24
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.05.050
– volume: 23
  start-page: 741
  year: 2005
  ident: 678_CR3
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1100
– volume: 127
  start-page: 25
  year: 2017
  ident: 678_CR33
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.02.037
SSID ssj0052924
Score 2.608665
Snippet Distance-dependent magnetic resonance tuning (MRET) technology enables the sensing and quantitative imaging of biological targets in vivo, with the advantage...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 482
SubjectTerms 631/61/350/2093
631/61/54
639/301/357
639/925
Animals
Background noise
Biomedical materials
Brain - diagnostic imaging
Brain cancer
Brain Neoplasms - diagnostic imaging
Brain tumors
Chemistry and Materials Science
Contrast Media - analysis
Energy transfer
Fluorescence
Glioma - diagnostic imaging
Humans
Image contrast
Image detection
Image enhancement
Image Enhancement - methods
Magnetic resonance
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Materials Science
Mice
Micelles
Nanoparticles - analysis
Nanotechnology
Nanotechnology - methods
Nanotechnology and Microengineering
Neuroimaging
Subtraction
Target recognition
Tumors
Tuning
Xenografts
Xenotransplantation
Title Two-way magnetic resonance tuning and enhanced subtraction imaging for non-invasive and quantitative biological imaging
URI https://link.springer.com/article/10.1038/s41565-020-0678-5
https://www.ncbi.nlm.nih.gov/pubmed/32451501
https://www.proquest.com/docview/2414149934
https://www.proquest.com/docview/2475031337
https://www.proquest.com/docview/2406952290
https://pubmed.ncbi.nlm.nih.gov/PMC7307456
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtcmkPJX27SYMKPbWI-CFb8ikkJdtQaCglgb2ZsSw1C42cZO0u_feZ8SvdhgSDD3qApBlJM5qZbxj7mJrcxDoFAWWYCgnaiDKzIDKVx2EG4MBSoPD3k-z4TH6bp_PhwW05uFWOZ2J3UFe1oTfyPbxp8MPbVO5fXgnKGkXW1SGFxmO2SdBl5NKl5pPClcZ5n9RWSS1QFVOjVTPRe0tSXCg2mdKuoCKVrt9Ld4TNuz6T_xlOu_totsWeDYIkP-gp_5w9sv4Fe_oPvOBLtjpd1WIFf_kF_PIUrMhRt64JYcPypqUHEQ6-4tafd24AfNmWzXUf6MAXF136Io4yLfe1Fwv_B8jTvetx1YLvgtOooIdxIlqPnV6xs9nR6ZdjMSRaEEbmukFlVJtIVXHsosjhPiytS7HEydIpozIwTubSxBaS3GYVRIQfmuSRkbIKExdD8ppt4FDsW8ZRHNF56TTEGlA2A0ARo7IOV1uj4pRAwMJxmQszoJBTMozfRWcNT3TRU6ZAyhREmSIN2Kepy2UPwfFQ452RdsWwG5fFLe_cU03GXFTWVcA-TNW4zch2At7WLbUJszwlcPyAvek5YRoMyqQoFYZRwNQaj0wNCMJ7vcYvzjsobzxfFS5TwD6P3HQ7rHvn-O7hOW6zJ3HP1yKMdthGc93a9yg5NeVutz3wr2dfd9nm4dHJj583OTcZ0g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAkaCC8hqYjuJc0AIAcuWPk5bqbcwcRy6Ek3a7i6r_il-IzPJZstStbdqb7G9cjwz9jcZzzcAb2KXOWVjlFiEsTRonSwSjzJJMxUmiBV6ThTe3UuG--b7QXywBn_6XBi-Vtnvie1GXTaOv5Fv0klDPzpNzcfjE8lVozi62pfQ6NRi25_NyWWbfNj6QvJ9q9Tg6-jzUC6qCkhnMjslz8u6KC2VqqKoIqUrfBXTk8oUVerSBF1lMuOUR535pMSIyTJ1FjljylBXCjX97w24abTO2KLs4Fu_88cq64ropsZKcv3SPoqq7eaEHSXOheYyL-S4xavn4AVwe_GO5n-B2vb8G9yDuwvgKj51mnYf1nz9AO78Q2f4EOajeSPneCaO8GfNyZGCfPmGGT28mM74A4zAuhS-PmyvHYjJrJiedokVYnzUlksShKFF3dRyXP9GvlnfjjiZYd0mw_GDjjaKdasf9Aj2r0UEj2GdpuKfgiD4Y7OisqgsEhZEJEhT-opW25KjpjGAsF_m3C1Yz7n4xq-8jb5rm3eSyUkyOUsmjwN4txxy3FF-XNV5o5ddvrD-SX6uq5c0c_A40joN4PWymcyaYzVY-2bGfcIki5mMP4AnnSYsJ0MYmFBoGAWQrujIsgNThq-21OPDljqc9vOUlimA9702nU_r0nd8dvU7voJbw9HuTr6ztbf9HG6rTsdlGG3A-vR05l8QapsWL1tTEfDjum3zLwLgVKA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IJ4lUMBIcAFZmzgPOweEEGXVUqg4tNLewsSx6Uo0abu7rPrX-HXMJJstS9XeqtxiO3I8M_Y3nhfA69TmVpkUJZZhKhM0VpaZQ5npXIUZokfHgcLf9rLtg-TLKB2twZ8-FobdKvs9sd2oq8byHfmAThp66DRNBn7hFvF9a_jh-ERyBSm2tPblNDoW2XVnc1LfJu93tojWb5Qaft7_tC0XFQakTXIzJS3M2EhXSvko8sSApfMpvfFJ6bXVGVqf5IlVDuPcZRVGnDgzziObJFUYe4UxffcG3NRxGrGM6dFS2UtV3hXU1YmRpAbq3qIam8GElSaOi-aSL6TEpatn4gWge9Ff8z-jbXsWDu_B3QWIFR87rrsPa65-AHf-SW34EOb780bO8Uwc4c-aAyUF6fUNZ_dwYjrjyxiBdSVcfdi6IIjJrJyedkEWYnzUlk4ShKdF3dRyXP9G9rJvR5zMsG4D4_hFl0KK-awf9AgOroUEj2GdpuKegCAoZPLSG1QGCRciErypnKfVNqS0xRhA2C9zYRcZ0LkQx6-itcTHpugoUxBlCqZMkQbwdjnkuEv_cVXnzZ52xWInmBTnfHtJMxuSozjWAbxaNpOIs90Ga9fMuE-Y5Skn5g9go-OE5WQIDxMiDaMA9AqPLDtw-vDVlnp82KYRp71d0zIF8K7npvNpXfqPT6_-x5dwi6Sy-Lqzt_sMbquOxWUYbcL69HTmnhOAm5YvWkkR8OO6RfMvwihYzQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-way+magnetic+resonance+tuning+and+enhanced+subtraction+imaging+for+non-invasive+and+quantitative+biological+imaging&rft.jtitle=Nature+nanotechnology&rft.au=Wang%2C+Zhongling&rft.au=Xue%2C+Xiangdong&rft.au=Lu%2C+Hongwei&rft.au=He%2C+Yixuan&rft.date=2020-06-01&rft.issn=1748-3395&rft.eissn=1748-3395&rft.volume=15&rft.issue=6&rft.spage=482&rft_id=info:doi/10.1038%2Fs41565-020-0678-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon