ZBP1 mediates interferon-induced necroptosis

Interferons (IFNs) play an important role in immunomodulatory and antiviral functions. IFN-induced necroptosis has been reported in cells deficient in receptor-interacting protein kinase 1 (RIPK1), Fas-associated protein with death domain (FADD), or caspase-8, but the mechanism is largely unknown. H...

Full description

Saved in:
Bibliographic Details
Published inCellular & molecular immunology Vol. 17; no. 4; pp. 356 - 368
Main Authors Yang, Daowei, Liang, Yaoji, Zhao, Shubo, Ding, Yan, Zhuang, Qiuyu, Shi, Qilin, Ai, Tingting, Wu, Su-Qin, Han, Jiahuai
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.04.2020
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1672-7681
2042-0226
2042-0226
DOI10.1038/s41423-019-0237-x

Cover

Loading…
Abstract Interferons (IFNs) play an important role in immunomodulatory and antiviral functions. IFN-induced necroptosis has been reported in cells deficient in receptor-interacting protein kinase 1 (RIPK1), Fas-associated protein with death domain (FADD), or caspase-8, but the mechanism is largely unknown. Here, we report that the DNA-dependent activator of IFN regulatory factors (ZBP1, also known as DAI) is required for both type I (β) and type II (γ) IFN-induced necroptosis. We show that L929 fibroblast cells became susceptible to IFN-induced necroptosis when RIPK1 , FADD , or Caspase-8 was genetically deleted, confirming the antinecroptotic role of these proteins in IFN signaling. We found that the pronecroptotic signal from IFN stimulation depends on new protein synthesis and identified ZBP1, an IFN-stimulated gene (ISG) product, as the de novo synthesized protein that triggers necroptosis in IFN-stimulated cells. The N-terminal domain (ND) of ZBP1 is important for ZBP1–ZBP1 homointeraction, and its RHIM domain in the C-terminal region interacts with RIPK3 to initiate RIPK3-dependent necroptosis. The antinecroptotic function of RIPK1, FADD, and caspase-8 in IFN-treated cells is most likely executed by caspase-8-mediated cleavage of RIPK3, since the inhibitory effect on necroptosis was eliminated when the caspase-8 cleavage site in RIPK3 was mutated. ZBP1-mediated necroptosis in IFN-treated cells is likely physiologically relevant, as ZBP1 KO mice were significantly protected against acute systemic inflammatory response syndrome (SIRS) induced by TNF + IFN-γ.
AbstractList Interferons (IFNs) play an important role in immunomodulatory and antiviral functions. IFN-induced necroptosis has been reported in cells deficient in receptor-interacting protein kinase 1 (RIPK1), Fas-associated protein with death domain (FADD), or caspase-8, but the mechanism is largely unknown. Here, we report that the DNA-dependent activator of IFN regulatory factors (ZBP1, also known as DAI) is required for both type I (β) and type II (γ) IFN-induced necroptosis. We show that L929 fibroblast cells became susceptible to IFN-induced necroptosis when RIPK1 , FADD , or Caspase-8 was genetically deleted, confirming the antinecroptotic role of these proteins in IFN signaling. We found that the pronecroptotic signal from IFN stimulation depends on new protein synthesis and identified ZBP1, an IFN-stimulated gene (ISG) product, as the de novo synthesized protein that triggers necroptosis in IFN-stimulated cells. The N-terminal domain (ND) of ZBP1 is important for ZBP1–ZBP1 homointeraction, and its RHIM domain in the C-terminal region interacts with RIPK3 to initiate RIPK3-dependent necroptosis. The antinecroptotic function of RIPK1, FADD, and caspase-8 in IFN-treated cells is most likely executed by caspase-8-mediated cleavage of RIPK3, since the inhibitory effect on necroptosis was eliminated when the caspase-8 cleavage site in RIPK3 was mutated. ZBP1-mediated necroptosis in IFN-treated cells is likely physiologically relevant, as ZBP1 KO mice were significantly protected against acute systemic inflammatory response syndrome (SIRS) induced by TNF + IFN-γ.
Interferons (IFNs) play an important role in immunomodulatory and antiviral functions. IFN-induced necroptosis has been reported in cells deficient in receptor-interacting protein kinase 1 (RIPK1), Fas-associated protein with death domain (FADD), or caspase-8, but the mechanism is largely unknown. Here, we report that the DNA-dependent activator of IFN regulatory factors (ZBP1, also known as DAI) is required for both type I (β) and type II (γ) IFN-induced necroptosis. We show that L929 fibroblast cells became susceptible to IFN-induced necroptosis when RIPK1, FADD, or Caspase-8 was genetically deleted, confirming the antinecroptotic role of these proteins in IFN signaling. We found that the pronecroptotic signal from IFN stimulation depends on new protein synthesis and identified ZBP1, an IFN-stimulated gene (ISG) product, as the de novo synthesized protein that triggers necroptosis in IFN-stimulated cells. The N-terminal domain (ND) of ZBP1 is important for ZBP1–ZBP1 homointeraction, and its RHIM domain in the C-terminal region interacts with RIPK3 to initiate RIPK3-dependent necroptosis. The antinecroptotic function of RIPK1, FADD, and caspase-8 in IFN-treated cells is most likely executed by caspase-8-mediated cleavage of RIPK3, since the inhibitory effect on necroptosis was eliminated when the caspase-8 cleavage site in RIPK3 was mutated. ZBP1-mediated necroptosis in IFN-treated cells is likely physiologically relevant, as ZBP1 KO mice were significantly protected against acute systemic inflammatory response syndrome (SIRS) induced by TNF + IFN-γ.
Interferons (IFNs) play an important role in immunomodulatory and antiviral functions. IFN-induced necroptosis has been reported in cells deficient in receptor-interacting protein kinase 1 (RIPK1), Fas-associated protein with death domain (FADD), or caspase-8, but the mechanism is largely unknown. Here, we report that the DNA-dependent activator of IFN regulatory factors (ZBP1, also known as DAI) is required for both type I (β) and type II (γ) IFN-induced necroptosis. We show that L929 fibroblast cells became susceptible to IFN-induced necroptosis when RIPK1, FADD, or Caspase-8 was genetically deleted, confirming the antinecroptotic role of these proteins in IFN signaling. We found that the pronecroptotic signal from IFN stimulation depends on new protein synthesis and identified ZBP1, an IFN-stimulated gene (ISG) product, as the de novo synthesized protein that triggers necroptosis in IFN-stimulated cells. The N-terminal domain (ND) of ZBP1 is important for ZBP1-ZBP1 homointeraction, and its RHIM domain in the C-terminal region interacts with RIPK3 to initiate RIPK3-dependent necroptosis. The antinecroptotic function of RIPK1, FADD, and caspase-8 in IFN-treated cells is most likely executed by caspase-8-mediated cleavage of RIPK3, since the inhibitory effect on necroptosis was eliminated when the caspase-8 cleavage site in RIPK3 was mutated. ZBP1-mediated necroptosis in IFN-treated cells is likely physiologically relevant, as ZBP1 KO mice were significantly protected against acute systemic inflammatory response syndrome (SIRS) induced by TNF + IFN-γ.Interferons (IFNs) play an important role in immunomodulatory and antiviral functions. IFN-induced necroptosis has been reported in cells deficient in receptor-interacting protein kinase 1 (RIPK1), Fas-associated protein with death domain (FADD), or caspase-8, but the mechanism is largely unknown. Here, we report that the DNA-dependent activator of IFN regulatory factors (ZBP1, also known as DAI) is required for both type I (β) and type II (γ) IFN-induced necroptosis. We show that L929 fibroblast cells became susceptible to IFN-induced necroptosis when RIPK1, FADD, or Caspase-8 was genetically deleted, confirming the antinecroptotic role of these proteins in IFN signaling. We found that the pronecroptotic signal from IFN stimulation depends on new protein synthesis and identified ZBP1, an IFN-stimulated gene (ISG) product, as the de novo synthesized protein that triggers necroptosis in IFN-stimulated cells. The N-terminal domain (ND) of ZBP1 is important for ZBP1-ZBP1 homointeraction, and its RHIM domain in the C-terminal region interacts with RIPK3 to initiate RIPK3-dependent necroptosis. The antinecroptotic function of RIPK1, FADD, and caspase-8 in IFN-treated cells is most likely executed by caspase-8-mediated cleavage of RIPK3, since the inhibitory effect on necroptosis was eliminated when the caspase-8 cleavage site in RIPK3 was mutated. ZBP1-mediated necroptosis in IFN-treated cells is likely physiologically relevant, as ZBP1 KO mice were significantly protected against acute systemic inflammatory response syndrome (SIRS) induced by TNF + IFN-γ.
Author Zhao, Shubo
Ding, Yan
Wu, Su-Qin
Liang, Yaoji
Ai, Tingting
Han, Jiahuai
Zhuang, Qiuyu
Shi, Qilin
Yang, Daowei
Author_xml – sequence: 1
  givenname: Daowei
  surname: Yang
  fullname: Yang, Daowei
  organization: State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University
– sequence: 2
  givenname: Yaoji
  surname: Liang
  fullname: Liang, Yaoji
  organization: State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Department of Cancer Prevention Diagnosis and Treatment, Cancer Hospital, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, School of Pharmaceutical Sciences, Xiamen University, XMU School of Pharmaceutical Sciences-Amogene Joint R&D Center for Genetic Diagnostics, Amogene Biotech
– sequence: 3
  givenname: Shubo
  surname: Zhao
  fullname: Zhao, Shubo
  organization: State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University
– sequence: 4
  givenname: Yan
  surname: Ding
  fullname: Ding, Yan
  organization: State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University
– sequence: 5
  givenname: Qiuyu
  surname: Zhuang
  fullname: Zhuang, Qiuyu
  organization: State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University
– sequence: 6
  givenname: Qilin
  surname: Shi
  fullname: Shi, Qilin
  organization: State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University
– sequence: 7
  givenname: Tingting
  surname: Ai
  fullname: Ai, Tingting
  organization: State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University
– sequence: 8
  givenname: Su-Qin
  surname: Wu
  fullname: Wu, Su-Qin
  organization: State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University
– sequence: 9
  givenname: Jiahuai
  surname: Han
  fullname: Han, Jiahuai
  email: jhan@xmu.edu.cn
  organization: State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31076724$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1rVDEUxYNU7LT6B7iRATcufHpvkpe8bIRa6gcUdKEbNyGTuakpb5IxeU_qf98M0_pRsKsQ7u8czr3niB2knIixpwivEMTwukqUXHSApgMudHf1gC04SN5-XB2wBSrNO60GPGRHtV4C9IPU8hE7FAi6zeSCvfz29jMuN7SObqK6jGmiEqjk1MW0nj2tl4l8ydsp11gfs4fBjZWe3LzH7Ou7sy-nH7rzT-8_np6cd16aYerEypEU0hgRhFAykAfuVZBegJC65yFwCiAlYc9RCUnSCWP6lRxQrZBAHLM3e9_tvGrRPKWpuNFuS9y48stmF-2_kxS_24v802oEA4Y3gxc3BiX_mKlOdhOrp3F0ifJcLecCDYIyfUOf30Ev81xSW8_yNudagL6fEoMcABXf5X72d-7fgW_P3QC9B9pJay0UrI-Tm2LerRFHi2B3xdp9sbYVa3fF2qumxDvKW_P7NHyvqY1NF1T-hP6_6BpoRbL1
CitedBy_id crossref_primary_10_1016_j_chom_2021_05_009
crossref_primary_10_1089_thy_2024_0087
crossref_primary_10_1186_s12967_024_04995_1
crossref_primary_10_1038_s41467_022_34080_4
crossref_primary_10_1158_2159_8290_CD_20_0805
crossref_primary_10_3390_ijms231810224
crossref_primary_10_1093_intimm_dxac061
crossref_primary_10_1073_pnas_2410628121
crossref_primary_10_1016_j_ijmm_2021_151491
crossref_primary_10_1021_acs_jmedchem_3c00665
crossref_primary_10_1158_0008_5472_CAN_20_2199
crossref_primary_10_1016_j_biopha_2024_116690
crossref_primary_10_3389_fnmol_2022_908683
crossref_primary_10_3390_biomedicines10020235
crossref_primary_10_1097_CM9_0000000000002239
crossref_primary_10_1016_j_cytogfr_2024_03_005
crossref_primary_10_1038_s41392_022_01043_6
crossref_primary_10_3389_fimmu_2023_1148727
crossref_primary_10_1016_j_cell_2020_11_025
crossref_primary_10_3390_antiox13030256
crossref_primary_10_1007_s00109_023_02403_7
crossref_primary_10_1038_s41392_022_01110_y
crossref_primary_10_1038_s41467_024_49342_6
crossref_primary_10_1111_imm_13592
crossref_primary_10_3389_fonc_2022_899443
crossref_primary_10_1016_j_biopha_2024_117196
crossref_primary_10_1042_BST20220535
crossref_primary_10_1016_j_molcel_2023_12_041
crossref_primary_10_1016_j_celrep_2020_108389
crossref_primary_10_3390_ijms25094789
crossref_primary_10_2147_DDDT_S397971
crossref_primary_10_3324_haematol_2020_274480
crossref_primary_10_1016_j_tox_2021_152923
crossref_primary_10_1002_mco2_725
crossref_primary_10_1038_s41420_022_00869_x
crossref_primary_10_1152_ajpgi_00104_2022
crossref_primary_10_3389_fonc_2021_678562
crossref_primary_10_3389_fimmu_2022_978824
crossref_primary_10_1038_s41419_024_06514_y
crossref_primary_10_3389_fimmu_2020_625504
crossref_primary_10_3389_fimmu_2020_622511
crossref_primary_10_1016_j_cyto_2023_156376
crossref_primary_10_1128_IAI_00021_21
crossref_primary_10_1016_j_celrep_2021_108976
crossref_primary_10_1038_s41591_022_01959_0
crossref_primary_10_1111_jcmm_17128
crossref_primary_10_1038_s41419_024_06889_y
crossref_primary_10_3390_ijms23063079
crossref_primary_10_1038_s41419_022_04740_w
crossref_primary_10_1038_s41598_023_31285_5
crossref_primary_10_3389_fimmu_2024_1501659
crossref_primary_10_3390_ijms22147426
crossref_primary_10_1038_s41435_021_00140_w
crossref_primary_10_1186_s12964_024_01531_y
crossref_primary_10_1042_BCJ20210724
crossref_primary_10_3389_fgene_2022_865559
crossref_primary_10_3390_v16020290
crossref_primary_10_1038_s44318_024_00238_7
crossref_primary_10_1016_j_scitotenv_2022_157185
crossref_primary_10_1038_s41418_020_00722_7
crossref_primary_10_1016_j_celrep_2021_109858
crossref_primary_10_3390_ijms241210108
crossref_primary_10_1093_nar_gkae654
crossref_primary_10_1146_annurev_genet_071719_022748
crossref_primary_10_1038_s41420_024_02024_0
crossref_primary_10_1016_j_ijmm_2023_151574
crossref_primary_10_1038_s41419_024_06471_6
crossref_primary_10_1084_jem_20221156
crossref_primary_10_1186_s12974_022_02469_z
crossref_primary_10_1186_s12943_024_02172_y
crossref_primary_10_2174_1874467215666220127112201
crossref_primary_10_1016_j_molmet_2022_101582
crossref_primary_10_15252_embr_201949762
crossref_primary_10_1016_j_critrevonc_2025_104658
crossref_primary_10_1016_j_jid_2023_02_025
crossref_primary_10_3389_fphar_2025_1559659
crossref_primary_10_1172_JCI154993
crossref_primary_10_3390_biomedicines11102792
crossref_primary_10_1186_s12964_024_01744_1
crossref_primary_10_1186_s13020_024_00883_4
crossref_primary_10_1073_pnas_2204049119
crossref_primary_10_1038_s41419_020_2328_0
crossref_primary_10_1038_s41586_020_2129_8
crossref_primary_10_1242_jcs_260091
crossref_primary_10_3389_fimmu_2022_998470
crossref_primary_10_3390_ijms251910760
crossref_primary_10_1038_s41418_024_01279_5
crossref_primary_10_3389_fgene_2024_1437715
crossref_primary_10_1002_iid3_997
crossref_primary_10_1016_j_coi_2023_102348
crossref_primary_10_1016_j_celrep_2024_114221
crossref_primary_10_3389_fimmu_2024_1384606
crossref_primary_10_3389_fmed_2021_644244
crossref_primary_10_3390_cancers14163891
crossref_primary_10_3390_ph17030299
crossref_primary_10_1084_jem_20191913
crossref_primary_10_1016_j_phymed_2025_156657
crossref_primary_10_1126_scisignal_abq0837
crossref_primary_10_3390_ijms25189947
crossref_primary_10_3390_molecules28010052
crossref_primary_10_1016_j_intimp_2024_112373
crossref_primary_10_1016_j_vetmic_2023_109848
crossref_primary_10_3389_fimmu_2023_1241694
crossref_primary_10_3390_biom12060828
crossref_primary_10_1016_j_intimp_2023_110603
crossref_primary_10_1038_s41467_021_23004_3
Cites_doi 10.1038/nature13608
10.1038/nature14191
10.1016/j.cell.2009.05.021
10.1074/jbc.R700016200
10.1016/j.cell.2014.04.019
10.4049/jimmunol.1400499
10.1073/pnas.1301218110
10.15252/embj.201796476
10.1016/j.celrep.2015.02.051
10.1038/cdd.2011.164
10.1016/j.chom.2012.01.016
10.1146/annurev.immunol.15.1.563
10.1016/S0378-1119(99)00419-9
10.1126/science.1172308
10.1016/j.cellsig.2007.05.016
10.1016/j.cell.2008.03.036
10.1128/MCB.05445-11
10.1038/nature20558
10.1016/j.immuni.2006.08.014
10.1523/JNEUROSCI.1860-14.2014
10.1038/embor.2009.109
10.1084/jem.20090213
10.1053/j.gastro.2006.09.052
10.1016/j.cell.2014.04.018
10.1126/science.3764421
10.4049/jimmunol.1400590
10.4049/jimmunol.181.9.6427
10.1126/sciimmunol.aag2045
10.1016/j.cell.2009.05.037
10.1016/j.immuni.2006.08.008
10.1111/j.0105-2896.2004.00204.x
10.1073/pnas.1700999114
10.1073/pnas.1401857111
10.1016/j.immuni.2011.09.020
10.1038/nature13706
10.1016/j.cell.2011.11.031
10.1016/S1074-7613(00)80535-X
10.15252/embr.201743947
10.1016/j.immuni.2006.08.009
10.1016/j.chom.2016.09.014
10.1074/jbc.M112.435545
10.1016/j.chom.2015.01.002
10.3389/fcimb.2014.00050
10.1038/nature06013
10.1101/gad.13.19.2514
10.1111/imr.12001
10.1038/ncb3120
10.1002/j.1460-2075.1996.tb01007.x
10.1073/pnas.1717190115
10.1038/cdd.2014.77
10.1038/cr.2013.171
10.1038/nature20559
10.1038/nature06537
ContentType Journal Article
Copyright CSI and USTC 2019
CSI and USTC 2019.
Copyright_xml – notice: CSI and USTC 2019
– notice: CSI and USTC 2019.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1038/s41423-019-0237-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

ProQuest Central Student
MEDLINE
ProQuest Central Student
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2042-0226
EndPage 368
ExternalDocumentID PMC7109092
31076724
10_1038_s41423_019_0237_x
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Basic Research Program of China (973 Program; 2015CB553800, 2013CB944903, 2014CB541804)
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 81788101; 31420103910, 81630042, 31500737, 31601122
  funderid: https://doi.org/10.13039/501100001809
– fundername: China Postdoctoral Science Foundation
  grantid: 2018T110638, 2017M620267, 2015T80680; 2018T110638; 2018T110638; 2017M620267; 2015T80680
  funderid: https://doi.org/10.13039/501100002858
– fundername: ;
– fundername: ;
  grantid: 81788101; 31420103910, 81630042, 31500737, 31601122
– fundername: ;
  grantid: 2018T110638, 2017M620267, 2015T80680; 2018T110638; 2018T110638; 2017M620267; 2015T80680
GroupedDBID ---
-05
-0E
-Q-
-SE
-S~
0R~
29B
2B.
2WC
3V.
4.4
406
53G
5GY
5VR
6J9
70F
7X7
88E
8FE
8FH
8FI
8FJ
92F
92I
92M
93N
9D9
9DE
AACDK
AANZL
AASML
AATNV
AAXDM
AAZLF
ABAKF
ABAWZ
ABJNI
ABKZE
ABUWG
ABZZP
ACAOD
ACGFS
ACKTT
ACPRK
ACRQY
ACZOJ
ADFRT
ADHDB
AEFQL
AEJRE
AEMSY
AENEX
AEVLU
AEXYK
AFBBN
AFKRA
AFSHS
AFUIB
AGAYW
AGHAI
AGQEE
AHMBA
AHSBF
AIGIU
AILAN
AJRNO
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMYLF
AXYYD
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CAJEE
CCEZO
CCPQU
CHBEP
CIEJG
CW9
DIK
DNIVK
DPUIP
DU5
EBLON
EBS
EE.
EIOEI
EJD
F5P
FA0
FDQFY
FERAY
FIGPU
FIZPM
FRP
FSGXE
FYUFA
GX1
HCIFZ
HMCUK
HYE
HZ~
IWAJR
JUIAU
JZLTJ
KQ8
LK8
M1P
M7P
NAO
NQJWS
O9-
OK1
P6G
PQQKQ
PROAC
PSQYO
Q--
Q-4
R-E
RNT
RNTTT
ROL
RPM
RT5
S..
SNX
SNYQT
SRMVM
SWTZT
T8U
TAOOD
TBHMF
TCJ
TDRGL
TGQ
TR2
TSG
U1F
U1G
U5E
U5O
UKHRP
WFFXF
~88
~MX
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
SOJ
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c498t-3bae434993f3364fec02c6f4c3034752ff2ef044e1521634e4a3995b4816b1e03
IEDL.DBID 7X7
ISSN 1672-7681
2042-0226
IngestDate Thu Aug 21 14:05:31 EDT 2025
Fri Jul 11 15:23:08 EDT 2025
Sat Aug 23 12:50:45 EDT 2025
Wed Jul 16 16:37:27 EDT 2025
Mon Jul 21 04:15:22 EDT 2025
Tue Jul 01 01:08:45 EDT 2025
Thu Apr 24 23:07:30 EDT 2025
Fri Feb 21 02:37:06 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords ZBP1
interferon
necroptosis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c498t-3bae434993f3364fec02c6f4c3034752ff2ef044e1521634e4a3995b4816b1e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.nature.com/articles/s41423-019-0237-x.pdf
PMID 31076724
PQID 2384801620
PQPubID 2041960
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7109092
proquest_miscellaneous_2231910695
proquest_journals_2695273075
proquest_journals_2384801620
pubmed_primary_31076724
crossref_citationtrail_10_1038_s41423_019_0237_x
crossref_primary_10_1038_s41423_019_0237_x
springer_journals_10_1038_s41423_019_0237_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: China
PublicationTitle Cellular & molecular immunology
PublicationTitleAbbrev Cell Mol Immunol
PublicationTitleAlternate Cell Mol Immunol
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Thapa (CR20) 2016; 20
Vilcek (CR1) 2006; 25
Koehler (CR21) 2017; 114
Dillon (CR11) 2014; 157
Maelfait (CR19) 2017; 36
Berger (CR49) 2014; 192
Chen (CR35) 2013; 288
Dannappel (CR51) 2014; 513
Upton, Kaiser, Mocarski (CR17) 2012; 11
Huang (CR36) 2015; 17
Takaoka (CR15) 2007; 448
Pestka, Krause, Walter (CR3) 2004; 202
Lin, Devin, Rodriguez, Liu (CR27) 1999; 13
Chen (CR56) 2013; 288
Lin (CR25) 2016; 540
Rebsamen (CR38) 2009; 10
Ofengeim (CR53) 2015; 10
Duprez (CR44) 2011; 35
Tracey (CR45) 1986; 234
van Boxel-Dezaire, Rani, Stark (CR4) 2006; 25
Kaiser, Upton, Mocarski (CR39) 2008; 181
Polykratis (CR50) 2014; 193
Newton (CR24) 2016; 540
Rickard (CR30) 2014; 157
Bach, Aguet, Schreiber (CR8) 1997; 15
Sridharan (CR18) 2017; 18
Kaiser (CR29) 2014; 111
Upton, Kaiser, Mocarski (CR37) 2012; 11
Schindler, Levy, Decker (CR7) 2007; 282
Dussurget, Bierne, Cossart (CR9) 2014; 4
He (CR33) 2009; 137
Thapa (CR12) 2013; 110
Chen (CR55) 2015; 17
Kuriakose (CR23) 2016; 1
Sun (CR31) 2012; 148
Piehler, Thomas, Garcia, Schreiber (CR5) 2012; 250
Marcello (CR6) 2006; 131
Thapa (CR10) 2011; 31
Vanlangenakker, Vanden Berghe, Vandenabeele (CR47) 2012; 19
Ishii (CR16) 2008; 451
Ting, Pimentel-Muinos, Seed (CR43) 1996; 15
Kelliher (CR42) 1998; 8
Chen (CR22) 2018; 115
Feng (CR26) 2007; 19
Takahashi (CR52) 2014; 513
Fu (CR14) 1999; 240
Zhang (CR54) 2014; 34
Wu (CR40) 2014; 21
Chen (CR41) 2014; 24
Honda, Takaoka, Taniguchi (CR2) 2006; 25
Cho (CR32) 2009; 137
McComb (CR13) 2014; 111
Huys (CR46) 2009; 206
Zhang (CR34) 2009; 325
Wang, Du, Wang (CR28) 2008; 133
Pasparakis, Vandenabeele (CR48) 2015; 517
EA Bach (237_CR8) 1997; 15
D Ofengeim (237_CR53) 2015; 10
J Vilcek (237_CR1) 2006; 25
RJ Thapa (237_CR10) 2011; 31
AH van Boxel-Dezaire (237_CR4) 2006; 25
KJ Ishii (237_CR16) 2008; 451
KJ Tracey (237_CR45) 1986; 234
SB Berger (237_CR49) 2014; 192
JW Upton (237_CR37) 2012; 11
A Takaoka (237_CR15) 2007; 448
W Chen (237_CR35) 2013; 288
L Duprez (237_CR44) 2011; 35
N Vanlangenakker (237_CR47) 2012; 19
H Koehler (237_CR21) 2017; 114
DW Zhang (237_CR34) 2009; 325
C Schindler (237_CR7) 2007; 282
L Sun (237_CR31) 2012; 148
M Pasparakis (237_CR48) 2015; 517
K Honda (237_CR2) 2006; 25
L Huys (237_CR46) 2009; 206
J Maelfait (237_CR19) 2017; 36
S McComb (237_CR13) 2014; 111
RJ Thapa (237_CR20) 2016; 20
O Dussurget (237_CR9) 2014; 4
YS Cho (237_CR32) 2009; 137
Y Lin (237_CR27) 1999; 13
N Takahashi (237_CR52) 2014; 513
AT Ting (237_CR43) 1996; 15
JW Upton (237_CR17) 2012; 11
WZ Chen (237_CR55) 2015; 17
WZ Chen (237_CR56) 2013; 288
Z Huang (237_CR36) 2015; 17
Y Fu (237_CR14) 1999; 240
T Marcello (237_CR6) 2006; 131
K Newton (237_CR24) 2016; 540
L Wang (237_CR28) 2008; 133
Y Zhang (237_CR54) 2014; 34
MA Kelliher (237_CR42) 1998; 8
RJ Thapa (237_CR12) 2013; 110
WJ Kaiser (237_CR29) 2014; 111
X Chen (237_CR41) 2014; 24
D Chen (237_CR22) 2018; 115
S He (237_CR33) 2009; 137
M Rebsamen (237_CR38) 2009; 10
WJ Kaiser (237_CR39) 2008; 181
M Dannappel (237_CR51) 2014; 513
S Pestka (237_CR3) 2004; 202
J Piehler (237_CR5) 2012; 250
T Kuriakose (237_CR23) 2016; 1
A Polykratis (237_CR50) 2014; 193
J Lin (237_CR25) 2016; 540
S Feng (237_CR26) 2007; 19
JA Rickard (237_CR30) 2014; 157
H Sridharan (237_CR18) 2017; 18
XN Wu (237_CR40) 2014; 21
CP Dillon (237_CR11) 2014; 157
References_xml – volume: 513
  start-page: 90±
  year: 2014
  ident: CR51
  article-title: RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis
  publication-title: Nature
  doi: 10.1038/nature13608
– volume: 517
  start-page: 311
  year: 2015
  end-page: 20
  ident: CR48
  article-title: Necroptosis and its role in inflammation
  publication-title: Nature
  doi: 10.1038/nature14191
– volume: 137
  start-page: 1100
  year: 2009
  end-page: 11
  ident: CR33
  article-title: Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha
  publication-title: Cell
  doi: 10.1016/j.cell.2009.05.021
– volume: 282
  start-page: 20059
  year: 2007
  end-page: 63
  ident: CR7
  article-title: JAK-STAT signaling: from interferons to cytokines
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R700016200
– volume: 157
  start-page: 1175
  year: 2014
  end-page: 88
  ident: CR30
  article-title: RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis
  publication-title: Cell
  doi: 10.1016/j.cell.2014.04.019
– volume: 192
  start-page: 5476
  year: 2014
  end-page: 80
  ident: CR49
  article-title: Cutting edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1400499
– volume: 110
  start-page: E3109
  year: 2013
  end-page: E18
  ident: CR12
  article-title: Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1301218110
– volume: 36
  start-page: 2529
  year: 2017
  end-page: 43
  ident: CR19
  article-title: Sensing of viral and endogenous RNA by ZBP1/DAI induces necroptosis
  publication-title: EMBO J.
  doi: 10.15252/embj.201796476
– volume: 10
  start-page: 1836
  year: 2015
  end-page: 49
  ident: CR53
  article-title: Activation of necroptosis in multiple sclerosis
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.02.051
– volume: 19
  start-page: 75
  year: 2012
  end-page: 86
  ident: CR47
  article-title: Many stimuli pull the necrotic trigger, an overview
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2011.164
– volume: 11
  start-page: 290
  year: 2012
  end-page: 7
  ident: CR37
  article-title: DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2012.01.016
– volume: 15
  start-page: 563
  year: 1997
  end-page: 91
  ident: CR8
  article-title: The IFN gamma receptor: a paradigm for cytokine receptor signaling
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.15.1.563
– volume: 240
  start-page: 157
  year: 1999
  end-page: 63
  ident: CR14
  article-title: Cloning of DLM-1, a novel gene that is up-regulated in activated macrophages, using RNA differential display
  publication-title: Gene
  doi: 10.1016/S0378-1119(99)00419-9
– volume: 325
  start-page: 332
  year: 2009
  end-page: 6
  ident: CR34
  article-title: RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis
  publication-title: Science
  doi: 10.1126/science.1172308
– volume: 19
  start-page: 2056
  year: 2007
  end-page: 67
  ident: CR26
  article-title: Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain
  publication-title: Cell. Signal.
  doi: 10.1016/j.cellsig.2007.05.016
– volume: 133
  start-page: 693
  year: 2008
  end-page: 703
  ident: CR28
  article-title: TNF-alpha induces two distinct caspase-8 activation pathways
  publication-title: Cell
  doi: 10.1016/j.cell.2008.03.036
– volume: 31
  start-page: 2934
  year: 2011
  end-page: 46
  ident: CR10
  article-title: NF-kappaB protects cells from gamma interferon-induced RIP1-dependent necroptosis
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.05445-11
– volume: 540
  start-page: 124±
  year: 2016
  ident: CR25
  article-title: RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation
  publication-title: Nature
  doi: 10.1038/nature20558
– volume: 25
  start-page: 361
  year: 2006
  end-page: 72
  ident: CR4
  article-title: Complex modulation of cell type-specific signaling in response to type I interferons
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.08.014
– volume: 34
  start-page: 11929
  year: 2014
  end-page: 47
  ident: CR54
  article-title: An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1860-14.2014
– volume: 10
  start-page: 916
  year: 2009
  end-page: 22
  ident: CR38
  article-title: DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-kappa B
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2009.109
– volume: 206
  start-page: 1873
  year: 2009
  end-page: 82
  ident: CR46
  article-title: Type I interferon drives tumor necrosis factor-induced lethal shock
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20090213
– volume: 131
  start-page: 1887
  year: 2006
  end-page: 98
  ident: CR6
  article-title: Interferons alpha and lambda inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2006.09.052
– volume: 157
  start-page: 1189
  year: 2014
  end-page: 202
  ident: CR11
  article-title: RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3
  publication-title: Cell
  doi: 10.1016/j.cell.2014.04.018
– volume: 234
  start-page: 470
  year: 1986
  end-page: 4
  ident: CR45
  article-title: Shock and tissue injury induced by recombinant human cachectin
  publication-title: Science
  doi: 10.1126/science.3764421
– volume: 111
  start-page: E3206
  year: 2014
  end-page: E13
  ident: CR13
  article-title: Type-I interferon signaling through ISGF3 complex is required for sustained Rip3 activation and necroptosis in macrophages
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 193
  start-page: 1539
  year: 2014
  end-page: 43
  ident: CR50
  article-title: Cutting edge: RIPK1 kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1400590
– volume: 181
  start-page: 6427
  year: 2008
  end-page: 34
  ident: CR39
  article-title: Receptor-interacting protein homotypic interaction motif-dependent control of NF-kappa B activation via the DNA-dependent activator of IFN regulatory factors
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.181.9.6427
– volume: 1
  start-page: 2
  year: 2016
  ident: CR23
  article-title: ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aag2045
– volume: 137
  start-page: 1112
  year: 2009
  end-page: 23
  ident: CR32
  article-title: Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation
  publication-title: Cell
  doi: 10.1016/j.cell.2009.05.037
– volume: 25
  start-page: 343
  year: 2006
  end-page: 8
  ident: CR1
  article-title: Fifty years of interferon research: aiming at a moving target
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.08.008
– volume: 202
  start-page: 8
  year: 2004
  end-page: 32
  ident: CR3
  article-title: Interferons, interferon-like cytokines, and their receptors
  publication-title: Immunol. Rev.
  doi: 10.1111/j.0105-2896.2004.00204.x
– volume: 114
  start-page: 11506
  year: 2017
  end-page: 11
  ident: CR21
  article-title: Inhibition of DAI-dependent necroptosis by the Z-DNA binding domain of the vaccinia virus innate immune evasion protein, E3
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1700999114
– volume: 11
  start-page: 290
  year: 2012
  end-page: 7
  ident: CR17
  article-title: DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2012.01.016
– volume: 111
  start-page: 7753
  year: 2014
  end-page: 8
  ident: CR29
  article-title: RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1401857111
– volume: 35
  start-page: 908
  year: 2011
  end-page: 18
  ident: CR44
  article-title: RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.09.020
– volume: 513
  start-page: 95
  year: 2014
  end-page: 9
  ident: CR52
  article-title: RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis
  publication-title: Nature
  doi: 10.1038/nature13706
– volume: 148
  start-page: 213
  year: 2012
  end-page: 27
  ident: CR31
  article-title: Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase
  publication-title: Cell
  doi: 10.1016/j.cell.2011.11.031
– volume: 8
  start-page: 297
  year: 1998
  end-page: 303
  ident: CR42
  article-title: The death domain kinase RIP mediates the TNF-induced NF-kappaB signal
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)80535-X
– volume: 18
  start-page: 1429
  year: 2017
  end-page: 41
  ident: CR18
  article-title: Murine cytomegalovirus IE3-dependent transcription is required for DAI/ZBP1-mediated necroptosis
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201743947
– volume: 25
  start-page: 349
  year: 2006
  end-page: 60
  ident: CR2
  article-title: Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.08.009
– volume: 20
  start-page: 674
  year: 2016
  end-page: 81
  ident: CR20
  article-title: DAI senses influenza A virus genomic RNA and activates RIPK3-dependent cell death
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2016.09.014
– volume: 288
  start-page: 16247
  year: 2013
  end-page: 61
  ident: CR56
  article-title: Diverse sequence determinants control human and mouse receptor interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) interaction in necroptotic signaling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.435545
– volume: 288
  start-page: 16247
  year: 2013
  end-page: 61
  ident: CR35
  article-title: Diverse sequence determinants control human and mouse receptor interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) interaction in necroptotic signaling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.435545
– volume: 17
  start-page: 229
  year: 2015
  end-page: 42
  ident: CR36
  article-title: RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.01.002
– volume: 4
  start-page: 50
  year: 2014
  ident: CR9
  article-title: The bacterial pathogen Listeria monocytogenes and the interferon family: type I, type II and type III interferons
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2014.00050
– volume: 448
  start-page: 501
  year: 2007
  end-page: U14
  ident: CR15
  article-title: DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response
  publication-title: Nature
  doi: 10.1038/nature06013
– volume: 13
  start-page: 2514
  year: 1999
  end-page: 26
  ident: CR27
  article-title: Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis
  publication-title: Genes Dev
  doi: 10.1101/gad.13.19.2514
– volume: 250
  start-page: 317
  year: 2012
  end-page: 34
  ident: CR5
  article-title: Structural and dynamic determinants of type I interferon receptor assembly and their functional interpretation
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12001
– volume: 17
  start-page: 434±
  year: 2015
  ident: CR55
  article-title: Ppm1b negatively regulates necroptosis through dephosphorylating Rip3
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3120
– volume: 15
  start-page: 6189
  year: 1996
  end-page: 96
  ident: CR43
  article-title: RIP mediates tumor necrosis factor receptor 1 activation of NF-kappaB but not Fas/APO-1-initiated apoptosis
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1996.tb01007.x
– volume: 115
  start-page: 3930
  year: 2018
  end-page: 5
  ident: CR22
  article-title: PUMA amplifies necroptosis signaling by activating cytosolic DNA sensors
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1717190115
– volume: 21
  start-page: 1709
  year: 2014
  end-page: 20
  ident: CR40
  article-title: Distinct roles of RIP1-RIP3 hetero- and RIP3-RIP3 homo-interaction in mediating necroptosis
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2014.77
– volume: 24
  start-page: 105
  year: 2014
  end-page: 21
  ident: CR41
  article-title: Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death
  publication-title: Cell Res.
  doi: 10.1038/cr.2013.171
– volume: 540
  start-page: 129-+
  year: 2016
  ident: CR24
  article-title: RIPK1 inhibits ZBP1-driven necroptosis during development
  publication-title: Nature
  doi: 10.1038/nature20559
– volume: 451
  start-page: 725
  year: 2008
  end-page: 9
  ident: CR16
  article-title: TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines
  publication-title: Nature
  doi: 10.1038/nature06537
– volume: 137
  start-page: 1112
  year: 2009
  ident: 237_CR32
  publication-title: Cell
  doi: 10.1016/j.cell.2009.05.037
– volume: 250
  start-page: 317
  year: 2012
  ident: 237_CR5
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12001
– volume: 131
  start-page: 1887
  year: 2006
  ident: 237_CR6
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2006.09.052
– volume: 157
  start-page: 1175
  year: 2014
  ident: 237_CR30
  publication-title: Cell
  doi: 10.1016/j.cell.2014.04.019
– volume: 193
  start-page: 1539
  year: 2014
  ident: 237_CR50
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1400590
– volume: 36
  start-page: 2529
  year: 2017
  ident: 237_CR19
  publication-title: EMBO J.
  doi: 10.15252/embj.201796476
– volume: 17
  start-page: 229
  year: 2015
  ident: 237_CR36
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.01.002
– volume: 11
  start-page: 290
  year: 2012
  ident: 237_CR37
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2012.01.016
– volume: 4
  start-page: 50
  year: 2014
  ident: 237_CR9
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2014.00050
– volume: 234
  start-page: 470
  year: 1986
  ident: 237_CR45
  publication-title: Science
  doi: 10.1126/science.3764421
– volume: 18
  start-page: 1429
  year: 2017
  ident: 237_CR18
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201743947
– volume: 181
  start-page: 6427
  year: 2008
  ident: 237_CR39
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.181.9.6427
– volume: 34
  start-page: 11929
  year: 2014
  ident: 237_CR54
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1860-14.2014
– volume: 288
  start-page: 16247
  year: 2013
  ident: 237_CR35
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.435545
– volume: 1
  start-page: 2
  year: 2016
  ident: 237_CR23
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aag2045
– volume: 115
  start-page: 3930
  year: 2018
  ident: 237_CR22
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1717190115
– volume: 19
  start-page: 75
  year: 2012
  ident: 237_CR47
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2011.164
– volume: 517
  start-page: 311
  year: 2015
  ident: 237_CR48
  publication-title: Nature
  doi: 10.1038/nature14191
– volume: 25
  start-page: 361
  year: 2006
  ident: 237_CR4
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.08.014
– volume: 111
  start-page: E3206
  year: 2014
  ident: 237_CR13
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 11
  start-page: 290
  year: 2012
  ident: 237_CR17
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2012.01.016
– volume: 540
  start-page: 124±
  year: 2016
  ident: 237_CR25
  publication-title: Nature
  doi: 10.1038/nature20558
– volume: 111
  start-page: 7753
  year: 2014
  ident: 237_CR29
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1401857111
– volume: 192
  start-page: 5476
  year: 2014
  ident: 237_CR49
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1400499
– volume: 137
  start-page: 1100
  year: 2009
  ident: 237_CR33
  publication-title: Cell
  doi: 10.1016/j.cell.2009.05.021
– volume: 513
  start-page: 95
  year: 2014
  ident: 237_CR52
  publication-title: Nature
  doi: 10.1038/nature13706
– volume: 13
  start-page: 2514
  year: 1999
  ident: 237_CR27
  publication-title: Genes Dev
  doi: 10.1101/gad.13.19.2514
– volume: 513
  start-page: 90±
  year: 2014
  ident: 237_CR51
  publication-title: Nature
  doi: 10.1038/nature13608
– volume: 21
  start-page: 1709
  year: 2014
  ident: 237_CR40
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2014.77
– volume: 325
  start-page: 332
  year: 2009
  ident: 237_CR34
  publication-title: Science
  doi: 10.1126/science.1172308
– volume: 35
  start-page: 908
  year: 2011
  ident: 237_CR44
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.09.020
– volume: 25
  start-page: 343
  year: 2006
  ident: 237_CR1
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.08.008
– volume: 17
  start-page: 434±
  year: 2015
  ident: 237_CR55
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3120
– volume: 240
  start-page: 157
  year: 1999
  ident: 237_CR14
  publication-title: Gene
  doi: 10.1016/S0378-1119(99)00419-9
– volume: 206
  start-page: 1873
  year: 2009
  ident: 237_CR46
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20090213
– volume: 25
  start-page: 349
  year: 2006
  ident: 237_CR2
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.08.009
– volume: 540
  start-page: 129-+
  year: 2016
  ident: 237_CR24
  publication-title: Nature
  doi: 10.1038/nature20559
– volume: 24
  start-page: 105
  year: 2014
  ident: 237_CR41
  publication-title: Cell Res.
  doi: 10.1038/cr.2013.171
– volume: 15
  start-page: 6189
  year: 1996
  ident: 237_CR43
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1996.tb01007.x
– volume: 20
  start-page: 674
  year: 2016
  ident: 237_CR20
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2016.09.014
– volume: 8
  start-page: 297
  year: 1998
  ident: 237_CR42
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)80535-X
– volume: 10
  start-page: 1836
  year: 2015
  ident: 237_CR53
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.02.051
– volume: 282
  start-page: 20059
  year: 2007
  ident: 237_CR7
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R700016200
– volume: 157
  start-page: 1189
  year: 2014
  ident: 237_CR11
  publication-title: Cell
  doi: 10.1016/j.cell.2014.04.018
– volume: 148
  start-page: 213
  year: 2012
  ident: 237_CR31
  publication-title: Cell
  doi: 10.1016/j.cell.2011.11.031
– volume: 31
  start-page: 2934
  year: 2011
  ident: 237_CR10
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.05445-11
– volume: 202
  start-page: 8
  year: 2004
  ident: 237_CR3
  publication-title: Immunol. Rev.
  doi: 10.1111/j.0105-2896.2004.00204.x
– volume: 133
  start-page: 693
  year: 2008
  ident: 237_CR28
  publication-title: Cell
  doi: 10.1016/j.cell.2008.03.036
– volume: 15
  start-page: 563
  year: 1997
  ident: 237_CR8
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.15.1.563
– volume: 448
  start-page: 501
  year: 2007
  ident: 237_CR15
  publication-title: Nature
  doi: 10.1038/nature06013
– volume: 451
  start-page: 725
  year: 2008
  ident: 237_CR16
  publication-title: Nature
  doi: 10.1038/nature06537
– volume: 10
  start-page: 916
  year: 2009
  ident: 237_CR38
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2009.109
– volume: 288
  start-page: 16247
  year: 2013
  ident: 237_CR56
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.435545
– volume: 19
  start-page: 2056
  year: 2007
  ident: 237_CR26
  publication-title: Cell. Signal.
  doi: 10.1016/j.cellsig.2007.05.016
– volume: 114
  start-page: 11506
  year: 2017
  ident: 237_CR21
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1700999114
– volume: 110
  start-page: E3109
  year: 2013
  ident: 237_CR12
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1301218110
SSID ssj0058474
Score 2.5559344
Snippet Interferons (IFNs) play an important role in immunomodulatory and antiviral functions. IFN-induced necroptosis has been reported in cells deficient in...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 356
SubjectTerms 631/250/262
631/80/86
Animals
Antibodies
Antiviral drugs
Biomedical and Life Sciences
Biomedicine
Caspase 8 - metabolism
Caspase-8
Cell Line
FADD protein
Fas-Associated Death Domain Protein - metabolism
Fas-associated protein
Humans
Immunology
Immunomodulation
Immunomodulators
Inflammation
Interferon
Interferons - pharmacology
Janus Kinase 1 - metabolism
Kinases
Male
Medical Microbiology
Mice, Inbred C57BL
Mice, Knockout
Microbiology
Mutant Proteins - metabolism
Necroptosis
Necroptosis - drug effects
Protein Binding - drug effects
Protein biosynthesis
Protein Biosynthesis - drug effects
Protein Domains
Protein kinase
Proteins
Receptor-Interacting Protein Serine-Threonine Kinases - metabolism
RNA-Binding Proteins - chemistry
RNA-Binding Proteins - metabolism
Signal Transduction - drug effects
STAT1 Transcription Factor - metabolism
Systemic inflammatory response syndrome
Systemic Inflammatory Response Syndrome - metabolism
Systemic Inflammatory Response Syndrome - pathology
Tumor necrosis factor
Tumor Necrosis Factor-alpha
Vaccine
γ-Interferon
Title ZBP1 mediates interferon-induced necroptosis
URI https://link.springer.com/article/10.1038/s41423-019-0237-x
https://www.ncbi.nlm.nih.gov/pubmed/31076724
https://www.proquest.com/docview/2384801620
https://www.proquest.com/docview/2695273075
https://www.proquest.com/docview/2231910695
https://pubmed.ncbi.nlm.nih.gov/PMC7109092
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba90wDBZby2AvY901W3fIYE_bTOPIcZynsZaWsodSxgqHvYTEsVmhJN3JKXT_fpJzGWe9PFsBR7KtT5b8CeBDVlnUvkLRYKaFyrJaGIrZhCwsOmkd-bRQ5Xuij8_Ut2W2HC_c-rGscjoTw0HddJbvyPdSXTBXGHm4L5e_BXeN4uzq2ELjIWwzdRkHX_lyDrg4AxiyyjonFKmNnLKaaPZ6JQlIUCBdCPJaubje9Es3wObNmsn_EqfBHx09hScjkIy_DpbfgQeufQaPhtaSf57D55_7pzIO70IITMbMCrHybtW1goJwMmcTt467d627_rx_AWdHhz8OjsXYGUFYVZi1wLpyCilYQY-olXc2Sa32ypJDUnmWep86nyjl2DtrVE5V_IS1VkbqWroEX8JW27XuNcTWIspam8pZo9DrAhtbNHkhsXZGKxdBMumltCNtOHevuChD-hpNOaiyJFWWrMryOoKP8yeXA2fGfcK7k7LLcfv0JeEIprXRaXL78LwWIng_D9O-4GRH1bruimQIuBIUIskIXg2mmydDkDanNaEiyDeMOgsw5_bmSHv-K3Bvc-lqUqQRfJrM_29ad_7jm_t_4i08TjmKD_VAu7C1Xl25dwR11vUirOcFbO8fnpx-X4S7qL9Ha_tI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9UwDLfGEIIL4pvCgCLBBYjWNGmaHhDia3pjY-KwSU9csjZ1xKSp3V7fxPZP8TfipK9Fj8FuO8etEtuJf44dG-BFVlqhXClYLTLFZJZVTJPPxnhhBXKLZNNClu-OmuzJL9NsugK_hrcwPq1yOBPDQV231t-Rr6eq8LXCyMK9OzpmvmuUj64OLTR6tdjCs5_ksnVvNz-RfF-m6cbn3Y8TtugqwKws9JyJqkQpCOgLJ4SSDm2SWuWkpcNc5lnqXIoukRK9ZVNCoiz9889Kaq4qjomg_16Bq2R4E59CmE9HB89HHEMUW-WEWpXmQxRV6PVOcgIu5LgXjKxkzk6X7eA5cHs-R_OvQG2wfxu34OYCuMbve027DSvY3IFrfSvLs7vw5vuHbzwO71AIvMa-CsXM4axtGDn9pD513KDvFjZvu4PuHuxdCs_uw2rTNvgQYmuF4JXSJVothVOFqG1R5wUXFWolMYJk4IuxizLlvlvGoQnhcqFNz0pDrDSeleY0glfjJ0d9jY6LiNcGZpvFdu0M4RZfRkelyb-HR92L4Pk4TPvQB1fKBtsToiGgTNCLKCN40ItunAypSk46ISPIl4Q6Evga38sjzcGPUOvbp8omRRrB60H8f6b13zU-ungRz-D6ZPfrttne3Nl6DDdSf4MQcpHWYHU-O8EnBLPm1dOg2zHsX_Zm-g04SjPM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXVN6BAkGCC2Bt4nEc51BVQFm1FFU9UGnFxSSOLVZCSdlsRfvX-HUd54WWQm89exLZ8_B89oxnAF4muUHpcmQlJpKJJCmYojMbizODNjaWfFqb5Xsgd4_Ep1kyW4Pfw1sYn1Y57IntRl3Wxt-RT7jMfK0w8nAT16dFHO5Mt49_Mt9Bykdah3YanYrs27NfdHxrtvZ2SNavOJ9-_PJhl_UdBpgRmVoyLHIrkEA_OkQpnDURN9IJQxu7SBPuHLcuEsJ6LydRWJH7p6CFULEsYhsh_fcaXE-R3CbZUjobD3s--thGtGVKCFaqeIioopo0IiYQQ4f4jJHHTNnpqk-8AHQv5mv-FbRtfeF0A273IDZ812ndHViz1V240bW1PLsHb7--P4zD9k0KAdnQV6RYOLuoKzavSlKlMqys7xy2rJt5cx-OroRnD2C9qiv7CEJjEONCqtwaJdDJDEuTlWkWY2GVFDaAaOCLNn3Jct8544duQ-eodMdKTazUnpX6NIDX4yfHXb2Oy4g3B2br3nQbTRjGl9SRPPr38KiHAbwYh8kmfaAlr2x9QjQEmgmGEWUADzvRjZMhOJ2STogA0hWhjgS-3vfqSDX_3tb99mmzUcYDeDOI_8-0_rvGx5cv4jncJDPSn_cO9p_ALe4vE9q0pE1YXy5O7FNCXMviWavaIXy7als6B8iMOAI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ZBP1+mediates+interferon-induced+necroptosis&rft.jtitle=Cellular+%26+molecular+immunology&rft.au=Yang%2C+Daowei&rft.au=Liang%2C+Yaoji&rft.au=Zhao%2C+Shubo&rft.au=Ding%2C+Yan&rft.date=2020-04-01&rft.issn=1672-7681&rft.eissn=2042-0226&rft.volume=17&rft.issue=4&rft.spage=356&rft.epage=368&rft_id=info:doi/10.1038%2Fs41423-019-0237-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41423_019_0237_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1672-7681&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1672-7681&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1672-7681&client=summon