Structural Refinement of Proteins by Restrained Molecular Dynamics Simulations with Non-interacting Molecular Fragments
The knowledge of multiple conformational states is a prerequisite to understand the function of membrane transport proteins. Unfortunately, the determination of detailed atomic structures for all these functionally important conformational states with conventional high-resolution approaches is often...
Saved in:
Published in | PLoS computational biology Vol. 11; no. 10; p. e1004368 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.10.2015
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The knowledge of multiple conformational states is a prerequisite to understand the function of membrane transport proteins. Unfortunately, the determination of detailed atomic structures for all these functionally important conformational states with conventional high-resolution approaches is often difficult and unsuccessful. In some cases, biophysical and biochemical approaches can provide important complementary structural information that can be exploited with the help of advanced computational methods to derive structural models of specific conformational states. In particular, functional and spectroscopic measurements in combination with site-directed mutations constitute one important source of information to obtain these mixed-resolution structural models. A very common problem with this strategy, however, is the difficulty to simultaneously integrate all the information from multiple independent experiments involving different mutations or chemical labels to derive a unique structural model consistent with the data. To resolve this issue, a novel restrained molecular dynamics structural refinement method is developed to simultaneously incorporate multiple experimentally determined constraints (e.g., engineered metal bridges or spin-labels), each treated as an individual molecular fragment with all atomic details. The internal structure of each of the molecular fragments is treated realistically, while there is no interaction between different molecular fragments to avoid unphysical steric clashes. The information from all the molecular fragments is exploited simultaneously to constrain the backbone to refine a three-dimensional model of the conformational state of the protein. The method is illustrated by refining the structure of the voltage-sensing domain (VSD) of the Kv1.2 potassium channel in the resting state and by exploring the distance histograms between spin-labels attached to T4 lysozyme. The resulting VSD structures are in good agreement with the consensus model of the resting state VSD and the spin-spin distance histograms from ESR/DEER experiments on T4 lysozyme are accurately reproduced. |
---|---|
AbstractList | The knowledge of multiple conformational states is a prerequisite to understand the function of membrane transport proteins. Unfortunately, the determination of detailed atomic structures for all these functionally important conformational states with conventional high-resolution approaches is often difficult and unsuccessful. In some cases, biophysical and biochemical approaches can provide important complementary structural information that can be exploited with the help of advanced computational methods to derive structural models of specific conformational states. In particular, functional and spectroscopic measurements in combination with site-directed mutations constitute one important source of information to obtain these mixed-resolution structural models. A very common problem with this strategy, however, is the difficulty to simultaneously integrate all the information from multiple independent experiments involving different mutations or chemical labels to derive a unique structural model consistent with the data. To resolve this issue, a novel restrained molecular dynamics structural refinement method is developed to simultaneously incorporate multiple experimentally determined constraints (e.g., engineered metal bridges or spin-labels), each treated as an individual molecular fragment with all atomic details. The internal structure of each of the molecular fragments is treated realistically, while there is no interaction between different molecular fragments to avoid unphysical steric clashes. The information from all the molecular fragments is exploited simultaneously to constrain the backbone to refine a three-dimensional model of the conformational state of the protein. The method is illustrated by refining the structure of the voltage-sensing domain (VSD) of the Kv1.2 potassium channel in the resting state and by exploring the distance histograms between spin-labels attached to T4 lysozyme. The resulting VSD structures are in good agreement with the consensus model of the resting state VSD and the spin-spin distance histograms from ESR/DEER experiments on T4 lysozyme are accurately reproduced. The knowledge of multiple conformational states is a prerequisite to understand the function of membrane transport proteins. Unfortunately, the determination of detailed atomic structures for all these functionally important conformational states with conventional high-resolution approaches is often difficult and unsuccessful. In some cases, biophysical and biochemical approaches can provide important complementary structural information that can be exploited with the help of advanced computational methods to derive structural models of specific conformational states. In particular, functional and spectroscopic measurements in combination with site-directed mutations constitute one important source of information to obtain these mixed-resolution structural models. A very common problem with this strategy, however, is the difficulty to simultaneously integrate all the information from multiple independent experiments involving different mutations or chemical labels to derive a unique structural model consistent with the data. To resolve this issue, a novel restrained molecular dynamics structural refinement method is developed to simultaneously incorporate multiple experimentally determined constraints (e.g., engineered metal bridges or spin-labels), each treated as an individual molecular fragment with all atomic details. The internal structure of each of the molecular fragments is treated realistically, while there is no interaction between different molecular fragments to avoid unphysical steric clashes. The information from all the molecular fragments is exploited simultaneously to constrain the backbone to refine a three-dimensional model of the conformational state of the protein. The method is illustrated by refining the structure of the voltage-sensing domain (VSD) of the Kv1.2 potassium channel in the resting state and by exploring the distance histograms between spin-labels attached to T4 lysozyme. The resulting VSD structures are in good agreement with the consensus model of the resting state VSD and the spin-spin distance histograms from ESR/DEER experiments on T4 lysozyme are accurately reproduced. Knowledge of multiple conformational states of membrane transport proteins is a prerequisite to understand their function. However, the determination of atomic structures for all these states with conventional high-resolution approaches can be very challenging due to inherent difficulties in high yield purification of functional membrane transport proteins. Various complementary structural information of proteins in their native states can be obtained by a variety of biophysical and biochemical methods with site-directed mutations. Here, a novel restrained molecular dynamics structural refinement method is developed to help derive a structural model that is consistent with experimental data by incorporating all the experimental constraints simultaneously through the use of non-interacting all-atom molecular fragments. The method can be easily and effectively extended to incorporate many kinds of structural constraints from a variety of biophysical and biochemical experiments, and should be very useful in generating and refining models of proteins in specific functional states. The knowledge of multiple conformational states is a prerequisite to understand the function of membrane transport proteins. Unfortunately, the determination of detailed atomic structures for all these functionally important conformational states with conventional high-resolution approaches is often difficult and unsuccessful. In some cases, biophysical and biochemical approaches can provide important complementary structural information that can be exploited with the help of advanced computational methods to derive structural models of specific conformational states. In particular, functional and spectroscopic measurements in combination with site-directed mutations constitute one important source of information to obtain these mixed-resolution structural models. A very common problem with this strategy, however, is the difficulty to simultaneously integrate all the information from multiple independent experiments involving different mutations or chemical labels to derive a unique structural model consistent with the data. To resolve this issue, a novel restrained molecular dynamics structural refinement method is developed to simultaneously incorporate multiple experimentally determined constraints (e.g., engineered metal bridges or spin-labels), each treated as an individual molecular fragment with all atomic details. The internal structure of each of the molecular fragments is treated realistically, while there is no interaction between different molecular fragments to avoid unphysical steric clashes. The information from all the molecular fragments is exploited simultaneously to constrain the backbone to refine a three-dimensional model of the conformational state of the protein. The method is illustrated by refining the structure of the voltage-sensing domain (VSD) of the Kv1.2 potassium channel in the resting state and by exploring the distance histograms between spin-labels attached to T4 lysozyme. The resulting VSD structures are in good agreement with the consensus model of the resting state VSD and the spin-spin distance histograms from ESR/DEER experiments on T4 lysozyme are accurately reproduced. |
Author | Han, Wei Shen, Rong Schulten, Klaus Fiorin, Giacomo Roux, Benoît Islam, Shahidul M. |
AuthorAffiliation | George Mason University, UNITED STATES 2 Beckman Institute, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States of America 3 Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania, United States of America 1 Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, United States of America |
AuthorAffiliation_xml | – name: 2 Beckman Institute, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States of America – name: George Mason University, UNITED STATES – name: 3 Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania, United States of America – name: 1 Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, United States of America |
Author_xml | – sequence: 1 givenname: Rong surname: Shen fullname: Shen, Rong – sequence: 2 givenname: Wei surname: Han fullname: Han, Wei – sequence: 3 givenname: Giacomo surname: Fiorin fullname: Fiorin, Giacomo – sequence: 4 givenname: Shahidul M. surname: Islam fullname: Islam, Shahidul M. – sequence: 5 givenname: Klaus surname: Schulten fullname: Schulten, Klaus – sequence: 6 givenname: Benoît surname: Roux fullname: Roux, Benoît |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26505197$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uktv1DAQjlARfcA_QJAjlyy248eaAxIqtFQqD1E4W44z2XqV2IvtUO2_r9PNoi0HTh7NfI_xzJwWR847KIqXGC1wLfDbtR-D0_1iYxq7wAjRmi-fFCeYsboSNVseHcTHxWmMa4RyKPmz4phwhhiW4qS4u0lhNGkMui9_QGcdDOBS6bvye_AJrItls82VmILOxbb84nswY69D-XHr9GBNLG_skBPJ-gy-s-m2_OpdZV2CoE2ybnXAuQh6NRnE58XTTvcRXszvWfHr4tPP88_V9bfLq_MP15WhcpkqkjsFqjkIwVrWdqxFnHCDOQE5IQhueS2QqLFEFOGOEdpqKRhlNWItdPVZ8Xqnu-l9VPPMosKiriknjNKMuNohWq_XahPsoMNWeW3VQ8KHldIhWdODMohjwwnmkJmd6BoBS01AN1yCbCXJWu9nt7EZoDX5p3mwj0QfV5y9VSv_R-VeKJc4C7yZBYL_Peapq8FGA32vHfhx6pssCZNUTn2_OvT6a7LfbQa82wFM8DEG6JSx6WFN0y57hZGaDmk_FDUdkpoPKZPpP-S9_n9p93iQ0i0 |
CitedBy_id | crossref_primary_10_1016_j_saa_2019_03_077 crossref_primary_10_1109_TCBB_2016_2634008 crossref_primary_10_3390_biophysica1020009 crossref_primary_10_1016_j_mib_2017_10_002 crossref_primary_10_3390_biom13030530 crossref_primary_10_1002_jcc_26032 crossref_primary_10_1021_acs_jpcb_8b09374 crossref_primary_10_1021_acs_jcim_1c01050 crossref_primary_10_1021_acs_jpcb_0c05509 crossref_primary_10_1021_acs_jpcb_4c04100 crossref_primary_10_1007_s00894_016_3017_x crossref_primary_10_1002_jcc_24660 crossref_primary_10_3390_ijms20020370 crossref_primary_10_1080_07391102_2018_1498803 crossref_primary_10_1016_j_toxicon_2019_09_005 crossref_primary_10_1063_5_0014475 crossref_primary_10_1085_jgp_201711868 crossref_primary_10_1007_s00723_023_01576_1 crossref_primary_10_1039_D2CP02890E crossref_primary_10_1073_pnas_2206649119 crossref_primary_10_3390_biom10050763 |
Cites_doi | 10.1126/science.1116269 10.1021/ja020040y 10.1073/pnas.83.20.7568 10.1002/prot.340140216 10.1038/nature09153 10.1016/j.bpj.2011.05.009 10.1021/ja036959e 10.1016/j.neuron.2007.09.023 10.1016/0263-7855(96)00018-5 10.1529/biophysj.108.142984 10.1021/jp311723a 10.1107/S0907444901011118 10.1063/1.470648 10.1016/S0896-6273(01)00487-1 10.1126/science.1159674 10.1146/annurev.bi.55.070186.004513 10.1016/S0076-6879(07)23003-4 10.1038/nature12822 10.1016/0166-2236(86)90004-4 10.1016/S0162-0134(98)10042-9 10.1038/nature09136 10.1126/science.1185954 10.1073/pnas.0602350103 10.1073/pnas.0914109107 10.1126/science.280.5360.69 10.1038/nature11077 10.1038/nsmb.2747 10.1126/science.1216533 10.1016/j.neuron.2011.09.024 10.1038/nature12823 10.1085/jgp.200910320 10.1002/jcc.20289 10.1073/pnas.1118434109 10.1021/jp510745d 10.1085/jgp.201110642 10.1016/0022-2836(92)90671-6 10.1021/bi981520y 10.1016/S0969-2126(01)00212-X 10.1021/ar400067z 10.1016/j.str.2007.11.015 10.1038/nature11054 10.1038/nsmb.2768 10.1038/nrm2376 10.1038/nature10238 10.1085/jgp.201210873 10.1063/1.470117 10.1016/S0076-6879(07)23004-6 10.1002/jcc.23354 10.1063/1.445869 10.1016/S0006-3495(02)73918-0 10.1016/j.bpj.2010.02.056 10.1016/0021-9991(77)90098-5 10.1038/nature06265 10.1073/pnas.1116938109 10.1016/j.str.2007.12.015 10.1021/jp973084f 10.1073/pnas.0702638104 10.1016/j.bbamem.2011.07.048 10.1021/jp3110369 10.1021/cr0304121 10.1107/S0907444906014594 10.1038/35002099 10.1063/1.467468 10.1073/pnas.83.2.508 |
ContentType | Journal Article |
Copyright | 2015 Shen et al 2015 Shen et al 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Shen R, Han W, Fiorin G, Islam SM, Schulten K, Roux B (2015) Structural Refinement of Proteins by Restrained Molecular Dynamics Simulations with Non-interacting Molecular Fragments. PLoS Comput Biol 11(10): e1004368. doi:10.1371/journal.pcbi.1004368 |
Copyright_xml | – notice: 2015 Shen et al 2015 Shen et al – notice: 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Shen R, Han W, Fiorin G, Islam SM, Schulten K, Roux B (2015) Structural Refinement of Proteins by Restrained Molecular Dynamics Simulations with Non-interacting Molecular Fragments. PLoS Comput Biol 11(10): e1004368. doi:10.1371/journal.pcbi.1004368 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1371/journal.pcbi.1004368 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Structural Refinement by Molecular Fragments |
EISSN | 1553-7358 |
EndPage | e1004368 |
ExternalDocumentID | 1733462544 oai_doaj_org_article_c061c6216e254f7fb7e8a2eab69e9d92 PMC4624691 26505197 10_1371_journal_pcbi_1004368 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: P41-RR005969 – fundername: NIGMS NIH HHS grantid: U54-GM087519 – fundername: NIGMS NIH HHS grantid: U54 GM087519 – fundername: NIGMS NIH HHS grantid: R01-GM067887 – fundername: NIGMS NIH HHS grantid: R01 GM067887 – fundername: NIH HHS grantid: 1S10OD018495 – fundername: NCRR NIH HHS grantid: P41 RR005969 – fundername: NIH HHS grantid: S10 OD018495 – fundername: NIGMS NIH HHS grantid: P41 GM104601 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM RIG WOQ 7X8 PPXIY PQGLB 5PM PJZUB PUEGO 3V. AAPBV ABPTK M0N M~E N95 PQEST PQUKI |
ID | FETCH-LOGICAL-c498t-2265e4a6e775d5df5d0626c162e9c49821d637073190401f524da97545305def3 |
IEDL.DBID | M48 |
ISSN | 1553-7358 1553-734X |
IngestDate | Sun Jul 02 11:04:37 EDT 2023 Wed Aug 27 01:27:31 EDT 2025 Thu Aug 21 14:09:54 EDT 2025 Fri Jul 11 09:44:29 EDT 2025 Thu Apr 03 07:05:16 EDT 2025 Tue Jul 01 02:03:07 EDT 2025 Thu Apr 24 22:52:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c498t-2265e4a6e775d5df5d0626c162e9c49821d637073190401f524da97545305def3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: RS WH GF SMI KS BR. Performed the experiments: RS WH GF SMI. Analyzed the data: RS WH GF SMI. Contributed reagents/materials/analysis tools: RS WH GF SMI. Wrote the paper: RS WH GF SMI KS BR. The authors have declared that no competing interests exist. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1004368 |
PMID | 26505197 |
PQID | 1728259494 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1733462544 doaj_primary_oai_doaj_org_article_c061c6216e254f7fb7e8a2eab69e9d92 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4624691 proquest_miscellaneous_1728259494 pubmed_primary_26505197 crossref_citationtrail_10_1371_journal_pcbi_1004368 crossref_primary_10_1371_journal_pcbi_1004368 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10-01 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, CA USA |
PublicationTitle | PLoS computational biology |
PublicationTitleAlternate | PLoS Comput Biol |
PublicationYear | 2015 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | V Yarov-Yarovoy (ref46) 2012; 109 SE Feller (ref64) 1995; 103 FV Campos (ref28) 2007; 104 LG Cuello (ref3) 2010; 466 SB Long (ref38) 2005; 309 PC van der Wel (ref16) 2002; 83 SM Islam (ref50) 2013; 117 E Vargas (ref43) 2012; 140 B Roux (ref49) 2013; 117 SM Islam (ref51) 2015; 119 MO Jensen (ref45) 2012; 336 AD MacKerell Jr (ref60) 2004; 126 PP Borbat (ref14) 2007; 423 D del Camino (ref26) 2000; 403 MM Harding (ref25) 2006; 62 X Tao (ref30) 2010; 328 PP Borbat (ref13) 2002; 124 V Vasquez (ref9) 2008; 321 LG Cuello (ref1) 2010; 466 P Sompornpisut (ref20) 2008; 95 U Henrion (ref32) 2012; 109 M Liao (ref6) 2013; 504 E Vargas (ref23) 2011; 72 SB Long (ref39) 2007; 450 AC Papageorgiou (ref54) 1995; 3 MC Lin (ref31) 2011; 138 F Khalili-Araghi (ref44) 2010; 98 S Mangani (ref52) 1992; 223 X Zhang (ref41) 2012; 486 AD MacKerell (ref59) 1998; 102 V Yarov-Yarovoy (ref34) 2006; 103 SJ Opella (ref8) 2004; 104 D del Camino (ref27) 2001; 32 S Chakrapani (ref11) 2010; 107 L Rulisek (ref24) 1998; 71 WA Catterall (ref36) 1986; 9 JP Ryckaert (ref62) 1977; 23 E Cao (ref5) 2013; 504 U Essmann (ref57) 1995; 103 J Payandeh (ref42) 2012; 486 HR Guy (ref37) 1986; 83 W Im (ref18) 2012; 1818 SJ Opella (ref7) 2013; 46 J Huang (ref58) 2013; 34 MM Pathak (ref22) 2007; 56 WL Jorgensen (ref61) 1983; 79 WA Catterall (ref35) 1986; 55 RB Russell (ref56) 1992; 14 W Humphrey (ref48) 1996; 14 Q Li (ref12) 2014; 21 MC Lin (ref29) 2010; 135 F Bezanilla (ref33) 2008; 9 N Alexander (ref17) 2008; 16 GJ Martyna (ref63) 1994; 101 D Kumaran (ref53) 2001; 57 Q Li (ref4) 2014; 21 S Chakrapani (ref10) 2008; 16 DH Jones (ref15) 1998; 37 J Payandeh (ref40) 2011; 475 S Jo (ref21) 2011; 100 JC Phillips (ref47) 2005; 26 DA Doyle (ref2) 1998; 280 J Bhatnagar (ref19) 2007; 423 DW Christianson (ref55) 1986; 83 |
References_xml | – volume: 309 start-page: 897 year: 2005 ident: ref38 article-title: Crystal structure of a mammalian voltage-dependent Shaker family K+ channel publication-title: Science doi: 10.1126/science.1116269 – volume: 124 start-page: 5304 year: 2002 ident: ref13 article-title: Protein structure determination using long-distance constraints from double-quantum coherence ESR: study of T4 lysozyme publication-title: J Am Chem Soc doi: 10.1021/ja020040y – volume: 83 start-page: 7568 year: 1986 ident: ref55 article-title: X-ray crystallographic investigation of substrate binding to carboxypeptidase A at subzero temperature publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.83.20.7568 – volume: 14 start-page: 309 year: 1992 ident: ref56 article-title: Multiple protein sequence alignment from tertiary structure comparison: assignment of global and residue confidence levels publication-title: Proteins doi: 10.1002/prot.340140216 – volume: 466 start-page: 203 year: 2010 ident: ref3 article-title: Structural mechanism of C-type inactivation in K+ channels publication-title: Nature doi: 10.1038/nature09153 – volume: 100 start-page: 2913 year: 2011 ident: ref21 article-title: Transmembrane helix orientation and dynamics: insights from ensemble dynamics with solid-state NMR observables publication-title: Biophys J doi: 10.1016/j.bpj.2011.05.009 – volume: 126 start-page: 698 year: 2004 ident: ref60 article-title: Improved treatment of the protein backbone in empirical force fields publication-title: J Am Chem Soc doi: 10.1021/ja036959e – volume: 56 start-page: 124 year: 2007 ident: ref22 article-title: Closing in on the resting state of the Shaker K+ channel publication-title: Neuron doi: 10.1016/j.neuron.2007.09.023 – volume: 14 start-page: 33 year: 1996 ident: ref48 article-title: VMD: visual molecular dynamics publication-title: J Mol Graphics doi: 10.1016/0263-7855(96)00018-5 – volume: 95 start-page: 5349 year: 2008 ident: ref20 article-title: Structural refinement of membrane proteins by restrained molecular dynamics and solvent accessibility data publication-title: Biophys J doi: 10.1529/biophysj.108.142984 – volume: 117 start-page: 4740 year: 2013 ident: ref50 article-title: Structural refinement from restrained-ensemble simulations based on EPR/DEER data: application to T4 lysozyme publication-title: J Phys Chem B doi: 10.1021/jp311723a – volume: 57 start-page: 1270 year: 2001 ident: ref53 article-title: Structure of staphylococcal enterotoxin C2 at various pH levels publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444901011118 – volume: 103 start-page: 4613 year: 1995 ident: ref64 article-title: Constant pressure molecular dynamics simulation: the Langevin piston method publication-title: J Chem Phys doi: 10.1063/1.470648 – volume: 32 start-page: 649 year: 2001 ident: ref27 article-title: Tight steric closure at the intracellular activation gate of a voltage-gated K+ channel publication-title: Neuron doi: 10.1016/S0896-6273(01)00487-1 – volume: 321 start-page: 1210 year: 2008 ident: ref9 article-title: A structural mechanism for MscS gating in lipid bilayers publication-title: Science doi: 10.1126/science.1159674 – volume: 55 start-page: 953 year: 1986 ident: ref35 article-title: Molecular properties of voltage-sensitive sodium channels publication-title: Annu Rev Biochem doi: 10.1146/annurev.bi.55.070186.004513 – volume: 423 start-page: 52 year: 2007 ident: ref14 article-title: Measuring distances by pulsed dipolar ESR spectroscopy: spin-labeled histidine kinases publication-title: Methods Enzymol doi: 10.1016/S0076-6879(07)23003-4 – volume: 504 start-page: 107 year: 2013 ident: ref6 article-title: Structure of the TRPV1 ion channel determined by electron cryo-microscopy publication-title: Nature doi: 10.1038/nature12822 – volume: 9 start-page: 7 year: 1986 ident: ref36 article-title: Voltage-dependent gating of sodium channels: correlating structure and function publication-title: Trends Neurosci doi: 10.1016/0166-2236(86)90004-4 – volume: 71 start-page: 115 year: 1998 ident: ref24 article-title: Coordination geometries of selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+) in metalloproteins publication-title: J Inorg Biochem doi: 10.1016/S0162-0134(98)10042-9 – volume: 466 start-page: 272 year: 2010 ident: ref1 article-title: Structural basis for the coupling between activation and inactivation gates in K+ channels publication-title: Nature doi: 10.1038/nature09136 – volume: 328 start-page: 67 year: 2010 ident: ref30 article-title: A gating charge transfer center in voltage sensors publication-title: Science doi: 10.1126/science.1185954 – volume: 103 start-page: 7292 year: 2006 ident: ref34 article-title: Voltage sensor conformations in the open and closed states in ROSETTA structural models of K+ channels publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0602350103 – volume: 107 start-page: 5435 year: 2010 ident: ref11 article-title: The activated state of a sodium channel voltage sensor in a membrane environment publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0914109107 – volume: 280 start-page: 69 year: 1998 ident: ref2 article-title: The structure of the potassium channel: molecular basis of K+ conduction and selectivity publication-title: Science doi: 10.1126/science.280.5360.69 – volume: 486 start-page: 135 year: 2012 ident: ref42 article-title: Crystal structure of a voltage-gated sodium channel in two potentially inactivated states publication-title: Nature doi: 10.1038/nature11077 – volume: 21 start-page: 160 year: 2014 ident: ref12 article-title: Structural basis of lipid-driven conformational transitions in the KvAP voltage-sensing domain publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2747 – volume: 336 start-page: 229 year: 2012 ident: ref45 article-title: Mechanism of voltage gating in potassium channels publication-title: Science doi: 10.1126/science.1216533 – volume: 72 start-page: 713 year: 2011 ident: ref23 article-title: In search of a consensus model of the resting state of a voltage-sensing domain publication-title: Neuron doi: 10.1016/j.neuron.2011.09.024 – volume: 504 start-page: 113 year: 2013 ident: ref5 article-title: TRPV1 structures in distinct conformations reveal activation mechanisms publication-title: Nature doi: 10.1038/nature12823 – volume: 135 start-page: 415 year: 2010 ident: ref29 article-title: Transfer of ion binding site from ether-a-go-go to Shaker: Mg2+ binds to resting state to modulate channel opening publication-title: J Gen Physiol doi: 10.1085/jgp.200910320 – volume: 26 start-page: 1781 year: 2005 ident: ref47 article-title: Scalable molecular dynamics with NAMD publication-title: J Comput Chem doi: 10.1002/jcc.20289 – volume: 109 start-page: E93 year: 2012 ident: ref46 article-title: Structural basis for gating charge movement in the voltage sensor of a sodium channel publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1118434109 – volume: 119 start-page: 3901 year: 2015 ident: ref51 article-title: Simulating the distance distribution between spin-labels attached to proteins publication-title: J Phys Chem B doi: 10.1021/jp510745d – volume: 138 start-page: 155 year: 2011 ident: ref31 article-title: R1 in the Shaker S4 occupies the gating charge transfer center in the resting state publication-title: J Gen Physiol doi: 10.1085/jgp.201110642 – volume: 223 start-page: 573 year: 1992 ident: ref52 article-title: Crystal structure of the complex between carboxypeptidase A and the biproduct analog inhibitor L-benzylsuccinate at 2.0 Å resolution publication-title: J Mol Biol doi: 10.1016/0022-2836(92)90671-6 – volume: 37 start-page: 16780 year: 1998 ident: ref15 article-title: Epidermal growth factor receptor transmembrane domain: 2H NMR implications for orientation and motion in a bilayer environment publication-title: Biochemistry doi: 10.1021/bi981520y – volume: 3 start-page: 769 year: 1995 ident: ref54 article-title: Crystal structure of the superantigen enterotoxin C2 from Staphylococcus aureus reveals a zinc-binding site publication-title: Structure doi: 10.1016/S0969-2126(01)00212-X – volume: 46 start-page: 2145 year: 2013 ident: ref7 article-title: Structure determination of membrane proteins in their native phospholipid bilayer environment by rotationally aligned solid-state NMR spectroscopy publication-title: Acc Chem Res doi: 10.1021/ar400067z – volume: 16 start-page: 181 year: 2008 ident: ref17 article-title: De novo high-resolution protein structure determination from sparse spin-labeling EPR data publication-title: Structure doi: 10.1016/j.str.2007.11.015 – volume: 486 start-page: 130 year: 2012 ident: ref41 article-title: Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel publication-title: Nature doi: 10.1038/nature11054 – volume: 21 start-page: 244 year: 2014 ident: ref4 article-title: Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2768 – volume: 9 start-page: 323 year: 2008 ident: ref33 article-title: How membrane proteins sense voltage publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2376 – volume: 475 start-page: 353 year: 2011 ident: ref40 article-title: The crystal structure of a voltage-gated sodium channel publication-title: Nature doi: 10.1038/nature10238 – volume: 140 start-page: 587 year: 2012 ident: ref43 article-title: An emerging consensus on voltage-dependent gating from computational modeling and molecular dynamics simulations publication-title: J Gen Physiol doi: 10.1085/jgp.201210873 – volume: 103 start-page: 8577 year: 1995 ident: ref57 article-title: A smooth particle mesh ewald method publication-title: J Chem Phys doi: 10.1063/1.470117 – volume: 423 start-page: 117 year: 2007 ident: ref19 article-title: Rigid body refinement of protein complexes with long-range distance restraints from pulsed dipolar ESR publication-title: Methods Enzymol doi: 10.1016/S0076-6879(07)23004-6 – volume: 34 start-page: 2135 year: 2013 ident: ref58 article-title: CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data publication-title: J Comput Chem doi: 10.1002/jcc.23354 – volume: 79 start-page: 926 year: 1983 ident: ref61 article-title: Comparison of simple potential functions for simulating liquid water publication-title: J Chem Phys doi: 10.1063/1.445869 – volume: 83 start-page: 1479 year: 2002 ident: ref16 article-title: Geometry and intrinsic tilt of a tryptophan-anchored transmembrane alpha-helix determined by (2)H NMR publication-title: Biophys J doi: 10.1016/S0006-3495(02)73918-0 – volume: 98 start-page: 2189 year: 2010 ident: ref44 article-title: Calculation of the gating charge for the Kv1.2 voltage-activated potassium channel publication-title: Biophys J doi: 10.1016/j.bpj.2010.02.056 – volume: 23 start-page: 327 year: 1977 ident: ref62 article-title: Numerical integration of cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes publication-title: J Comput Phys doi: 10.1016/0021-9991(77)90098-5 – volume: 450 start-page: 376 year: 2007 ident: ref39 article-title: Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment publication-title: Nature doi: 10.1038/nature06265 – volume: 109 start-page: 8552 year: 2012 ident: ref32 article-title: Tracking a complete voltage-sensor cycle with metal-ion bridges publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1116938109 – volume: 16 start-page: 398 year: 2008 ident: ref10 article-title: Structural dynamics of an isolated voltage-sensor domain in a lipid bilayer publication-title: Structure doi: 10.1016/j.str.2007.12.015 – volume: 102 start-page: 3586 year: 1998 ident: ref59 article-title: All-atom empirical potential for molecular modeling and dynamics studies of proteins publication-title: J Phys Chem B doi: 10.1021/jp973084f – volume: 104 start-page: 7904 year: 2007 ident: ref28 article-title: Two atomic constraints unambiguously position the S4 segment relative to S1 and S2 segments in the closed state of Shaker K channel publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0702638104 – volume: 1818 start-page: 252 year: 2012 ident: ref18 article-title: An ensemble dynamics approach to decipher solid-state NMR observables of membrane proteins publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamem.2011.07.048 – volume: 117 start-page: 4733 year: 2013 ident: ref49 article-title: Restrained-ensemble molecular dynamics simulations based on distance histograms from double electron-electron resonance spectroscopy publication-title: J Phys Chem B doi: 10.1021/jp3110369 – volume: 104 start-page: 3587 year: 2004 ident: ref8 article-title: Structure determination of membrane proteins by NMR spectroscopy publication-title: Chem Rev doi: 10.1021/cr0304121 – volume: 62 start-page: 678 year: 2006 ident: ref25 article-title: Small revisions to predicted distances around metal sites in proteins publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444906014594 – volume: 403 start-page: 321 year: 2000 ident: ref26 article-title: Blocker protection in the pore of a voltage-gated K+ channel and its structural implications publication-title: Nature doi: 10.1038/35002099 – volume: 101 start-page: 4177 year: 1994 ident: ref63 article-title: Constant pressure molecular dynamics algorithms publication-title: J Chem Phys doi: 10.1063/1.467468 – volume: 83 start-page: 508 year: 1986 ident: ref37 article-title: Molecular model of the action potential sodium channel publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.83.2.508 |
SSID | ssj0035896 |
Score | 2.2758324 |
Snippet | The knowledge of multiple conformational states is a prerequisite to understand the function of membrane transport proteins. Unfortunately, the determination... The knowledge of multiple conformational states is a prerequisite to understand the function of membrane transport proteins. Unfortunately, the determination... |
SourceID | plos doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1004368 |
SubjectTerms | Algorithms Experiments Histograms Membrane Transport Proteins - chemistry Membrane Transport Proteins - ultrastructure Methods Models, Chemical Molecular Dynamics Simulation Mutation Protein Binding Protein Conformation Protein Structure, Tertiary Proteins Spectrum analysis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOilNH3FTVtU6FXNStbDPvYVQiGhNA3szUjWKF1IvQGnlPz7zkj2slsKufTigz3GlmYsfSNrvo-xt9r4EJxdCA_KCW1BitD0tZBB9tYpFVRP9c6nZ_bkQn9ZmuWW1BftCSv0wKXjjnqccHqrpAVMZZJLwUHjFfhgW2hjm0dfnPPmZKqMwbVpsjIXieIIV-vlVDRXO3k0-ejddR9WtEeAKNh3JqXM3U9cp1fr8V-48-_tk1vz0fEj9nACkvx9acA-uwfDY3a_SEvePmG_zzMxLJFq8G-QEEvSMiBfJ_6VmBlWw8jDLV4Zs0YERH466-TyT0WkfuTnq5-TuNfIab2Wn60HQfwSubJquNy6B_HvZS6We8oujj9__3giJpEF0eu2uREIvwxob8E5E01MJi4wx-mlVdCShZLR1g4HAkQOmIslo3T0rUPghSNFhFQ_Y3vDeoADxhsvY0rKgk1Rg4fQ4AG0kj7EtPCmYvXcy10_MZBTI6-6_FvNYSZS-q4j33STbyomNnddFwaOO-w_kAM3tsSfnU9gVHVTVHV3RVXFDsj98wPGTrq61pb43Cr2Zg6JDj9F-r_iB1j_IhsqBG51izbPS4hs3gJ7mcCyq5jbCZ6d19y9Mqx-ZLpvfKy2rXzxP9p1yB4g4jNlN-JLtoehCK8QVd2E1_kD-gP1JiQN priority: 102 providerName: Directory of Open Access Journals |
Title | Structural Refinement of Proteins by Restrained Molecular Dynamics Simulations with Non-interacting Molecular Fragments |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26505197 https://www.proquest.com/docview/1728259494 https://pubmed.ncbi.nlm.nih.gov/PMC4624691 https://doaj.org/article/c061c6216e254f7fb7e8a2eab69e9d92 http://dx.doi.org/10.1371/journal.pcbi.1004368 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBa9MNjL2L3eJWiwV5dIliX7YYxmbVYGCaVdIG9GsqQ0kNld3dLl3-8c2Q7N6BjsxYH4KHakc6zvSD7fR8hHkWpjlBzG2nEVC-lYbLIyiZlhpVScG15ivfNkKk9n4ts8ne-QXrO168DmwdQO9aRm16vDXz_XnyHgPwXVBsX6RodXpVnirj-Squ-SfZibFIbqRGz2FZI0C4pdKJYTq0TMu2K6v_0KUgUDhMHizq15K9D7Ix3qqm4egqZ_vmF5b8oaPyVPOqxJj1rneEZ2XPWcPGrVJ9cvyN1F4I5F3g167jzATVwppLWnZ0jesKwaatZwpgkyEs7SSS-lS49bHfuGXix_dPpfDcUlXTqtqxgpKELxVbW41wYg8iLU070ks_HJ9y-ncafDEJciz25iQGipE1o6pVKbWp_aIaRBJZPc5WjBmZWJgmcFgAtI13zKhdW5AmwGDxPrfPKK7FV15Q4IzTSz3nPppLfCaWcyODjBmTbWD3UakaTv5aLsSMrxT66KsPOmIFlp-67AYSq6YYpIvGl11ZJ0_MN-hAO4sUWK7fBFfb0ouogtSkA6peRMOsihvfJGuUxzp43MXW5zHpEDHP7-Ak3BVJIIiZRvEfnQu0QB0YpbMLpy9S3aYK1wLnKwed26yOYuek-LiNpynq3b3D5TLS8DIzhcVsicvfnvlm_JY0CCafuW4juyB_7n3gPaujEDsqvmCo7Z-OuA7B-Njkdj-BydTM_OB2EFYxBC7Dd2sDPg |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Refinement+of+Proteins+by+Restrained+Molecular+Dynamics+Simulations+with+Non-interacting+Molecular+Fragments&rft.jtitle=PLoS+computational+biology&rft.au=Shen%2C+Rong&rft.au=Han%2C+Wei&rft.au=Fiorin%2C+Giacomo&rft.au=Islam%2C+Shahidul+M.&rft.date=2015-10-01&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=11&rft.issue=10&rft_id=info:doi/10.1371%2Fjournal.pcbi.1004368&rft_id=info%3Apmid%2F26505197&rft.externalDocID=PMC4624691 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |