Structural Refinement of Proteins by Restrained Molecular Dynamics Simulations with Non-interacting Molecular Fragments

The knowledge of multiple conformational states is a prerequisite to understand the function of membrane transport proteins. Unfortunately, the determination of detailed atomic structures for all these functionally important conformational states with conventional high-resolution approaches is often...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 11; no. 10; p. e1004368
Main Authors Shen, Rong, Han, Wei, Fiorin, Giacomo, Islam, Shahidul M., Schulten, Klaus, Roux, Benoît
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.10.2015
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The knowledge of multiple conformational states is a prerequisite to understand the function of membrane transport proteins. Unfortunately, the determination of detailed atomic structures for all these functionally important conformational states with conventional high-resolution approaches is often difficult and unsuccessful. In some cases, biophysical and biochemical approaches can provide important complementary structural information that can be exploited with the help of advanced computational methods to derive structural models of specific conformational states. In particular, functional and spectroscopic measurements in combination with site-directed mutations constitute one important source of information to obtain these mixed-resolution structural models. A very common problem with this strategy, however, is the difficulty to simultaneously integrate all the information from multiple independent experiments involving different mutations or chemical labels to derive a unique structural model consistent with the data. To resolve this issue, a novel restrained molecular dynamics structural refinement method is developed to simultaneously incorporate multiple experimentally determined constraints (e.g., engineered metal bridges or spin-labels), each treated as an individual molecular fragment with all atomic details. The internal structure of each of the molecular fragments is treated realistically, while there is no interaction between different molecular fragments to avoid unphysical steric clashes. The information from all the molecular fragments is exploited simultaneously to constrain the backbone to refine a three-dimensional model of the conformational state of the protein. The method is illustrated by refining the structure of the voltage-sensing domain (VSD) of the Kv1.2 potassium channel in the resting state and by exploring the distance histograms between spin-labels attached to T4 lysozyme. The resulting VSD structures are in good agreement with the consensus model of the resting state VSD and the spin-spin distance histograms from ESR/DEER experiments on T4 lysozyme are accurately reproduced.
AbstractList The knowledge of multiple conformational states is a prerequisite to understand the function of membrane transport proteins. Unfortunately, the determination of detailed atomic structures for all these functionally important conformational states with conventional high-resolution approaches is often difficult and unsuccessful. In some cases, biophysical and biochemical approaches can provide important complementary structural information that can be exploited with the help of advanced computational methods to derive structural models of specific conformational states. In particular, functional and spectroscopic measurements in combination with site-directed mutations constitute one important source of information to obtain these mixed-resolution structural models. A very common problem with this strategy, however, is the difficulty to simultaneously integrate all the information from multiple independent experiments involving different mutations or chemical labels to derive a unique structural model consistent with the data. To resolve this issue, a novel restrained molecular dynamics structural refinement method is developed to simultaneously incorporate multiple experimentally determined constraints (e.g., engineered metal bridges or spin-labels), each treated as an individual molecular fragment with all atomic details. The internal structure of each of the molecular fragments is treated realistically, while there is no interaction between different molecular fragments to avoid unphysical steric clashes. The information from all the molecular fragments is exploited simultaneously to constrain the backbone to refine a three-dimensional model of the conformational state of the protein. The method is illustrated by refining the structure of the voltage-sensing domain (VSD) of the Kv1.2 potassium channel in the resting state and by exploring the distance histograms between spin-labels attached to T4 lysozyme. The resulting VSD structures are in good agreement with the consensus model of the resting state VSD and the spin-spin distance histograms from ESR/DEER experiments on T4 lysozyme are accurately reproduced.
The knowledge of multiple conformational states is a prerequisite to understand the function of membrane transport proteins. Unfortunately, the determination of detailed atomic structures for all these functionally important conformational states with conventional high-resolution approaches is often difficult and unsuccessful. In some cases, biophysical and biochemical approaches can provide important complementary structural information that can be exploited with the help of advanced computational methods to derive structural models of specific conformational states. In particular, functional and spectroscopic measurements in combination with site-directed mutations constitute one important source of information to obtain these mixed-resolution structural models. A very common problem with this strategy, however, is the difficulty to simultaneously integrate all the information from multiple independent experiments involving different mutations or chemical labels to derive a unique structural model consistent with the data. To resolve this issue, a novel restrained molecular dynamics structural refinement method is developed to simultaneously incorporate multiple experimentally determined constraints (e.g., engineered metal bridges or spin-labels), each treated as an individual molecular fragment with all atomic details. The internal structure of each of the molecular fragments is treated realistically, while there is no interaction between different molecular fragments to avoid unphysical steric clashes. The information from all the molecular fragments is exploited simultaneously to constrain the backbone to refine a three-dimensional model of the conformational state of the protein. The method is illustrated by refining the structure of the voltage-sensing domain (VSD) of the Kv1.2 potassium channel in the resting state and by exploring the distance histograms between spin-labels attached to T4 lysozyme. The resulting VSD structures are in good agreement with the consensus model of the resting state VSD and the spin-spin distance histograms from ESR/DEER experiments on T4 lysozyme are accurately reproduced. Knowledge of multiple conformational states of membrane transport proteins is a prerequisite to understand their function. However, the determination of atomic structures for all these states with conventional high-resolution approaches can be very challenging due to inherent difficulties in high yield purification of functional membrane transport proteins. Various complementary structural information of proteins in their native states can be obtained by a variety of biophysical and biochemical methods with site-directed mutations. Here, a novel restrained molecular dynamics structural refinement method is developed to help derive a structural model that is consistent with experimental data by incorporating all the experimental constraints simultaneously through the use of non-interacting all-atom molecular fragments. The method can be easily and effectively extended to incorporate many kinds of structural constraints from a variety of biophysical and biochemical experiments, and should be very useful in generating and refining models of proteins in specific functional states.
  The knowledge of multiple conformational states is a prerequisite to understand the function of membrane transport proteins. Unfortunately, the determination of detailed atomic structures for all these functionally important conformational states with conventional high-resolution approaches is often difficult and unsuccessful. In some cases, biophysical and biochemical approaches can provide important complementary structural information that can be exploited with the help of advanced computational methods to derive structural models of specific conformational states. In particular, functional and spectroscopic measurements in combination with site-directed mutations constitute one important source of information to obtain these mixed-resolution structural models. A very common problem with this strategy, however, is the difficulty to simultaneously integrate all the information from multiple independent experiments involving different mutations or chemical labels to derive a unique structural model consistent with the data. To resolve this issue, a novel restrained molecular dynamics structural refinement method is developed to simultaneously incorporate multiple experimentally determined constraints (e.g., engineered metal bridges or spin-labels), each treated as an individual molecular fragment with all atomic details. The internal structure of each of the molecular fragments is treated realistically, while there is no interaction between different molecular fragments to avoid unphysical steric clashes. The information from all the molecular fragments is exploited simultaneously to constrain the backbone to refine a three-dimensional model of the conformational state of the protein. The method is illustrated by refining the structure of the voltage-sensing domain (VSD) of the Kv1.2 potassium channel in the resting state and by exploring the distance histograms between spin-labels attached to T4 lysozyme. The resulting VSD structures are in good agreement with the consensus model of the resting state VSD and the spin-spin distance histograms from ESR/DEER experiments on T4 lysozyme are accurately reproduced.
Author Han, Wei
Shen, Rong
Schulten, Klaus
Fiorin, Giacomo
Roux, Benoît
Islam, Shahidul M.
AuthorAffiliation George Mason University, UNITED STATES
2 Beckman Institute, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States of America
3 Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania, United States of America
1 Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, United States of America
AuthorAffiliation_xml – name: 2 Beckman Institute, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States of America
– name: George Mason University, UNITED STATES
– name: 3 Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania, United States of America
– name: 1 Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, United States of America
Author_xml – sequence: 1
  givenname: Rong
  surname: Shen
  fullname: Shen, Rong
– sequence: 2
  givenname: Wei
  surname: Han
  fullname: Han, Wei
– sequence: 3
  givenname: Giacomo
  surname: Fiorin
  fullname: Fiorin, Giacomo
– sequence: 4
  givenname: Shahidul M.
  surname: Islam
  fullname: Islam, Shahidul M.
– sequence: 5
  givenname: Klaus
  surname: Schulten
  fullname: Schulten, Klaus
– sequence: 6
  givenname: Benoît
  surname: Roux
  fullname: Roux, Benoît
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26505197$$D View this record in MEDLINE/PubMed
BookMark eNp9Uktv1DAQjlARfcA_QJAjlyy248eaAxIqtFQqD1E4W44z2XqV2IvtUO2_r9PNoi0HTh7NfI_xzJwWR847KIqXGC1wLfDbtR-D0_1iYxq7wAjRmi-fFCeYsboSNVseHcTHxWmMa4RyKPmz4phwhhiW4qS4u0lhNGkMui9_QGcdDOBS6bvye_AJrItls82VmILOxbb84nswY69D-XHr9GBNLG_skBPJ-gy-s-m2_OpdZV2CoE2ybnXAuQh6NRnE58XTTvcRXszvWfHr4tPP88_V9bfLq_MP15WhcpkqkjsFqjkIwVrWdqxFnHCDOQE5IQhueS2QqLFEFOGOEdpqKRhlNWItdPVZ8Xqnu-l9VPPMosKiriknjNKMuNohWq_XahPsoMNWeW3VQ8KHldIhWdODMohjwwnmkJmd6BoBS01AN1yCbCXJWu9nt7EZoDX5p3mwj0QfV5y9VSv_R-VeKJc4C7yZBYL_Peapq8FGA32vHfhx6pssCZNUTn2_OvT6a7LfbQa82wFM8DEG6JSx6WFN0y57hZGaDmk_FDUdkpoPKZPpP-S9_n9p93iQ0i0
CitedBy_id crossref_primary_10_1016_j_saa_2019_03_077
crossref_primary_10_1109_TCBB_2016_2634008
crossref_primary_10_3390_biophysica1020009
crossref_primary_10_1016_j_mib_2017_10_002
crossref_primary_10_3390_biom13030530
crossref_primary_10_1002_jcc_26032
crossref_primary_10_1021_acs_jpcb_8b09374
crossref_primary_10_1021_acs_jcim_1c01050
crossref_primary_10_1021_acs_jpcb_0c05509
crossref_primary_10_1021_acs_jpcb_4c04100
crossref_primary_10_1007_s00894_016_3017_x
crossref_primary_10_1002_jcc_24660
crossref_primary_10_3390_ijms20020370
crossref_primary_10_1080_07391102_2018_1498803
crossref_primary_10_1016_j_toxicon_2019_09_005
crossref_primary_10_1063_5_0014475
crossref_primary_10_1085_jgp_201711868
crossref_primary_10_1007_s00723_023_01576_1
crossref_primary_10_1039_D2CP02890E
crossref_primary_10_1073_pnas_2206649119
crossref_primary_10_3390_biom10050763
Cites_doi 10.1126/science.1116269
10.1021/ja020040y
10.1073/pnas.83.20.7568
10.1002/prot.340140216
10.1038/nature09153
10.1016/j.bpj.2011.05.009
10.1021/ja036959e
10.1016/j.neuron.2007.09.023
10.1016/0263-7855(96)00018-5
10.1529/biophysj.108.142984
10.1021/jp311723a
10.1107/S0907444901011118
10.1063/1.470648
10.1016/S0896-6273(01)00487-1
10.1126/science.1159674
10.1146/annurev.bi.55.070186.004513
10.1016/S0076-6879(07)23003-4
10.1038/nature12822
10.1016/0166-2236(86)90004-4
10.1016/S0162-0134(98)10042-9
10.1038/nature09136
10.1126/science.1185954
10.1073/pnas.0602350103
10.1073/pnas.0914109107
10.1126/science.280.5360.69
10.1038/nature11077
10.1038/nsmb.2747
10.1126/science.1216533
10.1016/j.neuron.2011.09.024
10.1038/nature12823
10.1085/jgp.200910320
10.1002/jcc.20289
10.1073/pnas.1118434109
10.1021/jp510745d
10.1085/jgp.201110642
10.1016/0022-2836(92)90671-6
10.1021/bi981520y
10.1016/S0969-2126(01)00212-X
10.1021/ar400067z
10.1016/j.str.2007.11.015
10.1038/nature11054
10.1038/nsmb.2768
10.1038/nrm2376
10.1038/nature10238
10.1085/jgp.201210873
10.1063/1.470117
10.1016/S0076-6879(07)23004-6
10.1002/jcc.23354
10.1063/1.445869
10.1016/S0006-3495(02)73918-0
10.1016/j.bpj.2010.02.056
10.1016/0021-9991(77)90098-5
10.1038/nature06265
10.1073/pnas.1116938109
10.1016/j.str.2007.12.015
10.1021/jp973084f
10.1073/pnas.0702638104
10.1016/j.bbamem.2011.07.048
10.1021/jp3110369
10.1021/cr0304121
10.1107/S0907444906014594
10.1038/35002099
10.1063/1.467468
10.1073/pnas.83.2.508
ContentType Journal Article
Copyright 2015 Shen et al 2015 Shen et al
2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Shen R, Han W, Fiorin G, Islam SM, Schulten K, Roux B (2015) Structural Refinement of Proteins by Restrained Molecular Dynamics Simulations with Non-interacting Molecular Fragments. PLoS Comput Biol 11(10): e1004368. doi:10.1371/journal.pcbi.1004368
Copyright_xml – notice: 2015 Shen et al 2015 Shen et al
– notice: 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Shen R, Han W, Fiorin G, Islam SM, Schulten K, Roux B (2015) Structural Refinement of Proteins by Restrained Molecular Dynamics Simulations with Non-interacting Molecular Fragments. PLoS Comput Biol 11(10): e1004368. doi:10.1371/journal.pcbi.1004368
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1004368
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Structural Refinement by Molecular Fragments
EISSN 1553-7358
EndPage e1004368
ExternalDocumentID 1733462544
oai_doaj_org_article_c061c6216e254f7fb7e8a2eab69e9d92
PMC4624691
26505197
10_1371_journal_pcbi_1004368
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: P41-RR005969
– fundername: NIGMS NIH HHS
  grantid: U54-GM087519
– fundername: NIGMS NIH HHS
  grantid: U54 GM087519
– fundername: NIGMS NIH HHS
  grantid: R01-GM067887
– fundername: NIGMS NIH HHS
  grantid: R01 GM067887
– fundername: NIH HHS
  grantid: 1S10OD018495
– fundername: NCRR NIH HHS
  grantid: P41 RR005969
– fundername: NIH HHS
  grantid: S10 OD018495
– fundername: NIGMS NIH HHS
  grantid: P41 GM104601
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
RIG
WOQ
7X8
PPXIY
PQGLB
5PM
PJZUB
PUEGO
3V.
AAPBV
ABPTK
M0N
M~E
N95
PQEST
PQUKI
ID FETCH-LOGICAL-c498t-2265e4a6e775d5df5d0626c162e9c49821d637073190401f524da97545305def3
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Sun Jul 02 11:04:37 EDT 2023
Wed Aug 27 01:27:31 EDT 2025
Thu Aug 21 14:09:54 EDT 2025
Fri Jul 11 09:44:29 EDT 2025
Thu Apr 03 07:05:16 EDT 2025
Tue Jul 01 02:03:07 EDT 2025
Thu Apr 24 22:52:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c498t-2265e4a6e775d5df5d0626c162e9c49821d637073190401f524da97545305def3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: RS WH GF SMI KS BR. Performed the experiments: RS WH GF SMI. Analyzed the data: RS WH GF SMI. Contributed reagents/materials/analysis tools: RS WH GF SMI. Wrote the paper: RS WH GF SMI KS BR.
The authors have declared that no competing interests exist.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1004368
PMID 26505197
PQID 1728259494
PQPubID 23479
ParticipantIDs plos_journals_1733462544
doaj_primary_oai_doaj_org_article_c061c6216e254f7fb7e8a2eab69e9d92
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4624691
proquest_miscellaneous_1728259494
pubmed_primary_26505197
crossref_citationtrail_10_1371_journal_pcbi_1004368
crossref_primary_10_1371_journal_pcbi_1004368
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2015
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References V Yarov-Yarovoy (ref46) 2012; 109
SE Feller (ref64) 1995; 103
FV Campos (ref28) 2007; 104
LG Cuello (ref3) 2010; 466
SB Long (ref38) 2005; 309
PC van der Wel (ref16) 2002; 83
SM Islam (ref50) 2013; 117
E Vargas (ref43) 2012; 140
B Roux (ref49) 2013; 117
SM Islam (ref51) 2015; 119
MO Jensen (ref45) 2012; 336
AD MacKerell Jr (ref60) 2004; 126
PP Borbat (ref14) 2007; 423
D del Camino (ref26) 2000; 403
MM Harding (ref25) 2006; 62
X Tao (ref30) 2010; 328
PP Borbat (ref13) 2002; 124
V Vasquez (ref9) 2008; 321
LG Cuello (ref1) 2010; 466
P Sompornpisut (ref20) 2008; 95
U Henrion (ref32) 2012; 109
M Liao (ref6) 2013; 504
E Vargas (ref23) 2011; 72
SB Long (ref39) 2007; 450
AC Papageorgiou (ref54) 1995; 3
MC Lin (ref31) 2011; 138
F Khalili-Araghi (ref44) 2010; 98
S Mangani (ref52) 1992; 223
X Zhang (ref41) 2012; 486
AD MacKerell (ref59) 1998; 102
V Yarov-Yarovoy (ref34) 2006; 103
SJ Opella (ref8) 2004; 104
D del Camino (ref27) 2001; 32
S Chakrapani (ref11) 2010; 107
L Rulisek (ref24) 1998; 71
WA Catterall (ref36) 1986; 9
JP Ryckaert (ref62) 1977; 23
E Cao (ref5) 2013; 504
U Essmann (ref57) 1995; 103
J Payandeh (ref42) 2012; 486
HR Guy (ref37) 1986; 83
W Im (ref18) 2012; 1818
SJ Opella (ref7) 2013; 46
J Huang (ref58) 2013; 34
MM Pathak (ref22) 2007; 56
WL Jorgensen (ref61) 1983; 79
WA Catterall (ref35) 1986; 55
RB Russell (ref56) 1992; 14
W Humphrey (ref48) 1996; 14
Q Li (ref12) 2014; 21
MC Lin (ref29) 2010; 135
F Bezanilla (ref33) 2008; 9
N Alexander (ref17) 2008; 16
GJ Martyna (ref63) 1994; 101
D Kumaran (ref53) 2001; 57
Q Li (ref4) 2014; 21
S Chakrapani (ref10) 2008; 16
DH Jones (ref15) 1998; 37
J Payandeh (ref40) 2011; 475
S Jo (ref21) 2011; 100
JC Phillips (ref47) 2005; 26
DA Doyle (ref2) 1998; 280
J Bhatnagar (ref19) 2007; 423
DW Christianson (ref55) 1986; 83
References_xml – volume: 309
  start-page: 897
  year: 2005
  ident: ref38
  article-title: Crystal structure of a mammalian voltage-dependent Shaker family K+ channel
  publication-title: Science
  doi: 10.1126/science.1116269
– volume: 124
  start-page: 5304
  year: 2002
  ident: ref13
  article-title: Protein structure determination using long-distance constraints from double-quantum coherence ESR: study of T4 lysozyme
  publication-title: J Am Chem Soc
  doi: 10.1021/ja020040y
– volume: 83
  start-page: 7568
  year: 1986
  ident: ref55
  article-title: X-ray crystallographic investigation of substrate binding to carboxypeptidase A at subzero temperature
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.83.20.7568
– volume: 14
  start-page: 309
  year: 1992
  ident: ref56
  article-title: Multiple protein sequence alignment from tertiary structure comparison: assignment of global and residue confidence levels
  publication-title: Proteins
  doi: 10.1002/prot.340140216
– volume: 466
  start-page: 203
  year: 2010
  ident: ref3
  article-title: Structural mechanism of C-type inactivation in K+ channels
  publication-title: Nature
  doi: 10.1038/nature09153
– volume: 100
  start-page: 2913
  year: 2011
  ident: ref21
