ZBP1 mediates interferon-induced necroptosis
Interferons (IFNs) play an important role in immunomodulatory and antiviral functions. IFN-induced necroptosis has been reported in cells deficient in receptor-interacting protein kinase 1 (RIPK1), Fas-associated protein with death domain (FADD), or caspase-8, but the mechanism is largely unknown. H...
Saved in:
Published in | Cellular & molecular immunology Vol. 17; no. 4; pp. 356 - 368 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.04.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1672-7681 2042-0226 2042-0226 |
DOI | 10.1038/s41423-019-0237-x |
Cover
Loading…
Abstract | Interferons (IFNs) play an important role in immunomodulatory and antiviral functions. IFN-induced necroptosis has been reported in cells deficient in receptor-interacting protein kinase 1 (RIPK1), Fas-associated protein with death domain (FADD), or caspase-8, but the mechanism is largely unknown. Here, we report that the DNA-dependent activator of IFN regulatory factors (ZBP1, also known as DAI) is required for both type I (β) and type II (γ) IFN-induced necroptosis. We show that L929 fibroblast cells became susceptible to IFN-induced necroptosis when
RIPK1
,
FADD
, or
Caspase-8
was genetically deleted, confirming the antinecroptotic role of these proteins in IFN signaling. We found that the pronecroptotic signal from IFN stimulation depends on new protein synthesis and identified ZBP1, an IFN-stimulated gene (ISG) product, as the de novo synthesized protein that triggers necroptosis in IFN-stimulated cells. The N-terminal domain (ND) of ZBP1 is important for ZBP1–ZBP1 homointeraction, and its RHIM domain in the C-terminal region interacts with RIPK3 to initiate RIPK3-dependent necroptosis. The antinecroptotic function of RIPK1, FADD, and caspase-8 in IFN-treated cells is most likely executed by caspase-8-mediated cleavage of RIPK3, since the inhibitory effect on necroptosis was eliminated when the caspase-8 cleavage site in RIPK3 was mutated. ZBP1-mediated necroptosis in IFN-treated cells is likely physiologically relevant, as ZBP1 KO mice were significantly protected against acute systemic inflammatory response syndrome (SIRS) induced by TNF + IFN-γ. |
---|---|
AbstractList | Interferons (IFNs) play an important role in immunomodulatory and antiviral functions. IFN-induced necroptosis has been reported in cells deficient in receptor-interacting protein kinase 1 (RIPK1), Fas-associated protein with death domain (FADD), or caspase-8, but the mechanism is largely unknown. Here, we report that the DNA-dependent activator of IFN regulatory factors (ZBP1, also known as DAI) is required for both type I (β) and type II (γ) IFN-induced necroptosis. We show that L929 fibroblast cells became susceptible to IFN-induced necroptosis when
RIPK1
,
FADD
, or
Caspase-8
was genetically deleted, confirming the antinecroptotic role of these proteins in IFN signaling. We found that the pronecroptotic signal from IFN stimulation depends on new protein synthesis and identified ZBP1, an IFN-stimulated gene (ISG) product, as the de novo synthesized protein that triggers necroptosis in IFN-stimulated cells. The N-terminal domain (ND) of ZBP1 is important for ZBP1–ZBP1 homointeraction, and its RHIM domain in the C-terminal region interacts with RIPK3 to initiate RIPK3-dependent necroptosis. The antinecroptotic function of RIPK1, FADD, and caspase-8 in IFN-treated cells is most likely executed by caspase-8-mediated cleavage of RIPK3, since the inhibitory effect on necroptosis was eliminated when the caspase-8 cleavage site in RIPK3 was mutated. ZBP1-mediated necroptosis in IFN-treated cells is likely physiologically relevant, as ZBP1 KO mice were significantly protected against acute systemic inflammatory response syndrome (SIRS) induced by TNF + IFN-γ. Interferons (IFNs) play an important role in immunomodulatory and antiviral functions. IFN-induced necroptosis has been reported in cells deficient in receptor-interacting protein kinase 1 (RIPK1), Fas-associated protein with death domain (FADD), or caspase-8, but the mechanism is largely unknown. Here, we report that the DNA-dependent activator of IFN regulatory factors (ZBP1, also known as DAI) is required for both type I (β) and type II (γ) IFN-induced necroptosis. We show that L929 fibroblast cells became susceptible to IFN-induced necroptosis when RIPK1, FADD, or Caspase-8 was genetically deleted, confirming the antinecroptotic role of these proteins in IFN signaling. We found that the pronecroptotic signal from IFN stimulation depends on new protein synthesis and identified ZBP1, an IFN-stimulated gene (ISG) product, as the de novo synthesized protein that triggers necroptosis in IFN-stimulated cells. The N-terminal domain (ND) of ZBP1 is important for ZBP1–ZBP1 homointeraction, and its RHIM domain in the C-terminal region interacts with RIPK3 to initiate RIPK3-dependent necroptosis. The antinecroptotic function of RIPK1, FADD, and caspase-8 in IFN-treated cells is most likely executed by caspase-8-mediated cleavage of RIPK3, since the inhibitory effect on necroptosis was eliminated when the caspase-8 cleavage site in RIPK3 was mutated. ZBP1-mediated necroptosis in IFN-treated cells is likely physiologically relevant, as ZBP1 KO mice were significantly protected against acute systemic inflammatory response syndrome (SIRS) induced by TNF + IFN-γ. Interferons (IFNs) play an important role in immunomodulatory and antiviral functions. IFN-induced necroptosis has been reported in cells deficient in receptor-interacting protein kinase 1 (RIPK1), Fas-associated protein with death domain (FADD), or caspase-8, but the mechanism is largely unknown. Here, we report that the DNA-dependent activator of IFN regulatory factors (ZBP1, also known as DAI) is required for both type I (β) and type II (γ) IFN-induced necroptosis. We show that L929 fibroblast cells became susceptible to IFN-induced necroptosis when RIPK1, FADD, or Caspase-8 was genetically deleted, confirming the antinecroptotic role of these proteins in IFN signaling. We found that the pronecroptotic signal from IFN stimulation depends on new protein synthesis and identified ZBP1, an IFN-stimulated gene (ISG) product, as the de novo synthesized protein that triggers necroptosis in IFN-stimulated cells. The N-terminal domain (ND) of ZBP1 is important for ZBP1-ZBP1 homointeraction, and its RHIM domain in the C-terminal region interacts with RIPK3 to initiate RIPK3-dependent necroptosis. The antinecroptotic function of RIPK1, FADD, and caspase-8 in IFN-treated cells is most likely executed by caspase-8-mediated cleavage of RIPK3, since the inhibitory effect on necroptosis was eliminated when the caspase-8 cleavage site in RIPK3 was mutated. ZBP1-mediated necroptosis in IFN-treated cells is likely physiologically relevant, as ZBP1 KO mice were significantly protected against acute systemic inflammatory response syndrome (SIRS) induced by TNF + IFN-γ.Interferons (IFNs) play an important role in immunomodulatory and antiviral functions. IFN-induced necroptosis has been reported in cells deficient in receptor-interacting protein kinase 1 (RIPK1), Fas-associated protein with death domain (FADD), or caspase-8, but the mechanism is largely unknown. Here, we report that the DNA-dependent activator of IFN regulatory factors (ZBP1, also known as DAI) is required for both type I (β) and type II (γ) IFN-induced necroptosis. We show that L929 fibroblast cells became susceptible to IFN-induced necroptosis when RIPK1, FADD, or Caspase-8 was genetically deleted, confirming the antinecroptotic role of these proteins in IFN signaling. We found that the pronecroptotic signal from IFN stimulation depends on new protein synthesis and identified ZBP1, an IFN-stimulated gene (ISG) product, as the de novo synthesized protein that triggers necroptosis in IFN-stimulated cells. The N-terminal domain (ND) of ZBP1 is important for ZBP1-ZBP1 homointeraction, and its RHIM domain in the C-terminal region interacts with RIPK3 to initiate RIPK3-dependent necroptosis. The antinecroptotic function of RIPK1, FADD, and caspase-8 in IFN-treated cells is most likely executed by caspase-8-mediated cleavage of RIPK3, since the inhibitory effect on necroptosis was eliminated when the caspase-8 cleavage site in RIPK3 was mutated. ZBP1-mediated necroptosis in IFN-treated cells is likely physiologically relevant, as ZBP1 KO mice were significantly protected against acute systemic inflammatory response syndrome (SIRS) induced by TNF + IFN-γ. |
Author | Zhao, Shubo Ding, Yan Wu, Su-Qin Liang, Yaoji Ai, Tingting Han, Jiahuai Zhuang, Qiuyu Shi, Qilin Yang, Daowei |
Author_xml | – sequence: 1 givenname: Daowei surname: Yang fullname: Yang, Daowei organization: State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University – sequence: 2 givenname: Yaoji surname: Liang fullname: Liang, Yaoji organization: State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Department of Cancer Prevention Diagnosis and Treatment, Cancer Hospital, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, School of Pharmaceutical Sciences, Xiamen University, XMU School of Pharmaceutical Sciences-Amogene Joint R&D Center for Genetic Diagnostics, Amogene Biotech – sequence: 3 givenname: Shubo surname: Zhao fullname: Zhao, Shubo organization: State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University – sequence: 4 givenname: Yan surname: Ding fullname: Ding, Yan organization: State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University – sequence: 5 givenname: Qiuyu surname: Zhuang fullname: Zhuang, Qiuyu organization: State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University – sequence: 6 givenname: Qilin surname: Shi fullname: Shi, Qilin organization: State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University – sequence: 7 givenname: Tingting surname: Ai fullname: Ai, Tingting organization: State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University – sequence: 8 givenname: Su-Qin surname: Wu fullname: Wu, Su-Qin organization: State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University – sequence: 9 givenname: Jiahuai surname: Han fullname: Han, Jiahuai email: jhan@xmu.edu.cn organization: State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31076724$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1rVDEUxYNU7LT6B7iRATcufHpvkpe8bIRa6gcUdKEbNyGTuakpb5IxeU_qf98M0_pRsKsQ7u8czr3niB2knIixpwivEMTwukqUXHSApgMudHf1gC04SN5-XB2wBSrNO60GPGRHtV4C9IPU8hE7FAi6zeSCvfz29jMuN7SObqK6jGmiEqjk1MW0nj2tl4l8ydsp11gfs4fBjZWe3LzH7Ou7sy-nH7rzT-8_np6cd16aYerEypEU0hgRhFAykAfuVZBegJC65yFwCiAlYc9RCUnSCWP6lRxQrZBAHLM3e9_tvGrRPKWpuNFuS9y48stmF-2_kxS_24v802oEA4Y3gxc3BiX_mKlOdhOrp3F0ifJcLecCDYIyfUOf30Ev81xSW8_yNudagL6fEoMcABXf5X72d-7fgW_P3QC9B9pJay0UrI-Tm2LerRFHi2B3xdp9sbYVa3fF2qumxDvKW_P7NHyvqY1NF1T-hP6_6BpoRbL1 |
CitedBy_id | crossref_primary_10_1016_j_chom_2021_05_009 crossref_primary_10_1089_thy_2024_0087 crossref_primary_10_1186_s12967_024_04995_1 crossref_primary_10_1038_s41467_022_34080_4 crossref_primary_10_1158_2159_8290_CD_20_0805 crossref_primary_10_3390_ijms231810224 crossref_primary_10_1093_intimm_dxac061 crossref_primary_10_1073_pnas_2410628121 crossref_primary_10_1016_j_ijmm_2021_151491 crossref_primary_10_1021_acs_jmedchem_3c00665 crossref_primary_10_1158_0008_5472_CAN_20_2199 crossref_primary_10_1016_j_biopha_2024_116690 crossref_primary_10_3389_fnmol_2022_908683 crossref_primary_10_3390_biomedicines10020235 crossref_primary_10_1097_CM9_0000000000002239 crossref_primary_10_1016_j_cytogfr_2024_03_005 crossref_primary_10_1038_s41392_022_01043_6 crossref_primary_10_3389_fimmu_2023_1148727 crossref_primary_10_1016_j_cell_2020_11_025 crossref_primary_10_3390_antiox13030256 crossref_primary_10_1007_s00109_023_02403_7 crossref_primary_10_1038_s41392_022_01110_y crossref_primary_10_1038_s41467_024_49342_6 crossref_primary_10_1111_imm_13592 crossref_primary_10_3389_fonc_2022_899443 crossref_primary_10_1016_j_biopha_2024_117196 crossref_primary_10_1042_BST20220535 crossref_primary_10_1016_j_molcel_2023_12_041 crossref_primary_10_1016_j_celrep_2020_108389 crossref_primary_10_3390_ijms25094789 crossref_primary_10_2147_DDDT_S397971 crossref_primary_10_3324_haematol_2020_274480 crossref_primary_10_1016_j_tox_2021_152923 crossref_primary_10_1002_mco2_725 crossref_primary_10_1038_s41420_022_00869_x crossref_primary_10_1152_ajpgi_00104_2022 crossref_primary_10_3389_fonc_2021_678562 crossref_primary_10_3389_fimmu_2022_978824 crossref_primary_10_1038_s41419_024_06514_y crossref_primary_10_3389_fimmu_2020_625504 crossref_primary_10_3389_fimmu_2020_622511 crossref_primary_10_1016_j_cyto_2023_156376 crossref_primary_10_1128_IAI_00021_21 crossref_primary_10_1016_j_celrep_2021_108976 crossref_primary_10_1038_s41591_022_01959_0 crossref_primary_10_1111_jcmm_17128 crossref_primary_10_1038_s41419_024_06889_y crossref_primary_10_3390_ijms23063079 crossref_primary_10_1038_s41419_022_04740_w crossref_primary_10_1038_s41598_023_31285_5 crossref_primary_10_3389_fimmu_2024_1501659 crossref_primary_10_3390_ijms22147426 crossref_primary_10_1038_s41435_021_00140_w crossref_primary_10_1186_s12964_024_01531_y crossref_primary_10_1042_BCJ20210724 crossref_primary_10_3389_fgene_2022_865559 crossref_primary_10_3390_v16020290 crossref_primary_10_1038_s44318_024_00238_7 crossref_primary_10_1016_j_scitotenv_2022_157185 crossref_primary_10_1038_s41418_020_00722_7 crossref_primary_10_1016_j_celrep_2021_109858 crossref_primary_10_3390_ijms241210108 crossref_primary_10_1093_nar_gkae654 crossref_primary_10_1146_annurev_genet_071719_022748 crossref_primary_10_1038_s41420_024_02024_0 crossref_primary_10_1016_j_ijmm_2023_151574 crossref_primary_10_1038_s41419_024_06471_6 crossref_primary_10_1084_jem_20221156 crossref_primary_10_1186_s12974_022_02469_z crossref_primary_10_1186_s12943_024_02172_y crossref_primary_10_2174_1874467215666220127112201 crossref_primary_10_1016_j_molmet_2022_101582 crossref_primary_10_15252_embr_201949762 crossref_primary_10_1016_j_critrevonc_2025_104658 crossref_primary_10_1016_j_jid_2023_02_025 crossref_primary_10_3389_fphar_2025_1559659 crossref_primary_10_1172_JCI154993 crossref_primary_10_3390_biomedicines11102792 crossref_primary_10_1186_s12964_024_01744_1 crossref_primary_10_1186_s13020_024_00883_4 crossref_primary_10_1073_pnas_2204049119 crossref_primary_10_1038_s41419_020_2328_0 crossref_primary_10_1038_s41586_020_2129_8 crossref_primary_10_1242_jcs_260091 crossref_primary_10_3389_fimmu_2022_998470 crossref_primary_10_3390_ijms251910760 crossref_primary_10_1038_s41418_024_01279_5 crossref_primary_10_3389_fgene_2024_1437715 crossref_primary_10_1002_iid3_997 crossref_primary_10_1016_j_coi_2023_102348 crossref_primary_10_1016_j_celrep_2024_114221 crossref_primary_10_3389_fimmu_2024_1384606 crossref_primary_10_3389_fmed_2021_644244 crossref_primary_10_3390_cancers14163891 crossref_primary_10_3390_ph17030299 crossref_primary_10_1084_jem_20191913 crossref_primary_10_1016_j_phymed_2025_156657 crossref_primary_10_1126_scisignal_abq0837 crossref_primary_10_3390_ijms25189947 crossref_primary_10_3390_molecules28010052 crossref_primary_10_1016_j_intimp_2024_112373 crossref_primary_10_1016_j_vetmic_2023_109848 crossref_primary_10_3389_fimmu_2023_1241694 crossref_primary_10_3390_biom12060828 crossref_primary_10_1016_j_intimp_2023_110603 crossref_primary_10_1038_s41467_021_23004_3 |
Cites_doi | 10.1038/nature13608 10.1038/nature14191 10.1016/j.cell.2009.05.021 10.1074/jbc.R700016200 10.1016/j.cell.2014.04.019 10.4049/jimmunol.1400499 10.1073/pnas.1301218110 10.15252/embj.201796476 10.1016/j.celrep.2015.02.051 10.1038/cdd.2011.164 10.1016/j.chom.2012.01.016 10.1146/annurev.immunol.15.1.563 10.1016/S0378-1119(99)00419-9 10.1126/science.1172308 10.1016/j.cellsig.2007.05.016 10.1016/j.cell.2008.03.036 10.1128/MCB.05445-11 10.1038/nature20558 10.1016/j.immuni.2006.08.014 10.1523/JNEUROSCI.1860-14.2014 10.1038/embor.2009.109 10.1084/jem.20090213 10.1053/j.gastro.2006.09.052 10.1016/j.cell.2014.04.018 10.1126/science.3764421 10.4049/jimmunol.1400590 10.4049/jimmunol.181.9.6427 10.1126/sciimmunol.aag2045 10.1016/j.cell.2009.05.037 10.1016/j.immuni.2006.08.008 10.1111/j.0105-2896.2004.00204.x 10.1073/pnas.1700999114 10.1073/pnas.1401857111 10.1016/j.immuni.2011.09.020 10.1038/nature13706 10.1016/j.cell.2011.11.031 10.1016/S1074-7613(00)80535-X 10.15252/embr.201743947 10.1016/j.immuni.2006.08.009 10.1016/j.chom.2016.09.014 10.1074/jbc.M112.435545 10.1016/j.chom.2015.01.002 10.3389/fcimb.2014.00050 10.1038/nature06013 10.1101/gad.13.19.2514 10.1111/imr.12001 10.1038/ncb3120 10.1002/j.1460-2075.1996.tb01007.x 10.1073/pnas.1717190115 10.1038/cdd.2014.77 10.1038/cr.2013.171 10.1038/nature20559 10.1038/nature06537 |
ContentType | Journal Article |
Copyright | CSI and USTC 2019 CSI and USTC 2019. |
Copyright_xml | – notice: CSI and USTC 2019 – notice: CSI and USTC 2019. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1038/s41423-019-0237-x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE ProQuest Central Student MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2042-0226 |
EndPage | 368 |
ExternalDocumentID | PMC7109092 31076724 10_1038_s41423_019_0237_x |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Basic Research Program of China (973 Program; 2015CB553800, 2013CB944903, 2014CB541804) – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 81788101; 31420103910, 81630042, 31500737, 31601122 funderid: https://doi.org/10.13039/501100001809 – fundername: China Postdoctoral Science Foundation grantid: 2018T110638, 2017M620267, 2015T80680; 2018T110638; 2018T110638; 2017M620267; 2015T80680 funderid: https://doi.org/10.13039/501100002858 – fundername: ; – fundername: ; grantid: 81788101; 31420103910, 81630042, 31500737, 31601122 – fundername: ; grantid: 2018T110638, 2017M620267, 2015T80680; 2018T110638; 2018T110638; 2017M620267; 2015T80680 |
GroupedDBID | --- -05 -0E -Q- -SE -S~ 0R~ 29B 2B. 2WC 3V. 4.4 406 53G 5GY 5VR 6J9 70F 7X7 88E 8FE 8FH 8FI 8FJ 92F 92I 92M 93N 9D9 9DE AACDK AANZL AASML AATNV AAXDM AAZLF ABAKF ABAWZ ABJNI ABKZE ABUWG ABZZP ACAOD ACGFS ACKTT ACPRK ACRQY ACZOJ ADFRT ADHDB AEFQL AEJRE AEMSY AENEX AEVLU AEXYK AFBBN AFKRA AFSHS AFUIB AGAYW AGHAI AGQEE AHMBA AHSBF AIGIU AILAN AJRNO ALIPV ALMA_UNASSIGNED_HOLDINGS AMYLF AXYYD BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CAJEE CCEZO CCPQU CHBEP CIEJG CW9 DIK DNIVK DPUIP DU5 EBLON EBS EE. EIOEI EJD F5P FA0 FDQFY FERAY FIGPU FIZPM FRP FSGXE FYUFA GX1 HCIFZ HMCUK HYE HZ~ IWAJR JUIAU JZLTJ KQ8 LK8 M1P M7P NAO NQJWS O9- OK1 P6G PQQKQ PROAC PSQYO Q-- Q-4 R-E RNT RNTTT ROL RPM RT5 S.. SNX SNYQT SRMVM SWTZT T8U TAOOD TBHMF TCJ TDRGL TGQ TR2 TSG U1F U1G U5E U5O UKHRP WFFXF ~88 ~MX AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT SOJ ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS PUEGO 7X8 5PM |
ID | FETCH-LOGICAL-c498t-3bae434993f3364fec02c6f4c3034752ff2ef044e1521634e4a3995b4816b1e03 |
IEDL.DBID | 7X7 |
ISSN | 1672-7681 2042-0226 |
IngestDate | Thu Aug 21 14:05:31 EDT 2025 Fri Jul 11 15:23:08 EDT 2025 Sat Aug 23 12:50:45 EDT 2025 Wed Jul 16 16:37:27 EDT 2025 Mon Jul 21 04:15:22 EDT 2025 Tue Jul 01 01:08:45 EDT 2025 Thu Apr 24 23:07:30 EDT 2025 Fri Feb 21 02:37:06 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | ZBP1 interferon necroptosis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c498t-3bae434993f3364fec02c6f4c3034752ff2ef044e1521634e4a3995b4816b1e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/s41423-019-0237-x.pdf |
PMID | 31076724 |
PQID | 2384801620 |
PQPubID | 2041960 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7109092 proquest_miscellaneous_2231910695 proquest_journals_2695273075 proquest_journals_2384801620 pubmed_primary_31076724 crossref_citationtrail_10_1038_s41423_019_0237_x crossref_primary_10_1038_s41423_019_0237_x springer_journals_10_1038_s41423_019_0237_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: China |
PublicationTitle | Cellular & molecular immunology |
PublicationTitleAbbrev | Cell Mol Immunol |
PublicationTitleAlternate | Cell Mol Immunol |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Thapa (CR20) 2016; 20 Vilcek (CR1) 2006; 25 Koehler (CR21) 2017; 114 Dillon (CR11) 2014; 157 Maelfait (CR19) 2017; 36 Berger (CR49) 2014; 192 Chen (CR35) 2013; 288 Dannappel (CR51) 2014; 513 Upton, Kaiser, Mocarski (CR17) 2012; 11 Huang (CR36) 2015; 17 Takaoka (CR15) 2007; 448 Pestka, Krause, Walter (CR3) 2004; 202 Lin, Devin, Rodriguez, Liu (CR27) 1999; 13 Chen (CR56) 2013; 288 Lin (CR25) 2016; 540 Rebsamen (CR38) 2009; 10 Ofengeim (CR53) 2015; 10 Duprez (CR44) 2011; 35 Tracey (CR45) 1986; 234 van Boxel-Dezaire, Rani, Stark (CR4) 2006; 25 Kaiser, Upton, Mocarski (CR39) 2008; 181 Polykratis (CR50) 2014; 193 Newton (CR24) 2016; 540 Rickard (CR30) 2014; 157 Bach, Aguet, Schreiber (CR8) 1997; 15 Sridharan (CR18) 2017; 18 Kaiser (CR29) 2014; 111 Upton, Kaiser, Mocarski (CR37) 2012; 11 Schindler, Levy, Decker (CR7) 2007; 282 Dussurget, Bierne, Cossart (CR9) 2014; 4 He (CR33) 2009; 137 Thapa (CR12) 2013; 110 Chen (CR55) 2015; 17 Kuriakose (CR23) 2016; 1 Sun (CR31) 2012; 148 Piehler, Thomas, Garcia, Schreiber (CR5) 2012; 250 Marcello (CR6) 2006; 131 Thapa (CR10) 2011; 31 Vanlangenakker, Vanden Berghe, Vandenabeele (CR47) 2012; 19 Ishii (CR16) 2008; 451 Ting, Pimentel-Muinos, Seed (CR43) 1996; 15 Kelliher (CR42) 1998; 8 Chen (CR22) 2018; 115 Feng (CR26) 2007; 19 Takahashi (CR52) 2014; 513 Fu (CR14) 1999; 240 Zhang (CR54) 2014; 34 Wu (CR40) 2014; 21 Chen (CR41) 2014; 24 Honda, Takaoka, Taniguchi (CR2) 2006; 25 Cho (CR32) 2009; 137 McComb (CR13) 2014; 111 Huys (CR46) 2009; 206 Zhang (CR34) 2009; 325 Wang, Du, Wang (CR28) 2008; 133 Pasparakis, Vandenabeele (CR48) 2015; 517 EA Bach (237_CR8) 1997; 15 D Ofengeim (237_CR53) 2015; 10 J Vilcek (237_CR1) 2006; 25 RJ Thapa (237_CR10) 2011; 31 AH van Boxel-Dezaire (237_CR4) 2006; 25 KJ Ishii (237_CR16) 2008; 451 KJ Tracey (237_CR45) 1986; 234 SB Berger (237_CR49) 2014; 192 JW Upton (237_CR37) 2012; 11 A Takaoka (237_CR15) 2007; 448 W Chen (237_CR35) 2013; 288 L Duprez (237_CR44) 2011; 35 N Vanlangenakker (237_CR47) 2012; 19 H Koehler (237_CR21) 2017; 114 DW Zhang (237_CR34) 2009; 325 C Schindler (237_CR7) 2007; 282 L Sun (237_CR31) 2012; 148 M Pasparakis (237_CR48) 2015; 517 K Honda (237_CR2) 2006; 25 L Huys (237_CR46) 2009; 206 J Maelfait (237_CR19) 2017; 36 S McComb (237_CR13) 2014; 111 RJ Thapa (237_CR20) 2016; 20 O Dussurget (237_CR9) 2014; 4 YS Cho (237_CR32) 2009; 137 Y Lin (237_CR27) 1999; 13 N Takahashi (237_CR52) 2014; 513 AT Ting (237_CR43) 1996; 15 JW Upton (237_CR17) 2012; 11 WZ Chen (237_CR55) 2015; 17 WZ Chen (237_CR56) 2013; 288 Z Huang (237_CR36) 2015; 17 Y Fu (237_CR14) 1999; 240 T Marcello (237_CR6) 2006; 131 K Newton (237_CR24) 2016; 540 L Wang (237_CR28) 2008; 133 Y Zhang (237_CR54) 2014; 34 MA Kelliher (237_CR42) 1998; 8 RJ Thapa (237_CR12) 2013; 110 WJ Kaiser (237_CR29) 2014; 111 X Chen (237_CR41) 2014; 24 D Chen (237_CR22) 2018; 115 S He (237_CR33) 2009; 137 M Rebsamen (237_CR38) 2009; 10 WJ Kaiser (237_CR39) 2008; 181 M Dannappel (237_CR51) 2014; 513 S Pestka (237_CR3) 2004; 202 J Piehler (237_CR5) 2012; 250 T Kuriakose (237_CR23) 2016; 1 A Polykratis (237_CR50) 2014; 193 J Lin (237_CR25) 2016; 540 S Feng (237_CR26) 2007; 19 JA Rickard (237_CR30) 2014; 157 H Sridharan (237_CR18) 2017; 18 XN Wu (237_CR40) 2014; 21 CP Dillon (237_CR11) 2014; 157 |
References_xml | – volume: 513 start-page: 90± year: 2014 ident: CR51 article-title: RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis publication-title: Nature doi: 10.1038/nature13608 – volume: 517 start-page: 311 year: 2015 end-page: 20 ident: CR48 article-title: Necroptosis and its role in inflammation publication-title: Nature doi: 10.1038/nature14191 – volume: 137 start-page: 1100 year: 2009 end-page: 11 ident: CR33 article-title: Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha publication-title: Cell doi: 10.1016/j.cell.2009.05.021 – volume: 282 start-page: 20059 year: 2007 end-page: 63 ident: CR7 article-title: JAK-STAT signaling: from interferons to cytokines publication-title: J. Biol. Chem. doi: 10.1074/jbc.R700016200 – volume: 157 start-page: 1175 year: 2014 end-page: 88 ident: CR30 article-title: RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis publication-title: Cell doi: 10.1016/j.cell.2014.04.019 – volume: 192 start-page: 5476 year: 2014 end-page: 80 ident: CR49 article-title: Cutting edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice publication-title: J. Immunol. doi: 10.4049/jimmunol.1400499 – volume: 110 start-page: E3109 year: 2013 end-page: E18 ident: CR12 article-title: Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1301218110 – volume: 36 start-page: 2529 year: 2017 end-page: 43 ident: CR19 article-title: Sensing of viral and endogenous RNA by ZBP1/DAI induces necroptosis publication-title: EMBO J. doi: 10.15252/embj.201796476 – volume: 10 start-page: 1836 year: 2015 end-page: 49 ident: CR53 article-title: Activation of necroptosis in multiple sclerosis publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.02.051 – volume: 19 start-page: 75 year: 2012 end-page: 86 ident: CR47 article-title: Many stimuli pull the necrotic trigger, an overview publication-title: Cell Death Differ. doi: 10.1038/cdd.2011.164 – volume: 11 start-page: 290 year: 2012 end-page: 7 ident: CR37 article-title: DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA publication-title: Cell Host Microbe doi: 10.1016/j.chom.2012.01.016 – volume: 15 start-page: 563 year: 1997 end-page: 91 ident: CR8 article-title: The IFN gamma receptor: a paradigm for cytokine receptor signaling publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.15.1.563 – volume: 240 start-page: 157 year: 1999 end-page: 63 ident: CR14 article-title: Cloning of DLM-1, a novel gene that is up-regulated in activated macrophages, using RNA differential display publication-title: Gene doi: 10.1016/S0378-1119(99)00419-9 – volume: 325 start-page: 332 year: 2009 end-page: 6 ident: CR34 article-title: RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis publication-title: Science doi: 10.1126/science.1172308 – volume: 19 start-page: 2056 year: 2007 end-page: 67 ident: CR26 article-title: Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2007.05.016 – volume: 133 start-page: 693 year: 2008 end-page: 703 ident: CR28 article-title: TNF-alpha induces two distinct caspase-8 activation pathways publication-title: Cell doi: 10.1016/j.cell.2008.03.036 – volume: 31 start-page: 2934 year: 2011 end-page: 46 ident: CR10 article-title: NF-kappaB protects cells from gamma interferon-induced RIP1-dependent necroptosis publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.05445-11 – volume: 540 start-page: 124± year: 2016 ident: CR25 article-title: RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation publication-title: Nature doi: 10.1038/nature20558 – volume: 25 start-page: 361 year: 2006 end-page: 72 ident: CR4 article-title: Complex modulation of cell type-specific signaling in response to type I interferons publication-title: Immunity doi: 10.1016/j.immuni.2006.08.014 – volume: 34 start-page: 11929 year: 2014 end-page: 47 ident: CR54 article-title: An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1860-14.2014 – volume: 10 start-page: 916 year: 2009 end-page: 22 ident: CR38 article-title: DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-kappa B publication-title: EMBO Rep. doi: 10.1038/embor.2009.109 – volume: 206 start-page: 1873 year: 2009 end-page: 82 ident: CR46 article-title: Type I interferon drives tumor necrosis factor-induced lethal shock publication-title: J. Exp. Med. doi: 10.1084/jem.20090213 – volume: 131 start-page: 1887 year: 2006 end-page: 98 ident: CR6 article-title: Interferons alpha and lambda inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics publication-title: Gastroenterology doi: 10.1053/j.gastro.2006.09.052 – volume: 157 start-page: 1189 year: 2014 end-page: 202 ident: CR11 article-title: RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3 publication-title: Cell doi: 10.1016/j.cell.2014.04.018 – volume: 234 start-page: 470 year: 1986 end-page: 4 ident: CR45 article-title: Shock and tissue injury induced by recombinant human cachectin publication-title: Science doi: 10.1126/science.3764421 – volume: 111 start-page: E3206 year: 2014 end-page: E13 ident: CR13 article-title: Type-I interferon signaling through ISGF3 complex is required for sustained Rip3 activation and necroptosis in macrophages publication-title: Proc. Natl Acad. Sci. USA – volume: 193 start-page: 1539 year: 2014 end-page: 43 ident: CR50 article-title: Cutting edge: RIPK1 kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo publication-title: J. Immunol. doi: 10.4049/jimmunol.1400590 – volume: 181 start-page: 6427 year: 2008 end-page: 34 ident: CR39 article-title: Receptor-interacting protein homotypic interaction motif-dependent control of NF-kappa B activation via the DNA-dependent activator of IFN regulatory factors publication-title: J. Immunol. doi: 10.4049/jimmunol.181.9.6427 – volume: 1 start-page: 2 year: 2016 ident: CR23 article-title: ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aag2045 – volume: 137 start-page: 1112 year: 2009 end-page: 23 ident: CR32 article-title: Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation publication-title: Cell doi: 10.1016/j.cell.2009.05.037 – volume: 25 start-page: 343 year: 2006 end-page: 8 ident: CR1 article-title: Fifty years of interferon research: aiming at a moving target publication-title: Immunity doi: 10.1016/j.immuni.2006.08.008 – volume: 202 start-page: 8 year: 2004 end-page: 32 ident: CR3 article-title: Interferons, interferon-like cytokines, and their receptors publication-title: Immunol. Rev. doi: 10.1111/j.0105-2896.2004.00204.x – volume: 114 start-page: 11506 year: 2017 end-page: 11 ident: CR21 article-title: Inhibition of DAI-dependent necroptosis by the Z-DNA binding domain of the vaccinia virus innate immune evasion protein, E3 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1700999114 – volume: 11 start-page: 290 year: 2012 end-page: 7 ident: CR17 article-title: DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA publication-title: Cell Host Microbe doi: 10.1016/j.chom.2012.01.016 – volume: 111 start-page: 7753 year: 2014 end-page: 8 ident: CR29 article-title: RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1401857111 – volume: 35 start-page: 908 year: 2011 end-page: 18 ident: CR44 article-title: RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome publication-title: Immunity doi: 10.1016/j.immuni.2011.09.020 – volume: 513 start-page: 95 year: 2014 end-page: 9 ident: CR52 article-title: RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis publication-title: Nature doi: 10.1038/nature13706 – volume: 148 start-page: 213 year: 2012 end-page: 27 ident: CR31 article-title: Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase publication-title: Cell doi: 10.1016/j.cell.2011.11.031 – volume: 8 start-page: 297 year: 1998 end-page: 303 ident: CR42 article-title: The death domain kinase RIP mediates the TNF-induced NF-kappaB signal publication-title: Immunity doi: 10.1016/S1074-7613(00)80535-X – volume: 18 start-page: 1429 year: 2017 end-page: 41 ident: CR18 article-title: Murine cytomegalovirus IE3-dependent transcription is required for DAI/ZBP1-mediated necroptosis publication-title: EMBO Rep. doi: 10.15252/embr.201743947 – volume: 25 start-page: 349 year: 2006 end-page: 60 ident: CR2 article-title: Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors publication-title: Immunity doi: 10.1016/j.immuni.2006.08.009 – volume: 20 start-page: 674 year: 2016 end-page: 81 ident: CR20 article-title: DAI senses influenza A virus genomic RNA and activates RIPK3-dependent cell death publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.09.014 – volume: 288 start-page: 16247 year: 2013 end-page: 61 ident: CR56 article-title: Diverse sequence determinants control human and mouse receptor interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) interaction in necroptotic signaling publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.435545 – volume: 288 start-page: 16247 year: 2013 end-page: 61 ident: CR35 article-title: Diverse sequence determinants control human and mouse receptor interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) interaction in necroptotic signaling publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.435545 – volume: 17 start-page: 229 year: 2015 end-page: 42 ident: CR36 article-title: RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.01.002 – volume: 4 start-page: 50 year: 2014 ident: CR9 article-title: The bacterial pathogen Listeria monocytogenes and the interferon family: type I, type II and type III interferons publication-title: Front. Cell. Infect. Microbiol. doi: 10.3389/fcimb.2014.00050 – volume: 448 start-page: 501 year: 2007 end-page: U14 ident: CR15 article-title: DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response publication-title: Nature doi: 10.1038/nature06013 – volume: 13 start-page: 2514 year: 1999 end-page: 26 ident: CR27 article-title: Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis publication-title: Genes Dev doi: 10.1101/gad.13.19.2514 – volume: 250 start-page: 317 year: 2012 end-page: 34 ident: CR5 article-title: Structural and dynamic determinants of type I interferon receptor assembly and their functional interpretation publication-title: Immunol. Rev. doi: 10.1111/imr.12001 – volume: 17 start-page: 434± year: 2015 ident: CR55 article-title: Ppm1b negatively regulates necroptosis through dephosphorylating Rip3 publication-title: Nat. Cell Biol. doi: 10.1038/ncb3120 – volume: 15 start-page: 6189 year: 1996 end-page: 96 ident: CR43 article-title: RIP mediates tumor necrosis factor receptor 1 activation of NF-kappaB but not Fas/APO-1-initiated apoptosis publication-title: EMBO J. doi: 10.1002/j.1460-2075.1996.tb01007.x – volume: 115 start-page: 3930 year: 2018 end-page: 5 ident: CR22 article-title: PUMA amplifies necroptosis signaling by activating cytosolic DNA sensors publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1717190115 – volume: 21 start-page: 1709 year: 2014 end-page: 20 ident: CR40 article-title: Distinct roles of RIP1-RIP3 hetero- and RIP3-RIP3 homo-interaction in mediating necroptosis publication-title: Cell Death Differ. doi: 10.1038/cdd.2014.77 – volume: 24 start-page: 105 year: 2014 end-page: 21 ident: CR41 article-title: Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death publication-title: Cell Res. doi: 10.1038/cr.2013.171 – volume: 540 start-page: 129-+ year: 2016 ident: CR24 article-title: RIPK1 inhibits ZBP1-driven necroptosis during development publication-title: Nature doi: 10.1038/nature20559 – volume: 451 start-page: 725 year: 2008 end-page: 9 ident: CR16 article-title: TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines publication-title: Nature doi: 10.1038/nature06537 – volume: 137 start-page: 1112 year: 2009 ident: 237_CR32 publication-title: Cell doi: 10.1016/j.cell.2009.05.037 – volume: 250 start-page: 317 year: 2012 ident: 237_CR5 publication-title: Immunol. Rev. doi: 10.1111/imr.12001 – volume: 131 start-page: 1887 year: 2006 ident: 237_CR6 publication-title: Gastroenterology doi: 10.1053/j.gastro.2006.09.052 – volume: 157 start-page: 1175 year: 2014 ident: 237_CR30 publication-title: Cell doi: 10.1016/j.cell.2014.04.019 – volume: 193 start-page: 1539 year: 2014 ident: 237_CR50 publication-title: J. Immunol. doi: 10.4049/jimmunol.1400590 – volume: 36 start-page: 2529 year: 2017 ident: 237_CR19 publication-title: EMBO J. doi: 10.15252/embj.201796476 – volume: 17 start-page: 229 year: 2015 ident: 237_CR36 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.01.002 – volume: 11 start-page: 290 year: 2012 ident: 237_CR37 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2012.01.016 – volume: 4 start-page: 50 year: 2014 ident: 237_CR9 publication-title: Front. Cell. Infect. Microbiol. doi: 10.3389/fcimb.2014.00050 – volume: 234 start-page: 470 year: 1986 ident: 237_CR45 publication-title: Science doi: 10.1126/science.3764421 – volume: 18 start-page: 1429 year: 2017 ident: 237_CR18 publication-title: EMBO Rep. doi: 10.15252/embr.201743947 – volume: 181 start-page: 6427 year: 2008 ident: 237_CR39 publication-title: J. Immunol. doi: 10.4049/jimmunol.181.9.6427 – volume: 34 start-page: 11929 year: 2014 ident: 237_CR54 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1860-14.2014 – volume: 288 start-page: 16247 year: 2013 ident: 237_CR35 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.435545 – volume: 1 start-page: 2 year: 2016 ident: 237_CR23 publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aag2045 – volume: 115 start-page: 3930 year: 2018 ident: 237_CR22 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1717190115 – volume: 19 start-page: 75 year: 2012 ident: 237_CR47 publication-title: Cell Death Differ. doi: 10.1038/cdd.2011.164 – volume: 517 start-page: 311 year: 2015 ident: 237_CR48 publication-title: Nature doi: 10.1038/nature14191 – volume: 25 start-page: 361 year: 2006 ident: 237_CR4 publication-title: Immunity doi: 10.1016/j.immuni.2006.08.014 – volume: 111 start-page: E3206 year: 2014 ident: 237_CR13 publication-title: Proc. Natl Acad. Sci. USA – volume: 11 start-page: 290 year: 2012 ident: 237_CR17 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2012.01.016 – volume: 540 start-page: 124± year: 2016 ident: 237_CR25 publication-title: Nature doi: 10.1038/nature20558 – volume: 111 start-page: 7753 year: 2014 ident: 237_CR29 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1401857111 – volume: 192 start-page: 5476 year: 2014 ident: 237_CR49 publication-title: J. Immunol. doi: 10.4049/jimmunol.1400499 – volume: 137 start-page: 1100 year: 2009 ident: 237_CR33 publication-title: Cell doi: 10.1016/j.cell.2009.05.021 – volume: 513 start-page: 95 year: 2014 ident: 237_CR52 publication-title: Nature doi: 10.1038/nature13706 – volume: 13 start-page: 2514 year: 1999 ident: 237_CR27 publication-title: Genes Dev doi: 10.1101/gad.13.19.2514 – volume: 513 start-page: 90± year: 2014 ident: 237_CR51 publication-title: Nature doi: 10.1038/nature13608 – volume: 21 start-page: 1709 year: 2014 ident: 237_CR40 publication-title: Cell Death Differ. doi: 10.1038/cdd.2014.77 – volume: 325 start-page: 332 year: 2009 ident: 237_CR34 publication-title: Science doi: 10.1126/science.1172308 – volume: 35 start-page: 908 year: 2011 ident: 237_CR44 publication-title: Immunity doi: 10.1016/j.immuni.2011.09.020 – volume: 25 start-page: 343 year: 2006 ident: 237_CR1 publication-title: Immunity doi: 10.1016/j.immuni.2006.08.008 – volume: 17 start-page: 434± year: 2015 ident: 237_CR55 publication-title: Nat. Cell Biol. doi: 10.1038/ncb3120 – volume: 240 start-page: 157 year: 1999 ident: 237_CR14 publication-title: Gene doi: 10.1016/S0378-1119(99)00419-9 – volume: 206 start-page: 1873 year: 2009 ident: 237_CR46 publication-title: J. Exp. Med. doi: 10.1084/jem.20090213 – volume: 25 start-page: 349 year: 2006 ident: 237_CR2 publication-title: Immunity doi: 10.1016/j.immuni.2006.08.009 – volume: 540 start-page: 129-+ year: 2016 ident: 237_CR24 publication-title: Nature doi: 10.1038/nature20559 – volume: 24 start-page: 105 year: 2014 ident: 237_CR41 publication-title: Cell Res. doi: 10.1038/cr.2013.171 – volume: 15 start-page: 6189 year: 1996 ident: 237_CR43 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1996.tb01007.x – volume: 20 start-page: 674 year: 2016 ident: 237_CR20 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.09.014 – volume: 8 start-page: 297 year: 1998 ident: 237_CR42 publication-title: Immunity doi: 10.1016/S1074-7613(00)80535-X – volume: 10 start-page: 1836 year: 2015 ident: 237_CR53 publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.02.051 – volume: 282 start-page: 20059 year: 2007 ident: 237_CR7 publication-title: J. Biol. Chem. doi: 10.1074/jbc.R700016200 – volume: 157 start-page: 1189 year: 2014 ident: 237_CR11 publication-title: Cell doi: 10.1016/j.cell.2014.04.018 – volume: 148 start-page: 213 year: 2012 ident: 237_CR31 publication-title: Cell doi: 10.1016/j.cell.2011.11.031 – volume: 31 start-page: 2934 year: 2011 ident: 237_CR10 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.05445-11 – volume: 202 start-page: 8 year: 2004 ident: 237_CR3 publication-title: Immunol. Rev. doi: 10.1111/j.0105-2896.2004.00204.x – volume: 133 start-page: 693 year: 2008 ident: 237_CR28 publication-title: Cell doi: 10.1016/j.cell.2008.03.036 – volume: 15 start-page: 563 year: 1997 ident: 237_CR8 publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.15.1.563 – volume: 448 start-page: 501 year: 2007 ident: 237_CR15 publication-title: Nature doi: 10.1038/nature06013 – volume: 451 start-page: 725 year: 2008 ident: 237_CR16 publication-title: Nature doi: 10.1038/nature06537 – volume: 10 start-page: 916 year: 2009 ident: 237_CR38 publication-title: EMBO Rep. doi: 10.1038/embor.2009.109 – volume: 288 start-page: 16247 year: 2013 ident: 237_CR56 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.435545 – volume: 19 start-page: 2056 year: 2007 ident: 237_CR26 publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2007.05.016 – volume: 114 start-page: 11506 year: 2017 ident: 237_CR21 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1700999114 – volume: 110 start-page: E3109 year: 2013 ident: 237_CR12 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1301218110 |
SSID | ssj0058474 |
Score | 2.5559344 |
Snippet | Interferons (IFNs) play an important role in immunomodulatory and antiviral functions. IFN-induced necroptosis has been reported in cells deficient in... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 356 |
SubjectTerms | 631/250/262 631/80/86 Animals Antibodies Antiviral drugs Biomedical and Life Sciences Biomedicine Caspase 8 - metabolism Caspase-8 Cell Line FADD protein Fas-Associated Death Domain Protein - metabolism Fas-associated protein Humans Immunology Immunomodulation Immunomodulators Inflammation Interferon Interferons - pharmacology Janus Kinase 1 - metabolism Kinases Male Medical Microbiology Mice, Inbred C57BL Mice, Knockout Microbiology Mutant Proteins - metabolism Necroptosis Necroptosis - drug effects Protein Binding - drug effects Protein biosynthesis Protein Biosynthesis - drug effects Protein Domains Protein kinase Proteins Receptor-Interacting Protein Serine-Threonine Kinases - metabolism RNA-Binding Proteins - chemistry RNA-Binding Proteins - metabolism Signal Transduction - drug effects STAT1 Transcription Factor - metabolism Systemic inflammatory response syndrome Systemic Inflammatory Response Syndrome - metabolism Systemic Inflammatory Response Syndrome - pathology Tumor necrosis factor Tumor Necrosis Factor-alpha Vaccine γ-Interferon |
Title | ZBP1 mediates interferon-induced necroptosis |
URI | https://link.springer.com/article/10.1038/s41423-019-0237-x https://www.ncbi.nlm.nih.gov/pubmed/31076724 https://www.proquest.com/docview/2384801620 https://www.proquest.com/docview/2695273075 https://www.proquest.com/docview/2231910695 https://pubmed.ncbi.nlm.nih.gov/PMC7109092 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba90wDBZby2AvY901W3fIYE_bTOPIcZynsZaWsodSxgqHvYTEsVmhJN3JKXT_fpJzGWe9PFsBR7KtT5b8CeBDVlnUvkLRYKaFyrJaGIrZhCwsOmkd-bRQ5Xuij8_Ut2W2HC_c-rGscjoTw0HddJbvyPdSXTBXGHm4L5e_BXeN4uzq2ELjIWwzdRkHX_lyDrg4AxiyyjonFKmNnLKaaPZ6JQlIUCBdCPJaubje9Es3wObNmsn_EqfBHx09hScjkIy_DpbfgQeufQaPhtaSf57D55_7pzIO70IITMbMCrHybtW1goJwMmcTt467d627_rx_AWdHhz8OjsXYGUFYVZi1wLpyCilYQY-olXc2Sa32ypJDUnmWep86nyjl2DtrVE5V_IS1VkbqWroEX8JW27XuNcTWIspam8pZo9DrAhtbNHkhsXZGKxdBMumltCNtOHevuChD-hpNOaiyJFWWrMryOoKP8yeXA2fGfcK7k7LLcfv0JeEIprXRaXL78LwWIng_D9O-4GRH1bruimQIuBIUIskIXg2mmydDkDanNaEiyDeMOgsw5_bmSHv-K3Bvc-lqUqQRfJrM_29ad_7jm_t_4i08TjmKD_VAu7C1Xl25dwR11vUirOcFbO8fnpx-X4S7qL9Ha_tI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9UwDLfGEIIL4pvCgCLBBYjWNGmaHhDia3pjY-KwSU9csjZ1xKSp3V7fxPZP8TfipK9Fj8FuO8etEtuJf44dG-BFVlqhXClYLTLFZJZVTJPPxnhhBXKLZNNClu-OmuzJL9NsugK_hrcwPq1yOBPDQV231t-Rr6eq8LXCyMK9OzpmvmuUj64OLTR6tdjCs5_ksnVvNz-RfF-m6cbn3Y8TtugqwKws9JyJqkQpCOgLJ4SSDm2SWuWkpcNc5lnqXIoukRK9ZVNCoiz9889Kaq4qjomg_16Bq2R4E59CmE9HB89HHEMUW-WEWpXmQxRV6PVOcgIu5LgXjKxkzk6X7eA5cHs-R_OvQG2wfxu34OYCuMbve027DSvY3IFrfSvLs7vw5vuHbzwO71AIvMa-CsXM4axtGDn9pD513KDvFjZvu4PuHuxdCs_uw2rTNvgQYmuF4JXSJVothVOFqG1R5wUXFWolMYJk4IuxizLlvlvGoQnhcqFNz0pDrDSeleY0glfjJ0d9jY6LiNcGZpvFdu0M4RZfRkelyb-HR92L4Pk4TPvQB1fKBtsToiGgTNCLKCN40ItunAypSk46ISPIl4Q6Evga38sjzcGPUOvbp8omRRrB60H8f6b13zU-ungRz-D6ZPfrttne3Nl6DDdSf4MQcpHWYHU-O8EnBLPm1dOg2zHsX_Zm-g04SjPM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXVN6BAkGCC2Bt4nEc51BVQFm1FFU9UGnFxSSOLVZCSdlsRfvX-HUd54WWQm89exLZ8_B89oxnAF4muUHpcmQlJpKJJCmYojMbizODNjaWfFqb5Xsgd4_Ep1kyW4Pfw1sYn1Y57IntRl3Wxt-RT7jMfK0w8nAT16dFHO5Mt49_Mt9Bykdah3YanYrs27NfdHxrtvZ2SNavOJ9-_PJhl_UdBpgRmVoyLHIrkEA_OkQpnDURN9IJQxu7SBPuHLcuEsJ6LydRWJH7p6CFULEsYhsh_fcaXE-R3CbZUjobD3s--thGtGVKCFaqeIioopo0IiYQQ4f4jJHHTNnpqk-8AHQv5mv-FbRtfeF0A273IDZ812ndHViz1V240bW1PLsHb7--P4zD9k0KAdnQV6RYOLuoKzavSlKlMqys7xy2rJt5cx-OroRnD2C9qiv7CEJjEONCqtwaJdDJDEuTlWkWY2GVFDaAaOCLNn3Jct8544duQ-eodMdKTazUnpX6NIDX4yfHXb2Oy4g3B2br3nQbTRjGl9SRPPr38KiHAbwYh8kmfaAlr2x9QjQEmgmGEWUADzvRjZMhOJ2STogA0hWhjgS-3vfqSDX_3tb99mmzUcYDeDOI_8-0_rvGx5cv4jncJDPSn_cO9p_ALe4vE9q0pE1YXy5O7FNCXMviWavaIXy7als6B8iMOAI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ZBP1+mediates+interferon-induced+necroptosis&rft.jtitle=Cellular+%26+molecular+immunology&rft.au=Yang%2C+Daowei&rft.au=Liang%2C+Yaoji&rft.au=Zhao%2C+Shubo&rft.au=Ding%2C+Yan&rft.date=2020-04-01&rft.issn=1672-7681&rft.eissn=2042-0226&rft.volume=17&rft.issue=4&rft.spage=356&rft.epage=368&rft_id=info:doi/10.1038%2Fs41423-019-0237-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41423_019_0237_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1672-7681&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1672-7681&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1672-7681&client=summon |