Energy efficiency of respiration in mature and newborn reindeer
Reindeer ( Rangifer tarandus ) have evolved elaborate nasal turbinate structures that are perfused via a complex vascular network. These are subject to thermoregulatory control, shifting between heat conservation and dissipation, according to the animal’s needs. The three-dimensional design of the t...
Saved in:
Published in | Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology Vol. 190; no. 4; pp. 509 - 520 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2020
Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reindeer (
Rangifer tarandus
) have evolved elaborate nasal turbinate structures that are perfused via a complex vascular network. These are subject to thermoregulatory control, shifting between heat conservation and dissipation, according to the animal’s needs. The three-dimensional design of the turbinate structures is essential in the sense that they determine the efficiency with which heat and water are transferred between the structure and the respired air. The turbinates have already a relatively large surface area at birth, but the structures have yet not reached the complexity of the mature animal. The aim of this study was to elucidate the structure–function relationship of the heat exchange process. We have used morphometric and physiological data from newborn reindeer calves to construct a thermodynamic model for respiratory heat and water exchange and present novel results for the simulated respiratory energy losses of calves in the cold. While the mature reindeer effectively conserves heat and water through nasal counter-current heat exchange, the nose of the calf has not yet attained a similar efficiency. We speculate that this is probably related to structure-size limitations and more favourable climate conditions during early life. The fully developed structure–function relationship may serve as inspiration for engineering design. Simulations of different extents of mucosal vascularization suggest that the abundance and pattern of perfusion of veins in the reindeer nasal mucosa may contribute to the control of temperature profiles, such that nasal cavity tissue is sufficiently warm, but not excessively so, keeping heat dissipation within limits. |
---|---|
AbstractList | Reindeer (Rangifer tarandus) have evolved elaborate nasal turbinate structures that are perfused via a complex vascular network. These are subject to thermoregulatory control, shifting between heat conservation and dissipation, according to the animal’s needs. The three-dimensional design of the turbinate structures is essential in the sense that they determine the efficiency with which heat and water are transferred between the structure and the respired air. The turbinates have already a relatively large surface area at birth, but the structures have yet not reached the complexity of the mature animal. The aim of this study was to elucidate the structure–function relationship of the heat exchange process. We have used morphometric and physiological data from newborn reindeer calves to construct a thermodynamic model for respiratory heat and water exchange and present novel results for the simulated respiratory energy losses of calves in the cold. While the mature reindeer effectively conserves heat and water through nasal counter-current heat exchange, the nose of the calf has not yet attained a similar efficiency. We speculate that this is probably related to structure-size limitations and more favourable climate conditions during early life. The fully developed structure–function relationship may serve as inspiration for engineering design. Simulations of different extents of mucosal vascularization suggest that the abundance and pattern of perfusion of veins in the reindeer nasal mucosa may contribute to the control of temperature profiles, such that nasal cavity tissue is sufficiently warm, but not excessively so, keeping heat dissipation within limits. Reindeer ( Rangifer tarandus ) have evolved elaborate nasal turbinate structures that are perfused via a complex vascular network. These are subject to thermoregulatory control, shifting between heat conservation and dissipation, according to the animal’s needs. The three-dimensional design of the turbinate structures is essential in the sense that they determine the efficiency with which heat and water are transferred between the structure and the respired air. The turbinates have already a relatively large surface area at birth, but the structures have yet not reached the complexity of the mature animal. The aim of this study was to elucidate the structure–function relationship of the heat exchange process. We have used morphometric and physiological data from newborn reindeer calves to construct a thermodynamic model for respiratory heat and water exchange and present novel results for the simulated respiratory energy losses of calves in the cold. While the mature reindeer effectively conserves heat and water through nasal counter-current heat exchange, the nose of the calf has not yet attained a similar efficiency. We speculate that this is probably related to structure-size limitations and more favourable climate conditions during early life. The fully developed structure–function relationship may serve as inspiration for engineering design. Simulations of different extents of mucosal vascularization suggest that the abundance and pattern of perfusion of veins in the reindeer nasal mucosa may contribute to the control of temperature profiles, such that nasal cavity tissue is sufficiently warm, but not excessively so, keeping heat dissipation within limits. Reindeer (Rangifer tarandus) have evolved elaborate nasal turbinate structures that are perfused via a complex vascular network. These are subject to thermoregulatory control, shifting between heat conservation and dissipation, according to the animal's needs. The three-dimensional design of the turbinate structures is essential in the sense that they determine the efficiency with which heat and water are transferred between the structure and the respired air. The turbinates have already a relatively large surface area at birth, but the structures have yet not reached the complexity of the mature animal. The aim of this study was to elucidate the structure-function relationship of the heat exchange process. We have used morphometric and physiological data from newborn reindeer calves to construct a thermodynamic model for respiratory heat and water exchange and present novel results for the simulated respiratory energy losses of calves in the cold. While the mature reindeer effectively conserves heat and water through nasal counter-current heat exchange, the nose of the calf has not yet attained a similar efficiency. We speculate that this is probably related to structure-size limitations and more favourable climate conditions during early life. The fully developed structure-function relationship may serve as inspiration for engineering design. Simulations of different extents of mucosal vascularization suggest that the abundance and pattern of perfusion of veins in the reindeer nasal mucosa may contribute to the control of temperature profiles, such that nasal cavity tissue is sufficiently warm, but not excessively so, keeping heat dissipation within limits.Reindeer (Rangifer tarandus) have evolved elaborate nasal turbinate structures that are perfused via a complex vascular network. These are subject to thermoregulatory control, shifting between heat conservation and dissipation, according to the animal's needs. The three-dimensional design of the turbinate structures is essential in the sense that they determine the efficiency with which heat and water are transferred between the structure and the respired air. The turbinates have already a relatively large surface area at birth, but the structures have yet not reached the complexity of the mature animal. The aim of this study was to elucidate the structure-function relationship of the heat exchange process. We have used morphometric and physiological data from newborn reindeer calves to construct a thermodynamic model for respiratory heat and water exchange and present novel results for the simulated respiratory energy losses of calves in the cold. While the mature reindeer effectively conserves heat and water through nasal counter-current heat exchange, the nose of the calf has not yet attained a similar efficiency. We speculate that this is probably related to structure-size limitations and more favourable climate conditions during early life. The fully developed structure-function relationship may serve as inspiration for engineering design. Simulations of different extents of mucosal vascularization suggest that the abundance and pattern of perfusion of veins in the reindeer nasal mucosa may contribute to the control of temperature profiles, such that nasal cavity tissue is sufficiently warm, but not excessively so, keeping heat dissipation within limits. |
Author | Acquarone, Mario Kjelstrup, Signe Kizilova, Natalya Folkow, Lars P. Solberg, Simon Birger Byremo Magnanelli, Elisa Barroso, Iratxe Lorea Casado |
Author_xml | – sequence: 1 givenname: Simon Birger Byremo orcidid: 0000-0002-3235-460X surname: Solberg fullname: Solberg, Simon Birger Byremo organization: PoreLab, Department of Chemistry, Norwegian University of Science and Technology-NTNU – sequence: 2 givenname: Signe orcidid: 0000-0003-1235-5709 surname: Kjelstrup fullname: Kjelstrup, Signe email: signe.kjelstrup@ntnu.no organization: PoreLab, Department of Chemistry, Norwegian University of Science and Technology-NTNU – sequence: 3 givenname: Elisa orcidid: 0000-0002-2470-4673 surname: Magnanelli fullname: Magnanelli, Elisa organization: SINTEF Energy Research – sequence: 4 givenname: Natalya orcidid: 0000-0001-9981-7616 surname: Kizilova fullname: Kizilova, Natalya organization: Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Department of Applied Mathematics, V. N. Karazin Kharkov National University – sequence: 5 givenname: Iratxe Lorea Casado surname: Barroso fullname: Barroso, Iratxe Lorea Casado organization: Sea Turtle Conservation Project, Department of Arctic and Marine Biology, University of Tromsø-the Arctic University of Norway – sequence: 6 givenname: Mario surname: Acquarone fullname: Acquarone, Mario organization: Department of Arctic and Marine Biology, University of Tromsø-the Arctic University of Norway – sequence: 7 givenname: Lars P. orcidid: 0000-0002-6580-9156 surname: Folkow fullname: Folkow, Lars P. organization: Department of Arctic and Marine Biology, University of Tromsø-the Arctic University of Norway |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32451612$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kTtvFDEUhS0URDaBP0ABI9HQDPg1tqchQlF4SJFoQKKzPJ7rxdGsvdgzoP33uclmeaRIYbnwd47PPfeEHKWcgJDnjL5hlOq3lVKhaEs5HsaNbMUjsmJS8JYJ9f2IrCjTsmWdNsfkpNYrSqlkRj4hx4LLjinGV-TsIkFZ7xoIIfoIye-aHJoCdRuLm2NOTUzNxs1LgcalsUnwe8glIRHTCFCeksfBTRWe3d2n5NuHi6_nn9rLLx8_n7-_bL3szdwy5bmTfvQaFDfKuMC1GwbPvHLGGwFiFD5wJccwhL4zfpQu9NorBkMnzChOybu973YZNjB6SHNxk92WuHFlZ7OL9v-XFH_Ydf5ltWBM9hQNXu4NfIl1jsmmXJzFHoW2WEpvkHh990XJPxeos93E6mGaXIK8VMslVX2HbgrRV_fQq7yUhAUgxRQVvaAdUi_-zfwn7KF9BMwhU661QLA-zret4whxwnQ3AbXdL9riou3toq1AKb8nPbg_KBJ7UUU4raH8jf2A6hoYyrne |
CitedBy_id | crossref_primary_10_1016_j_compbiomed_2022_105676 crossref_primary_10_1016_j_jtherbio_2022_103402 crossref_primary_10_1016_j_bpj_2023_11_012 crossref_primary_10_1002_ar_24793 crossref_primary_10_26565_2304_6201_2020_46_02 crossref_primary_10_1002_advs_202412669 crossref_primary_10_1016_j_funbio_2025_101567 crossref_primary_10_1016_j_jtbi_2024_111933 crossref_primary_10_3390_en17020432 |
Cites_doi | 10.1016/0002-9343(61)90097-3 10.1007/978-3-319-05092-8 10.1051/jphystap:018890080050101 10.7557/2.6.2.659 10.1515/jnet-2016-0038 10.1142/6672 10.1242/jeb.120477 10.1152/ajpregu.1985.248.6.R679 10.1152/ajpregu.1985.249.5.R617 10.1007/3-7643-7412-8_3 10.1016/j.coche.2012.03.002 10.1098/rsif.2009.0490 10.1242/jeb.057455 10.1016/0300-9629(84)90456-0 10.1016/j.ces.2005.01.026 10.1016/S0006-3495(71)86262-8 10.1073/pnas.51.6.1192 10.1016/j.ijhydene.2010.08.118 10.1080/02786820600660903 10.1177/004051755502501002 10.1258/002367779780937924 10.1113/jphysiol.1983.sp014772 10.1002/ar.20592 10.1111/j.1748-1716.1985.tb07580.x 10.1126/science.175.4025.988 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. info:eu-repo/semantics/openAccess |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: info:eu-repo/semantics/openAccess |
DBID | C6C AAYXX CITATION NPM 3V. 7QG 7QR 7SS 7T5 7TK 7TM 7U7 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7X8 3HK 5PM |
DOI | 10.1007/s00360-020-01284-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Proquest Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection MEDLINE - Academic NORA - Norwegian Open Research Archives PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Toxicology Abstracts ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Zoology |
EISSN | 1432-136X |
EndPage | 520 |
ExternalDocumentID | PMC7311490 10037_18498 32451612 10_1007_s00360_020_01284_3 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Norges Forskningsråd grantid: 257632/E20; 257632/E20; 257632/E20; 262644; 262644 funderid: http://dx.doi.org/10.13039/501100005416 – fundername: Norges Forskningsråd grantid: 262644 – fundername: Norges Forskningsråd grantid: 257632/E20 – fundername: ; grantid: 257632/E20; 257632/E20; 257632/E20; 262644; 262644 |
GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C -~X .86 .GJ 06C 06D 0R~ 0VY 186 199 1SB 203 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67N 67Z 6NX 78A 7X7 7XC 88A 88E 8AO 8FE 8FH 8FI 8FJ 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACPRK ACREN ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M0L M1P M4Y M7P MA- MQGED MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PF- PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TN5 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UQL UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 XJT XOL YLTOR Z45 Z7Y Z7Z Z8S Z8T ZGI ZMTXR ZOVNA ZXP ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ADHKG AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION PHGZM PHGZT NPM 7QG 7QR 7SS 7T5 7TK 7TM 7U7 7XB 8FD 8FK ABRTQ AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 3HK AABYN AAFGU AAYFA ABELW ABFGW ABKAS ABPTK ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ADMDM ADOAH ADOXG AEEQQ AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AKQUC AOSHJ UNUBA 5PM |
ID | FETCH-LOGICAL-c498t-16c2a4cdc7e62868af27abbc1c6a8c83e3d3cf264dfbf958cd4af97c61eb538d3 |
IEDL.DBID | U2A |
ISSN | 0174-1578 1432-136X |
IngestDate | Thu Aug 21 13:23:15 EDT 2025 Sun Jan 07 07:12:17 EST 2024 Fri Jul 11 16:09:24 EDT 2025 Wed Aug 13 09:21:29 EDT 2025 Wed Feb 19 02:29:49 EST 2025 Thu Apr 24 23:05:56 EDT 2025 Tue Jul 01 04:23:14 EDT 2025 Fri Feb 21 02:34:40 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Thermodynamics Energy efficiency Neonate Respiration Entropy production Rangifer tarandus |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c498t-16c2a4cdc7e62868af27abbc1c6a8c83e3d3cf264dfbf958cd4af97c61eb538d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology Communicated by Kathrin Dausmann. |
ORCID | 0000-0003-1235-5709 0000-0002-3235-460X 0000-0002-6580-9156 0000-0002-2470-4673 0000-0001-9981-7616 |
OpenAccessLink | https://link.springer.com/10.1007/s00360-020-01284-3 |
PMID | 32451612 |
PQID | 2416039305 |
PQPubID | 54170 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7311490 cristin_nora_10037_18498 proquest_miscellaneous_2406951146 proquest_journals_2416039305 pubmed_primary_32451612 crossref_citationtrail_10_1007_s00360_020_01284_3 crossref_primary_10_1007_s00360_020_01284_3 springer_journals_10_1007_s00360_020_01284_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationSubtitle | Biochemical, Systems, and Environmental Physiology |
PublicationTitle | Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology |
PublicationTitleAbbrev | J Comp Physiol B |
PublicationTitleAlternate | J Comp Physiol B |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Verlag |
References | Johnsen HK (1988) Nasal heat exchange: an experimental study of effector mechanisms associated with respiratory heat loss in Norwegian reindeer (Rangifer tarandus tarandus). PhD thesis, University of Tromsø WilhelmsenØJohannessenEKjelstrupSEnergy efficient reactor design simplified by second law analysisInt J Hydrogen Energy20103513219132311:CAS:528:DC%2BC3cXhtl2ju7bP10.1016/j.ijhydene.2010.08.118 MagnanelliESolbergSBBKjelstrupSNature-inspired geometrical design of a chemical reactorCHERD201915220291:CAS:528:DC%2BC1MXhvV2itb7K HenshawREUnderwoodLSCaseyTMPeripheral thermoregulation: foot temperature in two Arctic caninesScience19721759889901:STN:280:DyaE38%2Fps1eisg%3D%3D10.1126/science.175.4025.988 NegusVEThe comparative anatomy and physiology of the nose and paranasal sinuses1958EdinburghE & S Livingstone Ltd JohannessenEKjelstrupSA highway in state space for reactors with minimum entropy productionChem Eng Sci200560334733611:CAS:528:DC%2BD2MXjs1Kqtr4%3D10.1016/j.ces.2005.01.026 JacksonDCSchmidt-NielsenKCountercurrent heat exchange in the respiratory passagesProc. Natl Acad Sci USA196451119211971:STN:280:DyaF2M%2FitVSgtA%3D%3D10.1073/pnas.51.6.1192 GouyGSur l’énergie utilisableJ Phys Theor Appl1889850151810.1051/jphystap:018890080050101 MagnanelliEWilhelmsenØAcquaroneMFolkowLPKjelstrupSThe nasal geometry of the reindeer gives energy-efficient respirationJ Non-Equilib Thermodyn20174259781:CAS:528:DC%2BC2sXhtFWrsr4%3D10.1515/jnet-2016-0038 TimisjärviJHirvonenLJärvensivuPNieminenMElectrocardiogram of the reindeer, Rangifer tarandus tarandusLab Anim19791318318610.1258/002367779780937924 JacobsenHAChemical reactor modeling2014SwitzerlandSpringer10.1007/978-3-319-05092-8 NilssenKJSundsfjordJABlixASRegulation of metabolic rate in Svalbard and Norwegian reindeerAm J Physiol1984247R837R8411:CAS:528:DyaL2MXktVeqsA%3D%3D6496770 IncroperaFPDewittDPBergmanTLLavineASFundamentals of heat and mass transfer2007New YorkWiley Russell DE, Gunn A, Kutz S (2018). Migratory tundra caribou and wild reindeer. https://arctic.noaa.gov/Report-Card/Report-Card-2018/ArtMID/7878/ArticleID/784/Migratory-Tundra-Caribou-and-Wild-Reindeer. Accessed 16 Oct 2019 Anonymous (2017) Nomina anatomica veterinaria, 6th edn. Prepared by the International Committee on Veterinary Gross Anatomical Nomenclature (ICVGAN) for the World Association of Veterinary Anatomists (WAVA). https://wava-amav.org BlixASAdaptations to polar life in mammals and birdsJ Exp Biol20162191093110510.1242/jeb.120477 BlixASArctic Animals and Their Adaptations to Life on the Edge2005TrondheimTapir Academic Press GheorghiuSKjelstrupSPfeiferPCoppensMOLosaGAMerliniDNonnenmacherTFWeibelERIs the lung an optimal gas exchanger?Fractals in biology and medicine2005Birkhäuser BaselBasel314210.1007/3-7643-7412-8_3 JohnsenHKBlixASJorgensenLMercerJBVascular basis for regulation of nasal heat exchange in reindeerAm J Physiol Regulat Integr Comp Physiol1985249R617R6231:STN:280:DyaL28%2FkvVamsA%3D%3D10.1152/ajpregu.1985.249.5.R617 Mercer JB, Johnsen HK, Blix AS, Hotvedt R (1985) Central control of expired air temperature and other thermoregulatory effectors in reindeer. Am J Physiol Regulat Integr Comp Physiol 17 248:R679–R685 WalkerJECWellsREJrMerrillEWHeat and water exchange in the respiratory tractAm J Med1961302592671:STN:280:DyaF3c7gt12mug%3D%3D10.1016/0002-9343(61)90097-3 WhiteFMFluid mechanics2003New YorkMcGraw-Hill CravenBANeubergerTPatersonEWebbAJosephsonEMorrisonESettlesGReconstruction and morphometric analysis of the nasal airway of the dog (Canis familiaris) and implications regarding olfactory airflowAnatom Rec20072901325134010.1002/ar.20592 SoppelaPNieminenMTimisjärviJThermoregulation in reindeerRangifer1986627327810.7557/2.6.2.659 Casado Barroso IL (2014) The ontogeny of nasal heat exchange structures in Arctic artiodactyles. MSc thesis, UiT The Arctic University of Norway BlixASJohnsenHKAspects of nasal heat exchange in resting reindeerJ Physiol19833404454541:STN:280:DyaL3s3psVWltg%3D%3D10.1113/jphysiol.1983.sp014772 CravenBAPatersonEGSettlesGSThe fluid dynamics of canine olfaction: unique nasal airflow patterns as an explanation of macrosmiaJ R Soc Interface2010793394310.1098/rsif.2009.0490 MooteIThe thermal insulation of caribou peltsText Res J19552583283710.1177/004051755502501002 CollinsJCPilkingtonTCSchmidt-NielsenKA model of respiratory heat transfer in a small mammalBiophys J1971118869131:STN:280:DyaE38%2FisFagsg%3D%3D10.1016/S0006-3495(71)86262-8 TimisjärviJNieminenMSippolaALThe structure and insulation properties of the reindeer furComp Biochem Physiol A Physiol19847960160910.1016/0300-9629(84)90456-0 CoppensM-OA nature-inspired approach to reactor and catalysis engineeringCurr Opin Chem Eng201212812891:CAS:528:DC%2BC38XhsVyns77O10.1016/j.coche.2012.03.002 HillRWWyseGAAndersonMAnimal physiology2016Sunderland MassachusettsSinauer Associates Inc. MarkussenKARognmoABlixASSome aspects of thermoregulation in newborn reindeer calves (Rangifer tarandus tarandus)Acta Physiol Scand19851232152201:STN:280:DyaL2M7ntFehtQ%3D%3D10.1111/j.1748-1716.1985.tb07580.x BlixASWalloeLFolkowLPRegulation of brain temperature in winter-acclimatized reindeer under heat stressJ Exp Biol20112143850385610.1242/jeb.057455 KjelstrupSBedeauxDNon-equilibrium thermodynamics of heterogeneous systems2008SingaporeWorld Scientific Publishing10.1142/6672 ZamankhanPAhmadiGWangZHopkePKChengY-SSuWCLeonardDAirflow and deposition of nano-particles in a human nasal cavityAerosol Sci Technol2006404634761:CAS:528:DC%2BD28XlsFaqtb4%3D10.1080/02786820600660903 J Timisjärvi (1284_CR31) 1984; 79 HK Johnsen (1284_CR19) 1985; 249 G Gouy (1284_CR12) 1889; 8 DC Jackson (1284_CR36) 1964; 51 AS Blix (1284_CR3) 2005 1284_CR28 1284_CR24 AS Blix (1284_CR2) 1983; 340 AS Blix (1284_CR4) 2011; 214 E Johannessen (1284_CR17) 2005; 60 S Gheorghiu (1284_CR11) 2005 J Timisjärvi (1284_CR30) 1979; 13 VE Negus (1284_CR26) 1958 HA Jacobsen (1284_CR16) 2014 P Soppela (1284_CR29) 1986; 6 AS Blix (1284_CR5) 2016; 219 JC Collins (1284_CR7) 1971; 11 M-O Coppens (1284_CR8) 2012; 1 JEC Walker (1284_CR32) 1961; 30 Ø Wilhelmsen (1284_CR34) 2010; 35 RW Hill (1284_CR14) 2016 E Magnanelli (1284_CR21) 2017; 42 1284_CR1 FP Incropera (1284_CR15) 2007 1284_CR6 FM White (1284_CR33) 2003 E Magnanelli (1284_CR22) 2019; 152 I Moote (1284_CR25) 1955; 25 BA Craven (1284_CR9) 2007; 290 BA Craven (1284_CR10) 2010; 7 S Kjelstrup (1284_CR20) 2008 RE Henshaw (1284_CR13) 1972; 175 P Zamankhan (1284_CR35) 2006; 40 1284_CR18 KA Markussen (1284_CR23) 1985; 123 KJ Nilssen (1284_CR27) 1984; 247 |
References_xml | – reference: CravenBAPatersonEGSettlesGSThe fluid dynamics of canine olfaction: unique nasal airflow patterns as an explanation of macrosmiaJ R Soc Interface2010793394310.1098/rsif.2009.0490 – reference: WhiteFMFluid mechanics2003New YorkMcGraw-Hill – reference: Mercer JB, Johnsen HK, Blix AS, Hotvedt R (1985) Central control of expired air temperature and other thermoregulatory effectors in reindeer. Am J Physiol Regulat Integr Comp Physiol 17 248:R679–R685 – reference: WilhelmsenØJohannessenEKjelstrupSEnergy efficient reactor design simplified by second law analysisInt J Hydrogen Energy20103513219132311:CAS:528:DC%2BC3cXhtl2ju7bP10.1016/j.ijhydene.2010.08.118 – reference: Russell DE, Gunn A, Kutz S (2018). Migratory tundra caribou and wild reindeer. https://arctic.noaa.gov/Report-Card/Report-Card-2018/ArtMID/7878/ArticleID/784/Migratory-Tundra-Caribou-and-Wild-Reindeer. Accessed 16 Oct 2019 – reference: SoppelaPNieminenMTimisjärviJThermoregulation in reindeerRangifer1986627327810.7557/2.6.2.659 – reference: BlixASAdaptations to polar life in mammals and birdsJ Exp Biol20162191093110510.1242/jeb.120477 – reference: HenshawREUnderwoodLSCaseyTMPeripheral thermoregulation: foot temperature in two Arctic caninesScience19721759889901:STN:280:DyaE38%2Fps1eisg%3D%3D10.1126/science.175.4025.988 – reference: Casado Barroso IL (2014) The ontogeny of nasal heat exchange structures in Arctic artiodactyles. MSc thesis, UiT The Arctic University of Norway – reference: TimisjärviJNieminenMSippolaALThe structure and insulation properties of the reindeer furComp Biochem Physiol A Physiol19847960160910.1016/0300-9629(84)90456-0 – reference: MooteIThe thermal insulation of caribou peltsText Res J19552583283710.1177/004051755502501002 – reference: ZamankhanPAhmadiGWangZHopkePKChengY-SSuWCLeonardDAirflow and deposition of nano-particles in a human nasal cavityAerosol Sci Technol2006404634761:CAS:528:DC%2BD28XlsFaqtb4%3D10.1080/02786820600660903 – reference: MagnanelliESolbergSBBKjelstrupSNature-inspired geometrical design of a chemical reactorCHERD201915220291:CAS:528:DC%2BC1MXhvV2itb7K – reference: NegusVEThe comparative anatomy and physiology of the nose and paranasal sinuses1958EdinburghE & S Livingstone Ltd – reference: HillRWWyseGAAndersonMAnimal physiology2016Sunderland MassachusettsSinauer Associates Inc. – reference: CravenBANeubergerTPatersonEWebbAJosephsonEMorrisonESettlesGReconstruction and morphometric analysis of the nasal airway of the dog (Canis familiaris) and implications regarding olfactory airflowAnatom Rec20072901325134010.1002/ar.20592 – reference: JacobsenHAChemical reactor modeling2014SwitzerlandSpringer10.1007/978-3-319-05092-8 – reference: MagnanelliEWilhelmsenØAcquaroneMFolkowLPKjelstrupSThe nasal geometry of the reindeer gives energy-efficient respirationJ Non-Equilib Thermodyn20174259781:CAS:528:DC%2BC2sXhtFWrsr4%3D10.1515/jnet-2016-0038 – reference: MarkussenKARognmoABlixASSome aspects of thermoregulation in newborn reindeer calves (Rangifer tarandus tarandus)Acta Physiol Scand19851232152201:STN:280:DyaL2M7ntFehtQ%3D%3D10.1111/j.1748-1716.1985.tb07580.x – reference: TimisjärviJHirvonenLJärvensivuPNieminenMElectrocardiogram of the reindeer, Rangifer tarandus tarandusLab Anim19791318318610.1258/002367779780937924 – reference: Anonymous (2017) Nomina anatomica veterinaria, 6th edn. Prepared by the International Committee on Veterinary Gross Anatomical Nomenclature (ICVGAN) for the World Association of Veterinary Anatomists (WAVA). https://wava-amav.org – reference: CollinsJCPilkingtonTCSchmidt-NielsenKA model of respiratory heat transfer in a small mammalBiophys J1971118869131:STN:280:DyaE38%2FisFagsg%3D%3D10.1016/S0006-3495(71)86262-8 – reference: BlixASArctic Animals and Their Adaptations to Life on the Edge2005TrondheimTapir Academic Press – reference: GheorghiuSKjelstrupSPfeiferPCoppensMOLosaGAMerliniDNonnenmacherTFWeibelERIs the lung an optimal gas exchanger?Fractals in biology and medicine2005Birkhäuser BaselBasel314210.1007/3-7643-7412-8_3 – reference: BlixASWalloeLFolkowLPRegulation of brain temperature in winter-acclimatized reindeer under heat stressJ Exp Biol20112143850385610.1242/jeb.057455 – reference: BlixASJohnsenHKAspects of nasal heat exchange in resting reindeerJ Physiol19833404454541:STN:280:DyaL3s3psVWltg%3D%3D10.1113/jphysiol.1983.sp014772 – reference: CoppensM-OA nature-inspired approach to reactor and catalysis engineeringCurr Opin Chem Eng201212812891:CAS:528:DC%2BC38XhsVyns77O10.1016/j.coche.2012.03.002 – reference: JacksonDCSchmidt-NielsenKCountercurrent heat exchange in the respiratory passagesProc. Natl Acad Sci USA196451119211971:STN:280:DyaF2M%2FitVSgtA%3D%3D10.1073/pnas.51.6.1192 – reference: JohannessenEKjelstrupSA highway in state space for reactors with minimum entropy productionChem Eng Sci200560334733611:CAS:528:DC%2BD2MXjs1Kqtr4%3D10.1016/j.ces.2005.01.026 – reference: GouyGSur l’énergie utilisableJ Phys Theor Appl1889850151810.1051/jphystap:018890080050101 – reference: Johnsen HK (1988) Nasal heat exchange: an experimental study of effector mechanisms associated with respiratory heat loss in Norwegian reindeer (Rangifer tarandus tarandus). PhD thesis, University of Tromsø – reference: IncroperaFPDewittDPBergmanTLLavineASFundamentals of heat and mass transfer2007New YorkWiley – reference: JohnsenHKBlixASJorgensenLMercerJBVascular basis for regulation of nasal heat exchange in reindeerAm J Physiol Regulat Integr Comp Physiol1985249R617R6231:STN:280:DyaL28%2FkvVamsA%3D%3D10.1152/ajpregu.1985.249.5.R617 – reference: KjelstrupSBedeauxDNon-equilibrium thermodynamics of heterogeneous systems2008SingaporeWorld Scientific Publishing10.1142/6672 – reference: NilssenKJSundsfjordJABlixASRegulation of metabolic rate in Svalbard and Norwegian reindeerAm J Physiol1984247R837R8411:CAS:528:DyaL2MXktVeqsA%3D%3D6496770 – reference: WalkerJECWellsREJrMerrillEWHeat and water exchange in the respiratory tractAm J Med1961302592671:STN:280:DyaF3c7gt12mug%3D%3D10.1016/0002-9343(61)90097-3 – volume: 30 start-page: 259 year: 1961 ident: 1284_CR32 publication-title: Am J Med doi: 10.1016/0002-9343(61)90097-3 – volume-title: Chemical reactor modeling year: 2014 ident: 1284_CR16 doi: 10.1007/978-3-319-05092-8 – volume: 8 start-page: 501 year: 1889 ident: 1284_CR12 publication-title: J Phys Theor Appl doi: 10.1051/jphystap:018890080050101 – ident: 1284_CR18 – ident: 1284_CR1 – volume: 6 start-page: 273 year: 1986 ident: 1284_CR29 publication-title: Rangifer doi: 10.7557/2.6.2.659 – volume-title: Fundamentals of heat and mass transfer year: 2007 ident: 1284_CR15 – volume: 42 start-page: 59 year: 2017 ident: 1284_CR21 publication-title: J Non-Equilib Thermodyn doi: 10.1515/jnet-2016-0038 – volume-title: Fluid mechanics year: 2003 ident: 1284_CR33 – volume: 247 start-page: R837 year: 1984 ident: 1284_CR27 publication-title: Am J Physiol – volume-title: Animal physiology year: 2016 ident: 1284_CR14 – volume-title: Non-equilibrium thermodynamics of heterogeneous systems year: 2008 ident: 1284_CR20 doi: 10.1142/6672 – volume: 219 start-page: 1093 year: 2016 ident: 1284_CR5 publication-title: J Exp Biol doi: 10.1242/jeb.120477 – volume: 152 start-page: 20 year: 2019 ident: 1284_CR22 publication-title: CHERD – ident: 1284_CR24 doi: 10.1152/ajpregu.1985.248.6.R679 – volume: 249 start-page: R617 year: 1985 ident: 1284_CR19 publication-title: Am J Physiol Regulat Integr Comp Physiol doi: 10.1152/ajpregu.1985.249.5.R617 – start-page: 31 volume-title: Fractals in biology and medicine year: 2005 ident: 1284_CR11 doi: 10.1007/3-7643-7412-8_3 – volume: 1 start-page: 281 year: 2012 ident: 1284_CR8 publication-title: Curr Opin Chem Eng doi: 10.1016/j.coche.2012.03.002 – volume: 7 start-page: 933 year: 2010 ident: 1284_CR10 publication-title: J R Soc Interface doi: 10.1098/rsif.2009.0490 – volume: 214 start-page: 3850 year: 2011 ident: 1284_CR4 publication-title: J Exp Biol doi: 10.1242/jeb.057455 – volume: 79 start-page: 601 year: 1984 ident: 1284_CR31 publication-title: Comp Biochem Physiol A Physiol doi: 10.1016/0300-9629(84)90456-0 – volume: 60 start-page: 3347 year: 2005 ident: 1284_CR17 publication-title: Chem Eng Sci doi: 10.1016/j.ces.2005.01.026 – volume-title: The comparative anatomy and physiology of the nose and paranasal sinuses year: 1958 ident: 1284_CR26 – volume: 11 start-page: 886 year: 1971 ident: 1284_CR7 publication-title: Biophys J doi: 10.1016/S0006-3495(71)86262-8 – volume: 51 start-page: 1192 year: 1964 ident: 1284_CR36 publication-title: Proc. Natl Acad Sci USA doi: 10.1073/pnas.51.6.1192 – volume: 35 start-page: 13219 year: 2010 ident: 1284_CR34 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2010.08.118 – volume: 40 start-page: 463 year: 2006 ident: 1284_CR35 publication-title: Aerosol Sci Technol doi: 10.1080/02786820600660903 – volume: 25 start-page: 832 year: 1955 ident: 1284_CR25 publication-title: Text Res J doi: 10.1177/004051755502501002 – ident: 1284_CR6 – volume-title: Arctic Animals and Their Adaptations to Life on the Edge year: 2005 ident: 1284_CR3 – volume: 13 start-page: 183 year: 1979 ident: 1284_CR30 publication-title: Lab Anim doi: 10.1258/002367779780937924 – volume: 340 start-page: 445 year: 1983 ident: 1284_CR2 publication-title: J Physiol doi: 10.1113/jphysiol.1983.sp014772 – volume: 290 start-page: 1325 year: 2007 ident: 1284_CR9 publication-title: Anatom Rec doi: 10.1002/ar.20592 – volume: 123 start-page: 215 year: 1985 ident: 1284_CR23 publication-title: Acta Physiol Scand doi: 10.1111/j.1748-1716.1985.tb07580.x – volume: 175 start-page: 988 year: 1972 ident: 1284_CR13 publication-title: Science doi: 10.1126/science.175.4025.988 – ident: 1284_CR28 |
SSID | ssj0004184 |
Score | 2.3004868 |
Snippet | Reindeer (
Rangifer tarandus
) have evolved elaborate nasal turbinate structures that are perfused via a complex vascular network. These are subject to... Reindeer (Rangifer tarandus) have evolved elaborate nasal turbinate structures that are perfused via a complex vascular network. These are subject to... |
SourceID | pubmedcentral cristin proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 509 |
SubjectTerms | Animal Physiology Biochemistry Biomedical and Life Sciences Biomedicine Bone Calves Climatic conditions Complexity Computer simulation Design engineering Efficiency Energy dissipation Energy efficiency Heat Heat exchange Human Physiology Life Sciences Matematikk og Naturvitenskap: 400 Mathematics and natural science: 400 Mucosa Nose Original Paper Perfusion Rangifer tarandus Structure-function relationships Temperature control Temperature profiles Thermodynamic models Vascularization VDP Water exchange Wildlife conservation Zoology |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BTtwwEB219NBeKgptSQuVKyEu1KqTeO3khBACoUrtCaS9WbbjqEjFS5flwN8z43WyWhCc7VU2nrHnxTPvDcB-720VhBW8U23gGKGoCKCquXJla5ugJqEigvPvP-r8Uv6aTqb5wu02l1UOZ2I6qLuZpzvynxhpFPFIxeTo5j-nrlGUXc0tNF7DG5Iuo5IuPdUrXmTZLLW9teQlumYmzSTqHAmxCE4fT-mI5sTa8WlfxfUQ9QR3Pi2ffJRDTaHpbBPeZ0zJjpdO8AFehbgF28cRv6ev79kBS1We6fp8C96eDB3etuHoNBH_WEgyEsTBZLOezXPyHQ3GriK7TsqfzMaOIQJHj4k4gzQWw_wjXJ6dXpyc89xQgXvZNgteKl9Z6TuvAzFSG9tX2jrnS69s45s61F3te4RIXe96XE7fSdu32qsyODwYu_oTbMRZDDtUEeUopWpt63oppW2DtUIEERzisaptCtjJq2ki-jJJI9faoD1oqByW1_gsRE79MP6ZUUI5GcegcUwyjqkLOBx_c7OU4Xhx9u5gNZO35K1ZOVAB38dhXHHKkNgYZnc0RyiEnBg9Cvi8NPL4OESeE4THVQF6zfzjBBLqXh-JV3-TYLfGLSBbUcCPwVFWf-v5t_jy8lt8hXdVcl8qHd6FjcX8LuwhQFq4b2kXPACg1AqP priority: 102 providerName: ProQuest |
Title | Energy efficiency of respiration in mature and newborn reindeer |
URI | https://link.springer.com/article/10.1007/s00360-020-01284-3 https://www.ncbi.nlm.nih.gov/pubmed/32451612 https://www.proquest.com/docview/2416039305 https://www.proquest.com/docview/2406951146 http://hdl.handle.net/10037/18498 https://pubmed.ncbi.nlm.nih.gov/PMC7311490 |
Volume | 190 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED6xTQheEHTAAqMyEuIFLCVOYsdPqFQdE4gJISoVXizHcbRJzEVd97B_vzs3yVQGSDxVii9p6jvbn3v3fQZ41TorfGpT3kjtOa5QVAQgci7rTNvKy9ILIjh_PpHH8-Ljolx0pLCLvtq9T0nGmXogu5F0SsppuxMnVZ7vwF5Je3eM4rmY3LAhs2qj6K0KnmFAdlSZPz8DYa-LoylsL0y30ObtosnfMqdxQTp6CA86JMkmG9c_gjs-jGB_EnAXfX7FXrNY2xn_NB_BvWl_rtsI7v5Yxqv78G4WiX_MRxkJ4mCyZctWXfIdHcbOAjuPyp_MhoYhAseICWhBGot-9RjmR7Nv02PeHajAXaGrNc-kE7ZwjVOeGKmVbYWyde0yJ23lqtznTe5ahEhNW7e6pHONbKuVk5mvcWJs8iewG5bBH1BFVE0pVWt13RZFYbW3Nk196mvEY0JXCRx0_WoCxjJJI-fKoGeoKes72rhOiJzOw_hpBgnl6CaDbjLRTSZP4M1wz6-NDMc_rQ97_5luSF4YhCqSiMhpmcDLoRn7njIkNvjlJdmkEiEnrh4JPN24e_g6RJ4lwmORgNoKhMGAhLq3W8LZaRTsVjgECp0m8LYPmZvX-vuvePZ_5s_hvoiBTaXEh7C7Xl36FwiY1vUYdtRCjWFv8uH7pxl-vp-dfPmKV6dyOo5j5xrSoQ9n |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ_g8YAvRkFlEbUm6os27nY_-2AI4pFD4GIMJLyVbrcbSaQHxxHDP-Xf6Ez343ISeeO53a_OTGe6M7_fALytjRY21CGvMmk5eigqAhAxz8pI6sJmqRUEcD4cZ6Pj5NtJerIEfzosDJVVdnui36iriaF_5J_Q02SEIw3TrYtLTl2jKLvatdBo1GLf3vzGI9vV572vKN93QuwOj3ZGvO0qwE0iixmPMiN0YiqTW4JlFroWuS5LE5lMF6aIbVzFpsY4oarLWqbU3EfXMjdZZEvcHaoY7_sAlpMYjzIDWP4yHH__MUdiRkXDJp4nPEJjaGE6HqxH1C8hp-OadwqccELGW7JbdIq3It3bBZv_ZG29M9x9DI_aKJZtN2r3BJasW4W1bYcn-PMb9p75ulL_w34VVna6nnJrsDX0UENmPXEFoT7ZpGbTNt2PKsLOHDv3XKNMu4phzI866nAGsTra6VM4vpfFfgYDN3F2nWqwSkriai3LOkkSLa3WYWhDW2IEKGQRwHq7msqh9RAZc5wrlAcNRd3yKtNSn1MHjl-qJ232wlEoHOWFo-IAPvTXXDTEH3fO3uykptpN4ErNVTaAN_0wrjjlZLSzk2uaE2YY5KK_CuB5I-T-cRjrphiQiwDyBfH3E4gafHHEnf30FOE5Gl0iwwA-dooyf63_f8XG3V_xGlZGR4cH6mBvvP8CHgqvylS4vAmD2fTavsTwbFa-am2Cwel9m-FfNf9LXg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bTxUxEJ4gJuqLUVBYRa2J-qINu91Ldx8MIcAJiBIfJDlvte12Iwn0wOEQw1_z1znTvZwcibzx3O6tM9OZ7sz3DcC7xmrhYh3zuqgcRw9FRQAi5YVJKl26IneCAM7fjor94-zLOB8vwZ8eC0Nllf2eGDbqemLpH_kmepqCcKRxvtl0ZRHfd0db5xecOkhRprVvp9GqyKG7_o3Ht8vPB7so6_dCjPZ-7OzzrsMAt1lVznhSWKEzW1vpCKJZ6kZIbYxNbKFLW6YurVPbYMxQN6apcmr0o5tK2iJxBneKOsX73oP7Ms0TsjE5lnNMZlK2vOIy4wmaRQfYCbA9IoGJOR3cgnvghBiywab9onu8EfPeLN38J38b3OLoCTzu4lm23SrgU1hyfgVWtz2e5c-u2QcWKkzDr_sVeLjTd5dbha29ADpkLlBYEP6TTRo27RL_qCzsxLOzwDrKtK8ZRv-orR5nEL-jmz6D4ztZ6uew7CferVM1lqF0rtaVabIs05XTOo5d7AzGgqIqI1jvVlN5tCOiZU6lQnnQUNIvr7IdCTr14jhVA31zEI5C4aggHJVG8HG45rylALl19kYvNdVtB5dqrrwRvB2GccUpO6O9m1zRnLjAcBc9VwRrrZCHx2HUm2NoLiKQC-IfJhBJ-OKIP_kVyMIlml9WxRF86hVl_lr__4oXt3_FG3iAxqe-HhwdvoRHImgyVTBvwPJseuVeYZw2M6-DQTD4edcW-BcLEU4u |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+efficiency+of+respiration+in+mature+and+newborn+reindeer&rft.jtitle=Journal+of+comparative+physiology.+B%2C+Biochemical%2C+systemic%2C+and+environmental+physiology&rft.au=Solberg%2C+Simon+Birger+Byremo&rft.au=Kjelstrup%2C+Signe&rft.au=Magnanelli%2C+Elisa&rft.au=Kizilova%2C+Natalya&rft.date=2020-07-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0174-1578&rft.eissn=1432-136X&rft.volume=190&rft.issue=4&rft.spage=509&rft.epage=520&rft_id=info:doi/10.1007%2Fs00360-020-01284-3&rft_id=info%3Apmid%2F32451612&rft.externalDocID=PMC7311490 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0174-1578&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0174-1578&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0174-1578&client=summon |