Two-way magnetic resonance tuning and enhanced subtraction imaging for non-invasive and quantitative biological imaging
Distance-dependent magnetic resonance tuning (MRET) technology enables the sensing and quantitative imaging of biological targets in vivo, with the advantage of deep tissue penetration and fewer interactions with the surroundings as compared with those of fluorescence-based Förster resonance energy...
Saved in:
Published in | Nature nanotechnology Vol. 15; no. 6; pp. 482 - 490 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.06.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Distance-dependent magnetic resonance tuning (MRET) technology enables the sensing and quantitative imaging of biological targets in vivo, with the advantage of deep tissue penetration and fewer interactions with the surroundings as compared with those of fluorescence-based Förster resonance energy transfer. However, applications of MRET technology in vivo are currently limited by the moderate contrast enhancement and stability of
T
1
-based MRET probes. Here we report a new two-way magnetic resonance tuning (TMRET) nanoprobe with dually activatable
T
1
and
T
2
magnetic resonance signals that is coupled with dual-contrast enhanced subtraction imaging. This integrated platform achieves a substantially improved contrast enhancement with minimal background signal and can be used to quantitatively image molecular targets in tumours and to sensitively detect very small intracranial brain tumours in patient-derived xenograft models. The high tumour-to-normal tissue ratio offered by TMRET in combination with dual-contrast enhanced subtraction imaging provides new opportunities for molecular diagnostics and image-guided biomedical applications.
A distance-dependent two-way magnetic resonance tuning platform combined with dual-contrast enhanced subtraction imaging enables quantitative sensing and imaging in deep tissues with minimal background noise. |
---|---|
AbstractList | Distance-dependent magnetic resonance tuning (MRET) technology enables the sensing and quantitative imaging of biological targets in vivo, with the advantage of deep tissue penetration and less interactions with the surroundings as compared to fluorescence-based Förster resonance energy transfer (FRET). However, applications of MRET technology in vivo are currently limited by the moderate contrast enhancement and stability of T
1
-based MRET probes. Here we report a new two-way magnetic resonance tuning (t-MRET) nanoprobe with dually activatable T
1
and T
2
magnetic resonance signals that is coupled with dual-contrast enhanced subtraction imaging (DESI). This integrated platform achieves substantially improved contrast enhancement with minimal background signal and can be used to quantitatively image molecular targets in tumours and to sensitively detect very small intracranial brain tumours in patient-derived xenograft models. The high tumour-to-normal tissue ratio offered by t-MRET in combination with DESI provides new opportunities for molecular diagnostics and image-guided biomedical applications. Distance-dependent magnetic resonance tuning (MRET) technology enables the sensing and quantitative imaging of biological targets in vivo, with the advantage of deep tissue penetration and fewer interactions with the surroundings as compared with those of fluorescence-based Förster resonance energy transfer. However, applications of MRET technology in vivo are currently limited by the moderate contrast enhancement and stability of T1-based MRET probes. Here we report a new two-way magnetic resonance tuning (TMRET) nanoprobe with dually activatable T1 and T2 magnetic resonance signals that is coupled with dual-contrast enhanced subtraction imaging. This integrated platform achieves a substantially improved contrast enhancement with minimal background signal and can be used to quantitatively image molecular targets in tumours and to sensitively detect very small intracranial brain tumours in patient-derived xenograft models. The high tumour-to-normal tissue ratio offered by TMRET in combination with dual-contrast enhanced subtraction imaging provides new opportunities for molecular diagnostics and image-guided biomedical applications.A distance-dependent two-way magnetic resonance tuning platform combined with dual-contrast enhanced subtraction imaging enables quantitative sensing and imaging in deep tissues with minimal background noise. Distance-dependent magnetic resonance tuning (MRET) technology enables the sensing and quantitative imaging of biological targets in vivo, with the advantage of deep tissue penetration and fewer interactions with the surroundings as compared with those of fluorescence-based Förster resonance energy transfer. However, applications of MRET technology in vivo are currently limited by the moderate contrast enhancement and stability of T -based MRET probes. Here we report a new two-way magnetic resonance tuning (TMRET) nanoprobe with dually activatable T and T magnetic resonance signals that is coupled with dual-contrast enhanced subtraction imaging. This integrated platform achieves a substantially improved contrast enhancement with minimal background signal and can be used to quantitatively image molecular targets in tumours and to sensitively detect very small intracranial brain tumours in patient-derived xenograft models. The high tumour-to-normal tissue ratio offered by TMRET in combination with dual-contrast enhanced subtraction imaging provides new opportunities for molecular diagnostics and image-guided biomedical applications. Distance-dependent magnetic resonance tuning (MRET) technology enables the sensing and quantitative imaging of biological targets in vivo, with the advantage of deep tissue penetration and fewer interactions with the surroundings as compared with those of fluorescence-based Förster resonance energy transfer. However, applications of MRET technology in vivo are currently limited by the moderate contrast enhancement and stability of T1-based MRET probes. Here we report a new two-way magnetic resonance tuning (TMRET) nanoprobe with dually activatable T1 and T2 magnetic resonance signals that is coupled with dual-contrast enhanced subtraction imaging. This integrated platform achieves a substantially improved contrast enhancement with minimal background signal and can be used to quantitatively image molecular targets in tumours and to sensitively detect very small intracranial brain tumours in patient-derived xenograft models. The high tumour-to-normal tissue ratio offered by TMRET in combination with dual-contrast enhanced subtraction imaging provides new opportunities for molecular diagnostics and image-guided biomedical applications.Distance-dependent magnetic resonance tuning (MRET) technology enables the sensing and quantitative imaging of biological targets in vivo, with the advantage of deep tissue penetration and fewer interactions with the surroundings as compared with those of fluorescence-based Förster resonance energy transfer. However, applications of MRET technology in vivo are currently limited by the moderate contrast enhancement and stability of T1-based MRET probes. Here we report a new two-way magnetic resonance tuning (TMRET) nanoprobe with dually activatable T1 and T2 magnetic resonance signals that is coupled with dual-contrast enhanced subtraction imaging. This integrated platform achieves a substantially improved contrast enhancement with minimal background signal and can be used to quantitatively image molecular targets in tumours and to sensitively detect very small intracranial brain tumours in patient-derived xenograft models. The high tumour-to-normal tissue ratio offered by TMRET in combination with dual-contrast enhanced subtraction imaging provides new opportunities for molecular diagnostics and image-guided biomedical applications. Distance-dependent magnetic resonance tuning (MRET) technology enables the sensing and quantitative imaging of biological targets in vivo, with the advantage of deep tissue penetration and fewer interactions with the surroundings as compared with those of fluorescence-based Förster resonance energy transfer. However, applications of MRET technology in vivo are currently limited by the moderate contrast enhancement and stability of T 1 -based MRET probes. Here we report a new two-way magnetic resonance tuning (TMRET) nanoprobe with dually activatable T 1 and T 2 magnetic resonance signals that is coupled with dual-contrast enhanced subtraction imaging. This integrated platform achieves a substantially improved contrast enhancement with minimal background signal and can be used to quantitatively image molecular targets in tumours and to sensitively detect very small intracranial brain tumours in patient-derived xenograft models. The high tumour-to-normal tissue ratio offered by TMRET in combination with dual-contrast enhanced subtraction imaging provides new opportunities for molecular diagnostics and image-guided biomedical applications. A distance-dependent two-way magnetic resonance tuning platform combined with dual-contrast enhanced subtraction imaging enables quantitative sensing and imaging in deep tissues with minimal background noise. |
Author | Lu, Ziwei Yuan, Ye He, Yixuan Liu, Kai Chen, Zhijie Quigley, Lizabeth Xue, Xiangdong Li, Yuanpei Wang, Zhongling Ferrara, Katherine W. Louie, Angelique Y. Dreyer, Courtney A. Lin, Tzu-yin Lu, Hongwei Tang, Na Walton, Jeffrey H. Curro, Nicholas Gilbert, Dustin A. Lam, Kit S. |
AuthorAffiliation | 1 Department of Radiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China 6 Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA 7 Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Sacramento, California, 95817, USA 3 Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China 2 Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California, 95817, USA 5 Department of Physics, Georgetown University, Washington, DC 20057, USA 9 Department of Biomedical Engineering, University of California Davis, Davis, California, 95616, USA 8 UC Davis NMR Facility, Davis, California, 95616, USA 10 Department of Radiology, Stanford University, Palo Alto, CA 94304, USA 4 Department of Physics, University of California, Davi |
AuthorAffiliation_xml | – name: 2 Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California, 95817, USA – name: 4 Department of Physics, University of California, Davis, California 95616, USA – name: 5 Department of Physics, Georgetown University, Washington, DC 20057, USA – name: 9 Department of Biomedical Engineering, University of California Davis, Davis, California, 95616, USA – name: 8 UC Davis NMR Facility, Davis, California, 95616, USA – name: 10 Department of Radiology, Stanford University, Palo Alto, CA 94304, USA – name: 6 Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA – name: 3 Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China – name: 1 Department of Radiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China – name: 7 Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Sacramento, California, 95817, USA |
Author_xml | – sequence: 1 givenname: Zhongling surname: Wang fullname: Wang, Zhongling organization: Department of Radiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis – sequence: 2 givenname: Xiangdong orcidid: 0000-0002-3709-072X surname: Xue fullname: Xue, Xiangdong organization: Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis – sequence: 3 givenname: Hongwei surname: Lu fullname: Lu, Hongwei organization: Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis – sequence: 4 givenname: Yixuan surname: He fullname: He, Yixuan organization: Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis – sequence: 5 givenname: Ziwei surname: Lu fullname: Lu, Ziwei organization: Department of Radiology, First Affiliated Hospital of Soochow University – sequence: 6 givenname: Zhijie orcidid: 0000-0002-3594-5560 surname: Chen fullname: Chen, Zhijie organization: Department of Physics, University of California, Department of Physics, Georgetown University – sequence: 7 givenname: Ye surname: Yuan fullname: Yuan, Ye organization: Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis – sequence: 8 givenname: Na surname: Tang fullname: Tang, Na organization: Department of Radiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University – sequence: 9 givenname: Courtney A. surname: Dreyer fullname: Dreyer, Courtney A. organization: Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis – sequence: 10 givenname: Lizabeth surname: Quigley fullname: Quigley, Lizabeth organization: Department of Materials Science and Engineering, University of Tennessee – sequence: 11 givenname: Nicholas surname: Curro fullname: Curro, Nicholas organization: Department of Physics, University of California – sequence: 12 givenname: Kit S. orcidid: 0000-0002-3076-6969 surname: Lam fullname: Lam, Kit S. organization: Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis – sequence: 13 givenname: Jeffrey H. orcidid: 0000-0002-2359-955X surname: Walton fullname: Walton, Jeffrey H. organization: Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, UC Davis NMR Facility – sequence: 14 givenname: Tzu-yin surname: Lin fullname: Lin, Tzu-yin organization: Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis – sequence: 15 givenname: Angelique Y. surname: Louie fullname: Louie, Angelique Y. organization: Department of Biomedical Engineering, University of California Davis – sequence: 16 givenname: Dustin A. orcidid: 0000-0003-3747-3883 surname: Gilbert fullname: Gilbert, Dustin A. organization: Department of Materials Science and Engineering, University of Tennessee – sequence: 17 givenname: Kai orcidid: 0000-0001-9413-6782 surname: Liu fullname: Liu, Kai organization: Department of Physics, University of California, Department of Physics, Georgetown University – sequence: 18 givenname: Katherine W. orcidid: 0000-0002-4976-9107 surname: Ferrara fullname: Ferrara, Katherine W. organization: Department of Radiology, Stanford University – sequence: 19 givenname: Yuanpei orcidid: 0000-0002-4015-646X surname: Li fullname: Li, Yuanpei email: lypli@ucdavis.edu organization: Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32451501$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1rHSEUhqUkNMltf0A3ZaCbbmz8HMdNoYR-QaCbZC2OoxPDXE3UuZf8-zi5yU0baHChHJ_3-B58T8BBiMEC8AGjLxjR7jQzzFsOEUEQtaKD_A04xoJ1kFLJD_bnThyBk5yvEeJEEvYWHFHCOOYIH4PtxTbCrb5r1noMtnjTJJtj0MHYpszBh7HRYWhsuFpKQ5PnviRtio-h8VWzAC6mpjqDPmx09hv7oLiddSi-6LIUeh-nOHqjpyfRO3Do9JTt-8d9BS5_fL84-wXP__z8ffbtHBomuwI56QwWAyEOY9cj1FvHa8Wx3gkjWm0ck8wQq6m07aBxHbGlEhvGBkQd0XQFvu763sz92g7Ghmp_Ujep-kh3Kmqv_r0J_kqNcaMERYLVZivw-bFBirezzUWtfTZ2mnSwcc6KMNRKTohEFf30Ar2Ocwp1vEoJjiimVLxO4bqkpKxSH__2vTf89HMVwDvApJhzsm6PYKSWdKhdOlRNh1rSoXjViBca8_BDcRndT68qyU6Z6ythtOnZ9P9F9615z-8 |
CitedBy_id | crossref_primary_10_1002_ange_202318948 crossref_primary_10_1002_adfm_202100386 crossref_primary_10_1016_j_matt_2024_101957 crossref_primary_10_1039_D1RA09067D crossref_primary_10_1021_acs_nanolett_4c01389 crossref_primary_10_1016_j_talanta_2024_126867 crossref_primary_10_1039_D1BM01506K crossref_primary_10_1016_j_addr_2023_114822 crossref_primary_10_1021_acsami_2c15295 crossref_primary_10_1002_adhm_202403099 crossref_primary_10_1088_2516_1091_ac3111 crossref_primary_10_1186_s12951_021_01006_z crossref_primary_10_1002_anie_202418015 crossref_primary_10_1039_D2NR04979A crossref_primary_10_1021_cbmi_3c00026 crossref_primary_10_1039_D2TB00600F crossref_primary_10_1021_acsnano_4c07374 crossref_primary_10_1038_s41578_024_00767_x crossref_primary_10_1039_D3TB00068K crossref_primary_10_1115_1_4053007 crossref_primary_10_1002_smll_202104783 crossref_primary_10_1038_s41467_022_29586_w crossref_primary_10_1002_ange_202014348 crossref_primary_10_1002_ange_202418015 crossref_primary_10_1021_acsanm_5c00425 crossref_primary_10_1016_j_foodchem_2024_138847 crossref_primary_10_1038_s41467_022_29082_1 crossref_primary_10_1016_j_nantod_2022_101524 crossref_primary_10_3389_fchem_2020_572471 crossref_primary_10_1021_acs_analchem_4c06942 crossref_primary_10_3389_fphar_2022_995512 crossref_primary_10_1002_adhm_202301437 crossref_primary_10_1039_D0RA06911F crossref_primary_10_1038_s41467_024_50688_0 crossref_primary_10_1038_s41467_024_52308_3 crossref_primary_10_1016_j_ccr_2024_216402 crossref_primary_10_1021_acsami_2c07235 crossref_primary_10_1002_anie_202318948 crossref_primary_10_1002_anie_202014348 crossref_primary_10_1007_s12598_023_02443_5 crossref_primary_10_1021_acsnano_0c09223 crossref_primary_10_1002_adfm_202303240 crossref_primary_10_1039_D0CS00260G crossref_primary_10_1039_D2BM01317G crossref_primary_10_1021_acsnano_3c12305 crossref_primary_10_1039_D4CC04532G crossref_primary_10_1016_j_biomaterials_2020_120234 crossref_primary_10_3390_nano15010033 crossref_primary_10_1002_adfm_202101278 crossref_primary_10_1039_D3QI00978E crossref_primary_10_1016_j_jconrel_2022_03_024 crossref_primary_10_1002_adfm_202315171 crossref_primary_10_34133_research_0286 crossref_primary_10_1038_s41467_022_35655_x crossref_primary_10_1039_D2NA00485B crossref_primary_10_1016_j_cej_2024_158788 crossref_primary_10_3390_gels9040286 crossref_primary_10_1039_D3NR05053J crossref_primary_10_1021_cbmi_3c00104 crossref_primary_10_1039_D2NH00478J crossref_primary_10_1016_j_cej_2025_159400 crossref_primary_10_1021_acs_chemrev_4c00546 crossref_primary_10_1186_s12951_022_01451_4 crossref_primary_10_1007_s12274_023_6214_9 crossref_primary_10_1039_D3AN00972F crossref_primary_10_1016_j_addr_2022_114176 crossref_primary_10_26599_NR_2025_94907251 crossref_primary_10_1021_acs_nanolett_3c02466 crossref_primary_10_1021_acs_analchem_4c00334 crossref_primary_10_1016_j_isci_2024_109062 crossref_primary_10_1002_adma_202310404 crossref_primary_10_1002_smll_202306912 crossref_primary_10_1038_s41551_024_01286_4 crossref_primary_10_1039_D4SD00132J crossref_primary_10_1002_VIW_20200141 crossref_primary_10_1021_acsnano_2c12874 crossref_primary_10_2174_1389201024666230821090222 crossref_primary_10_1039_D3BM00789H crossref_primary_10_1016_j_biomaterials_2022_121852 crossref_primary_10_1002_EXP_20210134 crossref_primary_10_1002_nano_202000169 crossref_primary_10_1016_j_addr_2021_113830 crossref_primary_10_3390_ma16083096 crossref_primary_10_1038_s41566_024_01387_1 crossref_primary_10_1002_ange_202010228 crossref_primary_10_1021_acsbiomaterials_4c00890 crossref_primary_10_1016_j_biomaterials_2024_122745 crossref_primary_10_1021_acsnano_3c10739 crossref_primary_10_1039_D3CC00418J crossref_primary_10_1002_anie_202010228 crossref_primary_10_1016_j_actbio_2023_04_026 crossref_primary_10_1021_jacs_2c10749 crossref_primary_10_1039_D2NR07009J crossref_primary_10_1016_j_mtadv_2020_100119 crossref_primary_10_1021_acsnano_4c00516 crossref_primary_10_1007_s12274_023_5679_x crossref_primary_10_1016_j_ccr_2023_215332 crossref_primary_10_1002_EXP_20210009 crossref_primary_10_3390_nano11082107 crossref_primary_10_1016_j_trac_2024_117848 crossref_primary_10_1002_EXP_20230070 crossref_primary_10_1186_s12951_022_01479_6 crossref_primary_10_1007_s40843_024_3103_x crossref_primary_10_1007_s11426_022_1461_3 crossref_primary_10_3390_pharmaceutics14112463 crossref_primary_10_1016_j_cis_2024_103166 crossref_primary_10_1002_adma_202308198 |
Cites_doi | 10.1002/pssc.200405493 10.1038/sj.cdd.4401389 10.1111/j.1471-4159.1989.tb02550.x 10.1021/ja056726i 10.1038/nbt1100 10.1007/s11307-015-0918-5 10.1038/nmat2986 10.1038/nbt935 10.1038/s41467-018-06093-5 10.1038/nnano.2006.51 10.1038/nbt1066 10.1038/nbt945 10.1021/acsnano.7b03075 10.1038/nbt896 10.3762/bjnano.1.22 10.1038/nbt.3828 10.1016/j.addr.2013.09.008 10.1038/s41551-017-0057 10.1021/nn302393e 10.1038/nmat4846 10.1016/j.biomaterials.2015.07.033 10.1021/mp300128b 10.1021/ja077058z 10.1021/nn302317j 10.1021/bc300214z 10.1002/(SICI)1522-2594(199908)42:2<379::AID-MRM20>3.0.CO;2-L 10.1016/j.biomaterials.2017.02.037 10.1038/ncomms5712 10.1038/nmat3776 10.1038/s41551-017-0062 10.1038/nature01060 10.1016/j.biomaterials.2011.05.050 10.1103/PhysRevLett.92.017201 10.1016/S0021-9258(19)81074-8 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 The Author(s), under exclusive licence to Springer Nature Limited 2020. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM |
DOI | 10.1038/s41565-020-0678-5 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database (ProQuest) Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-3395 |
EndPage | 490 |
ExternalDocumentID | PMC7307456 32451501 10_1038_s41565_020_0678_5 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Science Foundation (NSF) grantid: DMR-1828420; ECCS-1611424 funderid: https://doi.org/10.13039/100000001 – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) grantid: R01CA199668; R01HD086195 funderid: https://doi.org/10.13039/100000054 – fundername: NCI NIH HHS grantid: R01 CA232845 – fundername: NCI NIH HHS grantid: R01 CA199668 – fundername: NIBIB NIH HHS grantid: R01 EB028646 – fundername: NICHD NIH HHS grantid: R01 HD086195 – fundername: NCI NIH HHS grantid: P30 CA093373 |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NNMJJ O9- ODYON P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PKEHL PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c498t-528c17d22f11fb00bef58c1f4bf7c76acf494c2ea39e6da10056391c44d03f2a3 |
IEDL.DBID | 7X7 |
ISSN | 1748-3387 1748-3395 |
IngestDate | Thu Aug 21 18:43:03 EDT 2025 Thu Jul 10 22:34:12 EDT 2025 Wed Aug 13 06:29:01 EDT 2025 Fri Jul 25 08:54:40 EDT 2025 Mon Jul 21 05:50:53 EDT 2025 Tue Jul 01 01:56:30 EDT 2025 Thu Apr 24 23:02:10 EDT 2025 Fri Feb 21 02:41:55 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c498t-528c17d22f11fb00bef58c1f4bf7c76acf494c2ea39e6da10056391c44d03f2a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Y.L., X.X. and Z.W. conceived the idea and designed the t-MRET nanoprobe. Z.W. conducted most of the experiments, X.X. assisted with part of the experiments. X.X. and Z.W. analyzed the data. X.X. led the revisions of the manuscript. H.L. worked on POP materials and animal experiments. Y.X. assisted with animal studies. Z.W. and L.W. conducted the DESI process. Z.C., L. Q., N.C., D.A.G., X.X. and K.L. performed magnetic characterization and assisted with the explanation of T2 quench mechanism. Y.Y. assisted with MRI studies. N.T. assisted with the MRI data analysis. T.L. assisted with the design and data analysis of biological experiments. K.S., A.L. and K.F. provided valuable suggestions on the project methodology. X.X., Y.L. and Z.W. wrote the paper and all authors commented on the manuscript. Y.L. supervised the whole project. Z. Wang and X. Xue contributed equally to this work. Author contributions |
ORCID | 0000-0002-3076-6969 0000-0001-9413-6782 0000-0002-3709-072X 0000-0002-2359-955X 0000-0002-4976-9107 0000-0002-4015-646X 0000-0002-3594-5560 0000-0003-3747-3883 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7307456 |
PMID | 32451501 |
PQID | 2414149934 |
PQPubID | 546299 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7307456 proquest_miscellaneous_2406952290 proquest_journals_2475031337 proquest_journals_2414149934 pubmed_primary_32451501 crossref_primary_10_1038_s41565_020_0678_5 crossref_citationtrail_10_1038_s41565_020_0678_5 springer_journals_10_1038_s41565_020_0678_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature nanotechnology |
PublicationTitleAbbrev | Nat. Nanotechnol |
PublicationTitleAlternate | Nat Nanotechnol |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Schuler, Lipman, Eaton (CR5) 2002; 419 Rizzo, Springer, Granada, Piston (CR6) 2004; 22 Ma (CR4) 2017; 35 Sönnichsen, Reinhard, Liphardt, Alivisatos (CR3) 2005; 23 Kato (CR31) 2012; 9 Zhou (CR16) 2017; 11 Köseoğlu, Yıldız, Kim, Muhammed, Aktaş (CR19) 2004; 1 Mizukami (CR10) 2008; 130 Hori, Tummers, Gambhir (CR29) 2017; 1 Maeda (CR26) 2004; 11 Li, Xiao, Zhu, Deng, Lam (CR25) 2014; 66 Mura, Nicolas, Couvreur (CR11) 2013; 12 Jares-Erijman, Jovin (CR8) 2003; 21 Webb, Ash, Leyh, Trentham, Reed (CR21) 1982; 257 Pileblad, Magnusson, Fornstedt (CR27) 1989; 52 Tam (CR13) 2012; 23 Nguyen, Daugherty (CR2) 2005; 23 Li (CR24) 2011; 32 Li (CR30) 2014; 5 Santra (CR17) 2012; 6 Zheng (CR28) 2017; 1 Biskup, Zimmer, Benndorf (CR7) 2004; 22 Xue (CR15) 2018; 9 Liu (CR1) 2006; 1 Wang (CR33) 2017; 127 Lovell (CR14) 2011; 10 Zhang (CR34) 2016; 18 Mørup, Hansen, Frandsen (CR18) 2010; 1 Kuch (CR20) 2004; 92 Choi (CR9) 2017; 16 Xiao (CR32) 2015; 67 Bulte, Brooks, Moskowitz, Bryant, Frank (CR22) 1999; 42 Li (CR23) 2012; 6 Hong (CR12) 2006; 128 NCM Tam (678_CR13) 2012; 23 Y Li (678_CR30) 2014; 5 K Xiao (678_CR32) 2015; 67 MR Webb (678_CR21) 1982; 257 C Biskup (678_CR7) 2004; 22 JW Bulte (678_CR22) 1999; 42 E Pileblad (678_CR27) 1989; 52 S Mizukami (678_CR10) 2008; 130 Y Li (678_CR24) 2011; 32 Z Wang (678_CR33) 2017; 127 R Hong (678_CR12) 2006; 128 JS Choi (678_CR9) 2017; 16 Y Li (678_CR25) 2014; 66 H Maeda (678_CR26) 2004; 11 S Mura (678_CR11) 2013; 12 SS Hori (678_CR29) 2017; 1 Y Li (678_CR23) 2012; 6 J Kato (678_CR31) 2012; 9 Z Zhang (678_CR34) 2016; 18 Y Ma (678_CR4) 2017; 35 X Zheng (678_CR28) 2017; 1 Z Zhou (678_CR16) 2017; 11 X Xue (678_CR15) 2018; 9 W Kuch (678_CR20) 2004; 92 JF Lovell (678_CR14) 2011; 10 AW Nguyen (678_CR2) 2005; 23 B Schuler (678_CR5) 2002; 419 S Santra (678_CR17) 2012; 6 S Mørup (678_CR18) 2010; 1 Y Köseoğlu (678_CR19) 2004; 1 MA Rizzo (678_CR6) 2004; 22 GL Liu (678_CR1) 2006; 1 C Sönnichsen (678_CR3) 2005; 23 EA Jares-Erijman (678_CR8) 2003; 21 |
References_xml | – volume: 1 start-page: 3511 year: 2004 end-page: 3515 ident: CR19 article-title: EPR studies on Na-oleate coated Fe O nanoparticles publication-title: Phys. Status Solidi C doi: 10.1002/pssc.200405493 – volume: 257 start-page: 3068 year: 1982 end-page: 3072 ident: CR21 article-title: Electron paramagnetic resonance studies of Mn( ) complexes with myosin subfragment 1 and oxygen 17-labeled ligands publication-title: J. Biol. Chem. – volume: 11 start-page: 737 year: 2004 end-page: 746 ident: CR26 article-title: Effective treatment of advanced solid tumors by the combination of arsenic trioxide and -buthionine-sulfoximine publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4401389 – volume: 52 start-page: 978 year: 1989 end-page: 980 ident: CR27 article-title: Reduction of brain glutathione by ‐buthionine sulfoximine potentiates the dopamine‐depleting action of 6‐hydroxydopamine in rat striatum publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.1989.tb02550.x – volume: 128 start-page: 1078 year: 2006 end-page: 1079 ident: CR12 article-title: Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja056726i – volume: 23 start-page: 741 year: 2005 end-page: 745 ident: CR3 article-title: A molecular ruler based on plasmon coupling of single gold and silver nanoparticles publication-title: Nat. Biotechnol. doi: 10.1038/nbt1100 – volume: 18 start-page: 569 year: 2016 end-page: 578 ident: CR34 article-title: Facile synthesis of folic acid-modified iron oxide nanoparticles for targeted MR imaging in pulmonary tumor xenografts publication-title: Mol. Imaging Biol. doi: 10.1007/s11307-015-0918-5 – volume: 10 start-page: 324 year: 2011 end-page: 332 ident: CR14 article-title: Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents publication-title: Nat. Mater. doi: 10.1038/nmat2986 – volume: 22 start-page: 220 year: 2004 end-page: 224 ident: CR7 article-title: FRET between cardiac Na channel subunits measured with a confocal microscope and a streak camera publication-title: Nat. Biotechnol. doi: 10.1038/nbt935 – volume: 9 year: 2018 ident: CR15 article-title: Trojan horse nanotheranostics with dual transformability and multifunctionality for highly effective cancer treatment publication-title: Nat. Commun. doi: 10.1038/s41467-018-06093-5 – volume: 1 start-page: 47 year: 2006 end-page: 52 ident: CR1 article-title: A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2006.51 – volume: 23 start-page: 355 year: 2005 end-page: 360 ident: CR2 article-title: Evolutionary optimization of fluorescent proteins for intracellular FRET publication-title: Nat. Biotechnol. doi: 10.1038/nbt1066 – volume: 22 start-page: 445 year: 2004 end-page: 449 ident: CR6 article-title: An improved cyan fluorescent protein variant useful for FRET publication-title: Nat. Biotechnol. doi: 10.1038/nbt945 – volume: 11 start-page: 5227 year: 2017 end-page: 5232 ident: CR16 article-title: T –T dual-modal magnetic resonance imaging: from molecular basis to contrast agents publication-title: ACS Nano doi: 10.1021/acsnano.7b03075 – volume: 21 start-page: 1387 year: 2003 end-page: 1395 ident: CR8 article-title: FRET imaging publication-title: Nat. Biotechnol. doi: 10.1038/nbt896 – volume: 1 start-page: 182 year: 2010 end-page: 190 ident: CR18 article-title: Magnetic interactions between nanoparticles publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.1.22 – volume: 35 start-page: 363 year: 2017 end-page: 370 ident: CR4 article-title: A FRET sensor enables quantitative measurements of membrane charges in live cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3828 – volume: 66 start-page: 58 year: 2014 end-page: 73 ident: CR25 article-title: Stimuli-responsive cross-linked micelles for on-demand drug delivery against cancers publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2013.09.008 – volume: 1 start-page: 0057 year: 2017 ident: CR28 article-title: Successively activatable ultrasensitive probe for imaging tumour acidity and hypoxia publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-017-0057 – volume: 6 start-page: 7281 year: 2012 end-page: 7294 ident: CR17 article-title: Gadolinium-encapsulating iron oxide nanoprobe as activatable NMR/MRI contrast agent publication-title: ACS Nano doi: 10.1021/nn302393e – volume: 16 start-page: 537 year: 2017 end-page: 542 ident: CR9 article-title: Distance-dependent magnetic resonance tuning as a versatile MRI sensing platform for biological targets publication-title: Nat. Mater. doi: 10.1038/nmat4846 – volume: 67 start-page: 183 year: 2015 end-page: 193 ident: CR32 article-title: Disulfide cross-linked micelles of novel HDAC inhibitor thailandepsin A for the treatment of breast cancer publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.07.033 – volume: 9 start-page: 1727 year: 2012 end-page: 1735 ident: CR31 article-title: Disulfide cross-linked micelles for the targeted delivery of vincristine to B-cell lymphoma publication-title: Mol. Pharm. doi: 10.1021/mp300128b – volume: 130 start-page: 794 year: 2008 end-page: 795 ident: CR10 article-title: Paramagnetic relaxation-based F MRI probe to detect protease activity publication-title: J. Am. Chem. Soc. doi: 10.1021/ja077058z – volume: 6 start-page: 9485 year: 2012 end-page: 