  article-title: Transmembrane helix orientation and dynamics: insights from ensemble dynamics with solid-state NMR observables
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2011.05.009
– volume: 126
  start-page: 698
  year: 2004
  ident: ref60
  article-title: Improved treatment of the protein backbone in empirical force fields
  publication-title: J Am Chem Soc
  doi: 10.1021/ja036959e
– volume: 56
  start-page: 124
  year: 2007
  ident: ref22
  article-title: Closing in on the resting state of the Shaker K+ channel
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.09.023
– volume: 14
  start-page: 33
  year: 1996
  ident: ref48
  article-title: VMD: visual molecular dynamics
  publication-title: J Mol Graphics
  doi: 10.1016/0263-7855(96)00018-5
– volume: 95
  start-page: 5349
  year: 2008
  ident: ref20
  article-title: Structural refinement of membrane proteins by restrained molecular dynamics and solvent accessibility data
  publication-title: Biophys J
  doi: 10.1529/biophysj.108.142984
– volume: 117
  start-page: 4740
  year: 2013
  ident: ref50
  article-title: Structural refinement from restrained-ensemble simulations based on EPR/DEER data: application to T4 lysozyme
  publication-title: J Phys Chem B
  doi: 10.1021/jp311723a
– volume: 57
  start-page: 1270
  year: 2001
  ident: ref53
  article-title: Structure of staphylococcal enterotoxin C2 at various pH levels
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444901011118
– volume: 103
  start-page: 4613
  year: 1995
  ident: ref64
  article-title: Constant pressure molecular dynamics simulation: the Langevin piston method
  publication-title: J Chem Phys
  doi: 10.1063/1.470648
– volume: 32
  start-page: 649
  year: 2001
  ident: ref27
  article-title: Tight steric closure at the intracellular activation gate of a voltage-gated K+ channel
  publication-title: Neuron
  doi: 10.1016/S0896-6273(01)00487-1
– volume: 321
  start-page: 1210
  year: 2008
  ident: ref9
  article-title: A structural mechanism for MscS gating in lipid bilayers
  publication-title: Science
  doi: 10.1126/science.1159674
– volume: 55
  start-page: 953
  year: 1986
  ident: ref35
  article-title: Molecular properties of voltage-sensitive sodium channels
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.bi.55.070186.004513
– volume: 423
  start-page: 52
  year: 2007
  ident: ref14
  article-title: Measuring distances by pulsed dipolar ESR spectroscopy: spin-labeled histidine kinases
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(07)23003-4
– volume: 504
  start-page: 107
  year: 2013
  ident: ref6
  article-title: Structure of the TRPV1 ion channel determined by electron cryo-microscopy
  publication-title: Nature
  doi: 10.1038/nature12822
– volume: 9
  start-page: 7
  year: 1986
  ident: ref36
  article-title: Voltage-dependent gating of sodium channels: correlating structure and function
  publication-title: Trends Neurosci
  doi: 10.1016/0166-2236(86)90004-4
– volume: 71
  start-page: 115
  year: 1998
  ident: ref24
  article-title: Coordination geometries of selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+) in metalloproteins
  publication-title: J Inorg Biochem
  doi: 10.1016/S0162-0134(98)10042-9
– volume: 466
  start-page: 272
  year: 2010
  ident: ref1
  article-title: Structural basis for the coupling between activation and inactivation gates in K+ channels
  publication-title: Nature
  doi: 10.1038/nature09136
– volume: 328
  start-page: 67
  year: 2010
  ident: ref30
  article-title: A gating charge transfer center in voltage sensors
  publication-title: Science
  doi: 10.1126/science.1185954
– volume: 103
  start-page: 7292
  year: 2006
  ident: ref34
  article-title: Voltage sensor conformations in the open and closed states in ROSETTA structural models of K+ channels
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0602350103
– volume: 107
  start-page: 5435
  year: 2010
  ident: ref11
  article-title: The activated state of a sodium channel voltage sensor in a membrane environment
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0914109107
– volume: 280
  start-page: 69
  year: 1998
  ident: ref2
  article-title: The structure of the potassium channel: molecular basis of K+ conduction and selectivity
  publication-title: Science
  doi: 10.1126/science.280.5360.69
– volume: 486
  start-page: 135
  year: 2012
  ident: ref42
  article-title: Crystal structure of a voltage-gated sodium channel in two potentially inactivated states
  publication-title: Nature
  doi: 10.1038/nature11077
– volume: 21
  start-page: 160
  year: 2014
  ident: ref12
  article-title: Structural basis of lipid-driven conformational transitions in the KvAP voltage-sensing domain
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.2747
– volume: 336
  start-page: 229
  year: 2012
  ident: ref45
  article-title: Mechanism of voltage gating in potassium channels
  publication-title: Science
  doi: 10.1126/science.1216533
– volume: 72
  start-page: 713
  year: 2011
  ident: ref23
  article-title: In search of a consensus model of the resting state of a voltage-sensing domain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.024
– volume: 504
  start-page: 113
  year: 2013
  ident: ref5
  article-title: TRPV1 structures in distinct conformations reveal activation mechanisms
  publication-title: Nature
  doi: 10.1038/nature12823
– volume: 135
  start-page: 415
  year: 2010
  ident: ref29
  article-title: Transfer of ion binding site from ether-a-go-go to Shaker: Mg2+ binds to resting state to modulate channel opening
  publication-title: J Gen Physiol
  doi: 10.1085/jgp.200910320
– volume: 26
  start-page: 1781
  year: 2005
  ident: ref47
  article-title: Scalable molecular dynamics with NAMD
  publication-title: J Comput Chem
  doi: 10.1002/jcc.20289
– volume: 109
  start-page: E93
  year: 2012
  ident: ref46
  article-title: Structural basis for gating charge movement in the voltage sensor of a sodium channel
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1118434109
– volume: 119
  start-page: 3901
  year: 2015
  ident: ref51
  article-title: Simulating the distance distribution between spin-labels attached to proteins
  publication-title: J Phys Chem B
  doi: 10.1021/jp510745d
– volume: 138
  start-page: 155
  year: 2011
  ident: ref31
  article-title: R1 in the Shaker S4 occupies the gating charge transfer center in the resting state
  publication-title: J Gen Physiol
  doi: 10.1085/jgp.201110642
– volume: 223
  start-page: 573
  year: 1992
  ident: ref52
  article-title: Crystal structure of the complex between carboxypeptidase A and the biproduct analog inhibitor L-benzylsuccinate at 2.0 Å resolution
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(92)90671-6
– volume: 37
  start-page: 16780
  year: 1998
  ident: ref15
  article-title: Epidermal growth factor receptor transmembrane domain: 2H NMR implications for orientation and motion in a bilayer environment
  publication-title: Biochemistry
  doi: 10.1021/bi981520y
– volume: 3
  start-page: 769
  year: 1995
  ident: ref54
  article-title: Crystal structure of the superantigen enterotoxin C2 from Staphylococcus aureus reveals a zinc-binding site
  publication-title: Structure
  doi: 10.1016/S0969-2126(01)00212-X
– volume: 46
  start-page: 2145
  year: 2013
  ident: ref7
  article-title: Structure determination of membrane proteins in their native phospholipid bilayer environment by rotationally aligned solid-state NMR spectroscopy
  publication-title: Acc Chem Res
  doi: 10.1021/ar400067z
– volume: 16
  start-page: 181
  year: 2008
  ident: ref17
  article-title: De novo high-resolution protein structure determination from sparse spin-labeling EPR data
  publication-title: Structure
  doi: 10.1016/j.str.2007.11.015
– volume: 486
  start-page: 130
  year: 2012
  ident: ref41
  article-title: Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel
  publication-title: Nature
  doi: 10.1038/nature11054
– volume: 21
  start-page: 244
  year: 2014
  ident: ref4
  article-title: Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.2768
– volume: 9
  start-page: 323
  year: 2008
  ident: ref33
  article-title: How membrane proteins sense voltage
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2376
– volume: 475
  start-page: 353
  year: 2011
  ident: ref40
  article-title: The crystal structure of a voltage-gated sodium channel
  publication-title: Nature
  doi: 10.1038/nature10238
– volume: 140
  start-page: 587
  year: 2012
  ident: ref43
  article-title: An emerging consensus on voltage-dependent gating from computational modeling and molecular dynamics simulations
  publication-title: J Gen Physiol
  doi: 10.1085/jgp.201210873
– volume: 103
  start-page: 8577
  year: 1995
  ident: ref57
  article-title: A smooth particle mesh ewald method
  publication-title: J Chem Phys
  doi: 10.1063/1.470117
– volume: 423
  start-page: 117
  year: 2007
  ident: ref19
  article-title: Rigid body refinement of protein complexes with long-range distance restraints from pulsed dipolar ESR
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(07)23004-6
– volume: 34
  start-page: 2135
  year: 2013
  ident: ref58
  article-title: CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data
  publication-title: J Comput Chem
  doi: 10.1002/jcc.23354
– volume: 79
  start-page: 926
  year: 1983
  ident: ref61
  article-title: Comparison of simple potential functions for simulating liquid water
  publication-title: J Chem Phys
  doi: 10.1063/1.445869
– volume: 83
  start-page: 1479
  year: 2002
  ident: ref16
  article-title: Geometry and intrinsic tilt of a tryptophan-anchored transmembrane alpha-helix determined by (2)H NMR
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(02)73918-0
– volume: 98
  start-page: 2189
  year: 2010
  ident: ref44
  article-title: Calculation of the gating charge for the Kv1.2 voltage-activated potassium channel
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2010.02.056
– volume: 23
  start-page: 327
  year: 1977
  ident: ref62
  article-title: Numerical integration of cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(77)90098-5
– volume: 450
  start-page: 376
  year: 2007
  ident: ref39
  article-title: Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment
  publication-title: Nature
  doi: 10.1038/nature06265
– volume: 109
  start-page: 8552
  year: 2012
  ident: ref32
  article-title: Tracking a complete voltage-sensor cycle with metal-ion bridges
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1116938109
– volume: 16
  start-page: 398
  year: 2008
  ident: ref10
  article-title: Structural dynamics of an isolated voltage-sensor domain in a lipid bilayer
  publication-title: Structure
  doi: 10.1016/j.str.2007.12.015
– volume: 102
  start-page: 3586
  year: 1998
  ident: ref59
  article-title: All-atom empirical potential for molecular modeling and dynamics studies of proteins
  publication-title: J Phys Chem B
  doi: 10.1021/jp973084f
– volume: 104
  start-page: 7904
  year: 2007
  ident: ref28
  article-title: Two atomic constraints unambiguously position the S4 segment relative to S1 and S2 segments in the closed state of Shaker K channel
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0702638104
– volume: 1818
  start-page: 252
  year: 2012
  ident: ref18
  article-title: An ensemble dynamics approach to decipher solid-state NMR observables of membrane proteins
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamem.2011.07.048
– volume: 117
  start-page: 4733
  year: 2013
  ident: ref49
  article-title: Restrained-ensemble molecular dynamics simulations based on distance histograms from double electron-electron resonance spectroscopy
  publication-title: J Phys Chem B
  doi: 10.1021/jp3110369
– volume: 104
  start-page: 3587
  year: 2004
  ident: ref8
  article-title: Structure determination of membrane proteins by NMR spectroscopy
  publication-title: Chem Rev
  doi: 10.1021/cr0304121
– volume: 62
  start-page: 678
  year: 2006
  ident: ref25
  article-title: Small revisions to predicted distances around metal sites in proteins
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444906014594
– volume: 403
  start-page: 321
  year: 2000
  ident: ref26
  article-title: Blocker protection in the pore of a voltage-gated K+ channel and its structural implications
  publication-title: Nature
  doi: 10.1038/35002099
– volume: 101
  start-page: 4177
  year: 1994
  ident: ref63
  article-title: Constant pressure molecular dynamics algorithms
  publication-title: J Chem Phys
  doi: 10.1063/1.467468
– volume: 83
  start-page: 508
  year: 1986
  ident: ref37
  article-title: Molecular model of the action potential sodium channel
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.83.2.508
SSID ssj0035896
Score 2.2758324
Snippet The knowledge of multiple conformational states is a prerequisite to understand the function of membrane transport proteins. Unfortunately, the determination...
  The knowledge of multiple conformational states is a prerequisite to understand the function of membrane transport proteins. Unfortunately, the determination...
SourceID plos
doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1004368
SubjectTerms Algorithms
Experiments
Histograms
Membrane Transport Proteins - chemistry
Membrane Transport Proteins - ultrastructure
Methods
Models, Chemical
Molecular Dynamics Simulation
Mutation
Protein Binding
Protein Conformation
Protein Structure, Tertiary
Proteins
Spectrum analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOilNH3FTVtU6FXNStbDPvYVQiGhNA3szUjWKF1IvQGnlPz7zkj2slsKufTigz3GlmYsfSNrvo-xt9r4EJxdCA_KCW1BitD0tZBB9tYpFVRP9c6nZ_bkQn9ZmuWW1BftCSv0wKXjjnqccHqrpAVMZZJLwUHjFfhgW2hjm0dfnPPmZKqMwbVpsjIXieIIV-vlVDRXO3k0-ejddR9WtEeAKNh3JqXM3U9cp1fr8V-48-_tk1vz0fEj9nACkvx9acA-uwfDY3a_SEvePmG_zzMxLJFq8G-QEEvSMiBfJ_6VmBlWw8jDLV4Zs0YERH466-TyT0WkfuTnq5-TuNfIab2Wn60HQfwSubJquNy6B_HvZS6We8oujj9__3giJpEF0eu2uREIvwxob8E5E01MJi4wx-mlVdCShZLR1g4HAkQOmIslo3T0rUPghSNFhFQ_Y3vDeoADxhsvY0rKgk1Rg4fQ4AG0kj7EtPCmYvXcy10_MZBTI6-6_FvNYSZS-q4j33STbyomNnddFwaOO-w_kAM3tsSfnU9gVHVTVHV3RVXFDsj98wPGTrq61pb43Cr2Zg6JDj9F-r_iB1j_IhsqBG51izbPS4hs3gJ7mcCyq5jbCZ6d19y9Mqx-ZLpvfKy2rXzxP9p1yB4g4jNlN-JLtoehCK8QVd2E1_kD-gP1JiQN
  priority: 102
  providerName: Directory of Open Access Journals
Title Structural Refinement of Proteins by Restrained Molecular Dynamics Simulations with Non-interacting Molecular Fragments
URI https://www.ncbi.nlm.nih.gov/pubmed/26505197
https://www.proquest.com/docview/1728259494
https://pubmed.ncbi.nlm.nih.gov/PMC4624691
https://doaj.org/article/c061c6216e254f7fb7e8a2eab69e9d92
http://dx.doi.org/10.1371/journal.pcbi.1004368
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBa9MNjL2L3eJWiwV5dIliX7YYxmbVYGCaVdIG9GsqQ0kNld3dLl3-8c2Q7N6BjsxYH4KHakc6zvSD7fR8hHkWpjlBzG2nEVC-lYbLIyiZlhpVScG15ivfNkKk9n4ts8ne-QXrO168DmwdQO9aRm16vDXz_XnyHgPwXVBsX6RodXpVnirj-Squ-SfZibFIbqRGz2FZI0C4pdKJYTq0TMu2K6v_0KUgUDhMHizq15K9D7Ix3qqm4egqZ_vmF5b8oaPyVPOqxJj1rneEZ2XPWcPGrVJ9cvyN1F4I5F3g167jzATVwppLWnZ0jesKwaatZwpgkyEs7SSS-lS49bHfuGXix_dPpfDcUlXTqtqxgpKELxVbW41wYg8iLU070ks_HJ9y-ncafDEJciz25iQGipE1o6pVKbWp_aIaRBJZPc5WjBmZWJgmcFgAtI13zKhdW5AmwGDxPrfPKK7FV15Q4IzTSz3nPppLfCaWcyODjBmTbWD3UakaTv5aLsSMrxT66KsPOmIFlp-67AYSq6YYpIvGl11ZJ0_MN-hAO4sUWK7fBFfb0ouogtSkA6peRMOsihvfJGuUxzp43MXW5zHpEDHP7-Ak3BVJIIiZRvEfnQu0QB0YpbMLpy9S3aYK1wLnKwed26yOYuek-LiNpynq3b3D5TLS8DIzhcVsicvfnvlm_JY0CCafuW4juyB_7n3gPaujEDsqvmCo7Z-OuA7B-Njkdj-BydTM_OB2EFYxBC7Dd2sDPg
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Refinement+of+Proteins+by+Restrained+Molecular+Dynamics+Simulations+with+Non-interacting+Molecular+Fragments&rft.jtitle=PLoS+computational+biology&rft.au=Shen%2C+Rong&rft.au=Han%2C+Wei&rft.au=Fiorin%2C+Giacomo&rft.au=Islam%2C+Shahidul+M.&rft.date=2015-10-01&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=11&rft.issue=10&rft_id=info:doi/10.1371%2Fjournal.pcbi.1004368&rft_id=info%3Apmid%2F26505197&rft.externalDocID=PMC4624691
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon