Energy efficiency of respiration in mature and newborn reindeer

Reindeer ( Rangifer tarandus ) have evolved elaborate nasal turbinate structures that are perfused via a complex vascular network. These are subject to thermoregulatory control, shifting between heat conservation and dissipation, according to the animal’s needs. The three-dimensional design of the t...

Full description

Saved in:
Bibliographic Details
Published inJournal of comparative physiology. B, Biochemical, systemic, and environmental physiology Vol. 190; no. 4; pp. 509 - 520
Main Authors Solberg, Simon Birger Byremo, Kjelstrup, Signe, Magnanelli, Elisa, Kizilova, Natalya, Barroso, Iratxe Lorea Casado, Acquarone, Mario, Folkow, Lars P.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2020
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reindeer ( Rangifer tarandus ) have evolved elaborate nasal turbinate structures that are perfused via a complex vascular network. These are subject to thermoregulatory control, shifting between heat conservation and dissipation, according to the animal’s needs. The three-dimensional design of the turbinate structures is essential in the sense that they determine the efficiency with which heat and water are transferred between the structure and the respired air. The turbinates have already a relatively large surface area at birth, but the structures have yet not reached the complexity of the mature animal. The aim of this study was to elucidate the structure–function relationship of the heat exchange process. We have used morphometric and physiological data from newborn reindeer calves to construct a thermodynamic model for respiratory heat and water exchange and present novel results for the simulated respiratory energy losses of calves in the cold. While the mature reindeer effectively conserves heat and water through nasal counter-current heat exchange, the nose of the calf has not yet attained a similar efficiency. We speculate that this is probably related to structure-size limitations and more favourable climate conditions during early life. The fully developed structure–function relationship may serve as inspiration for engineering design. Simulations of different extents of mucosal vascularization suggest that the abundance and pattern of perfusion of veins in the reindeer nasal mucosa may contribute to the control of temperature profiles, such that nasal cavity tissue is sufficiently warm, but not excessively so, keeping heat dissipation within limits.
AbstractList Reindeer (Rangifer tarandus) have evolved elaborate nasal turbinate structures that are perfused via a complex vascular network. These are subject to thermoregulatory control, shifting between heat conservation and dissipation, according to the animal’s needs. The three-dimensional design of the turbinate structures is essential in the sense that they determine the efficiency with which heat and water are transferred between the structure and the respired air. The turbinates have already a relatively large surface area at birth, but the structures have yet not reached the complexity of the mature animal. The aim of this study was to elucidate the structure–function relationship of the heat exchange process. We have used morphometric and physiological data from newborn reindeer calves to construct a thermodynamic model for respiratory heat and water exchange and present novel results for the simulated respiratory energy losses of calves in the cold. While the mature reindeer effectively conserves heat and water through nasal counter-current heat exchange, the nose of the calf has not yet attained a similar efficiency. We speculate that this is probably related to structure-size limitations and more favourable climate conditions during early life. The fully developed structure–function relationship may serve as inspiration for engineering design. Simulations of different extents of mucosal vascularization suggest that the abundance and pattern of perfusion of veins in the reindeer nasal mucosa may contribute to the control of temperature profiles, such that nasal cavity tissue is sufficiently warm, but not excessively so, keeping heat dissipation within limits.
Reindeer ( Rangifer tarandus ) have evolved elaborate nasal turbinate structures that are perfused via a complex vascular network. These are subject to thermoregulatory control, shifting between heat conservation and dissipation, according to the animal’s needs. The three-dimensional design of the turbinate structures is essential in the sense that they determine the efficiency with which heat and water are transferred between the structure and the respired air. The turbinates have already a relatively large surface area at birth, but the structures have yet not reached the complexity of the mature animal. The aim of this study was to elucidate the structure–function relationship of the heat exchange process. We have used morphometric and physiological data from newborn reindeer calves to construct a thermodynamic model for respiratory heat and water exchange and present novel results for the simulated respiratory energy losses of calves in the cold. While the mature reindeer effectively conserves heat and water through nasal counter-current heat exchange, the nose of the calf has not yet attained a similar efficiency. We speculate that this is probably related to structure-size limitations and more favourable climate conditions during early life. The fully developed structure–function relationship may serve as inspiration for engineering design. Simulations of different extents of mucosal vascularization suggest that the abundance and pattern of perfusion of veins in the reindeer nasal mucosa may contribute to the control of temperature profiles, such that nasal cavity tissue is sufficiently warm, but not excessively so, keeping heat dissipation within limits.
Reindeer (Rangifer tarandus) have evolved elaborate nasal turbinate structures that are perfused via a complex vascular network. These are subject to thermoregulatory control, shifting between heat conservation and dissipation, according to the animal's needs. The three-dimensional design of the turbinate structures is essential in the sense that they determine the efficiency with which heat and water are transferred between the structure and the respired air. The turbinates have already a relatively large surface area at birth, but the structures have yet not reached the complexity of the mature animal. The aim of this study was to elucidate the structure-function relationship of the heat exchange process. We have used morphometric and physiological data from newborn reindeer calves to construct a thermodynamic model for respiratory heat and water exchange and present novel results for the simulated respiratory energy losses of calves in the cold. While the mature reindeer effectively conserves heat and water through nasal counter-current heat exchange, the nose of the calf has not yet attained a similar efficiency. We speculate that this is probably related to structure-size limitations and more favourable climate conditions during early life. The fully developed structure-function relationship may serve as inspiration for engineering design. Simulations of different extents of mucosal vascularization suggest that the abundance and pattern of perfusion of veins in the reindeer nasal mucosa may contribute to the control of temperature profiles, such that nasal cavity tissue is sufficiently warm, but not excessively so, keeping heat dissipation within limits.Reindeer (Rangifer tarandus) have evolved elaborate nasal turbinate structures that are perfused via a complex vascular network. These are subject to thermoregulatory control, shifting between heat conservation and dissipation, according to the animal's needs. The three-dimensional design of the turbinate structures is essential in the sense that they determine the efficiency with which heat and water are transferred between the structure and the respired air. The turbinates have already a relatively large surface area at birth, but the structures have yet not reached the complexity of the mature animal. The aim of this study was to elucidate the structure-function relationship of the heat exchange process. We have used morphometric and physiological data from newborn reindeer calves to construct a thermodynamic model for respiratory heat and water exchange and present novel results for the simulated respiratory energy losses of calves in the cold. While the mature reindeer effectively conserves heat and water through nasal counter-current heat exchange, the nose of the calf has not yet attained a similar efficiency. We speculate that this is probably related to structure-size limitations and more favourable climate conditions during early life. The fully developed structure-function relationship may serve as inspiration for engineering design. Simulations of different extents of mucosal vascularization suggest that the abundance and pattern of perfusion of veins in the reindeer nasal mucosa may contribute to the control of temperature profiles, such that nasal cavity tissue is sufficiently warm, but not excessively so, keeping heat dissipation within limits.
Author Acquarone, Mario
Kjelstrup, Signe
Kizilova, Natalya
Folkow, Lars P.
Solberg, Simon Birger Byremo
Magnanelli, Elisa
Barroso, Iratxe Lorea Casado
Author_xml – sequence: 1
  givenname: Simon Birger Byremo
  orcidid: 0000-0002-3235-460X
  surname: Solberg
  fullname: Solberg, Simon Birger Byremo
  organization: PoreLab, Department of Chemistry, Norwegian University of Science and Technology-NTNU
– sequence: 2
  givenname: Signe
  orcidid: 0000-0003-1235-5709
  surname: Kjelstrup
  fullname: Kjelstrup, Signe
  email: signe.kjelstrup@ntnu.no
  organization: PoreLab, Department of Chemistry, Norwegian University of Science and Technology-NTNU
– sequence: 3
  givenname: Elisa
  orcidid: 0000-0002-2470-4673
  surname: Magnanelli
  fullname: Magnanelli, Elisa
  organization: SINTEF Energy Research
– sequence: 4
  givenname: Natalya
  orcidid: 0000-0001-9981-7616
  surname: Kizilova
  fullname: Kizilova, Natalya
  organization: Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Department of Applied Mathematics, V. N. Karazin Kharkov National University
– sequence: 5
  givenname: Iratxe Lorea Casado
  surname: Barroso
  fullname: Barroso, Iratxe Lorea Casado
  organization: Sea Turtle Conservation Project, Department of Arctic and Marine Biology, University of Tromsø-the Arctic University of Norway
– sequence: 6
  givenname: Mario
  surname: Acquarone
  fullname: Acquarone, Mario
  organization: Department of Arctic and Marine Biology, University of Tromsø-the Arctic University of Norway
– sequence: 7
  givenname: Lars P.
  orcidid: 0000-0002-6580-9156
  surname: Folkow
  fullname: Folkow, Lars P.
  organization: Department of Arctic and Marine Biology, University of Tromsø-the Arctic University of Norway
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32451612$$D View this record in MEDLINE/PubMed
BookMark eNp9kTtvFDEUhS0URDaBP0ABI9HQDPg1tqchQlF4SJFoQKKzPJ7rxdGsvdgzoP33uclmeaRIYbnwd47PPfeEHKWcgJDnjL5hlOq3lVKhaEs5HsaNbMUjsmJS8JYJ9f2IrCjTsmWdNsfkpNYrSqlkRj4hx4LLjinGV-TsIkFZ7xoIIfoIye-aHJoCdRuLm2NOTUzNxs1LgcalsUnwe8glIRHTCFCeksfBTRWe3d2n5NuHi6_nn9rLLx8_n7-_bL3szdwy5bmTfvQaFDfKuMC1GwbPvHLGGwFiFD5wJccwhL4zfpQu9NorBkMnzChOybu973YZNjB6SHNxk92WuHFlZ7OL9v-XFH_Ydf5ltWBM9hQNXu4NfIl1jsmmXJzFHoW2WEpvkHh990XJPxeos93E6mGaXIK8VMslVX2HbgrRV_fQq7yUhAUgxRQVvaAdUi_-zfwn7KF9BMwhU661QLA-zret4whxwnQ3AbXdL9riou3toq1AKb8nPbg_KBJ7UUU4raH8jf2A6hoYyrne
CitedBy_id crossref_primary_10_1016_j_compbiomed_2022_105676
crossref_primary_10_1016_j_jtherbio_2022_103402
crossref_primary_10_1016_j_bpj_2023_11_012
crossref_primary_10_1002_ar_24793
crossref_primary_10_26565_2304_6201_2020_46_02
crossref_primary_10_1002_advs_202412669
crossref_primary_10_1016_j_funbio_2025_101567
crossref_primary_10_1016_j_jtbi_2024_111933
crossref_primary_10_3390_en17020432
Cites_doi 10.1016/0002-9343(61)90097-3
10.1007/978-3-319-05092-8
10.1051/jphystap:018890080050101
10.7557/2.6.2.659
10.1515/jnet-2016-0038
10.1142/6672
10.1242/jeb.120477
10.1152/ajpregu.1985.248.6.R679
10.1152/ajpregu.1985.249.5.R617
10.1007/3-7643-7412-8_3
10.1016/j.coche.2012.03.002
10.1098/rsif.2009.0490
10.1242/jeb.057455
10.1016/0300-9629(84)90456-0
10.1016/j.ces.2005.01.026
10.1016/S0006-3495(71)86262-8
10.1073/pnas.51.6.1192
10.1016/j.ijhydene.2010.08.118
10.1080/02786820600660903
10.1177/004051755502501002
10.1258/002367779780937924
10.1113/jphysiol.1983.sp014772
10.1002/ar.20592
10.1111/j.1748-1716.1985.tb07580.x
10.1126/science.175.4025.988
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
info:eu-repo/semantics/openAccess
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: info:eu-repo/semantics/openAccess
DBID C6C
AAYXX
CITATION
NPM
3V.
7QG
7QR
7SS
7T5
7TK
7TM
7U7
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
7X8
3HK
5PM
DOI 10.1007/s00360-020-01284-3
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Proquest Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
MEDLINE - Academic
NORA - Norwegian Open Research Archives
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Toxicology Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student

CrossRef
MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Zoology
EISSN 1432-136X
EndPage 520
ExternalDocumentID PMC7311490
10037_18498
32451612
10_1007_s00360_020_01284_3
Genre Journal Article
GrantInformation_xml – fundername: Norges Forskningsråd
  grantid: 257632/E20; 257632/E20; 257632/E20; 262644; 262644
  funderid: http://dx.doi.org/10.13039/501100005416
– fundername: Norges Forskningsråd
  grantid: 262644
– fundername: Norges Forskningsråd
  grantid: 257632/E20
– fundername: ;
  grantid: 257632/E20; 257632/E20; 257632/E20; 262644; 262644
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.GJ
06C
06D
0R~
0VY
186
199
1SB
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67N
67Z
6NX
78A
7X7
7XC
88A
88E
8AO
8FE
8FH
8FI
8FJ
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M0L
M1P
M4Y
M7P
MA-
MQGED
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PF-
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
XJT
XOL
YLTOR
Z45
Z7Y
Z7Z
Z8S
Z8T
ZGI
ZMTXR
ZOVNA
ZXP
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
7QG
7QR
7SS
7T5
7TK
7TM
7U7
7XB
8FD
8FK
ABRTQ
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
3HK
AABYN
AAFGU
AAYFA
ABELW
ABFGW
ABKAS
ABPTK
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ADMDM
ADOAH
ADOXG
AEEQQ
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
AOSHJ
UNUBA
5PM
ID FETCH-LOGICAL-c498t-16c2a4cdc7e62868af27abbc1c6a8c83e3d3cf264dfbf958cd4af97c61eb538d3
IEDL.DBID U2A
ISSN 0174-1578
1432-136X
IngestDate Thu Aug 21 13:23:15 EDT 2025
Sun Jan 07 07:12:17 EST 2024
Fri Jul 11 16:09:24 EDT 2025
Wed Aug 13 09:21:29 EDT 2025
Wed Feb 19 02:29:49 EST 2025
Thu Apr 24 23:05:56 EDT 2025
Tue Jul 01 04:23:14 EDT 2025
Fri Feb 21 02:34:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Thermodynamics
Energy efficiency
Neonate
Respiration
Entropy production
Rangifer tarandus
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c498t-16c2a4cdc7e62868af27abbc1c6a8c83e3d3cf264dfbf958cd4af97c61eb538d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology
Communicated by Kathrin Dausmann.
ORCID 0000-0003-1235-5709
0000-0002-3235-460X
0000-0002-6580-9156
0000-0002-2470-4673
0000-0001-9981-7616
OpenAccessLink https://link.springer.com/10.1007/s00360-020-01284-3
PMID 32451612
PQID 2416039305
PQPubID 54170
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7311490
cristin_nora_10037_18498
proquest_miscellaneous_2406951146
proquest_journals_2416039305
pubmed_primary_32451612
crossref_citationtrail_10_1007_s00360_020_01284_3
crossref_primary_10_1007_s00360_020_01284_3
springer_journals_10_1007_s00360_020_01284_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationSubtitle Biochemical, Systems, and Environmental Physiology
PublicationTitle Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology
PublicationTitleAbbrev J Comp Physiol B
PublicationTitleAlternate J Comp Physiol B
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Verlag
References Johnsen HK (1988) Nasal heat exchange: an experimental study of effector mechanisms associated with respiratory heat loss in Norwegian reindeer (Rangifer tarandus tarandus). PhD thesis, University of Tromsø
WilhelmsenØJohannessenEKjelstrupSEnergy efficient reactor design simplified by second law analysisInt J Hydrogen Energy20103513219132311:CAS:528:DC%2BC3cXhtl2ju7bP10.1016/j.ijhydene.2010.08.118
MagnanelliESolbergSBBKjelstrupSNature-inspired geometrical design of a chemical reactorCHERD201915220291:CAS:528:DC%2BC1MXhvV2itb7K
HenshawREUnderwoodLSCaseyTMPeripheral thermoregulation: foot temperature in two Arctic caninesScience19721759889901:STN:280:DyaE38%2Fps1eisg%3D%3D10.1126/science.175.4025.988
NegusVEThe comparative anatomy and physiology of the nose and paranasal sinuses1958EdinburghE & S Livingstone Ltd
JohannessenEKjelstrupSA highway in state space for reactors with minimum entropy productionChem Eng Sci200560334733611:CAS:528:DC%2BD2MXjs1Kqtr4%3D10.1016/j.ces.2005.01.026
JacksonDCSchmidt-NielsenKCountercurrent heat exchange in the respiratory passagesProc. Natl Acad Sci USA196451119211971:STN:280:DyaF2M%2FitVSgtA%3D%3D10.1073/pnas.51.6.1192
GouyGSur l’énergie utilisableJ Phys Theor Appl1889850151810.1051/jphystap:018890080050101
MagnanelliEWilhelmsenØAcquaroneMFolkowLPKjelstrupSThe nasal geometry of the reindeer gives energy-efficient respirationJ Non-Equilib Thermodyn20174259781:CAS:528:DC%2BC2sXhtFWrsr4%3D10.1515/jnet-2016-0038
TimisjärviJHirvonenLJärvensivuPNieminenMElectrocardiogram of the reindeer, Rangifer tarandus tarandusLab Anim19791318318610.1258/002367779780937924
JacobsenHAChemical reactor modeling2014SwitzerlandSpringer10.1007/978-3-319-05092-8
NilssenKJSundsfjordJABlixASRegulation of metabolic rate in Svalbard and Norwegian reindeerAm J Physiol1984247R837R8411:CAS:528:DyaL2MXktVeqsA%3D%3D6496770
IncroperaFPDewittDPBergmanTLLavineASFundamentals of heat and mass transfer2007New YorkWiley
Russell DE, Gunn A, Kutz S (2018). Migratory tundra caribou and wild reindeer. https://arctic.noaa.gov/Report-Card/Report-Card-2018/ArtMID/7878/ArticleID/784/Migratory-Tundra-Caribou-and-Wild-Reindeer. Accessed 16 Oct 2019
Anonymous (2017) Nomina anatomica veterinaria, 6th edn. Prepared by the International Committee on Veterinary Gross Anatomical Nomenclature (ICVGAN) for the World Association of Veterinary Anatomists (WAVA). https://wava-amav.org
BlixASAdaptations to polar life in mammals and birdsJ Exp Biol20162191093110510.1242/jeb.120477
BlixASArctic Animals and Their Adaptations to Life on the Edge2005TrondheimTapir Academic Press
GheorghiuSKjelstrupSPfeiferPCoppensMOLosaGAMerliniDNonnenmacherTFWeibelERIs the lung an optimal gas exchanger?Fractals in biology and medicine2005Birkhäuser BaselBasel314210.1007/3-7643-7412-8_3
JohnsenHKBlixASJorgensenLMercerJBVascular basis for regulation of nasal heat exchange in reindeerAm J Physiol Regulat Integr Comp Physiol1985249R617R6231:STN:280:DyaL28%2FkvVamsA%3D%3D10.1152/ajpregu.1985.249.5.R617
Mercer JB, Johnsen HK, Blix AS, Hotvedt R (1985) Central control of expired air temperature and other thermoregulatory effectors in reindeer. Am J Physiol Regulat Integr Comp Physiol 17 248:R679–R685
WalkerJECWellsREJrMerrillEWHeat and water exchange in the respiratory tractAm J Med1961302592671:STN:280:DyaF3c7gt12mug%3D%3D10.1016/0002-9343(61)90097-3
WhiteFMFluid mechanics2003New YorkMcGraw-Hill
CravenBANeubergerTPatersonEWebbAJosephsonEMorrisonESettlesGReconstruction and morphometric analysis of the nasal airway of the dog (Canis familiaris) and implications regarding olfactory airflowAnatom Rec20072901325134010.1002/ar.20592
SoppelaPNieminenMTimisjärviJThermoregulation in reindeerRangifer1986627327810.7557/2.6.2.659
Casado Barroso IL (2014) The ontogeny of nasal heat exchange structures in Arctic artiodactyles. MSc thesis, UiT The Arctic University of Norway
BlixASJohnsenHKAspects of nasal heat exchange in resting reindeerJ Physiol19833404454541:STN:280:DyaL3s3psVWltg%3D%3D10.1113/jphysiol.1983.sp014772
CravenBAPatersonEGSettlesGSThe fluid dynamics of canine olfaction: unique nasal airflow patterns as an explanation of macrosmiaJ R Soc Interface2010793394310.1098/rsif.2009.0490
MooteIThe thermal insulation of caribou peltsText Res J19552583283710.1177/004051755502501002
CollinsJCPilkingtonTCSchmidt-NielsenKA model of respiratory heat transfer in a small mammalBiophys J1971118869131:STN:280:DyaE38%2FisFagsg%3D%3D10.1016/S0006-3495(71)86262-8
TimisjärviJNieminenMSippolaALThe structure and insulation properties of the reindeer furComp Biochem Physiol A Physiol19847960160910.1016/0300-9629(84)90456-0
CoppensM-OA nature-inspired approach to reactor and catalysis engineeringCurr Opin Chem Eng201212812891:CAS:528:DC%2BC38XhsVyns77O10.1016/j.coche.2012.03.002
HillRWWyseGAAndersonMAnimal physiology2016Sunderland MassachusettsSinauer Associates Inc.
MarkussenKARognmoABlixASSome aspects of thermoregulation in newborn reindeer calves (Rangifer tarandus tarandus)Acta Physiol Scand19851232152201:STN:280:DyaL2M7ntFehtQ%3D%3D10.1111/j.1748-1716.1985.tb07580.x
BlixASWalloeLFolkowLPRegulation of brain temperature in winter-acclimatized reindeer under heat stressJ Exp Biol20112143850385610.1242/jeb.057455
KjelstrupSBedeauxDNon-equilibrium thermodynamics of heterogeneous systems2008SingaporeWorld Scientific Publishing10.1142/6672
ZamankhanPAhmadiGWangZHopkePKChengY-SSuWCLeonardDAirflow and deposition of nano-particles in a human nasal cavityAerosol Sci Technol2006404634761:CAS:528:DC%2BD28XlsFaqtb4%3D10.1080/02786820600660903
J Timisjärvi (1284_CR31) 1984; 79
HK Johnsen (1284_CR19) 1985; 249
G Gouy (1284_CR12) 1889; 8
DC Jackson (1284_CR36) 1964; 51
AS Blix (1284_CR3) 2005
1284_CR28
1284_CR24
AS Blix (1284_CR2) 1983; 340
AS Blix (1284_CR4) 2011; 214
E Johannessen (1284_CR17) 2005; 60
S Gheorghiu (1284_CR11) 2005
J Timisjärvi (1284_CR30) 1979; 13
VE Negus (1284_CR26) 1958
HA Jacobsen (1284_CR16) 2014
P Soppela (1284_CR29) 1986; 6
AS Blix (1284_CR5) 2016; 219
JC Collins (1284_CR7) 1971; 11
M-O Coppens (1284_CR8) 2012; 1
JEC Walker (1284_CR32) 1961; 30
Ø Wilhelmsen (1284_CR34) 2010; 35
RW Hill (1284_CR14) 2016
E Magnanelli (1284_CR21) 2017; 42
1284_CR1
FP Incropera (1284_CR15) 2007
1284_CR6
FM White (1284_CR33) 2003
E Magnanelli (1284_CR22) 2019; 152
I Moote (1284_CR25) 1955; 25
BA Craven (1284_CR9) 2007; 290
BA Craven (1284_CR10) 2010; 7
S Kjelstrup (1284_CR20) 2008
RE Henshaw (1284_CR13) 1972; 175
P Zamankhan (1284_CR35) 2006; 40
1284_CR18
KA Markussen (1284_CR23) 1985; 123
KJ Nilssen (1284_CR27) 1984; 247
References_xml – reference: CravenBAPatersonEGSettlesGSThe fluid dynamics of canine olfaction: unique nasal airflow patterns as an explanation of macrosmiaJ R Soc Interface2010793394310.1098/rsif.2009.0490
– reference: WhiteFMFluid mechanics2003New YorkMcGraw-Hill
– reference: Mercer JB, Johnsen HK, Blix AS, Hotvedt R (1985) Central control of expired air temperature and other thermoregulatory effectors in reindeer. Am J Physiol Regulat Integr Comp Physiol 17 248:R679–R685
– reference: WilhelmsenØJohannessenEKjelstrupSEnergy efficient reactor design simplified by second law analysisInt J Hydrogen Energy20103513219132311:CAS:528:DC%2BC3cXhtl2ju7bP10.1016/j.ijhydene.2010.08.118
– reference: Russell DE, Gunn A, Kutz S (2018). Migratory tundra caribou and wild reindeer. https://arctic.noaa.gov/Report-Card/Report-Card-2018/ArtMID/7878/ArticleID/784/Migratory-Tundra-Caribou-and-Wild-Reindeer. Accessed 16 Oct 2019
– reference: SoppelaPNieminenMTimisjärviJThermoregulation in reindeerRangifer1986627327810.7557/2.6.2.659
– reference: BlixASAdaptations to polar life in mammals and birdsJ Exp Biol20162191093110510.1242/jeb.120477
– reference: HenshawREUnderwoodLSCaseyTMPeripheral thermoregulation: foot temperature in two Arctic caninesScience19721759889901:STN:280:DyaE38%2Fps1eisg%3D%3D10.1126/science.175.4025.988
– reference: Casado Barroso IL (2014) The ontogeny of nasal heat exchange structures in Arctic artiodactyles. MSc thesis, UiT The Arctic University of Norway
– reference: TimisjärviJNieminenMSippolaALThe structure and insulation properties of the reindeer furComp Biochem Physiol A Physiol19847960160910.1016/0300-9629(84)90456-0
– reference: MooteIThe thermal insulation of caribou peltsText Res J19552583283710.1177/004051755502501002
– reference: ZamankhanPAhmadiGWangZHopkePKChengY-SSuWCLeonardDAirflow and deposition of nano-particles in a human nasal cavityAerosol Sci Technol2006404634761:CAS:528:DC%2BD28XlsFaqtb4%3D10.1080/02786820600660903
– reference: MagnanelliESolbergSBBKjelstrupSNature-inspired geometrical design of a chemical reactorCHERD201915220291:CAS:528:DC%2BC1MXhvV2itb7K
– reference: NegusVEThe comparative anatomy and physiology of the nose and paranasal sinuses1958EdinburghE & S Livingstone Ltd
– reference: HillRWWyseGAAndersonMAnimal physiology2016Sunderland MassachusettsSinauer Associates Inc.
– reference: CravenBANeubergerTPatersonEWebbAJosephsonEMorrisonESettlesGReconstruction and morphometric analysis of the nasal airway of the dog (Canis familiaris) and implications regarding olfactory airflowAnatom Rec20072901325134010.1002/ar.20592
– reference: JacobsenHAChemical reactor modeling2014SwitzerlandSpringer10.1007/978-3-319-05092-8
– reference: MagnanelliEWilhelmsenØAcquaroneMFolkowLPKjelstrupSThe nasal geometry of the reindeer gives energy-efficient respirationJ Non-Equilib Thermodyn20174259781:CAS:528:DC%2BC2sXhtFWrsr4%3D10.1515/jnet-2016-0038
– reference: MarkussenKARognmoABlixASSome aspects of thermoregulation in newborn reindeer calves (Rangifer tarandus tarandus)Acta Physiol Scand19851232152201:STN:280:DyaL2M7ntFehtQ%3D%3D10.1111/j.1748-1716.1985.tb07580.x
– reference: TimisjärviJHirvonenLJärvensivuPNieminenMElectrocardiogram of the reindeer, Rangifer tarandus tarandusLab Anim19791318318610.1258/002367779780937924
– reference: Anonymous (2017) Nomina anatomica veterinaria, 6th edn. Prepared by the International Committee on Veterinary Gross Anatomical Nomenclature (ICVGAN) for the World Association of Veterinary Anatomists (WAVA). https://wava-amav.org
– reference: CollinsJCPilkingtonTCSchmidt-NielsenKA model of respiratory heat transfer in a small mammalBiophys J1971118869131:STN:280:DyaE38%2FisFagsg%3D%3D10.1016/S0006-3495(71)86262-8
– reference: BlixASArctic Animals and Their Adaptations to Life on the Edge2005TrondheimTapir Academic Press
– reference: GheorghiuSKjelstrupSPfeiferPCoppensMOLosaGAMerliniDNonnenmacherTFWeibelERIs the lung an optimal gas exchanger?Fractals in biology and medicine2005Birkhäuser BaselBasel314210.1007/3-7643-7412-8_3
– reference: BlixASWalloeLFolkowLPRegulation of brain temperature in winter-acclimatized reindeer under heat stressJ Exp Biol20112143850385610.1242/jeb.057455
– reference: BlixASJohnsenHKAspects of nasal heat exchange in resting reindeerJ Physiol19833404454541:STN:280:DyaL3s3psVWltg%3D%3D10.1113/jphysiol.1983.sp014772
– reference: CoppensM-OA nature-inspired approach to reactor and catalysis engineeringCurr Opin Chem Eng201212812891:CAS:528:DC%2BC38XhsVyns77O10.1016/j.coche.2012.03.002
– reference: JacksonDCSchmidt-NielsenKCountercurrent heat exchange in the respiratory passagesProc. Natl Acad Sci USA196451119211971:STN:280:DyaF2M%2FitVSgtA%3D%3D10.1073/pnas.51.6.1192
– reference: JohannessenEKjelstrupSA highway in state space for reactors with minimum entropy productionChem Eng Sci200560334733611:CAS:528:DC%2BD2MXjs1Kqtr4%3D10.1016/j.ces.2005.01.026
– reference: GouyGSur l’énergie utilisableJ Phys Theor Appl1889850151810.1051/jphystap:018890080050101
– reference: Johnsen HK (1988) Nasal heat exchange: an experimental study of effector mechanisms associated with respiratory heat loss in Norwegian reindeer (Rangifer tarandus tarandus). PhD thesis, University of Tromsø
– reference: IncroperaFPDewittDPBergmanTLLavineASFundamentals of heat and mass transfer2007New YorkWiley
– reference: JohnsenHKBlixASJorgensenLMercerJBVascular basis for regulation of nasal heat exchange in reindeerAm J Physiol Regulat Integr Comp Physiol1985249R617R6231:STN:280:DyaL28%2FkvVamsA%3D%3D10.1152/ajpregu.1985.249.5.R617
– reference: KjelstrupSBedeauxDNon-equilibrium thermodynamics of heterogeneous systems2008SingaporeWorld Scientific Publishing10.1142/6672
– reference: NilssenKJSundsfjordJABlixASRegulation of metabolic rate in Svalbard and Norwegian reindeerAm J Physiol1984247R837R8411:CAS:528:DyaL2MXktVeqsA%3D%3D6496770
– reference: WalkerJECWellsREJrMerrillEWHeat and water exchange in the respiratory tractAm J Med1961302592671:STN:280:DyaF3c7gt12mug%3D%3D10.1016/0002-9343(61)90097-3
– volume: 30
  start-page: 259
  year: 1961
  ident: 1284_CR32
  publication-title: Am J Med
  doi: 10.1016/0002-9343(61)90097-3
– volume-title: Chemical reactor modeling
  year: 2014
  ident: 1284_CR16
  doi: 10.1007/978-3-319-05092-8
– volume: 8
  start-page: 501
  year: 1889
  ident: 1284_CR12
  publication-title: J Phys Theor Appl
  doi: 10.1051/jphystap:018890080050101
– ident: 1284_CR18
– ident: 1284_CR1
– volume: 6
  start-page: 273
  year: 1986
  ident: 1284_CR29
  publication-title: Rangifer
  doi: 10.7557/2.6.2.659
– volume-title: Fundamentals of heat and mass transfer
  year: 2007
  ident: 1284_CR15
– volume: 42
  start-page: 59
  year: 2017
  ident: 1284_CR21
  publication-title: J Non-Equilib Thermodyn
  doi: 10.1515/jnet-2016-0038
– volume-title: Fluid mechanics
  year: 2003
  ident: 1284_CR33
– volume: 247
  start-page: R837
  year: 1984
  ident: 1284_CR27
  publication-title: Am J Physiol
– volume-title: Animal physiology
  year: 2016
  ident: 1284_CR14
– volume-title: Non-equilibrium thermodynamics of heterogeneous systems
  year: 2008
  ident: 1284_CR20
  doi: 10.1142/6672
– volume: 219
  start-page: 1093
  year: 2016
  ident: 1284_CR5
  publication-title: J Exp Biol
  doi: 10.1242/jeb.120477
– volume: 152
  start-page: 20
  year: 2019
  ident: 1284_CR22
  publication-title: CHERD
– ident: 1284_CR24
  doi: 10.1152/ajpregu.1985.248.6.R679
– volume: 249
  start-page: R617
  year: 1985
  ident: 1284_CR19
  publication-title: Am J Physiol Regulat Integr Comp Physiol
  doi: 10.1152/ajpregu.1985.249.5.R617
– start-page: 31
  volume-title: Fractals in biology and medicine
  year: 2005
  ident: 1284_CR11
  doi: 10.1007/3-7643-7412-8_3
– volume: 1
  start-page: 281
  year: 2012
  ident: 1284_CR8
  publication-title: Curr Opin Chem Eng
  doi: 10.1016/j.coche.2012.03.002
– volume: 7
  start-page: 933
  year: 2010
  ident: 1284_CR10
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2009.0490
– volume: 214
  start-page: 3850
  year: 2011
  ident: 1284_CR4
  publication-title: J Exp Biol
  doi: 10.1242/jeb.057455
– volume: 79
  start-page: 601
  year: 1984
  ident: 1284_CR31
  publication-title: Comp Biochem Physiol A Physiol
  doi: 10.1016/0300-9629(84)90456-0
– volume: 60
  start-page: 3347
  year: 2005
  ident: 1284_CR17
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2005.01.026
– volume-title: The comparative anatomy and physiology of the nose and paranasal sinuses
  year: 1958
  ident: 1284_CR26
– volume: 11
  start-page: 886
  year: 1971
  ident: 1284_CR7
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(71)86262-8
– volume: 51
  start-page: 1192
  year: 1964
  ident: 1284_CR36
  publication-title: Proc. Natl Acad Sci USA
  doi: 10.1073/pnas.51.6.1192
– volume: 35
  start-page: 13219
  year: 2010
  ident: 1284_CR34
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.08.118
– volume: 40
  start-page: 463
  year: 2006
  ident: 1284_CR35
  publication-title: Aerosol Sci Technol
  doi: 10.1080/02786820600660903
– volume: 25
  start-page: 832
  year: 1955
  ident: 1284_CR25
  publication-title: Text Res J
  doi: 10.1177/004051755502501002
– ident: 1284_CR6
– volume-title: Arctic Animals and Their Adaptations to Life on the Edge
  year: 2005
  ident: 1284_CR3
– volume: 13
  start-page: 183
  year: 1979
  ident: 1284_CR30
  publication-title: Lab Anim
  doi: 10.1258/002367779780937924
– volume: 340
  start-page: 445
  year: 1983
  ident: 1284_CR2
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1983.sp014772
– volume: 290
  start-page: 1325
  year: 2007
  ident: 1284_CR9
  publication-title: Anatom Rec
  doi: 10.1002/ar.20592
– volume: 123
  start-page: 215
  year: 1985
  ident: 1284_CR23
  publication-title: Acta Physiol Scand
  doi: 10.1111/j.1748-1716.1985.tb07580.x
– volume: 175
  start-page: 988
  year: 1972
  ident: 1284_CR13
  publication-title: Science
  doi: 10.1126/science.175.4025.988
– ident: 1284_CR28
SSID ssj0004184
Score 2.3004868
Snippet Reindeer ( Rangifer tarandus ) have evolved elaborate nasal turbinate structures that are perfused via a complex vascular network. These are subject to...
Reindeer (Rangifer tarandus) have evolved elaborate nasal turbinate structures that are perfused via a complex vascular network. These are subject to...
SourceID pubmedcentral
cristin
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 509
SubjectTerms Animal Physiology
Biochemistry
Biomedical and Life Sciences
Biomedicine
Bone
Calves
Climatic conditions
Complexity
Computer simulation
Design engineering
Efficiency
Energy dissipation
Energy efficiency
Heat
Heat exchange
Human Physiology
Life Sciences
Matematikk og Naturvitenskap: 400
Mathematics and natural science: 400
Mucosa
Nose
Original Paper
Perfusion
Rangifer tarandus
Structure-function relationships
Temperature control
Temperature profiles
Thermodynamic models
Vascularization
VDP
Water exchange
Wildlife conservation
Zoology
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BTtwwEB219NBeKgptSQuVKyEu1KqTeO3khBACoUrtCaS9WbbjqEjFS5flwN8z43WyWhCc7VU2nrHnxTPvDcB-720VhBW8U23gGKGoCKCquXJla5ugJqEigvPvP-r8Uv6aTqb5wu02l1UOZ2I6qLuZpzvynxhpFPFIxeTo5j-nrlGUXc0tNF7DG5Iuo5IuPdUrXmTZLLW9teQlumYmzSTqHAmxCE4fT-mI5sTa8WlfxfUQ9QR3Pi2ffJRDTaHpbBPeZ0zJjpdO8AFehbgF28cRv6ev79kBS1We6fp8C96eDB3etuHoNBH_WEgyEsTBZLOezXPyHQ3GriK7TsqfzMaOIQJHj4k4gzQWw_wjXJ6dXpyc89xQgXvZNgteKl9Z6TuvAzFSG9tX2jrnS69s45s61F3te4RIXe96XE7fSdu32qsyODwYu_oTbMRZDDtUEeUopWpt63oppW2DtUIEERzisaptCtjJq2ki-jJJI9faoD1oqByW1_gsRE79MP6ZUUI5GcegcUwyjqkLOBx_c7OU4Xhx9u5gNZO35K1ZOVAB38dhXHHKkNgYZnc0RyiEnBg9Cvi8NPL4OESeE4THVQF6zfzjBBLqXh-JV3-TYLfGLSBbUcCPwVFWf-v5t_jy8lt8hXdVcl8qHd6FjcX8LuwhQFq4b2kXPACg1AqP
  priority: 102
  providerName: ProQuest
Title Energy efficiency of respiration in mature and newborn reindeer
URI https://link.springer.com/article/10.1007/s00360-020-01284-3
https://www.ncbi.nlm.nih.gov/pubmed/32451612
https://www.proquest.com/docview/2416039305
https://www.proquest.com/docview/2406951146
http://hdl.handle.net/10037/18498
https://pubmed.ncbi.nlm.nih.gov/PMC7311490
Volume 190
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED6xTQheEHTAAqMyEuIFLCVOYsdPqFQdE4gJISoVXizHcbRJzEVd97B_vzs3yVQGSDxVii9p6jvbn3v3fQZ41TorfGpT3kjtOa5QVAQgci7rTNvKy9ILIjh_PpHH8-Ljolx0pLCLvtq9T0nGmXogu5F0SsppuxMnVZ7vwF5Je3eM4rmY3LAhs2qj6K0KnmFAdlSZPz8DYa-LoylsL0y30ObtosnfMqdxQTp6CA86JMkmG9c_gjs-jGB_EnAXfX7FXrNY2xn_NB_BvWl_rtsI7v5Yxqv78G4WiX_MRxkJ4mCyZctWXfIdHcbOAjuPyp_MhoYhAseICWhBGot-9RjmR7Nv02PeHajAXaGrNc-kE7ZwjVOeGKmVbYWyde0yJ23lqtznTe5ahEhNW7e6pHONbKuVk5mvcWJs8iewG5bBH1BFVE0pVWt13RZFYbW3Nk196mvEY0JXCRx0_WoCxjJJI-fKoGeoKes72rhOiJzOw_hpBgnl6CaDbjLRTSZP4M1wz6-NDMc_rQ97_5luSF4YhCqSiMhpmcDLoRn7njIkNvjlJdmkEiEnrh4JPN24e_g6RJ4lwmORgNoKhMGAhLq3W8LZaRTsVjgECp0m8LYPmZvX-vuvePZ_5s_hvoiBTaXEh7C7Xl36FwiY1vUYdtRCjWFv8uH7pxl-vp-dfPmKV6dyOo5j5xrSoQ9n
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ_g8YAvRkFlEbUm6os27nY_-2AI4pFD4GIMJLyVbrcbSaQHxxHDP-Xf6Ez343ISeeO53a_OTGe6M7_fALytjRY21CGvMmk5eigqAhAxz8pI6sJmqRUEcD4cZ6Pj5NtJerIEfzosDJVVdnui36iriaF_5J_Q02SEIw3TrYtLTl2jKLvatdBo1GLf3vzGI9vV572vKN93QuwOj3ZGvO0qwE0iixmPMiN0YiqTW4JlFroWuS5LE5lMF6aIbVzFpsY4oarLWqbU3EfXMjdZZEvcHaoY7_sAlpMYjzIDWP4yHH__MUdiRkXDJp4nPEJjaGE6HqxH1C8hp-OadwqccELGW7JbdIq3It3bBZv_ZG29M9x9DI_aKJZtN2r3BJasW4W1bYcn-PMb9p75ulL_w34VVna6nnJrsDX0UENmPXEFoT7ZpGbTNt2PKsLOHDv3XKNMu4phzI866nAGsTra6VM4vpfFfgYDN3F2nWqwSkriai3LOkkSLa3WYWhDW2IEKGQRwHq7msqh9RAZc5wrlAcNRd3yKtNSn1MHjl-qJ232wlEoHOWFo-IAPvTXXDTEH3fO3uykptpN4ErNVTaAN_0wrjjlZLSzk2uaE2YY5KK_CuB5I-T-cRjrphiQiwDyBfH3E4gafHHEnf30FOE5Gl0iwwA-dooyf63_f8XG3V_xGlZGR4cH6mBvvP8CHgqvylS4vAmD2fTavsTwbFa-am2Cwel9m-FfNf9LXg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bTxUxEJ4gJuqLUVBYRa2J-qINu91Ldx8MIcAJiBIfJDlvte12Iwn0wOEQw1_z1znTvZwcibzx3O6tM9OZ7sz3DcC7xmrhYh3zuqgcRw9FRQAi5YVJKl26IneCAM7fjor94-zLOB8vwZ8eC0Nllf2eGDbqemLpH_kmepqCcKRxvtl0ZRHfd0db5xecOkhRprVvp9GqyKG7_o3Ht8vPB7so6_dCjPZ-7OzzrsMAt1lVznhSWKEzW1vpCKJZ6kZIbYxNbKFLW6YurVPbYMxQN6apcmr0o5tK2iJxBneKOsX73oP7Ms0TsjE5lnNMZlK2vOIy4wmaRQfYCbA9IoGJOR3cgnvghBiywab9onu8EfPeLN38J38b3OLoCTzu4lm23SrgU1hyfgVWtz2e5c-u2QcWKkzDr_sVeLjTd5dbha29ADpkLlBYEP6TTRo27RL_qCzsxLOzwDrKtK8ZRv-orR5nEL-jmz6D4ztZ6uew7CferVM1lqF0rtaVabIs05XTOo5d7AzGgqIqI1jvVlN5tCOiZU6lQnnQUNIvr7IdCTr14jhVA31zEI5C4aggHJVG8HG45rylALl19kYvNdVtB5dqrrwRvB2GccUpO6O9m1zRnLjAcBc9VwRrrZCHx2HUm2NoLiKQC-IfJhBJ-OKIP_kVyMIlml9WxRF86hVl_lr__4oXt3_FG3iAxqe-HhwdvoRHImgyVTBvwPJseuVeYZw2M6-DQTD4edcW-BcLEU4u
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+efficiency+of+respiration+in+mature+and+newborn+reindeer&rft.jtitle=Journal+of+comparative+physiology.+B%2C+Biochemical%2C+systemic%2C+and+environmental+physiology&rft.au=Solberg%2C+Simon+Birger+Byremo&rft.au=Kjelstrup%2C+Signe&rft.au=Magnanelli%2C+Elisa&rft.au=Kizilova%2C+Natalya&rft.date=2020-07-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0174-1578&rft.eissn=1432-136X&rft.volume=190&rft.issue=4&rft.spage=509&rft.epage=520&rft_id=info:doi/10.1007%2Fs00360-020-01284-3&rft_id=info%3Apmid%2F32451612&rft.externalDocID=PMC7311490
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0174-1578&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0174-1578&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0174-1578&client=summon