Accelerating 3D printing of pharmaceutical products using machine learning

Three-dimensional printing (3DP) has seen growing interest within the healthcare industry for its ability to fabricate personalized medicines and medical devices. However, it may be burdened by the lengthy empirical process of formulation development. Active research in pharmaceutical 3DP has led to...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of pharmaceutics: X Vol. 4; p. 100120
Main Authors Ong, Jun Jie, Castro, Brais Muñiz, Gaisford, Simon, Cabalar, Pedro, Basit, Abdul W., Pérez, Gilberto, Goyanes, Alvaro
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Three-dimensional printing (3DP) has seen growing interest within the healthcare industry for its ability to fabricate personalized medicines and medical devices. However, it may be burdened by the lengthy empirical process of formulation development. Active research in pharmaceutical 3DP has led to a wealth of data that machine learning could utilize to provide predictions of formulation outcomes. A balanced dataset is critical for optimal predictive performance of machine learning (ML) models, but data available from published literature often only include positive results. In this study, in-house and literature-mined data on hot melt extrusion (HME) and fused deposition modeling (FDM) 3DP formulations were combined to give a more balanced dataset of 1594 formulations. The optimized ML models predicted the printability and filament mechanical characteristics with an accuracy of 84%, and predicted HME and FDM processing temperatures with a mean absolute error of 5.5 °C and 8.4 °C, respectively. The performance of these ML models was better than previous iterations with a smaller and a more imbalanced dataset, highlighting the importance of providing a structured and heterogeneous dataset for optimal ML performance. The optimized models were integrated in an updated web-application, M3DISEEN, that provides predictions on filament characteristics, printability, HME and FDM processing temperatures, and drug release profiles (https://m3diseen.com/predictionsFDM/). By simulating the workflow of preparing FDM-printed pharmaceutical products, the web-application expedites the otherwise empirical process of formulation development, facilitating higher pharmaceutical 3DP research throughput. [Display omitted]
AbstractList Three-dimensional printing (3DP) has seen growing interest within the healthcare industry for its ability to fabricate personalized medicines and medical devices. However, it may be burdened by the lengthy empirical process of formulation development. Active research in pharmaceutical 3DP has led to a wealth of data that machine learning could utilize to provide predictions of formulation outcomes. A balanced dataset is critical for optimal predictive performance of machine learning (ML) models, but data available from published literature often only include positive results. In this study, in-house and literature-mined data on hot melt extrusion (HME) and fused deposition modeling (FDM) 3DP formulations were combined to give a more balanced dataset of 1594 formulations. The optimized ML models predicted the printability and filament mechanical characteristics with an accuracy of 84%, and predicted HME and FDM processing temperatures with a mean absolute error of 5.5 °C and 8.4 °C, respectively. The performance of these ML models was better than previous iterations with a smaller and a more imbalanced dataset, highlighting the importance of providing a structured and heterogeneous dataset for optimal ML performance. The optimized models were integrated in an updated web-application, M3DISEEN, that provides predictions on filament characteristics, printability, HME and FDM processing temperatures, and drug release profiles (https://m3diseen.com/predictionsFDM/). By simulating the workflow of preparing FDM-printed pharmaceutical products, the web-application expedites the otherwise empirical process of formulation development, facilitating higher pharmaceutical 3DP research throughput.Three-dimensional printing (3DP) has seen growing interest within the healthcare industry for its ability to fabricate personalized medicines and medical devices. However, it may be burdened by the lengthy empirical process of formulation development. Active research in pharmaceutical 3DP has led to a wealth of data that machine learning could utilize to provide predictions of formulation outcomes. A balanced dataset is critical for optimal predictive performance of machine learning (ML) models, but data available from published literature often only include positive results. In this study, in-house and literature-mined data on hot melt extrusion (HME) and fused deposition modeling (FDM) 3DP formulations were combined to give a more balanced dataset of 1594 formulations. The optimized ML models predicted the printability and filament mechanical characteristics with an accuracy of 84%, and predicted HME and FDM processing temperatures with a mean absolute error of 5.5 °C and 8.4 °C, respectively. The performance of these ML models was better than previous iterations with a smaller and a more imbalanced dataset, highlighting the importance of providing a structured and heterogeneous dataset for optimal ML performance. The optimized models were integrated in an updated web-application, M3DISEEN, that provides predictions on filament characteristics, printability, HME and FDM processing temperatures, and drug release profiles (https://m3diseen.com/predictionsFDM/). By simulating the workflow of preparing FDM-printed pharmaceutical products, the web-application expedites the otherwise empirical process of formulation development, facilitating higher pharmaceutical 3DP research throughput.
Three-dimensional printing (3DP) has seen growing interest within the healthcare industry for its ability to fabricate personalized medicines and medical devices. However, it may be burdened by the lengthy empirical process of formulation development. Active research in pharmaceutical 3DP has led to a wealth of data that machine learning could utilize to provide predictions of formulation outcomes. A balanced dataset is critical for optimal predictive performance of machine learning (ML) models, but data available from published literature often only include positive results. In this study, in-house and literature-mined data on hot melt extrusion (HME) and fused deposition modeling (FDM) 3DP formulations were combined to give a more balanced dataset of 1594 formulations. The optimized ML models predicted the printability and filament mechanical characteristics with an accuracy of 84%, and predicted HME and FDM processing temperatures with a mean absolute error of 5.5 °C and 8.4 °C, respectively. The performance of these ML models was better than previous iterations with a smaller and a more imbalanced dataset, highlighting the importance of providing a structured and heterogeneous dataset for optimal ML performance. The optimized models were integrated in an updated web-application, M3DISEEN, that provides predictions on filament characteristics, printability, HME and FDM processing temperatures, and drug release profiles (https://m3diseen.com/predictionsFDM/). By simulating the workflow of preparing FDM-printed pharmaceutical products, the web-application expedites the otherwise empirical process of formulation development, facilitating higher pharmaceutical 3DP research throughput. [Display omitted]
Three-dimensional printing (3DP) has seen growing interest within the healthcare industry for its ability to fabricate personalized medicines and medical devices. However, it may be burdened by the lengthy empirical process of formulation development. Active research in pharmaceutical 3DP has led to a wealth of data that machine learning could utilize to provide predictions of formulation outcomes. A balanced dataset is critical for optimal predictive performance of machine learning (ML) models, but data available from published literature often only include positive results. In this study, in-house and literature-mined data on hot melt extrusion (HME) and fused deposition modeling (FDM) 3DP formulations were combined to give a more balanced dataset of 1594 formulations. The optimized ML models predicted the printability and filament mechanical characteristics with an accuracy of 84%, and predicted HME and FDM processing temperatures with a mean absolute error of 5.5 °C and 8.4 °C, respectively. The performance of these ML models was better than previous iterations with a smaller and a more imbalanced dataset, highlighting the importance of providing a structured and heterogeneous dataset for optimal ML performance. The optimized models were integrated in an updated web-application, M3DISEEN , that provides predictions on filament characteristics, printability, HME and FDM processing temperatures, and drug release profiles ( https://m3diseen.com/predictionsFDM/ ). By simulating the workflow of preparing FDM-printed pharmaceutical products, the web-application expedites the otherwise empirical process of formulation development, facilitating higher pharmaceutical 3DP research throughput. Unlabelled Image
Three-dimensional printing (3DP) has seen growing interest within the healthcare industry for its ability to fabricate personalized medicines and medical devices. However, it may be burdened by the lengthy empirical process of formulation development. Active research in pharmaceutical 3DP has led to a wealth of data that machine learning could utilize to provide predictions of formulation outcomes. A balanced dataset is critical for optimal predictive performance of machine learning (ML) models, but data available from published literature often only include positive results. In this study, in-house and literature-mined data on hot melt extrusion (HME) and fused deposition modeling (FDM) 3DP formulations were combined to give a more balanced dataset of 1594 formulations. The optimized ML models predicted the printability and filament mechanical characteristics with an accuracy of 84%, and predicted HME and FDM processing temperatures with a mean absolute error of 5.5 °C and 8.4 °C, respectively. The performance of these ML models was better than previous iterations with a smaller and a more imbalanced dataset, highlighting the importance of providing a structured and heterogeneous dataset for optimal ML performance. The optimized models were integrated in an updated web-application, M3DISEEN, that provides predictions on filament characteristics, printability, HME and FDM processing temperatures, and drug release profiles (https://m3diseen.com/predictionsFDM/). By simulating the workflow of preparing FDM-printed pharmaceutical products, the web-application expedites the otherwise empirical process of formulation development, facilitating higher pharmaceutical 3DP research throughput.
ArticleNumber 100120
Author Ong, Jun Jie
Castro, Brais Muñiz
Gaisford, Simon
Cabalar, Pedro
Basit, Abdul W.
Pérez, Gilberto
Goyanes, Alvaro
Author_xml – sequence: 1
  givenname: Jun Jie
  surname: Ong
  fullname: Ong, Jun Jie
  organization: Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
– sequence: 2
  givenname: Brais Muñiz
  surname: Castro
  fullname: Castro, Brais Muñiz
  organization: IRLab, CITIC Research Center, Department of Computer Science, University of A Coruña, Spain
– sequence: 3
  givenname: Simon
  surname: Gaisford
  fullname: Gaisford, Simon
  organization: Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
– sequence: 4
  givenname: Pedro
  surname: Cabalar
  fullname: Cabalar, Pedro
  organization: IRLab, Department of Computer Science, University of A Coruña, Spain
– sequence: 5
  givenname: Abdul W.
  surname: Basit
  fullname: Basit, Abdul W.
  email: a.basit@ucl.ac.uk
  organization: Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
– sequence: 6
  givenname: Gilberto
  surname: Pérez
  fullname: Pérez, Gilberto
  email: gilberto.pvega@udc.es
  organization: IRLab, CITIC Research Center, Department of Computer Science, University of A Coruña, Spain
– sequence: 7
  givenname: Alvaro
  surname: Goyanes
  fullname: Goyanes, Alvaro
  email: a.goyanes@fabrx.co.uk
  organization: Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
BookMark eNp9kU9v1DAQxS1UREvpF-C0Ry679f84EkKqCpSiSlx6t2btya6jrL3YSQXfHqcpEuXQk62Z9356mveWnMQUkZD3jG4YZfqy34T--GvDKed1QBmnr8gZVy1dM6Wbk3_-p-SilJ7SqmRUmPYNORWqUUpTcUa-XzmHA2YYQ9ytxOfVMYf4-E_d6riHfACH0xgcDHWV_OTGsprKLKibfYi4GhByrIN35HUHQ8GLp_ec3H_9cn_9bX334-b2-upu7WRrxrXwYuuZBpCaNdo34KQzdKtQo0PsvPKeOW-kY2g6owynWrYamOq0Ng2Kc3K7YH2C3ta4B8i_bYJgHwcp7yzkGnhAy7UGRNY1bSMkb6UxBhquvIKOKiW3lfVpYR2n7QG9wzhmGJ5Bn29i2NtderAtZ4ZzUQEfngA5_ZywjPYQSj3oABHTVGoCw6QUrTZVahapy6mUjJ11YaxnTzM5DJZROxdrezsXa-di7VJstfL_rH8Tvmj6uJiwdvEQMNviAkaHPmR0Y71WeMn-B9YNvbQ
CitedBy_id crossref_primary_10_1021_acsapm_3c03102
crossref_primary_10_1021_acs_molpharmaceut_4c00144
crossref_primary_10_1177_09544119241289731
crossref_primary_10_61411_rsc202482917
crossref_primary_10_1002_adma_202310006
crossref_primary_10_1080_17425247_2024_2379943
crossref_primary_10_1089_3dp_2023_0353
crossref_primary_10_1007_s42250_024_00976_5
crossref_primary_10_1002_adhm_202401312
crossref_primary_10_2174_0113816128309717240826101647
crossref_primary_10_1080_17425247_2023_2167978
Cites_doi 10.1038/d41586-020-03348-4
10.1208/s12249-021-02094-8
10.1126/sciadv.aat2544
10.1038/s41378-021-00284-9
10.1155/2019/5340616
10.1016/j.drudis.2020.12.003
10.1007/s42979-021-00592-x
10.1016/j.ijpharm.2021.121411
10.1016/j.addr.2021.05.003
10.1016/j.apsb.2018.09.010
10.1016/j.csbj.2014.11.005
10.1093/jpp/rgab138
10.1016/j.ijpharm.2022.121553
10.3390/pharmaceutics13050759
10.1208/s12248-021-00644-3
10.3389/fphar.2020.00122
10.1016/j.ijpharm.2020.119837
10.1016/j.ijpharm.2021.121194
10.1016/j.ijpharm.2021.120501
10.1016/j.jconrel.2021.07.046
10.1016/j.ijpharm.2022.121555
10.1016/j.ijpharm.2021.121386
10.1016/j.ijpharm.2021.120315
10.1016/j.addr.2021.05.015
10.1016/j.ijpharm.2020.120049
10.1208/s12249-022-02210-2
10.1016/j.isprsjprs.2016.01.011
10.3390/pharmaceutics13122068
10.3390/ph15010069
10.1016/j.protcy.2013.12.159
10.1016/j.jconrel.2020.10.056
10.1016/j.drudis.2020.10.010
10.1038/s41746-020-00324-0
10.1016/j.ijpharm.2021.120243
10.1016/j.drudis.2017.08.010
10.1038/nbt1206-1565
10.1038/s41570-018-0058-y
10.3390/pharmaceutics13101714
10.1038/nrg3920
10.1016/j.ejmp.2021.02.006
10.1021/acs.jcim.1c01580
10.1016/j.xphs.2021.07.010
10.1016/j.ijpharm.2021.120417
10.1016/j.xphs.2021.04.013
10.1016/j.ijpharm.2021.120337
10.1016/j.matdes.2020.108940
10.1016/j.ijpharm.2019.04.017
10.1016/j.ejpb.2021.07.009
10.1016/j.xphs.2020.05.022
10.1016/j.ejps.2020.105605
10.1016/j.ijpharm.2019.118464
10.1016/j.ijpharm.2022.121663
10.1016/j.addr.2021.113923
10.1016/j.tips.2021.06.002
10.1038/s41591-021-01614-0
ContentType Journal Article
Copyright 2022 The Authors
2022 The Authors.
2022 The Authors 2022
Copyright_xml – notice: 2022 The Authors
– notice: 2022 The Authors.
– notice: 2022 The Authors 2022
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.ijpx.2022.100120
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2590-1567
ExternalDocumentID oai_doaj_org_article_266aee1f79734294888a725d5af0554b
PMC9218223
10_1016_j_ijpx_2022_100120
S2590156722000093
GroupedDBID 0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
53G
AAYWO
AAYXX
ADVLN
AFJKZ
APXCP
CITATION
7X8
5PM
ID FETCH-LOGICAL-c498t-3d3bd16aa46176d7ac4c80b5e6eceefd5dd1cd84c1e8f858206496a15f6687e3
IEDL.DBID DOA
ISSN 2590-1567
IngestDate Wed Aug 27 01:24:07 EDT 2025
Thu Aug 21 18:06:40 EDT 2025
Fri Jul 11 07:59:20 EDT 2025
Tue Jul 01 01:08:29 EDT 2025
Thu Apr 24 23:11:00 EDT 2025
Tue Jul 25 20:57:39 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Printing medical devices and implants
Artificial intelligence and digital health
Material extrusion and drug delivery systems
Manufacture of medicinal products
Additive manufacturing of pharmaceuticals
Fused filament fabrication and Fused deposition modelling
3D printed drug products and medicines
Language English
License This is an open access article under the CC BY license.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c498t-3d3bd16aa46176d7ac4c80b5e6eceefd5dd1cd84c1e8f858206496a15f6687e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://doaj.org/article/266aee1f79734294888a725d5af0554b
PMID 35755603
PQID 2681443968
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_266aee1f79734294888a725d5af0554b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9218223
proquest_miscellaneous_2681443968
crossref_citationtrail_10_1016_j_ijpx_2022_100120
crossref_primary_10_1016_j_ijpx_2022_100120
elsevier_sciencedirect_doi_10_1016_j_ijpx_2022_100120
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationTitle International journal of pharmaceutics: X
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Elbadawi, Gaisford, Basit (bb0090) 2021; 26
Manini, Benali, Raquez, Goole (bb0180) 2022; 618
Capel, Rimington, Lewis, Christie (bb0055) 2018; 2
Pereira, Isreb, Isreb, Forbes, Oga, Alhnan (bb0225) 2020; 9
Liang, Carmone, Brambilla, Leroux (bb0165) 2018; 4
Dumpa, Butreddy, Wang, Komanduri, Bandari, Repka (bb0075) 2021; 600
Oladeji, Mohylyuk, Jones, Andrews (bb0215) 2022; 616
Fanous, Bitar, Gold, Sobczuk, Hirsch, Ogorka, Imanidis (bb0120) 2021; 599
Paul, Sanap, Shenoy, Kalyane, Kalia, Tekade (bb0220) 2021; 26
Cailleaux, Sanchez-Ballester, Gueche, Bataille, Soulairol (bb0045) 2021; 330
Shi, Salvage, Maniruzzaman, Nokhodchi (bb0250) 2021; 597
Libbrecht, Noble (bb0170) 2015; 16
Nagy, Petra, Galata, Démuth, Borbás, Marosi, Nagy, Farkas (bb0200) 2019; 567
Henry, De Wever, Vanhoorne, De Beer, Vervaet (bb0140) 2021; 13
Nawi, Atomi, Rehman (bb0205) 2013; 11
Callaway (bb0050) 2020; 588
Martin, Domínguez-Robles, Stewart, Cornelius, Anjani, Utomo, García-Romero, Donnelly, Margariti, Lamprou, Larrañeta (bb0185) 2021; 595
American Society for Testing and Material (bb0015) 2021
Benjamens, Dhunnoo, Meskó (bb0035) 2020; 3
Belgiu, Drăguţ (bb0030) 2016; 114
Zhang, Thakkar, Kulkarni, Zhang, Lu, Maniruzzaman (bb0285) 2021; 22
Haddow, Mathew, Lamprou (bb0135) 2021
Tranová, Pyteraf, Kurek, Jamróz, Brniak, Spálovská, Loskot, Jurkiewicz, Grelska, Kramarczyk, Mužíková, Paluch, Jachowicz (bb0260) 2022; 15
Kholgh Eshkalak, Rezvani Ghomi, Dai, Choudhury, Ramakrishna (bb0150) 2020; 194
Carlier, Marquette, Peerboom, Amighi, Goole (bb0060) 2021; 597
Zhang, Tan, Han, Zhu (bb0290) 2017; 22
Fan, Li, Wang, Zhu, Wang, Cai, Li, Tian, Liu (bb0115) 2020; 11
Melocchi, Uboldi, Briatico-Vangosa, Moutaharrik, Cerea, Foppoli, Maroni, Palugan, Zema, Gazzaniga (bb0190) 2021; 13
Kourou, Exarchos, Exarchos, Karamouzis, Fotiadis (bb0160) 2015; 13
Sarker (bb0235) 2021; 2
Saviano, Bowles, Penny, Ishaq, Muwaffak, Falcone, Russo, Hilton (bb0240) 2022; 613
Eleftheriadis, Monou, Bouropoulos, Boetker, Rantanen, Jacobsen, Vizirianakis, Fatouros (bb0110) 2020; 109
Crișan, Iurian, Porfire, Rus, Bogdan, Casian, Lucacel, Turza, Porav, Tomuță (bb0070) 2022; 613
Govender, Kissi, Larsson, Tho (bb0130) 2021; 177
Rajpurkar, Chen, Banerjee, Topol (bb0230) 2022; 28
Yang, Ye, Su, Zhao, Li, Ouyang (bb0280) 2019; 9
Bogdahn, Torner, Krause, Grimm, Weitschies (bb0040) 2021; 167
Eleftheriadis, Fatouros (bb0105) 2021; 157
Kolluri, Lin, Liu, Zhang, Zhang (bb0155) 2022; 24
Wu, Park, Kamaki, Kim (bb0275) 2021; 7
Windolf, Chamberlain, Quodbach (bb0270) 2022; 616
Isreb, Baj, Wojsz, Isreb, Peak, Alhnan (bb0145) 2019; 564
Castiglioni, Rundo, Codari, Di Leo, Salvatore, Interlenghi, Gallivanone, Cozzi, D’Amico, Sardanelli (bb0065) 2021; 83
Abramov, Sun, Zeng (bb0005) 2022; 62
Seoane-Viaño, Trenfield, Basit, Goyanes (bb0245) 2021; 174
Noble (bb0210) 2006; 24
BASF (bb0025) 2022
Zhao, Wei, Niu, Li, Hu, Jiang (bb0295) 2022; 111
Wang, Yang, Chen, Chu, Yu, Wei, Zhang, Rui, Feng (bb0265) 2022; 23
Elbadawi, McCoubrey, Gavins, Ong, Goyanes, Gaisford, Basit (bb0100) 2021; 175
Arany, Papp, Zichar, Regdon, Béres, Szalóki, Kovács, Fehér, Ujhelyi, Vecsernyés, Bácskay (bb0020) 2021; 13
Thomas, Palahnuk, Amini, Akseli (bb0255) 2021; 592
Figueiredo, Fernandes, Carvalho, Pinto (bb0125) 2022; 74
Đuranović, Madžarević, Ivković, Ibrić, Cvijić (bb0080) 2021; 610
Aimar, Palermo, Innocenti (bb0010) 2019; 2019
Muñiz Castro, Elbadawi, Ong, Pollard, Song, Gaisford, Pérez, Basit, Cabalar, Goyanes (bb0195) 2021; 337
Elbadawi, McCoubrey, Gavins, Ong, Goyanes, Gaisford, Basit (bb0095) 2021; 42
Lou, Lian, Hageman (bb0175) 2021; 110
Elbadawi, Muniz Castro, Gavins, Ong, Gaisford, Perez, Basit, Cabalar, Goyanes (bb0085) 2020; 590
Crișan (10.1016/j.ijpx.2022.100120_bb0070) 2022; 613
Eleftheriadis (10.1016/j.ijpx.2022.100120_bb0105) 2021; 157
Abramov (10.1016/j.ijpx.2022.100120_bb0005) 2022; 62
Martin (10.1016/j.ijpx.2022.100120_bb0185) 2021; 595
American Society for Testing and Material (10.1016/j.ijpx.2022.100120_bb0015) 2021
Shi (10.1016/j.ijpx.2022.100120_bb0250) 2021; 597
Elbadawi (10.1016/j.ijpx.2022.100120_bb0100) 2021; 175
Castiglioni (10.1016/j.ijpx.2022.100120_bb0065) 2021; 83
Arany (10.1016/j.ijpx.2022.100120_bb0020) 2021; 13
Capel (10.1016/j.ijpx.2022.100120_bb0055) 2018; 2
Saviano (10.1016/j.ijpx.2022.100120_bb0240) 2022; 613
Muñiz Castro (10.1016/j.ijpx.2022.100120_bb0195) 2021; 337
Zhao (10.1016/j.ijpx.2022.100120_bb0295) 2022; 111
Paul (10.1016/j.ijpx.2022.100120_bb0220) 2021; 26
Manini (10.1016/j.ijpx.2022.100120_bb0180) 2022; 618
Elbadawi (10.1016/j.ijpx.2022.100120_bb0085) 2020; 590
Bogdahn (10.1016/j.ijpx.2022.100120_bb0040) 2021; 167
Kourou (10.1016/j.ijpx.2022.100120_bb0160) 2015; 13
Isreb (10.1016/j.ijpx.2022.100120_bb0145) 2019; 564
Lou (10.1016/j.ijpx.2022.100120_bb0175) 2021; 110
Pereira (10.1016/j.ijpx.2022.100120_bb0225) 2020; 9
Elbadawi (10.1016/j.ijpx.2022.100120_bb0095) 2021; 42
Wu (10.1016/j.ijpx.2022.100120_bb0275) 2021; 7
Dumpa (10.1016/j.ijpx.2022.100120_bb0075) 2021; 600
Libbrecht (10.1016/j.ijpx.2022.100120_bb0170) 2015; 16
Windolf (10.1016/j.ijpx.2022.100120_bb0270) 2022; 616
Zhang (10.1016/j.ijpx.2022.100120_bb0285) 2021; 22
Kolluri (10.1016/j.ijpx.2022.100120_bb0155) 2022; 24
Aimar (10.1016/j.ijpx.2022.100120_bb0010) 2019; 2019
Nagy (10.1016/j.ijpx.2022.100120_bb0200) 2019; 567
Fan (10.1016/j.ijpx.2022.100120_bb0115) 2020; 11
Seoane-Viaño (10.1016/j.ijpx.2022.100120_bb0245) 2021; 174
Elbadawi (10.1016/j.ijpx.2022.100120_bb0090) 2021; 26
Yang (10.1016/j.ijpx.2022.100120_bb0280) 2019; 9
Govender (10.1016/j.ijpx.2022.100120_bb0130) 2021; 177
Melocchi (10.1016/j.ijpx.2022.100120_bb0190) 2021; 13
Haddow (10.1016/j.ijpx.2022.100120_bb0135) 2021
Noble (10.1016/j.ijpx.2022.100120_bb0210) 2006; 24
Carlier (10.1016/j.ijpx.2022.100120_bb0060) 2021; 597
Benjamens (10.1016/j.ijpx.2022.100120_bb0035) 2020; 3
Oladeji (10.1016/j.ijpx.2022.100120_bb0215) 2022; 616
Rajpurkar (10.1016/j.ijpx.2022.100120_bb0230) 2022; 28
Sarker (10.1016/j.ijpx.2022.100120_bb0235) 2021; 2
BASF (10.1016/j.ijpx.2022.100120_bb0025)
Kholgh Eshkalak (10.1016/j.ijpx.2022.100120_bb0150) 2020; 194
Fanous (10.1016/j.ijpx.2022.100120_bb0120) 2021; 599
Tranová (10.1016/j.ijpx.2022.100120_bb0260) 2022; 15
Zhang (10.1016/j.ijpx.2022.100120_bb0290) 2017; 22
Belgiu (10.1016/j.ijpx.2022.100120_bb0030) 2016; 114
Eleftheriadis (10.1016/j.ijpx.2022.100120_bb0110) 2020; 109
Liang (10.1016/j.ijpx.2022.100120_bb0165) 2018; 4
Wang (10.1016/j.ijpx.2022.100120_bb0265) 2022; 23
Nawi (10.1016/j.ijpx.2022.100120_bb0205) 2013; 11
Thomas (10.1016/j.ijpx.2022.100120_bb0255) 2021; 592
Callaway (10.1016/j.ijpx.2022.100120_bb0050) 2020; 588
Đuranović (10.1016/j.ijpx.2022.100120_bb0080) 2021; 610
Figueiredo (10.1016/j.ijpx.2022.100120_bb0125) 2022; 74
Henry (10.1016/j.ijpx.2022.100120_bb0140) 2021; 13
Cailleaux (10.1016/j.ijpx.2022.100120_bb0045) 2021; 330
References_xml – year: 2021
  ident: bb0015
  article-title: ISO/ASTM52900 Additive Manufacturing - General Principles - Fundamentals and Vocabulary
– volume: 24
  start-page: 19
  year: 2022
  ident: bb0155
  article-title: Machine learning and artificial intelligence in pharmaceutical research and development: a review
  publication-title: AAPS J.
– volume: 13
  start-page: 1714
  year: 2021
  ident: bb0020
  article-title: Manufacturing and examination of vaginal drug delivery system by FDM 3D printing
  publication-title: Pharmaceutics
– volume: 599
  year: 2021
  ident: bb0120
  article-title: Development of immediate release 3D-printed dosage forms for a poorly water-soluble drug by fused deposition modeling: Study of morphology, solid state and dissolution
  publication-title: Int. J. Pharm.
– volume: 11
  start-page: 32
  year: 2013
  end-page: 39
  ident: bb0205
  article-title: The effect of data pre-processing on optimized training of artificial neural networks
  publication-title: Procedia Technol.
– volume: 564
  start-page: 98
  year: 2019
  end-page: 105
  ident: bb0145
  article-title: 3D printed oral theophylline doses with innovative ‘radiator-like’ design: impact of polyethylene oxide (PEO) molecular weight
  publication-title: Int. J. Pharm.
– volume: 3
  start-page: 118
  year: 2020
  ident: bb0035
  article-title: The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database
  publication-title: npj Digital Med.
– volume: 26
  start-page: 769
  year: 2021
  end-page: 777
  ident: bb0090
  article-title: Advanced machine-learning techniques in drug discovery
  publication-title: Drug Discov. Today
– volume: 597
  year: 2021
  ident: bb0060
  article-title: Development of mAb-loaded 3D-printed (FDM) implantable devices based on PLGA
  publication-title: Int. J. Pharm.
– volume: 616
  year: 2022
  ident: bb0270
  article-title: Dose-independent drug release from 3D printed oral medicines for patient-specific dosing to improve therapy safety
  publication-title: Int. J. Pharm.
– volume: 9
  start-page: 177
  year: 2019
  end-page: 185
  ident: bb0280
  article-title: Deep learning for in vitro prediction of pharmaceutical formulations
  publication-title: Acta Pharm. Sin. B
– volume: 157
  year: 2021
  ident: bb0105
  article-title: Haptic Evaluation of 3D-printed Braille-encoded Intraoral Films
  publication-title: Eur. J. Pharm. Sci.
– volume: 26
  start-page: 80
  year: 2021
  end-page: 93
  ident: bb0220
  article-title: Artificial intelligence in drug discovery and development
  publication-title: Drug Discov. Today
– volume: 4
  year: 2018
  ident: bb0165
  article-title: 3D printing of a wearable personalized oral delivery device: a first-in-human study
  publication-title: Sci. Advances
– volume: 13
  start-page: 759
  year: 2021
  ident: bb0190
  article-title: The ChronotopicTM system for pulsatile and colonic delivery of active molecules in the Era of precision medicine: feasibility by 3D printing via Fused Deposition Modeling (FDM)
  publication-title: Pharmaceutics
– volume: 22
  start-page: 258
  year: 2021
  ident: bb0285
  article-title: Investigation of the fused deposition modeling additive manufacturing I: influence of process temperature on the quality and crystallinity of the dosage forms
  publication-title: AAPS PharmSciTech
– volume: 42
  start-page: 745
  year: 2021
  end-page: 757
  ident: bb0095
  article-title: Disrupting 3D printing of medicines with machine learning
  publication-title: Trends Pharmacol. Sci.
– volume: 74
  start-page: 67
  year: 2022
  end-page: 76
  ident: bb0125
  article-title: Performance and paroxetine stability in tablets manufactured by fused deposition modelling-based 3D printing
  publication-title: J. Pharm. Pharmacol.
– volume: 28
  start-page: 31
  year: 2022
  end-page: 38
  ident: bb0230
  article-title: AI in health and medicine
  publication-title: Nat. Med.
– volume: 174
  start-page: 553
  year: 2021
  end-page: 575
  ident: bb0245
  article-title: Translating 3D printed pharmaceuticals: from hype to real-world clinical applications
  publication-title: Adv. Drug Deliv. Rev.
– volume: 613
  year: 2022
  ident: bb0240
  article-title: Development and analysis of a novel loading technique for FDM 3D printed systems: Microwave-assisted impregnation of gastro-retentive PVA capsular devices
  publication-title: Int. J. Pharm.
– volume: 330
  start-page: 821
  year: 2021
  end-page: 841
  ident: bb0045
  article-title: Fused Deposition Modeling (FDM), the new asset for the production of tailored medicines
  publication-title: J. Control. Release
– volume: 567
  year: 2019
  ident: bb0200
  article-title: Application of artificial neural networks for Process Analytical Technology-based dissolution testing
  publication-title: Int. J. Pharm.
– volume: 618
  year: 2022
  ident: bb0180
  article-title: Proof of concept of a predictive model of drug release from long-acting implants obtained by fused-deposition modeling
  publication-title: Int. J. Pharm.
– volume: 109
  start-page: 2757
  year: 2020
  end-page: 2766
  ident: bb0110
  article-title: Fabrication of Mucoadhesive Buccal films for local administration of Ketoprofen and Lidocaine Hydrochloride by Combining Fused Deposition Modeling and Inkjet Printing
  publication-title: J. Pharm. Sci.
– volume: 23
  start-page: 66
  year: 2022
  ident: bb0265
  article-title: A strategy for the effective optimization of pharmaceutical formulations based on parameter-optimized support vector machine model
  publication-title: AAPS PharmSciTech
– year: 2022
  ident: bb0025
  article-title: Meet your Virtual Pharma Assistants
– volume: 600
  year: 2021
  ident: bb0075
  article-title: 3D printing in personalized drug delivery: an overview of hot-melt extrusion-based fused deposition modeling
  publication-title: Int. J. Pharm.
– volume: 16
  start-page: 321
  year: 2015
  end-page: 332
  ident: bb0170
  article-title: Machine learning applications in genetics and genomics
  publication-title: Nat. Rev. Genet.
– volume: 590
  year: 2020
  ident: bb0085
  article-title: M3DISEEN: a novel machine learning approach for predicting the 3D printability of medicines
  publication-title: Int. J. Pharm.
– volume: 83
  start-page: 9
  year: 2021
  end-page: 24
  ident: bb0065
  article-title: AI applications to medical images: from machine learning to deep learning
  publication-title: Physica Medica
– volume: 595
  year: 2021
  ident: bb0185
  article-title: Fused deposition modelling for the development of drug loaded cardiovascular prosthesis
  publication-title: Int. J. Pharm.
– volume: 13
  start-page: 2068
  year: 2021
  ident: bb0140
  article-title: Influence of print settings on the critical quality attributes of extrusion-based 3D-printed caplets: a quality-by-design approach
  publication-title: Pharmaceutics
– volume: 22
  start-page: 1680
  year: 2017
  end-page: 1685
  ident: bb0290
  article-title: From machine learning to deep learning: progress in machine intelligence for rational drug discovery
  publication-title: Drug Discov. Today
– volume: 597
  year: 2021
  ident: bb0250
  article-title: Role of release modifiers to modulate drug release from fused deposition modelling (FDM) 3D printed tablets
  publication-title: Int. J. Pharm.
– volume: 175
  year: 2021
  ident: bb0100
  article-title: Harnessing artificial intelligence for the next generation of 3D printed medicines
  publication-title: Adv. Drug Deliv. Rev.
– volume: 616
  year: 2022
  ident: bb0215
  article-title: 3D printing of pharmaceutical oral solid dosage forms by fused deposition: the enhancement of printability using plasticised HPMCAS
  publication-title: Int. J. Pharm.
– year: 2021
  ident: bb0135
  article-title: Fused deposition modelling 3D printing proof-of-concept study for personalised inner ear therapy
  publication-title: J. Pharm. Pharmacol.
– volume: 592
  year: 2021
  ident: bb0255
  article-title: Data-smart machine learning methods for predicting composition-dependent Young’s modulus of pharmaceutical compacts
  publication-title: Int. J. Pharm.
– volume: 2
  start-page: 422
  year: 2018
  end-page: 436
  ident: bb0055
  article-title: 3D printing for chemical, pharmaceutical and biological applications
  publication-title: Nat. Rev. Chem.
– volume: 110
  start-page: 3150
  year: 2021
  end-page: 3165
  ident: bb0175
  article-title: Applications of machine learning in solid oral dosage form development
  publication-title: J. Pharm. Sci.
– volume: 13
  start-page: 8
  year: 2015
  end-page: 17
  ident: bb0160
  article-title: Machine learning applications in cancer prognosis and prediction
  publication-title: Comput. Struct. Biotechnol. J.
– volume: 2019
  start-page: 5340616
  year: 2019
  ident: bb0010
  article-title: The role of 3D printing in medical applications: a state of the art
  publication-title: J. Healthc. Eng.
– volume: 11
  year: 2020
  ident: bb0115
  article-title: Progressive 3D printing technology and its application in medical materials
  publication-title: Front. Pharmacol.
– volume: 7
  start-page: 58
  year: 2021
  ident: bb0275
  article-title: Optimization of the fused deposition modeling-based fabrication process for polylactic acid microneedles
  publication-title: Microsyst. Nanoeng.
– volume: 2
  start-page: 160
  year: 2021
  ident: bb0235
  article-title: Machine learning: algorithms, real-world applications and research directions
  publication-title: SN Computer Sci.
– volume: 167
  start-page: 65
  year: 2021
  end-page: 72
  ident: bb0040
  article-title: Influence of the geometry of 3D printed solid oral dosage forms on their swallowability
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 111
  start-page: 116
  year: 2022
  end-page: 123
  ident: bb0295
  article-title: 3D printed intragastric floating and sustained-release tablets with air chambers
  publication-title: J. Pharm. Sci.
– volume: 24
  start-page: 1565
  year: 2006
  end-page: 1567
  ident: bb0210
  article-title: What is a support vector machine?
  publication-title: Nat. Biotechnol.
– volume: 177
  year: 2021
  ident: bb0130
  article-title: Polymers in pharmaceutical additive manufacturing: a balancing act between printability and product performance
  publication-title: Adv. Drug Deliv. Rev.
– volume: 114
  start-page: 24
  year: 2016
  end-page: 31
  ident: bb0030
  article-title: Random forest in remote sensing: a review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 194
  year: 2020
  ident: bb0150
  article-title: The role of three-dimensional printing in healthcare and medicine
  publication-title: Mater. Des.
– volume: 62
  start-page: 1160
  year: 2022
  end-page: 1171
  ident: bb0005
  article-title: Emerging landscape of computational modeling in pharmaceutical development
  publication-title: J. Chem. Inf. Model.
– volume: 337
  start-page: 530
  year: 2021
  end-page: 545
  ident: bb0195
  article-title: Machine learning predicts 3D printing performance of over 900 drug delivery systems
  publication-title: J. Control. Release
– volume: 610
  year: 2021
  ident: bb0080
  article-title: The evaluation of the effect of different superdisintegrants on the drug release from FDM 3D printed tablets through different applied strategies: in vitro-in silico assessment
  publication-title: Int. J. Pharm.
– volume: 588
  start-page: 203
  year: 2020
  end-page: 204
  ident: bb0050
  article-title: It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures
  publication-title: Nature.
– volume: 613
  year: 2022
  ident: bb0070
  article-title: QbD guided development of immediate release FDM-3D printed tablets with customizable API doses
  publication-title: Int. J. Pharm.
– volume: 15
  start-page: 69
  year: 2022
  ident: bb0260
  article-title: Fused deposition modeling as a possible approach for the preparation of orodispersible tablets
  publication-title: Pharmaceuticals
– volume: 9
  year: 2020
  ident: bb0225
  article-title: Additive manufacturing of a point-of-care “Polypill:” fabrication of concept capsules of complex geometry with bespoke release against cardiovascular disease
  publication-title: Advan. Healthcare Mater.
– volume: 588
  start-page: 203
  year: 2020
  ident: 10.1016/j.ijpx.2022.100120_bb0050
  article-title: It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures
  publication-title: Nature.
  doi: 10.1038/d41586-020-03348-4
– volume: 22
  start-page: 258
  year: 2021
  ident: 10.1016/j.ijpx.2022.100120_bb0285
  article-title: Investigation of the fused deposition modeling additive manufacturing I: influence of process temperature on the quality and crystallinity of the dosage forms
  publication-title: AAPS PharmSciTech
  doi: 10.1208/s12249-021-02094-8
– volume: 4
  year: 2018
  ident: 10.1016/j.ijpx.2022.100120_bb0165
  article-title: 3D printing of a wearable personalized oral delivery device: a first-in-human study
  publication-title: Sci. Advances
  doi: 10.1126/sciadv.aat2544
– volume: 7
  start-page: 58
  year: 2021
  ident: 10.1016/j.ijpx.2022.100120_bb0275
  article-title: Optimization of the fused deposition modeling-based fabrication process for polylactic acid microneedles
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-021-00284-9
– volume: 2019
  start-page: 5340616
  year: 2019
  ident: 10.1016/j.ijpx.2022.100120_bb0010
  article-title: The role of 3D printing in medical applications: a state of the art
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2019/5340616
– volume: 26
  start-page: 769
  year: 2021
  ident: 10.1016/j.ijpx.2022.100120_bb0090
  article-title: Advanced machine-learning techniques in drug discovery
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2020.12.003
– volume: 2
  start-page: 160
  year: 2021
  ident: 10.1016/j.ijpx.2022.100120_bb0235
  article-title: Machine learning: algorithms, real-world applications and research directions
  publication-title: SN Computer Sci.
  doi: 10.1007/s42979-021-00592-x
– volume: 613
  year: 2022
  ident: 10.1016/j.ijpx.2022.100120_bb0070
  article-title: QbD guided development of immediate release FDM-3D printed tablets with customizable API doses
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2021.121411
– volume: 174
  start-page: 553
  year: 2021
  ident: 10.1016/j.ijpx.2022.100120_bb0245
  article-title: Translating 3D printed pharmaceuticals: from hype to real-world clinical applications
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2021.05.003
– volume: 9
  start-page: 177
  year: 2019
  ident: 10.1016/j.ijpx.2022.100120_bb0280
  article-title: Deep learning for in vitro prediction of pharmaceutical formulations
  publication-title: Acta Pharm. Sin. B
  doi: 10.1016/j.apsb.2018.09.010
– volume: 13
  start-page: 8
  year: 2015
  ident: 10.1016/j.ijpx.2022.100120_bb0160
  article-title: Machine learning applications in cancer prognosis and prediction
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2014.11.005
– volume: 74
  start-page: 67
  year: 2022
  ident: 10.1016/j.ijpx.2022.100120_bb0125
  article-title: Performance and paroxetine stability in tablets manufactured by fused deposition modelling-based 3D printing
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1093/jpp/rgab138
– volume: 616
  year: 2022
  ident: 10.1016/j.ijpx.2022.100120_bb0215
  article-title: 3D printing of pharmaceutical oral solid dosage forms by fused deposition: the enhancement of printability using plasticised HPMCAS
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2022.121553
– volume: 13
  start-page: 759
  year: 2021
  ident: 10.1016/j.ijpx.2022.100120_bb0190
  article-title: The ChronotopicTM system for pulsatile and colonic delivery of active molecules in the Era of precision medicine: feasibility by 3D printing via Fused Deposition Modeling (FDM)
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics13050759
– volume: 24
  start-page: 19
  year: 2022
  ident: 10.1016/j.ijpx.2022.100120_bb0155
  article-title: Machine learning and artificial intelligence in pharmaceutical research and development: a review
  publication-title: AAPS J.
  doi: 10.1208/s12248-021-00644-3
– volume: 11
  year: 2020
  ident: 10.1016/j.ijpx.2022.100120_bb0115
  article-title: Progressive 3D printing technology and its application in medical materials
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2020.00122
– volume: 590
  year: 2020
  ident: 10.1016/j.ijpx.2022.100120_bb0085
  article-title: M3DISEEN: a novel machine learning approach for predicting the 3D printability of medicines
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2020.119837
– volume: 610
  year: 2021
  ident: 10.1016/j.ijpx.2022.100120_bb0080
  article-title: The evaluation of the effect of different superdisintegrants on the drug release from FDM 3D printed tablets through different applied strategies: in vitro-in silico assessment
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2021.121194
– volume: 600
  year: 2021
  ident: 10.1016/j.ijpx.2022.100120_bb0075
  article-title: 3D printing in personalized drug delivery: an overview of hot-melt extrusion-based fused deposition modeling
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2021.120501
– volume: 337
  start-page: 530
  year: 2021
  ident: 10.1016/j.ijpx.2022.100120_bb0195
  article-title: Machine learning predicts 3D printing performance of over 900 drug delivery systems
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2021.07.046
– volume: 616
  year: 2022
  ident: 10.1016/j.ijpx.2022.100120_bb0270
  article-title: Dose-independent drug release from 3D printed oral medicines for patient-specific dosing to improve therapy safety
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2022.121555
– volume: 613
  year: 2022
  ident: 10.1016/j.ijpx.2022.100120_bb0240
  article-title: Development and analysis of a novel loading technique for FDM 3D printed systems: Microwave-assisted impregnation of gastro-retentive PVA capsular devices
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2021.121386
– volume: 597
  year: 2021
  ident: 10.1016/j.ijpx.2022.100120_bb0250
  article-title: Role of release modifiers to modulate drug release from fused deposition modelling (FDM) 3D printed tablets
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2021.120315
– volume: 175
  year: 2021
  ident: 10.1016/j.ijpx.2022.100120_bb0100
  article-title: Harnessing artificial intelligence for the next generation of 3D printed medicines
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2021.05.015
– volume: 592
  year: 2021
  ident: 10.1016/j.ijpx.2022.100120_bb0255
  article-title: Data-smart machine learning methods for predicting composition-dependent Young’s modulus of pharmaceutical compacts
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2020.120049
– volume: 23
  start-page: 66
  year: 2022
  ident: 10.1016/j.ijpx.2022.100120_bb0265
  article-title: A strategy for the effective optimization of pharmaceutical formulations based on parameter-optimized support vector machine model
  publication-title: AAPS PharmSciTech
  doi: 10.1208/s12249-022-02210-2
– volume: 114
  start-page: 24
  year: 2016
  ident: 10.1016/j.ijpx.2022.100120_bb0030
  article-title: Random forest in remote sensing: a review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.011
– ident: 10.1016/j.ijpx.2022.100120_bb0025
– volume: 13
  start-page: 2068
  year: 2021
  ident: 10.1016/j.ijpx.2022.100120_bb0140
  article-title: Influence of print settings on the critical quality attributes of extrusion-based 3D-printed caplets: a quality-by-design approach
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics13122068
– volume: 15
  start-page: 69
  year: 2022
  ident: 10.1016/j.ijpx.2022.100120_bb0260
  article-title: Fused deposition modeling as a possible approach for the preparation of orodispersible tablets
  publication-title: Pharmaceuticals
  doi: 10.3390/ph15010069
– volume: 11
  start-page: 32
  year: 2013
  ident: 10.1016/j.ijpx.2022.100120_bb0205
  article-title: The effect of data pre-processing on optimized training of artificial neural networks
  publication-title: Procedia Technol.
  doi: 10.1016/j.protcy.2013.12.159
– volume: 330
  start-page: 821
  year: 2021
  ident: 10.1016/j.ijpx.2022.100120_bb0045
  article-title: Fused Deposition Modeling (FDM), the new asset for the production of tailored medicines
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2020.10.056
– volume: 26
  start-page: 80
  year: 2021
  ident: 10.1016/j.ijpx.2022.100120_bb0220
  article-title: Artificial intelligence in drug discovery and development
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2020.10.010
– volume: 3
  start-page: 118
  year: 2020
  ident: 10.1016/j.ijpx.2022.100120_bb0035
  article-title: The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database
  publication-title: npj Digital Med.
  doi: 10.1038/s41746-020-00324-0
– volume: 595
  year: 2021
  ident: 10.1016/j.ijpx.2022.100120_bb0185
  article-title: Fused deposition modelling for the development of drug loaded cardiovascular prosthesis
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2021.120243
– volume: 22
  start-page: 1680
  year: 2017
  ident: 10.1016/j.ijpx.2022.100120_bb0290
  article-title: From machine learning to deep learning: progress in machine intelligence for rational drug discovery
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2017.08.010
– volume: 24
  start-page: 1565
  year: 2006
  ident: 10.1016/j.ijpx.2022.100120_bb0210
  article-title: What is a support vector machine?
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1206-1565
– volume: 2
  start-page: 422
  year: 2018
  ident: 10.1016/j.ijpx.2022.100120_bb0055
  article-title: 3D printing for chemical, pharmaceutical and biological applications
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0058-y
– volume: 13
  start-page: 1714
  year: 2021
  ident: 10.1016/j.ijpx.2022.100120_bb0020
  article-title: Manufacturing and examination of vaginal drug delivery system by FDM 3D printing
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics13101714
– year: 2021
  ident: 10.1016/j.ijpx.2022.100120_bb0135
  article-title: Fused deposition modelling 3D printing proof-of-concept study for personalised inner ear therapy
  publication-title: J. Pharm. Pharmacol.
– volume: 16
  start-page: 321
  year: 2015
  ident: 10.1016/j.ijpx.2022.100120_bb0170
  article-title: Machine learning applications in genetics and genomics
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3920
– year: 2021
  ident: 10.1016/j.ijpx.2022.100120_bb0015
– volume: 83
  start-page: 9
  year: 2021
  ident: 10.1016/j.ijpx.2022.100120_bb0065
  article-title: AI applications to medical images: from machine learning to deep learning
  publication-title: Physica Medica
  doi: 10.1016/j.ejmp.2021.02.006
– volume: 62
  start-page: 1160
  year: 2022
  ident: 10.1016/j.ijpx.2022.100120_bb0005
  article-title: Emerging landscape of computational modeling in pharmaceutical development
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.1c01580
– volume: 111
  start-page: 116
  year: 2022
  ident: 10.1016/j.ijpx.2022.100120_bb0295
  article-title: 3D printed intragastric floating and sustained-release tablets with air chambers
  publication-title: J. Pharm. Sci.
  doi: 10.1016/j.xphs.2021.07.010
– volume: 599
  year: 2021
  ident: 10.1016/j.ijpx.2022.100120_bb0120
  article-title: Development of immediate release 3D-printed dosage forms for a poorly water-soluble drug by fused deposition modeling: Study of morphology, solid state and dissolution
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2021.120417
– volume: 110
  start-page: 3150
  year: 2021
  ident: 10.1016/j.ijpx.2022.100120_bb0175
  article-title: Applications of machine learning in solid oral dosage form development
  publication-title: J. Pharm. Sci.
  doi: 10.1016/j.xphs.2021.04.013
– volume: 597
  year: 2021
  ident: 10.1016/j.ijpx.2022.100120_bb0060
  article-title: Development of mAb-loaded 3D-printed (FDM) implantable devices based on PLGA
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2021.120337
– volume: 194
  year: 2020
  ident: 10.1016/j.ijpx.2022.100120_bb0150
  article-title: The role of three-dimensional printing in healthcare and medicine
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.108940
– volume: 564
  start-page: 98
  year: 2019
  ident: 10.1016/j.ijpx.2022.100120_bb0145
  article-title: 3D printed oral theophylline doses with innovative ‘radiator-like’ design: impact of polyethylene oxide (PEO) molecular weight
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2019.04.017
– volume: 9
  year: 2020
  ident: 10.1016/j.ijpx.2022.100120_bb0225
  article-title: Additive manufacturing of a point-of-care “Polypill:” fabrication of concept capsules of complex geometry with bespoke release against cardiovascular disease
  publication-title: Advan. Healthcare Mater.
– volume: 167
  start-page: 65
  year: 2021
  ident: 10.1016/j.ijpx.2022.100120_bb0040
  article-title: Influence of the geometry of 3D printed solid oral dosage forms on their swallowability
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2021.07.009
– volume: 109
  start-page: 2757
  year: 2020
  ident: 10.1016/j.ijpx.2022.100120_bb0110
  article-title: Fabrication of Mucoadhesive Buccal films for local administration of Ketoprofen and Lidocaine Hydrochloride by Combining Fused Deposition Modeling and Inkjet Printing
  publication-title: J. Pharm. Sci.
  doi: 10.1016/j.xphs.2020.05.022
– volume: 157
  year: 2021
  ident: 10.1016/j.ijpx.2022.100120_bb0105
  article-title: Haptic Evaluation of 3D-printed Braille-encoded Intraoral Films
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2020.105605
– volume: 567
  year: 2019
  ident: 10.1016/j.ijpx.2022.100120_bb0200
  article-title: Application of artificial neural networks for Process Analytical Technology-based dissolution testing
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2019.118464
– volume: 618
  year: 2022
  ident: 10.1016/j.ijpx.2022.100120_bb0180
  article-title: Proof of concept of a predictive model of drug release from long-acting implants obtained by fused-deposition modeling
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2022.121663
– volume: 177
  year: 2021
  ident: 10.1016/j.ijpx.2022.100120_bb0130
  article-title: Polymers in pharmaceutical additive manufacturing: a balancing act between printability and product performance
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2021.113923
– volume: 42
  start-page: 745
  year: 2021
  ident: 10.1016/j.ijpx.2022.100120_bb0095
  article-title: Disrupting 3D printing of medicines with machine learning
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2021.06.002
– volume: 28
  start-page: 31
  year: 2022
  ident: 10.1016/j.ijpx.2022.100120_bb0230
  article-title: AI in health and medicine
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01614-0
SSID ssj0002210389
Score 2.4517126
Snippet Three-dimensional printing (3DP) has seen growing interest within the healthcare industry for its ability to fabricate personalized medicines and medical...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 100120
SubjectTerms 3D printed drug products and medicines
Additive manufacturing of pharmaceuticals
Artificial intelligence and digital health
Fused filament fabrication and Fused deposition modelling
Manufacture of medicinal products
Material extrusion and drug delivery systems
Printing medical devices and implants
Research Paper
Title Accelerating 3D printing of pharmaceutical products using machine learning
URI https://dx.doi.org/10.1016/j.ijpx.2022.100120
https://www.proquest.com/docview/2681443968
https://pubmed.ncbi.nlm.nih.gov/PMC9218223
https://doaj.org/article/266aee1f79734294888a725d5af0554b
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsoKq4vIniT4vaRND36RBb0pOAtpMlk3UW7i67gz3cm6S7tRS_eSpsm6WSS-SadfMPYGUKgwoIpkjr1kBRWycQIWSVgU1wvjRcAdBr54VHePxejF_HSSfVFMWGRHjgK7gINiAFIfVmVOa6dqG_KlJlwwvghmsKaVl-0eR1nahpIXYj4m7Avwvthgk5K2Z6YicFdk-n8G53DLAscRJTsu2OVAnl_zzh1wGc_dLJji-622GYLIvll7Pw2W4Nmh40urUUbQiPajHl-w2nLLlzPPJ-_dreu-TzyvH5yCnsf8_cQUQm8TSEx3mVPd7dP1_dJmykhsUWlFknu8tql0pgCAYl0pbEo9WEtQAIaQe-Ec6l1qrApKK8EcbYXlTSp8FKqEvI9tt7MGthnvELBOqzUCovFnaqlJMa40qsMpLLVgKVLQWnbsohTMos3vQwXm2oSribh6ijcATtfvTOPHBq_lr4i-a9KEv91uIFaoVut0H9pxYCJ5ejpFkpEiIBVTX5t_HQ51BrnGf08MQ3Mvj6xRYW-Z15JNWBlTwd6Pe0_aSavgbG7Ip78LD_4j087ZBvU4RhSc8TWFx9fcIzAaFGfhDlwEnasfgDrzwxY
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+3D+printing+of+pharmaceutical+products+using+machine+learning&rft.jtitle=International+journal+of+pharmaceutics%3A+X&rft.au=Ong%2C+Jun+Jie&rft.au=Castro%2C+Brais+Mu%C3%B1iz&rft.au=Gaisford%2C+Simon&rft.au=Cabalar%2C+Pedro&rft.date=2022-12-01&rft.issn=2590-1567&rft.eissn=2590-1567&rft.volume=4&rft.spage=100120&rft_id=info:doi/10.1016%2Fj.ijpx.2022.100120&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1567&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1567&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1567&client=summon