BAGLS, a multihospital Benchmark for Automatic Glottis Segmentation

Laryngeal videoendoscopy is one of the main tools in clinical examinations for voice disorders and voice research. Using high-speed videoendoscopy, it is possible to fully capture the vocal fold oscillations, however, processing the recordings typically involves a time-consuming segmentation of the...

Full description

Saved in:
Bibliographic Details
Published inScientific data Vol. 7; no. 1; p. 186
Main Authors Gómez, Pablo, Kist, Andreas M., Schlegel, Patrick, Berry, David A., Chhetri, Dinesh K., Dürr, Stephan, Echternach, Matthias, Johnson, Aaron M., Kniesburges, Stefan, Kunduk, Melda, Maryn, Youri, Schützenberger, Anne, Verguts, Monique, Döllinger, Michael
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.06.2020
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2052-4463
2052-4463
DOI10.1038/s41597-020-0526-3

Cover

Abstract Laryngeal videoendoscopy is one of the main tools in clinical examinations for voice disorders and voice research. Using high-speed videoendoscopy, it is possible to fully capture the vocal fold oscillations, however, processing the recordings typically involves a time-consuming segmentation of the glottal area by trained experts. Even though automatic methods have been proposed and the task is particularly suited for deep learning methods, there are no public datasets and benchmarks available to compare methods and to allow training of generalizing deep learning models. In an international collaboration of researchers from seven institutions from the EU and USA, we have created BAGLS, a large, multihospital dataset of 59,250 high-speed videoendoscopy frames with individually annotated segmentation masks. The frames are based on 640 recordings of healthy and disordered subjects that were recorded with varying technical equipment by numerous clinicians. The BAGLS dataset will allow an objective comparison of glottis segmentation methods and will enable interested researchers to train their own models and compare their methods. Measurement(s) glottis • Image Segmentation Technology Type(s) Endoscopic Procedure • neural network model Factor Type(s) age • sex • healthy versus disordered subjects • recording conditions Sample Characteristic - Organism Homo sapiens Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.12387890
AbstractList Laryngeal videoendoscopy is one of the main tools in clinical examinations for voice disorders and voice research. Using high-speed videoendoscopy, it is possible to fully capture the vocal fold oscillations, however, processing the recordings typically involves a time-consuming segmentation of the glottal area by trained experts. Even though automatic methods have been proposed and the task is particularly suited for deep learning methods, there are no public datasets and benchmarks available to compare methods and to allow training of generalizing deep learning models. In an international collaboration of researchers from seven institutions from the EU and USA, we have created BAGLS, a large, multihospital dataset of 59,250 high-speed videoendoscopy frames with individually annotated segmentation masks. The frames are based on 640 recordings of healthy and disordered subjects that were recorded with varying technical equipment by numerous clinicians. The BAGLS dataset will allow an objective comparison of glottis segmentation methods and will enable interested researchers to train their own models and compare their methods. Measurement(s) glottis • Image Segmentation Technology Type(s) Endoscopic Procedure • neural network model Factor Type(s) age • sex • healthy versus disordered subjects • recording conditions Sample Characteristic - Organism Homo sapiens Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.12387890
Laryngeal videoendoscopy is one of the main tools in clinical examinations for voice disorders and voice research. Using high-speed videoendoscopy, it is possible to fully capture the vocal fold oscillations, however, processing the recordings typically involves a time-consuming segmentation of the glottal area by trained experts. Even though automatic methods have been proposed and the task is particularly suited for deep learning methods, there are no public datasets and benchmarks available to compare methods and to allow training of generalizing deep learning models. In an international collaboration of researchers from seven institutions from the EU and USA, we have created BAGLS, a large, multihospital dataset of 59,250 high-speed videoendoscopy frames with individually annotated segmentation masks. The frames are based on 640 recordings of healthy and disordered subjects that were recorded with varying technical equipment by numerous clinicians. The BAGLS dataset will allow an objective comparison of glottis segmentation methods and will enable interested researchers to train their own models and compare their methods.Measurement(s)glottis • Image SegmentationTechnology Type(s)Endoscopic Procedure • neural network modelFactor Type(s)age • sex • healthy versus disordered subjects • recording conditionsSample Characteristic - OrganismHomo sapiensMachine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.12387890
Laryngeal videoendoscopy is one of the main tools in clinical examinations for voice disorders and voice research. Using high-speed videoendoscopy, it is possible to fully capture the vocal fold oscillations, however, processing the recordings typically involves a time-consuming segmentation of the glottal area by trained experts. Even though automatic methods have been proposed and the task is particularly suited for deep learning methods, there are no public datasets and benchmarks available to compare methods and to allow training of generalizing deep learning models. In an international collaboration of researchers from seven institutions from the EU and USA, we have created BAGLS, a large, multihospital dataset of 59,250 high-speed videoendoscopy frames with individually annotated segmentation masks. The frames are based on 640 recordings of healthy and disordered subjects that were recorded with varying technical equipment by numerous clinicians. The BAGLS dataset will allow an objective comparison of glottis segmentation methods and will enable interested researchers to train their own models and compare their methods.Laryngeal videoendoscopy is one of the main tools in clinical examinations for voice disorders and voice research. Using high-speed videoendoscopy, it is possible to fully capture the vocal fold oscillations, however, processing the recordings typically involves a time-consuming segmentation of the glottal area by trained experts. Even though automatic methods have been proposed and the task is particularly suited for deep learning methods, there are no public datasets and benchmarks available to compare methods and to allow training of generalizing deep learning models. In an international collaboration of researchers from seven institutions from the EU and USA, we have created BAGLS, a large, multihospital dataset of 59,250 high-speed videoendoscopy frames with individually annotated segmentation masks. The frames are based on 640 recordings of healthy and disordered subjects that were recorded with varying technical equipment by numerous clinicians. The BAGLS dataset will allow an objective comparison of glottis segmentation methods and will enable interested researchers to train their own models and compare their methods.
Laryngeal videoendoscopy is one of the main tools in clinical examinations for voice disorders and voice research. Using high-speed videoendoscopy, it is possible to fully capture the vocal fold oscillations, however, processing the recordings typically involves a time-consuming segmentation of the glottal area by trained experts. Even though automatic methods have been proposed and the task is particularly suited for deep learning methods, there are no public datasets and benchmarks available to compare methods and to allow training of generalizing deep learning models. In an international collaboration of researchers from seven institutions from the EU and USA, we have created BAGLS, a large, multihospital dataset of 59,250 high-speed videoendoscopy frames with individually annotated segmentation masks. The frames are based on 640 recordings of healthy and disordered subjects that were recorded with varying technical equipment by numerous clinicians. The BAGLS dataset will allow an objective comparison of glottis segmentation methods and will enable interested researchers to train their own models and compare their methods. Measurement(s) glottis • Image Segmentation Technology Type(s) Endoscopic Procedure • neural network model Factor Type(s) age • sex • healthy versus disordered subjects • recording conditions Sample Characteristic - Organism Homo sapiens Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.12387890
Laryngeal videoendoscopy is one of the main tools in clinical examinations for voice disorders and voice research. Using high-speed videoendoscopy, it is possible to fully capture the vocal fold oscillations, however, processing the recordings typically involves a time-consuming segmentation of the glottal area by trained experts. Even though automatic methods have been proposed and the task is particularly suited for deep learning methods, there are no public datasets and benchmarks available to compare methods and to allow training of generalizing deep learning models. In an international collaboration of researchers from seven institutions from the EU and USA, we have created BAGLS, a large, multihospital dataset of 59,250 high-speed videoendoscopy frames with individually annotated segmentation masks. The frames are based on 640 recordings of healthy and disordered subjects that were recorded with varying technical equipment by numerous clinicians. The BAGLS dataset will allow an objective comparison of glottis segmentation methods and will enable interested researchers to train their own models and compare their methods.Measurement(s)glottis • Image SegmentationTechnology Type(s)Endoscopic Procedure • neural network modelFactor Type(s)age • sex • healthy versus disordered subjects • recording conditionsSample Characteristic - OrganismHomo sapiensMachine-accessible metadata file describing the reported data: 10.6084/m9.figshare.12387890
Laryngeal videoendoscopy is one of the main tools in clinical examinations for voice disorders and voice research. Using high-speed videoendoscopy, it is possible to fully capture the vocal fold oscillations, however, processing the recordings typically involves a time-consuming segmentation of the glottal area by trained experts. Even though automatic methods have been proposed and the task is particularly suited for deep learning methods, there are no public datasets and benchmarks available to compare methods and to allow training of generalizing deep learning models. In an international collaboration of researchers from seven institutions from the EU and USA, we have created BAGLS, a large, multihospital dataset of 59,250 high-speed videoendoscopy frames with individually annotated segmentation masks. The frames are based on 640 recordings of healthy and disordered subjects that were recorded with varying technical equipment by numerous clinicians. The BAGLS dataset will allow an objective comparison of glottis segmentation methods and will enable interested researchers to train their own models and compare their methods.
ArticleNumber 186
Author Dürr, Stephan
Kunduk, Melda
Maryn, Youri
Berry, David A.
Schützenberger, Anne
Döllinger, Michael
Verguts, Monique
Kist, Andreas M.
Echternach, Matthias
Johnson, Aaron M.
Gómez, Pablo
Schlegel, Patrick
Chhetri, Dinesh K.
Kniesburges, Stefan
Author_xml – sequence: 1
  givenname: Pablo
  orcidid: 0000-0002-5631-8240
  surname: Gómez
  fullname: Gómez, Pablo
  email: pablo.gomez@tum.de
  organization: Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg
– sequence: 2
  givenname: Andreas M.
  orcidid: 0000-0003-3643-7776
  surname: Kist
  fullname: Kist, Andreas M.
  email: andreas.kist@uk-erlangen.de
  organization: Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg
– sequence: 3
  givenname: Patrick
  surname: Schlegel
  fullname: Schlegel, Patrick
  organization: Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg
– sequence: 4
  givenname: David A.
  surname: Berry
  fullname: Berry, David A.
  organization: Department of Head and Neck Surgery, David Geffen School of Medicine at the University of California, Los Angeles
– sequence: 5
  givenname: Dinesh K.
  surname: Chhetri
  fullname: Chhetri, Dinesh K.
  organization: Department of Head and Neck Surgery, David Geffen School of Medicine at the University of California, Los Angeles
– sequence: 6
  givenname: Stephan
  surname: Dürr
  fullname: Dürr, Stephan
  organization: Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg
– sequence: 7
  givenname: Matthias
  orcidid: 0000-0003-0095-5360
  surname: Echternach
  fullname: Echternach, Matthias
  organization: Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, Munich University Hospital (LMU)
– sequence: 8
  givenname: Aaron M.
  orcidid: 0000-0002-7577-0267
  surname: Johnson
  fullname: Johnson, Aaron M.
  organization: NYU Voice Center, Department of Otolaryngology – Head and Neck Surgery, New York University School of Medicine
– sequence: 9
  givenname: Stefan
  surname: Kniesburges
  fullname: Kniesburges, Stefan
  organization: Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg
– sequence: 10
  givenname: Melda
  surname: Kunduk
  fullname: Kunduk, Melda
  organization: Department of Communication Sciences and Disorders, Louisiana State University
– sequence: 11
  givenname: Youri
  surname: Maryn
  fullname: Maryn, Youri
  organization: European Institute for ORL-HNS, Department of Otorhinolaryngology and Head & Neck Surgery, Sint-Augustinus GZA, Department of Speech, Language and Hearing sciences, University of Ghent, Faculty of Education, Health and Social Work, University College Ghent, Faculty of Psychology and Educational Sciences, School of Logopedics, Université Catholique de Louvain, Faculty of Medicine and Health Sciences, University of Antwerp
– sequence: 12
  givenname: Anne
  surname: Schützenberger
  fullname: Schützenberger, Anne
  organization: Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg
– sequence: 13
  givenname: Monique
  surname: Verguts
  fullname: Verguts, Monique
  organization: European Institute for ORL-HNS, Department of Otorhinolaryngology and Head & Neck Surgery, Sint-Augustinus GZA, Department of Otorhinolaryngology and Voice Disorders, Diest General Hospital
– sequence: 14
  givenname: Michael
  surname: Döllinger
  fullname: Döllinger, Michael
  organization: Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32561845$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS1UREvpB-CCInHhQGD8N_EFabuCBWklDoWz5TjeXZfEXmynEt8eRymlVKInj-zfm3nj9xyd-OAtQi8xvMNA2_eJYS6bGgjUwImo6RN0RkpVMyboyb36FF2kdA0AmDLgDTxDp5RwgVvGz9D6crXZXr2tdDVOQ3aHkI4u66G6tN4cRh1_VLsQq9WUw6izM9VmCDm7VF3Z_Wh9LnfBv0BPd3pI9uL2PEffP338tv5cb79uvqxX29ow2eaa9VJ0whLBmo4Z2RMgFDA3ErQUQttydMZ2lvSi7Gc61lvWQG_bZicZ7zE9Rx-WvsepG21vyvyoB3WMrhj9pYJ26t8X7w5qH25UQ4FjYKXBm9sGMfycbMpqdMnYYdDehikpUr60oITM6OsH6HWYoi_rFaqVElrW0McpzCRIzuZer-77vjP8J4UC4AUwMaQU7e4OwaDmsNUStiphqzlsNY9uHmiMW-Ioq7vhUSVZlKlM8Xsb_5r-v-g3qmq7fg
CitedBy_id crossref_primary_10_4015_S1016237221500277
crossref_primary_10_1016_j_jvoice_2024_03_035
crossref_primary_10_1007_s00405_024_08659_0
crossref_primary_10_1109_JTEHM_2023_3237859
crossref_primary_10_1016_j_dib_2025_111376
crossref_primary_10_1016_j_jvoice_2021_08_011
crossref_primary_10_1016_j_jvoice_2025_01_001
crossref_primary_10_1016_j_medengphy_2025_104298
crossref_primary_10_1044_2022_JSLHR_22_00053
crossref_primary_10_1055_a_2089_5741
crossref_primary_10_1016_j_otc_2024_05_005
crossref_primary_10_1038_s41598_022_17764_1
crossref_primary_10_1016_j_bspc_2022_103878
crossref_primary_10_3390_bioengineering11050443
crossref_primary_10_1044_2021_JSLHR_20_00498
crossref_primary_10_1371_journal_pone_0266989
crossref_primary_10_1002_lary_30930
crossref_primary_10_1016_j_jvoice_2022_02_014
crossref_primary_10_1038_s41598_020_77216_6
crossref_primary_10_1155_2022_4248938
crossref_primary_10_3389_fsurg_2022_933297
crossref_primary_10_1016_j_jvoice_2024_01_016
crossref_primary_10_1039_D2RA00809B
crossref_primary_10_1016_j_jvoice_2022_08_022
crossref_primary_10_3390_bioengineering11100989
crossref_primary_10_1038_s41598_021_93149_0
crossref_primary_10_1002_lary_29886
crossref_primary_10_1016_j_bspc_2023_105159
crossref_primary_10_1016_j_bspc_2023_105335
crossref_primary_10_1016_j_bspc_2024_106047
crossref_primary_10_1038_s41593_022_01023_7
crossref_primary_10_1371_journal_pcbi_1011774
crossref_primary_10_3390_app11031179
crossref_primary_10_3390_app12199791
crossref_primary_10_1016_j_procs_2023_10_633
crossref_primary_10_1038_s41467_021_26988_0
crossref_primary_10_5604_01_3001_0015_9501
crossref_primary_10_1109_ACCESS_2023_3284388
Cites_doi 10.1159/000111802
10.1007/s004050000299
10.1038/s41598-019-45758-z
10.1177/000348940010900501
10.1002/lary.23189
10.5281/zenodo.3377544
10.1097/01.mlg.0000179174.32345.41
10.1016/j.jvoice.2017.02.010
10.1002/lary.23568
10.1121/1.4747007
10.1016/j.anl.2014.11.001
10.1016/j.jvoice.2004.08.009
10.1109/TBME.2014.2364862
10.1016/j.jvoice.2014.01.016
10.1016/S0892-1997(96)80047-6
10.1109/TMI.2014.2377694
10.1016/j.jvoice.2016.11.010
10.1109/JTEHM.2018.2886021
10.1371/journal.pone.0227791
10.1016/j.jvoice.2007.09.008
10.2307/1932409
10.1016/S0892-1997(98)80060-X
10.1016/j.jvoice.2008.03.003
10.1046/j.1365-2273.2002.00559.x
10.1109/TMI.2016.2553401
10.1097/MLG.0b013e318161f9e1
10.3109/14015439.2012.731083
10.1007/s11517-017-1652-8
10.1109/ACCESS.2019.2917620
10.1016/j.jvoice.2015.07.009
10.1016/j.media.2007.04.005
10.1126/science.aaa8415
10.1177/000348940311200406
10.1044/1058-0360(2012/12-0014)
10.1016/j.jvoice.2014.02.008
10.1109/TMI.2016.2528162
10.1109/TBME.2002.800755
10.1177/000348940811700603
10.1001/jama.2016.17216
10.1002/lary.25511
10.1016/j.media.2017.07.005
10.3390/info11020125
10.1007/978-3-319-24574-4_28
10.4000/corela.3783
10.1007/978-3-642-19335-4_31
10.1007/s11548-018-01910-0
10.1007/s11517-019-01965-4
10.1609/aaai.v33i01.3301590
10.1371/journal.pone.0187486
10.1016/j.jvoice.2018.04.011
10.1002/lary.28475
10.1109/EuroSP.2016.36
10.1109/WACV.2017.58
10.1007/978-1-4612-4380-9_41
10.1109/ICASSP.2012.6287953
10.1145/2939672.2945386
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1038/s41597-020-0526-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central Database Suite (ProQuest)
Natural Science Collection (ProQuest)
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic

Publicly Available Content Database
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2052-4463
ExternalDocumentID PMC7305104
32561845
10_1038_s41597_020_0526_3
Genre Research Support, Non-U.S. Gov't
Dataset
Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft (German Research Foundation)
  grantid: EC409/1-2; DO1247/8-1
  funderid: https://doi.org/10.13039/501100001659
– fundername: Bundesministerium für Wirtschaft und Energie (Federal Ministry for Economic Affairs and Energy)
  grantid: ZF4010105BA8; ZF4010105BA8
  funderid: https://doi.org/10.13039/501100006360
– fundername: U.S. Department of Health & Human Services | NIH | National Institute on Deafness and Other Communication Disorders (NIDCD)
  grantid: R01 DC013323
  funderid: https://doi.org/10.13039/100000055
– fundername: Joachim Herz Stiftung (Joachim Herz Foundation)
  grantid: Addon-Fellowship
  funderid: https://doi.org/10.13039/100008662
– fundername: NIDCD NIH HHS
  grantid: R01 DC015570
– fundername: NIDCD NIH HHS
  grantid: R01 DC011300
– fundername: NIDCD NIH HHS
  grantid: R01 DC013323
– fundername: ;
  grantid: R01 DC013323
– fundername: ;
  grantid: Addon-Fellowship
– fundername: ;
  grantid: EC409/1-2; DO1247/8-1
– fundername: ;
  grantid: ZF4010105BA8; ZF4010105BA8
GroupedDBID 0R~
3V.
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSFO
ACSMW
ADBBV
ADRAZ
AFKRA
AGHDO
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EJD
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
KQ8
LK8
M1P
M48
M7P
M~E
NAO
OK1
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c498t-4d96b6e2647b4c9d2023015c90a966ae0a9bcebe2d6038cb4de470de87f945d13
IEDL.DBID 7X7
ISSN 2052-4463
IngestDate Thu Aug 21 17:50:55 EDT 2025
Sun Aug 24 04:14:03 EDT 2025
Wed Aug 13 04:32:42 EDT 2025
Wed Aug 13 10:56:24 EDT 2025
Thu Apr 03 07:04:22 EDT 2025
Tue Jul 01 03:48:58 EDT 2025
Thu Apr 24 23:06:23 EDT 2025
Fri Feb 21 02:37:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files associated with this article.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c498t-4d96b6e2647b4c9d2023015c90a966ae0a9bcebe2d6038cb4de470de87f945d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ORCID 0000-0002-7577-0267
0000-0002-5631-8240
0000-0003-0095-5360
0000-0003-3643-7776
OpenAccessLink https://www.proquest.com/docview/2414909544?pq-origsite=%requestingapplication%
PMID 32561845
PQID 2414909544
PQPubID 2041912
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7305104
proquest_miscellaneous_2415305224
proquest_journals_2489908473
proquest_journals_2414909544
pubmed_primary_32561845
crossref_primary_10_1038_s41597_020_0526_3
crossref_citationtrail_10_1038_s41597_020_0526_3
springer_journals_10_1038_s41597_020_0526_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-19
PublicationDateYYYYMMDD 2020-06-19
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific data
PublicationTitleAbbrev Sci Data
PublicationTitleAlternate Sci Data
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Zraick, Wendel, Smith-Olinde (CR56) 2005; 19
Echternach (CR60) 2017; 31
Lohscheller, Švec, Döllinger (CR12) 2013; 38
Patel, Dailey, Bless (CR10) 2008; 117
CR36
Roy, Merrill, Gray, Smith (CR3) 2005; 115
Litjens (CR19) 2017; 42
Tafiadis (CR41) 2019; 9
Jaccard (CR48) 1902; 38
Greenspan, Van Ginneken, Summers (CR20) 2016; 35
Martins, Pereira, Hidalgo, Tavares (CR5) 2014; 28
Gómez, Schützenberger, Semmler, Döllinger (CR49) 2019; 7
Andrade-Miranda, Godino-Llorente (CR45) 2017; 55
Shin (CR21) 2016; 35
Gulshan (CR29) 2016; 316
Gong, Zhong, Hu (CR22) 2019; 7
Döllinger (CR37) 2002; 49
CR7
Jordan, Mitchell (CR23) 2015; 349
Cohen, Kim, Roy, Asche, Courey (CR2) 2012; 122
CR46
Yamauchi (CR35) 2014; 28
CR44
CR42
Gloger, Lehnert, Schrade, Völzke (CR16) 2015; 62
Doellinger, Lohscheller, McWhorter, Kunduk (CR14) 2009; 23
Gómez (CR61) 2020
Wilson, Deary, Millar, Mackenzie (CR1) 2002; 27
Menze (CR27) 2014; 34
Lohscheller, Eysholdt (CR38) 2008; 118
CR18
Dejonckere (CR40) 2001; 258
Pedersen, Jønsson, Mahmood, Agersted (CR13) 2016; 4
Kreiman (CR33) 2012; 132
Fehling, Grosch, Schuster, Schick, Lohscheller (CR17) 2020; 15
CR58
CR57
CR54
CR53
CR52
Pestana, Vaz-Freitas, Manso (CR6) 2017; 31
CR51
CR50
Deliyski (CR9) 2008; 60
Švec, Schutte (CR31) 1996; 10
Döllinger, Dubrovskiy, Patel (CR15) 2012; 122
Noordzij, Woo (CR34) 2000; 109
Roy, Kim, Courey, Cohen (CR4) 2016; 126
Lohscheller, Toy, Rosanowski, Eysholdt, Döllinger (CR32) 2007; 11
Barsties, De Bodt (CR39) 2015; 42
Roy (CR30) 2013; 22
CR28
Poburka, Bless (CR55) 1998; 12
CR26
CR25
CR24
CR67
Zhang, Bieging, Tsui, Jiang (CR43) 2010; 24
CR66
CR65
CR64
CR63
Dice (CR47) 1945; 26
CR62
Cutler, Cleveland (CR8) 2002; 10
Heman-Ackah (CR11) 2003; 112
Patel, Walker, Sivasankar (CR59) 2016; 30
526_CR54
526_CR57
526_CR7
526_CR51
526_CR50
526_CR53
526_CR52
526_CR18
LR Dice (526_CR47) 1945; 26
N Roy (526_CR4) 2016; 126
526_CR58
H Greenspan (526_CR20) 2016; 35
N Roy (526_CR3) 2005; 115
P Gómez (526_CR49) 2019; 7
M Echternach (526_CR60) 2017; 31
BH Menze (526_CR27) 2014; 34
RR Patel (526_CR59) 2016; 30
G Litjens (526_CR19) 2017; 42
A Yamauchi (526_CR35) 2014; 28
H-C Shin (526_CR21) 2016; 35
JG Švec (526_CR31) 1996; 10
JP Noordzij (526_CR34) 2000; 109
M Döllinger (526_CR37) 2002; 49
526_CR66
526_CR65
526_CR24
526_CR67
526_CR62
Z Gong (526_CR22) 2019; 7
526_CR64
P Jaccard (526_CR48) 1902; 38
526_CR63
526_CR26
526_CR25
V Gulshan (526_CR29) 2016; 316
526_CR28
J Lohscheller (526_CR12) 2013; 38
J Lohscheller (526_CR38) 2008; 118
M Pedersen (526_CR13) 2016; 4
RI Zraick (526_CR56) 2005; 19
G Andrade-Miranda (526_CR45) 2017; 55
RHG Martins (526_CR5) 2014; 28
O Gloger (526_CR16) 2015; 62
J Lohscheller (526_CR32) 2007; 11
N Roy (526_CR30) 2013; 22
PM Pestana (526_CR6) 2017; 31
526_CR36
YD Heman-Ackah (526_CR11) 2003; 112
R Patel (526_CR10) 2008; 117
Y Zhang (526_CR43) 2010; 24
MI Jordan (526_CR23) 2015; 349
DD Deliyski (526_CR9) 2008; 60
M Döllinger (526_CR15) 2012; 122
D Tafiadis (526_CR41) 2019; 9
SM Cohen (526_CR2) 2012; 122
526_CR44
MK Fehling (526_CR17) 2020; 15
526_CR46
P Gómez (526_CR61) 2020
M Doellinger (526_CR14) 2009; 23
PH Dejonckere (526_CR40) 2001; 258
526_CR42
JA Wilson (526_CR1) 2002; 27
B Barsties (526_CR39) 2015; 42
JL Cutler (526_CR8) 2002; 10
J Kreiman (526_CR33) 2012; 132
BJ Poburka (526_CR55) 1998; 12
References_xml – volume: 60
  start-page: 33
  year: 2008
  end-page: 44
  ident: CR9
  article-title: Clinical implementation of laryngeal high-speed videoendoscopy: challenges and evolution
  publication-title: Folia Phoniatr. Logo.
  doi: 10.1159/000111802
– volume: 258
  start-page: 77
  year: 2001
  end-page: 82
  ident: CR40
  article-title: A basic protocol for functional assessment of voice pathology, especially for investigating the efficacy of (phonosurgical) treatments and evaluating new assessment techniques
  publication-title: Eur. Arch. Oto-rhino-l.
  doi: 10.1007/s004050000299
– volume: 9
  start-page: 1
  year: 2019
  end-page: 9
  ident: CR41
  article-title: Checking for voice disorders without clinical intervention: The greek and global vhi thresholds for voice disordered patients
  publication-title: Scientific reports
  doi: 10.1038/s41598-019-45758-z
– volume: 109
  start-page: 441
  year: 2000
  end-page: 446
  ident: CR34
  article-title: Glottal area waveform analysis of benign vocal fold lesions before and after surgery
  publication-title: Ann. Oto. Rhinol. Laryn.
  doi: 10.1177/000348940010900501
– volume: 122
  start-page: 1582
  year: 2012
  end-page: 1588
  ident: CR2
  article-title: Direct health care costs of laryngeal diseases and disorders
  publication-title: Laryngoscope
  doi: 10.1002/lary.23189
– ident: CR51
– year: 2020
  ident: CR61
  publication-title: Zenodo
  doi: 10.5281/zenodo.3377544
– volume: 115
  start-page: 1988
  year: 2005
  end-page: 1995
  ident: CR3
  article-title: Voice disorders in the general population: prevalence, risk factors, and occupational impact
  publication-title: Laryngoscope
  doi: 10.1097/01.mlg.0000179174.32345.41
– volume: 31
  start-page: 722
  year: 2017
  end-page: 727
  ident: CR6
  article-title: Prevalence of voice disorders in singers: Systematic review and meta-analysis
  publication-title: J. Voice
  doi: 10.1016/j.jvoice.2017.02.010
– volume: 122
  start-page: 2511
  year: 2012
  end-page: 2518
  ident: CR15
  article-title: Spatiotemporal analysis of vocal fold vibrations between children and adults
  publication-title: Laryngoscope
  doi: 10.1002/lary.23568
– ident: CR54
– volume: 132
  start-page: 2625
  year: 2012
  end-page: 2632
  ident: CR33
  article-title: Variability in the relationships among voice quality, harmonic amplitudes, open quotient, and glottal area waveform shape in sustained phonation
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4747007
– volume: 42
  start-page: 183
  year: 2015
  end-page: 188
  ident: CR39
  article-title: Assessment of voice quality: current state-of-the-art
  publication-title: Auris Nasus Larynx
  doi: 10.1016/j.anl.2014.11.001
– ident: CR58
– ident: CR25
– ident: CR42
– volume: 19
  start-page: 574
  year: 2005
  end-page: 581
  ident: CR56
  article-title: The effect of speaking task on perceptual judgment of the severity of dysphonic voice
  publication-title: J. Voice
  doi: 10.1016/j.jvoice.2004.08.009
– volume: 62
  start-page: 795
  year: 2015
  end-page: 806
  ident: CR16
  article-title: Fully automated glottis segmentation in endoscopic videos using local color and shape features of glottal regions
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2364862
– volume: 28
  start-page: 525
  year: 2014
  end-page: 531
  ident: CR35
  article-title: Age- and gender-related difference of vocal fold vibration and glottal configuration in normal speakers: analysis with glottal area waveform
  publication-title: J. Voice
  doi: 10.1016/j.jvoice.2014.01.016
– ident: CR46
– volume: 10
  start-page: 462
  year: 2002
  end-page: 466
  ident: CR8
  article-title: The clinical usefulness of laryngeal videostroboscopy and the role of high-speed cinematography in laryngeal evaluation
  publication-title: Curr. Opin. Otolaryngo.
– ident: CR67
– ident: CR50
– volume: 10
  start-page: 201
  year: 1996
  end-page: 205
  ident: CR31
  article-title: Videokymography: high-speed line scanning of vocal fold vibration
  publication-title: J. Voice
  doi: 10.1016/S0892-1997(96)80047-6
– volume: 34
  start-page: 1993
  year: 2014
  end-page: 2024
  ident: CR27
  article-title: The multimodal brain tumor image segmentation benchmark (brats)
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2377694
– volume: 31
  start-page: 381
  year: 2017
  end-page: e5
  ident: CR60
  article-title: Oscillatory characteristics of the vocal folds across the tenor passaggio
  publication-title: J. Voice
  doi: 10.1016/j.jvoice.2016.11.010
– volume: 7
  start-page: 1
  year: 2019
  end-page: 11
  ident: CR49
  article-title: Laryngeal pressure estimation with a recurrent neural network
  publication-title: IEEE J. Translational Eng. Health Med.
  doi: 10.1109/JTEHM.2018.2886021
– ident: CR57
– volume: 15
  start-page: e0227791
  year: 2020
  ident: CR17
  article-title: Fully automatic segmentation of glottis and vocal folds in endoscopic laryngeal high-speed videos using a deep convolutional lstm network
  publication-title: Plos one
  doi: 10.1371/journal.pone.0227791
– volume: 23
  start-page: 175
  year: 2009
  end-page: 181
  ident: CR14
  article-title: Variability of normal vocal fold dynamics for different vocal loading in one healthy subject investigated by phonovibrograms
  publication-title: Journal of Voice
  doi: 10.1016/j.jvoice.2007.09.008
– ident: CR36
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  ident: CR47
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 12
  start-page: 513
  year: 1998
  end-page: 526
  ident: CR55
  article-title: A multi-media, computer-based method for stroboscopy rating training
  publication-title: J. Voice
  doi: 10.1016/S0892-1997(98)80060-X
– ident: CR64
– ident: CR26
– volume: 24
  start-page: 21
  year: 2010
  end-page: 29
  ident: CR43
  article-title: Efficient and effective extraction of vocal fold vibratory patterns from high-speed digital imaging
  publication-title: J Voice
  doi: 10.1016/j.jvoice.2008.03.003
– volume: 27
  start-page: 179
  year: 2002
  end-page: 182
  ident: CR1
  article-title: The quality of life impact of dysphonia
  publication-title: Clin. Otolaryngol. Allied Sci.
  doi: 10.1046/j.1365-2273.2002.00559.x
– volume: 35
  start-page: 1153
  year: 2016
  end-page: 1159
  ident: CR20
  article-title: Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2553401
– volume: 118
  start-page: 753
  year: 2008
  end-page: 758
  ident: CR38
  article-title: Phonovibrogram visualization of entire vocal fold dynamics
  publication-title: Laryngoscope
  doi: 10.1097/MLG.0b013e318161f9e1
– volume: 38
  start-page: 182
  year: 2013
  end-page: 192
  ident: CR12
  article-title: Vocal fold vibration amplitude, open quotient, speed quotient and their variability along glottal length: kymographic data from normal subjects
  publication-title: Logop. Phoniatr. Voco.
  doi: 10.3109/14015439.2012.731083
– ident: CR18
– ident: CR66
– ident: CR53
– volume: 55
  start-page: 2123
  year: 2017
  end-page: 2141
  ident: CR45
  article-title: Glottal gap tracking by a continuous background modeling using inpainting
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-017-1652-8
– volume: 7
  start-page: 64323
  year: 2019
  end-page: 64350
  ident: CR22
  article-title: Diversity in machine learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917620
– volume: 30
  start-page: 427
  year: 2016
  end-page: 433
  ident: CR59
  article-title: Spatiotemporal quantification of vocal fold vibration after exposure to superficial laryngeal dehydration: A preliminary study
  publication-title: J. Voice
  doi: 10.1016/j.jvoice.2015.07.009
– volume: 11
  start-page: 400
  year: 2007
  end-page: 413
  ident: CR32
  article-title: Clinically evaluated procedure for the reconstruction of vocal fold vibrations from endoscopic digital high-speed videos
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2007.04.005
– volume: 349
  start-page: 255
  year: 2015
  end-page: 260
  ident: CR23
  article-title: Machine learning: Trends, perspectives, and prospects
  publication-title: Science
  doi: 10.1126/science.aaa8415
– volume: 112
  start-page: 324
  year: 2003
  end-page: 333
  ident: CR11
  article-title: Cepstral peak prominence: a more reliable measure of dysphonia
  publication-title: Ann. Oto. Rhinol. Laryn.
  doi: 10.1177/000348940311200406
– ident: CR63
– volume: 22
  start-page: 212
  year: 2013
  end-page: 226
  ident: CR30
  article-title: Evidence-based clinical voice assessment: a systematic review
  publication-title: Am. J. Speech-Lang. Pat.
  doi: 10.1044/1058-0360(2012/12-0014)
– volume: 28
  start-page: 716
  year: 2014
  end-page: 724
  ident: CR5
  article-title: Voice disorders in teachers. a review
  publication-title: J. Voice
  doi: 10.1016/j.jvoice.2014.02.008
– volume: 38
  start-page: 69
  year: 1902
  end-page: 130
  ident: CR48
  article-title: Lois de distribution florale dans la zone alpine
  publication-title: Bulletin de la Société vaudoise des sciences naturelles
– ident: CR44
– volume: 35
  start-page: 1285
  year: 2016
  end-page: 1298
  ident: CR21
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528162
– volume: 4
  start-page: 2
  year: 2016
  ident: CR13
  article-title: Which mathematical and physiological formulas are describing voice pathology: An overview
  publication-title: J Gen Pract
– volume: 49
  start-page: 773
  year: 2002
  end-page: 781
  ident: CR37
  article-title: Vibration parameter extraction from endoscopic image series of the vocal folds
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2002.800755
– ident: CR65
– ident: CR52
– volume: 117
  start-page: 413
  year: 2008
  end-page: 424
  ident: CR10
  article-title: Comparison of high-speed digital imaging with stroboscopy for laryngeal imaging of glottal disorders
  publication-title: Ana. Oto. Rhinolo. Laryng.
  doi: 10.1177/000348940811700603
– volume: 316
  start-page: 2402
  year: 2016
  end-page: 2410
  ident: CR29
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 126
  start-page: 421
  year: 2016
  end-page: 428
  ident: CR4
  article-title: Voice disorders in the elderly: A national database study
  publication-title: Laryngoscope
  doi: 10.1002/lary.25511
– ident: CR7
– ident: CR28
– ident: CR62
– ident: CR24
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: CR19
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– volume: 132
  start-page: 2625
  year: 2012
  ident: 526_CR33
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4747007
– volume: 38
  start-page: 69
  year: 1902
  ident: 526_CR48
  publication-title: Bulletin de la Société vaudoise des sciences naturelles
– volume: 122
  start-page: 2511
  year: 2012
  ident: 526_CR15
  publication-title: Laryngoscope
  doi: 10.1002/lary.23568
– ident: 526_CR63
  doi: 10.3390/info11020125
– volume: 7
  start-page: 1
  year: 2019
  ident: 526_CR49
  publication-title: IEEE J. Translational Eng. Health Med.
  doi: 10.1109/JTEHM.2018.2886021
– volume: 15
  start-page: e0227791
  year: 2020
  ident: 526_CR17
  publication-title: Plos one
  doi: 10.1371/journal.pone.0227791
– volume: 115
  start-page: 1988
  year: 2005
  ident: 526_CR3
  publication-title: Laryngoscope
  doi: 10.1097/01.mlg.0000179174.32345.41
– volume: 22
  start-page: 212
  year: 2013
  ident: 526_CR30
  publication-title: Am. J. Speech-Lang. Pat.
  doi: 10.1044/1058-0360(2012/12-0014)
– ident: 526_CR24
– volume: 117
  start-page: 413
  year: 2008
  ident: 526_CR10
  publication-title: Ana. Oto. Rhinolo. Laryng.
  doi: 10.1177/000348940811700603
– volume: 4
  start-page: 2
  year: 2016
  ident: 526_CR13
  publication-title: J Gen Pract
– ident: 526_CR28
– volume: 55
  start-page: 2123
  year: 2017
  ident: 526_CR45
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-017-1652-8
– ident: 526_CR57
– volume: 19
  start-page: 574
  year: 2005
  ident: 526_CR56
  publication-title: J. Voice
  doi: 10.1016/j.jvoice.2004.08.009
– ident: 526_CR62
  doi: 10.1007/978-3-319-24574-4_28
– volume: 35
  start-page: 1285
  year: 2016
  ident: 526_CR21
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528162
– volume: 316
  start-page: 2402
  year: 2016
  ident: 526_CR29
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– ident: 526_CR64
– volume: 31
  start-page: 381
  year: 2017
  ident: 526_CR60
  publication-title: J. Voice
  doi: 10.1016/j.jvoice.2016.11.010
– ident: 526_CR50
  doi: 10.4000/corela.3783
– volume: 23
  start-page: 175
  year: 2009
  ident: 526_CR14
  publication-title: Journal of Voice
  doi: 10.1016/j.jvoice.2007.09.008
– volume: 31
  start-page: 722
  year: 2017
  ident: 526_CR6
  publication-title: J. Voice
  doi: 10.1016/j.jvoice.2017.02.010
– volume: 112
  start-page: 324
  year: 2003
  ident: 526_CR11
  publication-title: Ann. Oto. Rhinol. Laryn.
  doi: 10.1177/000348940311200406
– ident: 526_CR53
  doi: 10.1007/978-3-642-19335-4_31
– volume: 34
  start-page: 1993
  year: 2014
  ident: 526_CR27
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2377694
– volume: 26
  start-page: 297
  year: 1945
  ident: 526_CR47
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 10
  start-page: 201
  year: 1996
  ident: 526_CR31
  publication-title: J. Voice
  doi: 10.1016/S0892-1997(96)80047-6
– ident: 526_CR46
  doi: 10.1007/s11548-018-01910-0
– volume: 109
  start-page: 441
  year: 2000
  ident: 526_CR34
  publication-title: Ann. Oto. Rhinol. Laryn.
  doi: 10.1177/000348940010900501
– volume: 49
  start-page: 773
  year: 2002
  ident: 526_CR37
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2002.800755
– ident: 526_CR42
  doi: 10.1007/s11517-019-01965-4
– ident: 526_CR26
  doi: 10.1609/aaai.v33i01.3301590
– year: 2020
  ident: 526_CR61
  doi: 10.5281/zenodo.3377544
– ident: 526_CR54
– ident: 526_CR7
  doi: 10.1371/journal.pone.0187486
– ident: 526_CR65
– ident: 526_CR36
  doi: 10.1016/j.jvoice.2018.04.011
– ident: 526_CR58
  doi: 10.1002/lary.28475
– ident: 526_CR25
  doi: 10.1109/EuroSP.2016.36
– volume: 35
  start-page: 1153
  year: 2016
  ident: 526_CR20
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2553401
– ident: 526_CR66
  doi: 10.1109/WACV.2017.58
– volume: 349
  start-page: 255
  year: 2015
  ident: 526_CR23
  publication-title: Science
  doi: 10.1126/science.aaa8415
– volume: 122
  start-page: 1582
  year: 2012
  ident: 526_CR2
  publication-title: Laryngoscope
  doi: 10.1002/lary.23189
– volume: 42
  start-page: 183
  year: 2015
  ident: 526_CR39
  publication-title: Auris Nasus Larynx
  doi: 10.1016/j.anl.2014.11.001
– volume: 7
  start-page: 64323
  year: 2019
  ident: 526_CR22
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917620
– volume: 24
  start-page: 21
  year: 2010
  ident: 526_CR43
  publication-title: J Voice
  doi: 10.1016/j.jvoice.2008.03.003
– volume: 11
  start-page: 400
  year: 2007
  ident: 526_CR32
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2007.04.005
– volume: 126
  start-page: 421
  year: 2016
  ident: 526_CR4
  publication-title: Laryngoscope
  doi: 10.1002/lary.25511
– ident: 526_CR51
– volume: 10
  start-page: 462
  year: 2002
  ident: 526_CR8
  publication-title: Curr. Opin. Otolaryngo.
– volume: 28
  start-page: 525
  year: 2014
  ident: 526_CR35
  publication-title: J. Voice
  doi: 10.1016/j.jvoice.2014.01.016
– volume: 12
  start-page: 513
  year: 1998
  ident: 526_CR55
  publication-title: J. Voice
  doi: 10.1016/S0892-1997(98)80060-X
– volume: 60
  start-page: 33
  year: 2008
  ident: 526_CR9
  publication-title: Folia Phoniatr. Logo.
  doi: 10.1159/000111802
– volume: 118
  start-page: 753
  year: 2008
  ident: 526_CR38
  publication-title: Laryngoscope
  doi: 10.1097/MLG.0b013e318161f9e1
– volume: 9
  start-page: 1
  year: 2019
  ident: 526_CR41
  publication-title: Scientific reports
  doi: 10.1038/s41598-019-45758-z
– volume: 38
  start-page: 182
  year: 2013
  ident: 526_CR12
  publication-title: Logop. Phoniatr. Voco.
  doi: 10.3109/14015439.2012.731083
– volume: 28
  start-page: 716
  year: 2014
  ident: 526_CR5
  publication-title: J. Voice
  doi: 10.1016/j.jvoice.2014.02.008
– ident: 526_CR18
– ident: 526_CR67
  doi: 10.1007/978-1-4612-4380-9_41
– volume: 27
  start-page: 179
  year: 2002
  ident: 526_CR1
  publication-title: Clin. Otolaryngol. Allied Sci.
  doi: 10.1046/j.1365-2273.2002.00559.x
– volume: 62
  start-page: 795
  year: 2015
  ident: 526_CR16
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2364862
– volume: 258
  start-page: 77
  year: 2001
  ident: 526_CR40
  publication-title: Eur. Arch. Oto-rhino-l.
  doi: 10.1007/s004050000299
– ident: 526_CR44
  doi: 10.1109/ICASSP.2012.6287953
– volume: 30
  start-page: 427
  year: 2016
  ident: 526_CR59
  publication-title: J. Voice
  doi: 10.1016/j.jvoice.2015.07.009
– volume: 42
  start-page: 60
  year: 2017
  ident: 526_CR19
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– ident: 526_CR52
  doi: 10.1145/2939672.2945386
SSID ssj0001340570
Score 2.4495754
Snippet Laryngeal videoendoscopy is one of the main tools in clinical examinations for voice disorders and voice research. Using high-speed videoendoscopy, it is...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 186
SubjectTerms 692/308
692/698
Data Descriptor
Deep learning
Endoscopy
Glottis - diagnostic imaging
Glottis - physiology
Humanities and Social Sciences
Humans
Image processing
multidisciplinary
Neural networks
Oscillations
Researchers
Science
Science (multidisciplinary)
Segmentation
Vocal Cords - diagnostic imaging
Vocal Cords - physiology
Voice Disorders - diagnosis
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gXLgg3gwGChIHXoWuTdPmgNBAsAkBlzGJW5WmKZvYOtg6Cf49TpoWjQGnHhJHqe3En-PERuiAxFwI14lAAnXXItxhVkS8xKIcnBEq7CDRB24Pj7TVIXfP3vMcKspbGQaOf3XtVD2pzqh_9vH-eQkL_iJ_Mh6cj8EIqZyijgrrOtRy59ECGCaqfLEHg_b1kYur0EkZ2_yNcto6zUDO2ZuTP8Kn2irdLqMlAydxI5f_CpqT6SpaMQt2jA9NVumjNXR91Wjet08xx_oOYdfUC8FX0LM74KNXDPAVNybZUCdxxc3-MMt6Y9yWLwPzPildR53bm6frlmUqKFiCsCCzSMxoRCWAHj8igsWqVjrYf8FsDm4Ol_CJBIjRiSmwQ0QklsS3Yxn4CSNeXHc3UCUdpnIL4YhxGSRJ7EtHEsIFtx2gJIA-Eg9AgltFdsG5UJj04qrKRT_UYW43CHNmh8DsUDE7BJLjkuQtz63xX-daIY6w0JIQpEwYgERC_mgGb9IG-wvU-2UzrB8VFOGpHE70EB7seYBkqmgzF245GRfwIHjAXhX5U2IvO6jc3NMtaa-rc3TDxgm7HYx5UijI97T-_Mft__9xBy06WlWpVWc1VMlGE7kLkCiL9rSifwEyqAX_
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgXLgg3oyXgsSBV0WXpI8cOwRME3AZSNyqNE3ZxNYh1v1_3CwtGhNInHpIHKV2Yn-JHRvglKdSKUYTlECLOVxS4STcyxxf4mHEV26YmQu3xye_88K7r97rErSqtzAmaN-ktDRquooOu56goSnzhtLSdUt9hy3DSojWjzZgJYq6ve73xQorMUjtwWThIu28DVoAlovxkT-cpMb23K3DmgWNJJpNcwOWdL4JG3ZbTsiZzR19vgU37ej-oXdFJDGRgn1bFYS0sWd_JD_fCYJUEk2LsUnVSu6H46IYTEhPv43sK6R8G17ubp9vOo6tk-AoLsLC4anwE18jtAkSrkRaVkRHK6-EK_EwIzV-EoXCoqmP7FAJTzUP3FSHQSa4l7bYDjTyca73gCRC6jDL0kBTzblU0qVIyRFjZB5CAdYEt-JcrGwS8bKWxTA2zmwWxjNmx8jsuGR2jCQXNcnHLIPGX50PK3HEdjNNYgQZXCAU5PyXZjwzumhlkfqkbsZdUro-ZK7HUzOEh5oN8UoTdmfCrSfDEPXhOddrQjAn9rpDmYF7viUf9E0mblSPqNNwzMtqgXxP69d_3P9X7wNYpWbl-k5LHEKj-JzqI8RBRXJsV_4X4N4BuA
  priority: 102
  providerName: Springer Nature
Title BAGLS, a multihospital Benchmark for Automatic Glottis Segmentation
URI https://link.springer.com/article/10.1038/s41597-020-0526-3
https://www.ncbi.nlm.nih.gov/pubmed/32561845
https://www.proquest.com/docview/2414909544
https://www.proquest.com/docview/2489908473
https://www.proquest.com/docview/2415305224
https://pubmed.ncbi.nlm.nih.gov/PMC7305104
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDBa29rLLsO6ZrQs0YIe9hDoWLVunwQn6QLAWw7ICuRmyJDfFWrurnf8_SlEcZEV7sQFLMmSSIj-RMknIRzBKax6XyIERZ6BiyUpIKiYUbkaEjrLKO9xOz8TJOUznyTw43NpwrHKtE72iNo12PvIDtDQgEQ8AfL_5y1zVKBddDSU0HpNdn7oM5TmdpxsfC3dwpA9m8uygRXvl0o_GLgIcC8a3zdEdjHn3qOR_8VJvho6ekacBP9J8xfA98sjWz8leWKEt_RTSSH9-QSbj_PjH7BtV1B8aXIQCIXSMPRfX6vYPRbxK82XX-Kyt9Piq6brLls7sxXX4Ial-Sc6PDn9PTlgomcA0yKxjYKQohUWUk5agpXHF0dHgaxkp3Ncoi7dSI99iI5AcugRjIY2MzdJKQmJG_BXZqZvaviG0lMpmVWVSG1sApVUU40hAuFEliAr4gERryhU65BN3ZS2uCh_X5lmxInaBxC4csQsc8qUfcrNKpvFQ5_01O4qwrtpiIwX3NOP2MUKDi6M_9M24YFwURNW2WfpXJKjkELoMyOsVc_vJcASAuOVNBiTdYnvfwSXj3m6pLxc-KTdqSlRv-M6vawHZTOveb3z78De-I09iL6qCjeQ-2elul_Y9YqCuHHpBH5LdPJ_OpngfH579_IVPJ2Iy9H4FvJ5C9g-0awjX
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5dBeKqCvBdq6Uiv1QUTWdl6HqtrltZRlVRWQuKWO7XQRkFCSVdU_1d_YceJktUVw45SDPVY8M5757LFnAN5yJaRkNEEJ9JjDBY2chHup4wvcjPjSDdPqwO1w7A9P-NdT73QB_jZvYcy1ysYmVoZa5dKckW-ip-ER4gHOv1z9ckzVKBNdbUpo1GpxoP_8xi1b8Xl_G-X7jtLdneOtoWOrCjiSR2HpcBX5ia8RCAQJl5Ey9cPRJ8rIFQj9hcZPInFqVPkuC2XCleaBq3QYpBH3VI_huA9gkZsXrR1YHOyMv32fneowA4Da8CkLNwv0kCbhKTUxZ-o7bN4B3kC1Ny9n_hehrRzf7hI8toiV9GsVW4YFna3AsrUJBXlvE1d_eAJbg_7e6GiDCFJdU5zYkiRkgD0nl-L6nCBCJv1pmVd5YsneRV6WZwU50j8v7ROo7Cmc3As7n0EnyzP9AkgSCR2mqQo01ZwLKVyKlBwBTuohDmFdcBvOxdJmMDeFNC7iKpLOwrhmdozMjg2zYyT52JJc1ek77uq83ogjtiu5iGd6d0szblhddPFI_aZtxiVq4i4i0_m0GsJDs4pgqQvPa-G2P8MQcuIm2-tCMCf2toNJ_z3fkp1NqjTgaJvRoOKYnxoFmf3WrXNcvXuOr-Hh8PhwFI_2xwdr8IhWaus7vWgdOuX1VL9EBFYmr6zaE_hx3yvtHxDkQY4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bTxQxFG4QE-OLAW8soNZEEy80O9t2Ln0wZgEXECQmSLJvpdN2XALMIDMb41_z13nauWxWAm88zUMvmZ7r1572HITecKO0ZjQFDgwY4YoKkvIwI5GCzUikgyTzB27fDqPdY_51HI4X0N_2LYy7VtnaRG-oTaHdGXkfPA0XgAc472fNtYjv26PPl7-IqyDlIq1tOY1aRPbtn9-wfSs_7W0Dr99SOvryY2uXNBUGiOYiqQg3IkojC6AgTrkWxtUSB_-oRaBgG6AsfFINy6QmCliiU24sjwNjkzgTPDQDBvPeQ_djBqgKdCkex7PzHeagUBdIZUm_BF_pUp9SF32mEWHzrvAavr1-TfO_WK13gaMl9KjBrnhYC9syWrD5Y7TcWIcSv2tSWL9_grY2hzsHRxtYYX9hcdIUJ8Gb0HNyoa7OMGBlPJxWhc8Yi3fOi6o6LfGR_XnRPIbKn6LjOyHmM7SYF7ldQTgVyiZZZmJLLedKq4DCSA5QJwsBkbAeClrKSd3kMnclNc6lj6mzRNbElkBs6YgtYciHbshlncjjts7rLTtko9OlnEngDc2wdQ3A2cPo110zKKuLwKjcFlM_RQgGFmBTDz2vmdv9DAPwCdvtsIfiObZ3HVwi8PmW_HTiE4KDlQbTCnN-bAVk9ls3rnH19jW-Qg9Av-TB3uH-GnpIvdRGZCDW0WJ1NbUvAIpV6Usv8xid3LWS_QNx_URV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BAGLS%2C+a+multihospital+Benchmark+for+Automatic+Glottis+Segmentation&rft.jtitle=Scientific+data&rft.au=G%C3%B3mez%2C+Pablo&rft.au=Kist%2C+Andreas+M&rft.au=Schlegel%2C+Patrick&rft.au=Berry%2C+David+A&rft.date=2020-06-19&rft.pub=Nature+Publishing+Group&rft.eissn=2052-4463&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1038%2Fs41597-020-0526-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-4463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-4463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-4463&client=summon