9495 ident: CR23 article-title: Probing of the assembly structure and dynamics within nanoparticles during interaction with blood proteins publication-title: ACS Nano doi: 10.1021/nn302317j – volume: 23 start-page: 1726 year: 2012 end-page: 1730 ident: CR13 article-title: Porphyrin–lipid stabilized gold nanoparticles for surface enhanced Raman scattering based imaging publication-title: Bioconj. Chem. doi: 10.1021/bc300214z – volume: 42 start-page: 379 year: 1999 end-page: 384 ident: CR22 article-title: Relaxometry and magnetometry of the MR contrast agent MION-46L publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199908)42:2<379::AID-MRM20>3.0.CO;2-L – volume: 127 start-page: 25 year: 2017 end-page: 35 ident: CR33 article-title: Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance-guided focused ultrasound ablation of lung cancer publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.02.037 – volume: 5 year: 2014 ident: CR30 article-title: A smart and versatile theranostic nanomedicine platform based on nanoporphyrin publication-title: Nat. Commun. doi: 10.1038/ncomms5712 – volume: 12 start-page: 991 year: 2013 end-page: 1003 ident: CR11 article-title: Stimuli-responsive nanocarriers for drug delivery publication-title: Nat. Mater. doi: 10.1038/nmat3776 – volume: 1 start-page: 0062 year: 2017 ident: CR29 article-title: Cancer diagnostics: on-target probes for early detection publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-017-0062 – volume: 419 start-page: 743 year: 2002 end-page: 747 ident: CR5 article-title: Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy publication-title: Nature doi: 10.1038/nature01060 – volume: 32 start-page: 6633 year: 2011 end-page: 6645 ident: CR24 article-title: Well-defined, reversible disulfide cross-linked micelles for on-demand paclitaxel delivery publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.05.050 – volume: 92 start-page: 017201 year: 2004 ident: CR20 article-title: Three-dimensional noncollinear antiferromagnetic order in single-crystalline FeMn ultrathin films publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.017201 – volume: 92 start-page: 017201 year: 2004 ident: 678_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.017201 – volume: 23 start-page: 355 year: 2005 ident: 678_CR2 publication-title: Nat. Biotechnol. doi: 10.1038/nbt1066 – volume: 23 start-page: 1726 year: 2012 ident: 678_CR13 publication-title: Bioconj. Chem. doi: 10.1021/bc300214z – volume: 21 start-page: 1387 year: 2003 ident: 678_CR8 publication-title: Nat. Biotechnol. doi: 10.1038/nbt896 – volume: 66 start-page: 58 year: 2014 ident: 678_CR25 publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2013.09.008 – volume: 11 start-page: 5227 year: 2017 ident: 678_CR16 publication-title: ACS Nano doi: 10.1021/acsnano.7b03075 – volume: 128 start-page: 1078 year: 2006 ident: 678_CR12 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja056726i – volume: 67 start-page: 183 year: 2015 ident: 678_CR32 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.07.033 – volume: 22 start-page: 445 year: 2004 ident: 678_CR6 publication-title: Nat. Biotechnol. doi: 10.1038/nbt945 – volume: 18 start-page: 569 year: 2016 ident: 678_CR34 publication-title: Mol. Imaging Biol. doi: 10.1007/s11307-015-0918-5 – volume: 22 start-page: 220 year: 2004 ident: 678_CR7 publication-title: Nat. Biotechnol. doi: 10.1038/nbt935 – volume: 1 start-page: 0057 year: 2017 ident: 678_CR28 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-017-0057 – volume: 1 start-page: 182 year: 2010 ident: 678_CR18 publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.1.22 – volume: 1 start-page: 0062 year: 2017 ident: 678_CR29 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-017-0062 – volume: 5 year: 2014 ident: 678_CR30 publication-title: Nat. Commun. doi: 10.1038/ncomms5712 – volume: 1 start-page: 47 year: 2006 ident: 678_CR1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2006.51 – volume: 257 start-page: 3068 year: 1982 ident: 678_CR21 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)81074-8 – volume: 9 start-page: 1727 year: 2012 ident: 678_CR31 publication-title: Mol. Pharm. doi: 10.1021/mp300128b – volume: 16 start-page: 537 year: 2017 ident: 678_CR9 publication-title: Nat. Mater. doi: 10.1038/nmat4846 – volume: 9 year: 2018 ident: 678_CR15 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06093-5 – volume: 130 start-page: 794 year: 2008 ident: 678_CR10 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja077058z – volume: 10 start-page: 324 year: 2011 ident: 678_CR14 publication-title: Nat. Mater. doi: 10.1038/nmat2986 – volume: 6 start-page: 7281 year: 2012 ident: 678_CR17 publication-title: ACS Nano doi: 10.1021/nn302393e – volume: 11 start-page: 737 year: 2004 ident: 678_CR26 publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4401389 – volume: 35 start-page: 363 year: 2017 ident: 678_CR4 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3828 – volume: 12 start-page: 991 year: 2013 ident: 678_CR11 publication-title: Nat. Mater. doi: 10.1038/nmat3776 – volume: 42 start-page: 379 year: 1999 ident: 678_CR22 publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199908)42:2<379::AID-MRM20>3.0.CO;2-L – volume: 419 start-page: 743 year: 2002 ident: 678_CR5 publication-title: Nature doi: 10.1038/nature01060 – volume: 1 start-page: 3511 year: 2004 ident: 678_CR19 publication-title: Phys. Status Solidi C doi: 10.1002/pssc.200405493 – volume: 52 start-page: 978 year: 1989 ident: 678_CR27 publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.1989.tb02550.x – volume: 6 start-page: 9485 year: 2012 ident: 678_CR23 publication-title: ACS Nano doi: 10.1021/nn302317j – volume: 32 start-page: 6633 year: 2011 ident: 678_CR24 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.05.050 – volume: 23 start-page: 741 year: 2005 ident: 678_CR3 publication-title: Nat. Biotechnol. doi: 10.1038/nbt1100 – volume: 127 start-page: 25 year: 2017 ident: 678_CR33 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.02.037 |
SSID | ssj0052924 |
Score | 2.608665 |
Snippet | Distance-dependent magnetic resonance tuning (MRET) technology enables the sensing and quantitative imaging of biological targets in vivo, with the advantage... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 482 |
SubjectTerms | 631/61/350/2093 631/61/54 639/301/357 639/925 Animals Background noise Biomedical materials Brain - diagnostic imaging Brain cancer Brain Neoplasms - diagnostic imaging Brain tumors Chemistry and Materials Science Contrast Media - analysis Energy transfer Fluorescence Glioma - diagnostic imaging Humans Image contrast Image detection Image enhancement Image Enhancement - methods Magnetic resonance Magnetic resonance imaging Magnetic Resonance Imaging - methods Materials Science Mice Micelles Nanoparticles - analysis Nanotechnology Nanotechnology - methods Nanotechnology and Microengineering Neuroimaging Subtraction Target recognition Tumors Tuning Xenografts Xenotransplantation |
Title | Two-way magnetic resonance tuning and enhanced subtraction imaging for non-invasive and quantitative biological imaging |
URI | https://link.springer.com/article/10.1038/s41565-020-0678-5 https://www.ncbi.nlm.nih.gov/pubmed/32451501 https://www.proquest.com/docview/2414149934 https://www.proquest.com/docview/2475031337 https://www.proquest.com/docview/2406952290 https://pubmed.ncbi.nlm.nih.gov/PMC7307456 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtcmkPJX27SYMKPbWI-CFb8ikkJdtQaCglgb2ZsSw1C42cZO0u_feZ8SvdhgSDD3qApBlJM5qZbxj7mJrcxDoFAWWYCgnaiDKzIDKVx2EG4MBSoPD3k-z4TH6bp_PhwW05uFWOZ2J3UFe1oTfyPbxp8MPbVO5fXgnKGkXW1SGFxmO2SdBl5NKl5pPClcZ5n9RWSS1QFVOjVTPRe0tSXCg2mdKuoCKVrt9Ld4TNuz6T_xlOu_totsWeDYIkP-gp_5w9sv4Fe_oPvOBLtjpd1WIFf_kF_PIUrMhRt64JYcPypqUHEQ6-4tafd24AfNmWzXUf6MAXF136Io4yLfe1Fwv_B8jTvetx1YLvgtOooIdxIlqPnV6xs9nR6ZdjMSRaEEbmukFlVJtIVXHsosjhPiytS7HEydIpozIwTubSxBaS3GYVRIQfmuSRkbIKExdD8ppt4FDsW8ZRHNF56TTEGlA2A0ARo7IOV1uj4pRAwMJxmQszoJBTMozfRWcNT3TRU6ZAyhREmSIN2Kepy2UPwfFQ452RdsWwG5fFLe_cU03GXFTWVcA-TNW4zch2At7WLbUJszwlcPyAvek5YRoMyqQoFYZRwNQaj0wNCMJ7vcYvzjsobzxfFS5TwD6P3HQ7rHvn-O7hOW6zJ3HP1yKMdthGc93a9yg5NeVutz3wr2dfd9nm4dHJj583OTcZ0g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAkaCC8hqYjuJc0AIAcuWPk5bqbcwcRy6Ek3a7i6r_il-IzPJZstStbdqb7G9cjwz9jcZzzcAb2KXOWVjlFiEsTRonSwSjzJJMxUmiBV6ThTe3UuG--b7QXywBn_6XBi-Vtnvie1GXTaOv5Fv0klDPzpNzcfjE8lVozi62pfQ6NRi25_NyWWbfNj6QvJ9q9Tg6-jzUC6qCkhnMjslz8u6KC2VqqKoIqUrfBXTk8oUVerSBF1lMuOUR535pMSIyTJ1FjljylBXCjX97w24abTO2KLs4Fu_88cq64ropsZKcv3SPoqq7eaEHSXOheYyL-S4xavn4AVwe_GO5n-B2vb8G9yDuwvgKj51mnYf1nz9AO78Q2f4EOajeSPneCaO8GfNyZGCfPmGGT28mM74A4zAuhS-PmyvHYjJrJiedokVYnzUlksShKFF3dRyXP9GvlnfjjiZYd0mw_GDjjaKdasf9Aj2r0UEj2GdpuKfgiD4Y7OisqgsEhZEJEhT-opW25KjpjGAsF_m3C1Yz7n4xq-8jb5rm3eSyUkyOUsmjwN4txxy3FF-XNV5o5ddvrD-SX6uq5c0c_A40joN4PWymcyaYzVY-2bGfcIki5mMP4AnnSYsJ0MYmFBoGAWQrujIsgNThq-21OPDljqc9vOUlimA9702nU_r0nd8dvU7voJbw9HuTr6ztbf9HG6rTsdlGG3A-vR05l8QapsWL1tTEfDjum3zLwLgVKA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IJ4lUMBIcAFZmzgPOweEEGXVUqg4tNLewsSx6Uo0abu7rPrX-HXMJJstS9XeqtxiO3I8M_Y3nhfA69TmVpkUJZZhKhM0VpaZQ5npXIUZokfHgcLf9rLtg-TLKB2twZ8-FobdKvs9sd2oq8byHfmAThp66DRNBn7hFvF9a_jh-ERyBSm2tPblNDoW2XVnc1LfJu93tojWb5Qaft7_tC0XFQakTXIzJS3M2EhXSvko8sSApfMpvfFJ6bXVGVqf5IlVDuPcZRVGnDgzziObJFUYe4UxffcG3NRxGrGM6dFS2UtV3hXU1YmRpAbq3qIam8GElSaOi-aSL6TEpatn4gWge9Ff8z-jbXsWDu_B3QWIFR87rrsPa65-AHf-SW34EOb780bO8Uwc4c-aAyUF6fUNZ_dwYjrjyxiBdSVcfdi6IIjJrJyedkEWYnzUlk4ShKdF3dRyXP9G9rJvR5zMsG4D4_hFl0KK-awf9AgOroUEj2GdpuKegCAoZPLSG1QGCRciErypnKfVNqS0xRhA2C9zYRcZ0LkQx6-itcTHpugoUxBlCqZMkQbwdjnkuEv_cVXnzZ52xWInmBTnfHtJMxuSozjWAbxaNpOIs90Ga9fMuE-Y5Skn5g9go-OE5WQIDxMiDaMA9AqPLDtw-vDVlnp82KYRp71d0zIF8K7npvNpXfqPT6_-x5dwi6Sy-Lqzt_sMbquOxWUYbcL69HTmnhOAm5YvWkkR8OO6RfMvwihYzQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-way+magnetic+resonance+tuning+and+enhanced+subtraction+imaging+for+non-invasive+and+quantitative+biological+imaging&rft.jtitle=Nature+nanotechnology&rft.au=Wang%2C+Zhongling&rft.au=Xue%2C+Xiangdong&rft.au=Lu%2C+Hongwei&rft.au=He%2C+Yixuan&rft.date=2020-06-01&rft.issn=1748-3395&rft.eissn=1748-3395&rft.volume=15&rft.issue=6&rft.spage=482&rft_id=info:doi/10.1038%2Fs41565-020-0678-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |