M2 macrophage-derived exosomal microRNA-411-5p impedes the activation of hepatic stellate cells by targeting CAMSAP1 in NASH model
Liver fibrosis is a severe stage of nonalcoholic fatty liver disease (NAFLD), which is closely associated with the activation of hepatic stellate cells (HSCs) and their interaction with macrophages. Exosomes can mediate crosstalk between macrophages and HSCs in NAFLD-associated fibrosis. We found th...
Saved in:
Published in | iScience Vol. 25; no. 7; p. 104597 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.07.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Liver fibrosis is a severe stage of nonalcoholic fatty liver disease (NAFLD), which is closely associated with the activation of hepatic stellate cells (HSCs) and their interaction with macrophages. Exosomes can mediate crosstalk between macrophages and HSCs in NAFLD-associated fibrosis. We found that M2 macrophage-derived exosomes significantly inhibit HSCs activation. RNA-seq studies revealed that miRNA-411-5p was decreased in serum exosomes of nonalcoholic steatohepatitis (NASH) patients as compared with that in healthy controls. Besides, miR-411-5p and M2 macrophage markers are decreased in the liver of the NASH model. We further proved that exosomal miR-411-5p from M2 macrophages inhibit HSCs activation and miR-411-5p directly downregulated the expression of Calmodulin-Regulated Spectrin-Associated Protein 1 (CAMSAP1) to inactivate stellate cells. Importantly, knockdown of CAMSAP1 also inhibited HSCs activation. This study contributes to understanding the underlying mechanism of HSCs activation and indicates CAMSAP1 may serve as a potential therapeutic target for NASH.
[Display omitted]
•M2 macrophage markers are decreased in the HFHCD-induced rat model of NASH•M2 macrophage-derived exosomes inhibit HSCs activation via miR-411-5p•CAMSAP1 is a direct target of miR-411-5p•Knockdown of CAMSAP1 inhibits HSCs activation
Fibrosis; Biological sciences; Immunology |
---|---|
AbstractList | Liver fibrosis is a severe stage of nonalcoholic fatty liver disease (NAFLD), which is closely associated with the activation of hepatic stellate cells (HSCs) and their interaction with macrophages. Exosomes can mediate crosstalk between macrophages and HSCs in NAFLD-associated fibrosis. We found that M2 macrophage-derived exosomes significantly inhibit HSCs activation. RNA-seq studies revealed that miRNA-411-5p was decreased in serum exosomes of nonalcoholic steatohepatitis (NASH) patients as compared with that in healthy controls. Besides, miR-411-5p and M2 macrophage markers are decreased in the liver of the NASH model. We further proved that exosomal miR-411-5p from M2 macrophages inhibit HSCs activation and miR-411-5p directly downregulated the expression of Calmodulin-Regulated Spectrin-Associated Protein 1 (CAMSAP1) to inactivate stellate cells. Importantly, knockdown of CAMSAP1 also inhibited HSCs activation. This study contributes to understanding the underlying mechanism of HSCs activation and indicates CAMSAP1 may serve as a potential therapeutic target for NASH. Liver fibrosis is a severe stage of nonalcoholic fatty liver disease (NAFLD), which is closely associated with the activation of hepatic stellate cells (HSCs) and their interaction with macrophages. Exosomes can mediate crosstalk between macrophages and HSCs in NAFLD-associated fibrosis. We found that M2 macrophage-derived exosomes significantly inhibit HSCs activation. RNA-seq studies revealed that miRNA-411-5p was decreased in serum exosomes of nonalcoholic steatohepatitis (NASH) patients as compared with that in healthy controls. Besides, miR-411-5p and M2 macrophage markers are decreased in the liver of the NASH model. We further proved that exosomal miR-411-5p from M2 macrophages inhibit HSCs activation and miR-411-5p directly downregulated the expression of Calmodulin-Regulated Spectrin-Associated Protein 1 ( CAMSAP1 ) to inactivate stellate cells. Importantly, knockdown of CAMSAP1 also inhibited HSCs activation. This study contributes to understanding the underlying mechanism of HSCs activation and indicates CAMSAP1 may serve as a potential therapeutic target for NASH. • M2 macrophage markers are decreased in the HFHCD-induced rat model of NASH • M2 macrophage-derived exosomes inhibit HSCs activation via miR-411-5p • CAMSAP1 is a direct target of miR-411-5p • Knockdown of CAMSAP1 inhibits HSCs activation Fibrosis; Biological sciences; Immunology Liver fibrosis is a severe stage of nonalcoholic fatty liver disease (NAFLD), which is closely associated with the activation of hepatic stellate cells (HSCs) and their interaction with macrophages. Exosomes can mediate crosstalk between macrophages and HSCs in NAFLD-associated fibrosis. We found that M2 macrophage-derived exosomes significantly inhibit HSCs activation. RNA-seq studies revealed that miRNA-411-5p was decreased in serum exosomes of nonalcoholic steatohepatitis (NASH) patients as compared with that in healthy controls. Besides, miR-411-5p and M2 macrophage markers are decreased in the liver of the NASH model. We further proved that exosomal miR-411-5p from M2 macrophages inhibit HSCs activation and miR-411-5p directly downregulated the expression of Calmodulin-Regulated Spectrin-Associated Protein 1 (CAMSAP1) to inactivate stellate cells. Importantly, knockdown of CAMSAP1 also inhibited HSCs activation. This study contributes to understanding the underlying mechanism of HSCs activation and indicates CAMSAP1 may serve as a potential therapeutic target for NASH.Liver fibrosis is a severe stage of nonalcoholic fatty liver disease (NAFLD), which is closely associated with the activation of hepatic stellate cells (HSCs) and their interaction with macrophages. Exosomes can mediate crosstalk between macrophages and HSCs in NAFLD-associated fibrosis. We found that M2 macrophage-derived exosomes significantly inhibit HSCs activation. RNA-seq studies revealed that miRNA-411-5p was decreased in serum exosomes of nonalcoholic steatohepatitis (NASH) patients as compared with that in healthy controls. Besides, miR-411-5p and M2 macrophage markers are decreased in the liver of the NASH model. We further proved that exosomal miR-411-5p from M2 macrophages inhibit HSCs activation and miR-411-5p directly downregulated the expression of Calmodulin-Regulated Spectrin-Associated Protein 1 (CAMSAP1) to inactivate stellate cells. Importantly, knockdown of CAMSAP1 also inhibited HSCs activation. This study contributes to understanding the underlying mechanism of HSCs activation and indicates CAMSAP1 may serve as a potential therapeutic target for NASH. Liver fibrosis is a severe stage of nonalcoholic fatty liver disease (NAFLD), which is closely associated with the activation of hepatic stellate cells (HSCs) and their interaction with macrophages. Exosomes can mediate crosstalk between macrophages and HSCs in NAFLD-associated fibrosis. We found that M2 macrophage-derived exosomes significantly inhibit HSCs activation. RNA-seq studies revealed that miRNA-411-5p was decreased in serum exosomes of nonalcoholic steatohepatitis (NASH) patients as compared with that in healthy controls. Besides, miR-411-5p and M2 macrophage markers are decreased in the liver of the NASH model. We further proved that exosomal miR-411-5p from M2 macrophages inhibit HSCs activation and miR-411-5p directly downregulated the expression of Calmodulin-Regulated Spectrin-Associated Protein 1 (CAMSAP1) to inactivate stellate cells. Importantly, knockdown of CAMSAP1 also inhibited HSCs activation. This study contributes to understanding the underlying mechanism of HSCs activation and indicates CAMSAP1 may serve as a potential therapeutic target for NASH. [Display omitted] •M2 macrophage markers are decreased in the HFHCD-induced rat model of NASH•M2 macrophage-derived exosomes inhibit HSCs activation via miR-411-5p•CAMSAP1 is a direct target of miR-411-5p•Knockdown of CAMSAP1 inhibits HSCs activation Fibrosis; Biological sciences; Immunology |
ArticleNumber | 104597 |
Author | Deng, Hong Wan, Zhiping Yu, Piaojian Sun, Yinfang Xu, Fen Yang, Xiaoan Liu, Xiaoquan |
Author_xml | – sequence: 1 givenname: Zhiping surname: Wan fullname: Wan, Zhiping organization: Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China – sequence: 2 givenname: Xiaoan surname: Yang fullname: Yang, Xiaoan organization: Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China – sequence: 3 givenname: Xiaoquan surname: Liu fullname: Liu, Xiaoquan organization: Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China – sequence: 4 givenname: Yinfang surname: Sun fullname: Sun, Yinfang organization: Department of General Intensive Care Unit, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China – sequence: 5 givenname: Piaojian surname: Yu fullname: Yu, Piaojian organization: Department of Endocrinology and Metabolism, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China – sequence: 6 givenname: Fen surname: Xu fullname: Xu, Fen email: xufen3@mail.sysu.edu.cn organization: Department of Endocrinology and Metabolism, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China – sequence: 7 givenname: Hong surname: Deng fullname: Deng, Hong email: dhong@mail.sysu.edu.cn organization: Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China |
BookMark | eNp9UsFq3DAQFSWlSdP8QE869uKNJMu2BKWwLGkTSNLStGchy2OvFttyJe3SXPvlkeMUmh4Cghlm5j1J895bdDS6ERB6T8mKElqe71Y2GLtihLFU4IWsXqETVgiZEcLZ0T_5MToLYUcIYelwWb5Bx3lRCSl4eYL-3DA8aOPdtNUdZA14e4AGw28X3KB7PNjU-367zjilWTFhO0zQQMBxC1ibaA86Wjdi1-ItTCk3OEToex0BmxQDru9x1L6DaMcOb9Y3d-tvFNsR367vLvHgGujfodet7gOcPcVT9PPzxY_NZXb99cvVZn2dGS5FzCitC6FZxQ2tK0FLVreCE1MDiNaQgpoyb8E0DFqaA2-EAZpLaaSsC8KaWuen6GrhbZzeqcnbQft75bRVjwXnO6V9-kEPqqasNKZirSgqDq2QuSl1RRMrY1VBReL6tHBN-3qAxsAYve6fkT7vjHarOndQMikgWJkIPjwRePdrDyGqIek5b24Etw-KlaIgOeH5fJdYRpMSIXholbHxce2J2faKEjU7Qu3U7Ag1O0ItjkhQ9h_07wtfBH1cQJDEOFjwKk3AaKCxHkxM27IvwR8ApVfQAQ |
CitedBy_id | crossref_primary_10_1016_j_prp_2023_154522 crossref_primary_10_1016_j_intimp_2024_113437 crossref_primary_10_1007_s10238_023_01122_0 crossref_primary_10_1016_j_jep_2025_119376 crossref_primary_10_1096_fj_202401464R crossref_primary_10_1186_s40364_024_00669_8 crossref_primary_10_1002_path_6299 crossref_primary_10_1055_a_2494_2233 crossref_primary_10_3389_fmed_2024_1420281 crossref_primary_10_3390_ani12202881 crossref_primary_10_1016_j_cytogfr_2023_06_001 crossref_primary_10_3389_fimmu_2023_1133297 crossref_primary_10_1021_acs_jafc_4c09209 crossref_primary_10_1186_s13578_024_01320_7 crossref_primary_10_3390_v16111785 crossref_primary_10_3748_wjg_v30_i4_332 crossref_primary_10_3389_fimmu_2025_1544012 crossref_primary_10_1111_acel_14227 crossref_primary_10_1016_j_intimp_2023_111002 crossref_primary_10_1002_ctm2_1529 crossref_primary_10_1016_j_actbio_2024_06_014 crossref_primary_10_3389_fimmu_2023_1147710 crossref_primary_10_3389_fendo_2023_1196831 crossref_primary_10_1016_j_prp_2023_154375 crossref_primary_10_11569_wcjd_v31_i7_256 crossref_primary_10_1016_j_ejps_2024_106690 crossref_primary_10_4254_wjh_v15_i11_1196 crossref_primary_10_1007_s00018_024_05434_6 crossref_primary_10_3350_cmh_2024_0734 |
Cites_doi | 10.1016/j.jhep.2016.05.005 10.1056/NEJMra1503519 10.1016/j.bbrc.2018.08.020 10.1016/j.jhep.2018.03.011 10.3748/wjg.v27.i14.1419 10.1073/pnas.1913177117 10.1038/s41388-018-0383-0 10.1093/nar/gkx588 10.1038/srep36436 10.1002/hep.31050 10.1083/jcb.201211138 10.1186/s10020-020-00207-w 10.1038/nri1733 10.1111/liv.14940 10.1210/endocr/bqaa139 10.1007/s00441-011-1246-y 10.1159/000487575 10.1002/hep.30251 10.3389/fphar.2020.529553 10.1016/j.ajpath.2016.07.011 10.1016/j.lfs.2020.118677 10.1007/s00249-017-1262-2 10.1172/JCI96324 10.1001/jama.2020.2298 10.1002/hep.27332 10.1016/j.intimp.2014.08.002 10.1016/j.cell.2009.01.002 10.1002/hep.26746 10.1007/978-1-4939-7253-1_10 10.3389/fcell.2021.716209 10.1016/j.jhep.2013.12.025 10.1053/j.gastro.2010.03.052 10.1186/s12885-015-1546-9 10.1016/j.yexcr.2021.112663 10.1096/fj.201902307RRR 10.1002/hep.26768 10.1002/jnr.21853 10.1002/hep.31658 10.1080/20013078.2018.1535750 10.1038/nrg2936 10.3390/biomedicines9040365 10.3402/jev.v4.27066 10.1093/bioinformatics/btu741 10.1172/JCI144801 10.1002/hep.26607 10.1038/s41419-021-04449-2 10.1111/jcmm.12733 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) 2022 The Author(s). 2022 The Author(s) 2022 |
Copyright_xml | – notice: 2022 The Author(s) – notice: 2022 The Author(s). – notice: 2022 The Author(s) 2022 |
DBID | 6I. AAFTH AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1016/j.isci.2022.104597 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-0042 |
ExternalDocumentID | oai_doaj_org_article_b126cc72f8574ef893c6a714d8227518 PMC9249826 10_1016_j_isci_2022_104597 S2589004222008690 |
GroupedDBID | 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION EJD 7X8 5PM |
ID | FETCH-LOGICAL-c498t-11b58a274c1b78162bf840cbee8fc051c63fecd2ef13e4d8ce1399c99b502dba3 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 01:11:13 EDT 2025 Thu Aug 21 18:22:03 EDT 2025 Fri Jul 11 15:02:45 EDT 2025 Thu Apr 24 23:01:41 EDT 2025 Tue Jul 01 01:03:50 EDT 2025 Sat Aug 05 16:01:05 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Biological sciences Immunology Fibrosis |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c498t-11b58a274c1b78162bf840cbee8fc051c63fecd2ef13e4d8ce1399c99b502dba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally Lead contact |
OpenAccessLink | https://doaj.org/article/b126cc72f8574ef893c6a714d8227518 |
PMID | 35789846 |
PQID | 2685030438 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b126cc72f8574ef893c6a714d8227518 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9249826 proquest_miscellaneous_2685030438 crossref_citationtrail_10_1016_j_isci_2022_104597 crossref_primary_10_1016_j_isci_2022_104597 elsevier_sciencedirect_doi_10_1016_j_isci_2022_104597 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-15 |
PublicationDateYYYYMMDD | 2022-07-15 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | iScience |
PublicationYear | 2022 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Chen, Charrier, Zhou, Chen, Yu, Agarwal, Tsukamoto, Lee, Paulaitis, Brigstock (bib6) 2014; 59 Chen, Yao, Yao, Ji, Ding, Liu (bib9) 2020; 34 Yang, Wu, Li, Huang, Li, Pan, Li, Huang, Meng, Zhang (bib42) 2018; 37 Yanez-Mo, Siljander, Andreu, Bedina Zavec, Borràs, Buzas, Buzas, Casal, Cappello, Carvalho (bib41) 2015; 4 Asgharpour, Cazanave, Pacana, Seneshaw, Vincent, Banini, Kumar, Daita, Min, Mirshahi (bib2) 2016; 65 Harley, Stankiewicz, Giles, Softic, Flick, Cappelletti, Sheridan, Xanthakos, Steinbrecher, Sartor (bib18) 2014; 59 Tacke, Zimmermann (bib35) 2014; 60 Chanput, Mes, Wichers (bib5) 2014; 23 Miura, Kodama, Inokuchi, Schnabl, Aoyama, Ohnishi, Olefsky, Brenner, Seki (bib28) 2010; 139 Wan, Benkdane, Teixeira-Clerc, Bonnafous, Louvet, Lafdil, Pecker, Tran, Gual, Mallat (bib38) 2014; 59 Younossi, Tacke, Arrese, Chander Sharma, Mostafa, Bugianesi, Wai-Sun Wong, Yilmaz, George, Fan (bib43) 2019; 69 Genin, Clement, Fattaccioli, Raes, Michiels (bib15) 2015; 15 Chen, Chen, Velazquez, Brigstock (bib7) 2016; 186 Gordon, Taylor (bib16) 2005; 5 Guo, Zhang, Chen, Xia, Li, Zhang, Kobberup, Zou, Lin (bib17) 2017; 127 Sheka, Adeyi, Thompson, Hameed, Crawford, Ikramuddin (bib33) 2020; 323 Zisser, Ipsen, Tveden-Nyborg (bib45) 2021; 9 Devaraj, Perumal, Subramaniyan, Mustapha (bib12) 2021 Kim, Lee, Kim, Choi, Yoon, Kim, Go, Nhung, Hong, Jang (bib22) 2015; 31 Su, Qin, Xian, Huang, Huang, ZhangDi, Jiang (bib34) 2021; 264 Potrich, Lunelli, Vaghi, Pasquardini, Pederzolli (bib29) 2017; 46 Xiao, Bei, Liu, Dimitrova-Shumkovska, Kuang, Zhou, Li, Yang, Xiang, Wang (bib48) 2016; 20 Guo, Zhou, Cheng, Fang, Hu, Wei, Lin, Man, Guo, Sun (bib46) 2018; 45 Liu, Pan, Cao, Xin, Zhao, Yang, Zeng, Zhou, Fan (bib26) 2020; 72 Diehl, Day (bib13) 2017; 377 Liu, Xue, Song, Liu, Jiang, Yang (bib25) 2018; 503 Cheng, Chai, Wang, Fu, Peng, Ni (bib11) 2021; 41 Théry, Witwer, Aikawa, Alcaraz, Anderson, Andriantsitohaina, Antoniou, Arab, Archer, Atkin-Smith (bib36) 2018; 7 Hu, Shi, Lei, Lu, Luo, Qin, Zhou, Jiang (bib20) 2016; 6 Tsuchida, Lee, Fujiwara, Ybanez, Allen, Martins, Fiel, Goossens, Chou, Hoshida (bib37) 2018; 69 Androvic, Valihrach, Elling, Sjoback, Kubista (bib1) 2017; 45 Seki, Schwabe (bib32) 2015; 61 Liu, Xiang, Ji, Liu, Chen, Xia, Liu, Liu, Zhu, Jin (bib24) 2021; 131 Raposo, Stoorvogel (bib30) 2013; 200 Hou, Yin, Ren, Liu, Yong, Liu, Li, Zheng, Kunos, Gao (bib19) 2021; 74 Hong, Li, Cai, Zhang, Yang, He, Yu, Chen (bib47) 2020; 11 Wang, Wang, Quan (bib39) 2020; 26 Dooley, ten Dijke (bib14) 2012; 347 Lane, Korbie, Trau, Hill (bib23) 2017; 1660 Luo, Luo, Xu, Zhou, Li, Zhou, Xu (bib27) 2021; 27 Benbow, Marrero, McGee, Brandon-Warner, Attal, Feilen, Culberson, McKillop, Schrum (bib4) 2021; 405 Sakai, Chen, Ni, Zhuge, Xu, Nagata, Kaneko, Ota, Nagashimada (bib31) 2020; 161 Chen, Liu, Niu, Mo, Wang, Lu, Wang, Sun, Wang, Tu (bib10) 2021; 12 Zhou, Xu, Li, Yang, Zhang, Shiraishi, Kiyonari, Liang, Huang, Wang (bib44) 2020; 117 Chen, Huang, Duan, Huang, Yao, Zhou, Ji, Liu (bib8) 2021; 9 Yamamoto, Yoshimura, Kitada, Nakahara, Seiwa, Ueki, Shimoda, Ishige, Watanabe, Asou (bib40) 2009; 87 Bartel (bib3) 2009; 136 Huntzinger, Izaurralde (bib21) 2011; 12 Bartel (10.1016/j.isci.2022.104597_bib3) 2009; 136 Kim (10.1016/j.isci.2022.104597_bib22) 2015; 31 Zisser (10.1016/j.isci.2022.104597_bib45) 2021; 9 Tacke (10.1016/j.isci.2022.104597_bib35) 2014; 60 Zhou (10.1016/j.isci.2022.104597_bib44) 2020; 117 Androvic (10.1016/j.isci.2022.104597_bib1) 2017; 45 Guo (10.1016/j.isci.2022.104597_bib46) 2018; 45 Hong (10.1016/j.isci.2022.104597_bib47) 2020; 11 Diehl (10.1016/j.isci.2022.104597_bib13) 2017; 377 Huntzinger (10.1016/j.isci.2022.104597_bib21) 2011; 12 Cheng (10.1016/j.isci.2022.104597_bib11) 2021; 41 Wang (10.1016/j.isci.2022.104597_bib39) 2020; 26 Raposo (10.1016/j.isci.2022.104597_bib30) 2013; 200 Chen (10.1016/j.isci.2022.104597_bib6) 2014; 59 Potrich (10.1016/j.isci.2022.104597_bib29) 2017; 46 Harley (10.1016/j.isci.2022.104597_bib18) 2014; 59 Chen (10.1016/j.isci.2022.104597_bib9) 2020; 34 Chen (10.1016/j.isci.2022.104597_bib8) 2021; 9 Liu (10.1016/j.isci.2022.104597_bib26) 2020; 72 Hu (10.1016/j.isci.2022.104597_bib20) 2016; 6 Lane (10.1016/j.isci.2022.104597_bib23) 2017; 1660 Liu (10.1016/j.isci.2022.104597_bib25) 2018; 503 Chen (10.1016/j.isci.2022.104597_bib7) 2016; 186 Théry (10.1016/j.isci.2022.104597_bib36) 2018; 7 Sheka (10.1016/j.isci.2022.104597_bib33) 2020; 323 Younossi (10.1016/j.isci.2022.104597_bib43) 2019; 69 Asgharpour (10.1016/j.isci.2022.104597_bib2) 2016; 65 Guo (10.1016/j.isci.2022.104597_bib17) 2017; 127 Tsuchida (10.1016/j.isci.2022.104597_bib37) 2018; 69 Chen (10.1016/j.isci.2022.104597_bib10) 2021; 12 Wan (10.1016/j.isci.2022.104597_bib38) 2014; 59 Genin (10.1016/j.isci.2022.104597_bib15) 2015; 15 Devaraj (10.1016/j.isci.2022.104597_bib12) 2021 Seki (10.1016/j.isci.2022.104597_bib32) 2015; 61 Sakai (10.1016/j.isci.2022.104597_bib31) 2020; 161 Chanput (10.1016/j.isci.2022.104597_bib5) 2014; 23 Hou (10.1016/j.isci.2022.104597_bib19) 2021; 74 Liu (10.1016/j.isci.2022.104597_bib24) 2021; 131 Dooley (10.1016/j.isci.2022.104597_bib14) 2012; 347 Xiao (10.1016/j.isci.2022.104597_bib48) 2016; 20 Su (10.1016/j.isci.2022.104597_bib34) 2021; 264 Gordon (10.1016/j.isci.2022.104597_bib16) 2005; 5 Yanez-Mo (10.1016/j.isci.2022.104597_bib41) 2015; 4 Yang (10.1016/j.isci.2022.104597_bib42) 2018; 37 Benbow (10.1016/j.isci.2022.104597_bib4) 2021; 405 Luo (10.1016/j.isci.2022.104597_bib27) 2021; 27 Yamamoto (10.1016/j.isci.2022.104597_bib40) 2009; 87 Miura (10.1016/j.isci.2022.104597_bib28) 2010; 139 |
References_xml | – volume: 45 start-page: e144 year: 2017 ident: bib1 article-title: Two-tailed RT-qPCR: a novel method for highly accurate miRNA quantification publication-title: Nucleic Acids Res. – volume: 377 start-page: 2063 year: 2017 end-page: 2072 ident: bib13 article-title: Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis publication-title: N. Engl. J. Med. – volume: 87 start-page: 503 year: 2009 end-page: 513 ident: bib40 article-title: A new monoclonal antibody, A3B10, specific for astrocyte-lineage cells recognizes calmodulin-regulated spectrin-associated protein 1 (Camsap1) publication-title: J. Neurosci. Res. – volume: 4 start-page: 27066 year: 2015 ident: bib41 article-title: Biological properties of extracellular vesicles and their physiological functions publication-title: J. Extracell. Vesicles – volume: 26 start-page: 81 year: 2020 ident: bib39 article-title: Exosomal miR-223 derived from natural killer cells inhibits hepatic stellate cell activation by suppressing autophagy publication-title: Mol. Med. – volume: 37 start-page: 6119 year: 2018 end-page: 6135 ident: bib42 article-title: PSTPIP2 connects DNA methylation to macrophage polarization in CCL4-induced mouse model of hepatic fibrosis publication-title: Oncogene – volume: 34 start-page: 5178 year: 2020 end-page: 5192 ident: bib9 article-title: Exosomal miR-103-3p from LPS-activated THP-1 macrophage contributes to the activation of hepatic stellate cells publication-title: FASEB. J. – volume: 59 start-page: 130 year: 2014 end-page: 142 ident: bib38 article-title: M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease publication-title: Hepatology – volume: 186 start-page: 2921 year: 2016 end-page: 2933 ident: bib7 article-title: Fibrogenic signaling is suppressed in hepatic stellate cells through targeting of connective tissue growth factor (CCN2) by cellular or exosomal MicroRNA-199a-5p publication-title: Am. J. Pathol. – volume: 323 start-page: 1175 year: 2020 end-page: 1183 ident: bib33 article-title: Nonalcoholic steatohepatitis: a review publication-title: JAMA – volume: 117 start-page: 22193 year: 2020 end-page: 22203 ident: bib44 article-title: CAMSAP1 breaks the homeostatic microtubule network to instruct neuronal polarity publication-title: Proc. Natl. Acad. Sci. U S A – volume: 9 start-page: 365 year: 2021 ident: bib45 article-title: Hepatic stellate cell activation and inactivation in NASH-fibrosis-roles as putative treatment targets? publication-title: Biomedicines – volume: 347 start-page: 245 year: 2012 end-page: 256 ident: bib14 article-title: TGF-beta in progression of liver disease publication-title: Cell Tissue Res. – volume: 11 start-page: 529553 year: 2020 ident: bib47 article-title: The Target MicroRNAs and Potential Underlying Mechanisms of Yiqi-Bushen-Tiaozhi Recipe against-Non-Alcoholic Steatohepatitis publication-title: Front Pharmacol – volume: 23 start-page: 37 year: 2014 end-page: 45 ident: bib5 article-title: THP-1 cell line: an in vitro cell model for immune modulation approach publication-title: Int. Immunopharmcol. – volume: 59 start-page: 1118 year: 2014 end-page: 1129 ident: bib6 article-title: Epigenetic regulation of connective tissue growth factor by MicroRNA-214 delivery in exosomes from mouse or human hepatic stellate cells publication-title: Hepatology – volume: 1660 start-page: 111 year: 2017 end-page: 130 ident: bib23 article-title: Purification protocols for extracellular vesicles publication-title: Methods Mol. Biol. – volume: 74 start-page: 116 year: 2021 end-page: 132 ident: bib19 article-title: Myeloid-cell-specific IL-6 signaling promotes MicroRNA-223-enriched exosome production to attenuate NAFLD-associated fibrosis publication-title: Hepatology – volume: 161 start-page: bqaa139 year: 2020 ident: bib31 article-title: DPP-4 inhibition with anagliptin reduces lipotoxicity-induced insulin resistance and steatohepatitis in male mice publication-title: Endocrinology – volume: 131 start-page: e144801 year: 2021 ident: bib24 article-title: Sparcl1 promotes nonalcoholic steatohepatitis progression in mice through upregulation of CCL2 publication-title: J. Clin. Invest. – volume: 69 start-page: 2672 year: 2019 end-page: 2682 ident: bib43 article-title: Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis publication-title: Hepatology – volume: 60 start-page: 1090 year: 2014 end-page: 1096 ident: bib35 article-title: Macrophage heterogeneity in liver injury and fibrosis publication-title: J. Hepatol. – volume: 264 start-page: 118677 year: 2021 ident: bib34 article-title: Interleukin-22 regulating Kupffer cell polarization through STAT3/Erk/Akt crosstalk pathways to extenuate liver fibrosis publication-title: Life Sci. – volume: 7 start-page: 1535750 year: 2018 ident: bib36 article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines publication-title: J. Extracell. Vesicles – volume: 136 start-page: 215 year: 2009 end-page: 233 ident: bib3 article-title: MicroRNAs: target recognition and regulatory functions publication-title: Cell – volume: 5 start-page: 953 year: 2005 end-page: 964 ident: bib16 article-title: Monocyte and macrophage heterogeneity publication-title: Nat. Rev. Immunol. – volume: 41 start-page: 2279 year: 2021 end-page: 2294 ident: bib11 article-title: Hepatic macrophages: key players in the development and progression of liver fibrosis publication-title: Liver Int. – volume: 6 start-page: 36436 year: 2016 ident: bib20 article-title: Interleukin-22 ameliorates liver fibrosis through miR-200a/beta-catenin publication-title: Sci. Rep. – volume: 20 start-page: 204 year: 2016 end-page: 216 ident: bib48 article-title: miR-212 downregulation contributes to the protective effect of exercise against non-alcoholic fatty liver via targeting FGF-21 publication-title: J Cell Mol Med – volume: 139 start-page: 323 year: 2010 end-page: 334.e7 ident: bib28 article-title: Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1β in mice publication-title: Gastroenterology – volume: 15 start-page: 577 year: 2015 ident: bib15 article-title: M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide publication-title: BMC Cancer – volume: 61 start-page: 1066 year: 2015 end-page: 1079 ident: bib32 article-title: Hepatic inflammation and fibrosis: functional links and key pathways publication-title: Hepatology – volume: 65 start-page: 579 year: 2016 end-page: 588 ident: bib2 article-title: A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer publication-title: J. Hepatol. – volume: 127 start-page: 4449 year: 2017 end-page: 4461 ident: bib17 article-title: Hepatic neuregulin 4 signaling defines an endocrine checkpoint for steatosis-to-NASH progression publication-title: J. Clin. Invest. – volume: 27 start-page: 1419 year: 2021 end-page: 1434 ident: bib27 article-title: Lipotoxic hepatocyte-derived exosomal miR-1297 promotes hepatic stellate cell activation through the PTEN signaling pathway in metabolic-associated fatty liver disease publication-title: World J. Gastroenterol. – volume: 12 start-page: 99 year: 2011 end-page: 110 ident: bib21 article-title: Gene silencing by microRNAs: contributions of translational repression and mRNA decay publication-title: Nat. Rev. Genet. – volume: 200 start-page: 373 year: 2013 end-page: 383 ident: bib30 article-title: Extracellular vesicles: exosomes, microvesicles, and friends publication-title: J. Cell Biol. – volume: 503 start-page: 2659 year: 2018 end-page: 2665 ident: bib25 article-title: Overexpression of circular RNA circ_001569 indicates poor prognosis in hepatocellular carcinoma and promotes cell growth and metastasis by sponging miR-411-5p and miR-432-5p publication-title: Biochem. Biophys. Res. Commun. – volume: 45 start-page: 1487 year: 2018 end-page: 1505 ident: bib46 article-title: Metformin-Induced Changes of the Coding Transcriptome and Non-Coding RNAs in the Livers of Non-Alcoholic Fatty Liver Disease Mice publication-title: Cell Physiol Biochem – year: 2021 ident: bib12 article-title: Liver fibrosis: extracellular vesicles mediated intercellular communication in perisinusoidal space publication-title: Hepatology – volume: 59 start-page: 1830 year: 2014 end-page: 1839 ident: bib18 article-title: IL-17 signaling accelerates the progression of nonalcoholic fatty liver disease in mice publication-title: Hepatology – volume: 69 start-page: 385 year: 2018 end-page: 395 ident: bib37 article-title: A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer publication-title: J. Hepatol. – volume: 9 start-page: 716209 year: 2021 ident: bib8 article-title: Exosomal miR-500 derived from lipopolysaccharide-treated macrophage accelerates liver fibrosis by suppressing MFN2 publication-title: Front. Cell Dev. Biol. – volume: 72 start-page: 454 year: 2020 end-page: 469 ident: bib26 article-title: Lipotoxic hepatocyte-derived exosomal MicroRNA 192-5p activates macrophages through rictor/akt/forkhead box transcription factor O1 signaling in nonalcoholic fatty liver disease publication-title: Hepatology – volume: 46 start-page: 803 year: 2017 end-page: 811 ident: bib29 article-title: Cell transfer of information via miR-loaded exosomes: a biophysical approach publication-title: Eur. Biophys. J. – volume: 405 start-page: 112663 year: 2021 ident: bib4 article-title: Hepatic stellate cell-derived exosomes modulate macrophage inflammatory response publication-title: Exp. Cell Res. – volume: 31 start-page: 933 year: 2015 end-page: 939 ident: bib22 article-title: EVpedia: a community web portal for extracellular vesicles research publication-title: Bioinformatics – volume: 12 start-page: 1152 year: 2021 ident: bib10 article-title: HIF-1alpha-activated long non-coding RNA KDM4A-AS1 promotes hepatocellular carcinoma progression via the miR-411-5p/KPNA2/AKT pathway publication-title: Cell Death Dis. – volume: 65 start-page: 579 year: 2016 ident: 10.1016/j.isci.2022.104597_bib2 article-title: A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer publication-title: J. Hepatol. doi: 10.1016/j.jhep.2016.05.005 – volume: 377 start-page: 2063 year: 2017 ident: 10.1016/j.isci.2022.104597_bib13 article-title: Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1503519 – volume: 503 start-page: 2659 year: 2018 ident: 10.1016/j.isci.2022.104597_bib25 article-title: Overexpression of circular RNA circ_001569 indicates poor prognosis in hepatocellular carcinoma and promotes cell growth and metastasis by sponging miR-411-5p and miR-432-5p publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2018.08.020 – volume: 69 start-page: 385 year: 2018 ident: 10.1016/j.isci.2022.104597_bib37 article-title: A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer publication-title: J. Hepatol. doi: 10.1016/j.jhep.2018.03.011 – volume: 27 start-page: 1419 year: 2021 ident: 10.1016/j.isci.2022.104597_bib27 article-title: Lipotoxic hepatocyte-derived exosomal miR-1297 promotes hepatic stellate cell activation through the PTEN signaling pathway in metabolic-associated fatty liver disease publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v27.i14.1419 – volume: 117 start-page: 22193 year: 2020 ident: 10.1016/j.isci.2022.104597_bib44 article-title: CAMSAP1 breaks the homeostatic microtubule network to instruct neuronal polarity publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1913177117 – volume: 37 start-page: 6119 year: 2018 ident: 10.1016/j.isci.2022.104597_bib42 article-title: PSTPIP2 connects DNA methylation to macrophage polarization in CCL4-induced mouse model of hepatic fibrosis publication-title: Oncogene doi: 10.1038/s41388-018-0383-0 – volume: 45 start-page: e144 year: 2017 ident: 10.1016/j.isci.2022.104597_bib1 article-title: Two-tailed RT-qPCR: a novel method for highly accurate miRNA quantification publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx588 – volume: 6 start-page: 36436 year: 2016 ident: 10.1016/j.isci.2022.104597_bib20 article-title: Interleukin-22 ameliorates liver fibrosis through miR-200a/beta-catenin publication-title: Sci. Rep. doi: 10.1038/srep36436 – volume: 72 start-page: 454 year: 2020 ident: 10.1016/j.isci.2022.104597_bib26 article-title: Lipotoxic hepatocyte-derived exosomal MicroRNA 192-5p activates macrophages through rictor/akt/forkhead box transcription factor O1 signaling in nonalcoholic fatty liver disease publication-title: Hepatology doi: 10.1002/hep.31050 – volume: 200 start-page: 373 year: 2013 ident: 10.1016/j.isci.2022.104597_bib30 article-title: Extracellular vesicles: exosomes, microvesicles, and friends publication-title: J. Cell Biol. doi: 10.1083/jcb.201211138 – volume: 26 start-page: 81 year: 2020 ident: 10.1016/j.isci.2022.104597_bib39 article-title: Exosomal miR-223 derived from natural killer cells inhibits hepatic stellate cell activation by suppressing autophagy publication-title: Mol. Med. doi: 10.1186/s10020-020-00207-w – volume: 5 start-page: 953 year: 2005 ident: 10.1016/j.isci.2022.104597_bib16 article-title: Monocyte and macrophage heterogeneity publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1733 – volume: 41 start-page: 2279 year: 2021 ident: 10.1016/j.isci.2022.104597_bib11 article-title: Hepatic macrophages: key players in the development and progression of liver fibrosis publication-title: Liver Int. doi: 10.1111/liv.14940 – year: 2021 ident: 10.1016/j.isci.2022.104597_bib12 article-title: Liver fibrosis: extracellular vesicles mediated intercellular communication in perisinusoidal space publication-title: Hepatology – volume: 161 start-page: bqaa139 year: 2020 ident: 10.1016/j.isci.2022.104597_bib31 article-title: DPP-4 inhibition with anagliptin reduces lipotoxicity-induced insulin resistance and steatohepatitis in male mice publication-title: Endocrinology doi: 10.1210/endocr/bqaa139 – volume: 347 start-page: 245 year: 2012 ident: 10.1016/j.isci.2022.104597_bib14 article-title: TGF-beta in progression of liver disease publication-title: Cell Tissue Res. doi: 10.1007/s00441-011-1246-y – volume: 45 start-page: 1487 year: 2018 ident: 10.1016/j.isci.2022.104597_bib46 article-title: Metformin-Induced Changes of the Coding Transcriptome and Non-Coding RNAs in the Livers of Non-Alcoholic Fatty Liver Disease Mice publication-title: Cell Physiol Biochem doi: 10.1159/000487575 – volume: 69 start-page: 2672 year: 2019 ident: 10.1016/j.isci.2022.104597_bib43 article-title: Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis publication-title: Hepatology doi: 10.1002/hep.30251 – volume: 11 start-page: 529553 year: 2020 ident: 10.1016/j.isci.2022.104597_bib47 article-title: The Target MicroRNAs and Potential Underlying Mechanisms of Yiqi-Bushen-Tiaozhi Recipe against-Non-Alcoholic Steatohepatitis publication-title: Front Pharmacol doi: 10.3389/fphar.2020.529553 – volume: 186 start-page: 2921 year: 2016 ident: 10.1016/j.isci.2022.104597_bib7 article-title: Fibrogenic signaling is suppressed in hepatic stellate cells through targeting of connective tissue growth factor (CCN2) by cellular or exosomal MicroRNA-199a-5p publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2016.07.011 – volume: 264 start-page: 118677 year: 2021 ident: 10.1016/j.isci.2022.104597_bib34 article-title: Interleukin-22 regulating Kupffer cell polarization through STAT3/Erk/Akt crosstalk pathways to extenuate liver fibrosis publication-title: Life Sci. doi: 10.1016/j.lfs.2020.118677 – volume: 46 start-page: 803 year: 2017 ident: 10.1016/j.isci.2022.104597_bib29 article-title: Cell transfer of information via miR-loaded exosomes: a biophysical approach publication-title: Eur. Biophys. J. doi: 10.1007/s00249-017-1262-2 – volume: 127 start-page: 4449 year: 2017 ident: 10.1016/j.isci.2022.104597_bib17 article-title: Hepatic neuregulin 4 signaling defines an endocrine checkpoint for steatosis-to-NASH progression publication-title: J. Clin. Invest. doi: 10.1172/JCI96324 – volume: 323 start-page: 1175 year: 2020 ident: 10.1016/j.isci.2022.104597_bib33 article-title: Nonalcoholic steatohepatitis: a review publication-title: JAMA doi: 10.1001/jama.2020.2298 – volume: 61 start-page: 1066 year: 2015 ident: 10.1016/j.isci.2022.104597_bib32 article-title: Hepatic inflammation and fibrosis: functional links and key pathways publication-title: Hepatology doi: 10.1002/hep.27332 – volume: 23 start-page: 37 year: 2014 ident: 10.1016/j.isci.2022.104597_bib5 article-title: THP-1 cell line: an in vitro cell model for immune modulation approach publication-title: Int. Immunopharmcol. doi: 10.1016/j.intimp.2014.08.002 – volume: 136 start-page: 215 year: 2009 ident: 10.1016/j.isci.2022.104597_bib3 article-title: MicroRNAs: target recognition and regulatory functions publication-title: Cell doi: 10.1016/j.cell.2009.01.002 – volume: 59 start-page: 1830 year: 2014 ident: 10.1016/j.isci.2022.104597_bib18 article-title: IL-17 signaling accelerates the progression of nonalcoholic fatty liver disease in mice publication-title: Hepatology doi: 10.1002/hep.26746 – volume: 1660 start-page: 111 year: 2017 ident: 10.1016/j.isci.2022.104597_bib23 article-title: Purification protocols for extracellular vesicles publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7253-1_10 – volume: 9 start-page: 716209 year: 2021 ident: 10.1016/j.isci.2022.104597_bib8 article-title: Exosomal miR-500 derived from lipopolysaccharide-treated macrophage accelerates liver fibrosis by suppressing MFN2 publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2021.716209 – volume: 60 start-page: 1090 year: 2014 ident: 10.1016/j.isci.2022.104597_bib35 article-title: Macrophage heterogeneity in liver injury and fibrosis publication-title: J. Hepatol. doi: 10.1016/j.jhep.2013.12.025 – volume: 139 start-page: 323 year: 2010 ident: 10.1016/j.isci.2022.104597_bib28 article-title: Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1β in mice publication-title: Gastroenterology doi: 10.1053/j.gastro.2010.03.052 – volume: 15 start-page: 577 year: 2015 ident: 10.1016/j.isci.2022.104597_bib15 article-title: M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide publication-title: BMC Cancer doi: 10.1186/s12885-015-1546-9 – volume: 405 start-page: 112663 year: 2021 ident: 10.1016/j.isci.2022.104597_bib4 article-title: Hepatic stellate cell-derived exosomes modulate macrophage inflammatory response publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2021.112663 – volume: 34 start-page: 5178 year: 2020 ident: 10.1016/j.isci.2022.104597_bib9 article-title: Exosomal miR-103-3p from LPS-activated THP-1 macrophage contributes to the activation of hepatic stellate cells publication-title: FASEB. J. doi: 10.1096/fj.201902307RRR – volume: 59 start-page: 1118 year: 2014 ident: 10.1016/j.isci.2022.104597_bib6 article-title: Epigenetic regulation of connective tissue growth factor by MicroRNA-214 delivery in exosomes from mouse or human hepatic stellate cells publication-title: Hepatology doi: 10.1002/hep.26768 – volume: 87 start-page: 503 year: 2009 ident: 10.1016/j.isci.2022.104597_bib40 article-title: A new monoclonal antibody, A3B10, specific for astrocyte-lineage cells recognizes calmodulin-regulated spectrin-associated protein 1 (Camsap1) publication-title: J. Neurosci. Res. doi: 10.1002/jnr.21853 – volume: 74 start-page: 116 year: 2021 ident: 10.1016/j.isci.2022.104597_bib19 article-title: Myeloid-cell-specific IL-6 signaling promotes MicroRNA-223-enriched exosome production to attenuate NAFLD-associated fibrosis publication-title: Hepatology doi: 10.1002/hep.31658 – volume: 7 start-page: 1535750 year: 2018 ident: 10.1016/j.isci.2022.104597_bib36 article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines publication-title: J. Extracell. Vesicles doi: 10.1080/20013078.2018.1535750 – volume: 12 start-page: 99 year: 2011 ident: 10.1016/j.isci.2022.104597_bib21 article-title: Gene silencing by microRNAs: contributions of translational repression and mRNA decay publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2936 – volume: 9 start-page: 365 year: 2021 ident: 10.1016/j.isci.2022.104597_bib45 article-title: Hepatic stellate cell activation and inactivation in NASH-fibrosis-roles as putative treatment targets? publication-title: Biomedicines doi: 10.3390/biomedicines9040365 – volume: 4 start-page: 27066 year: 2015 ident: 10.1016/j.isci.2022.104597_bib41 article-title: Biological properties of extracellular vesicles and their physiological functions publication-title: J. Extracell. Vesicles doi: 10.3402/jev.v4.27066 – volume: 31 start-page: 933 year: 2015 ident: 10.1016/j.isci.2022.104597_bib22 article-title: EVpedia: a community web portal for extracellular vesicles research publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu741 – volume: 131 start-page: e144801 year: 2021 ident: 10.1016/j.isci.2022.104597_bib24 article-title: Sparcl1 promotes nonalcoholic steatohepatitis progression in mice through upregulation of CCL2 publication-title: J. Clin. Invest. doi: 10.1172/JCI144801 – volume: 59 start-page: 130 year: 2014 ident: 10.1016/j.isci.2022.104597_bib38 article-title: M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease publication-title: Hepatology doi: 10.1002/hep.26607 – volume: 12 start-page: 1152 year: 2021 ident: 10.1016/j.isci.2022.104597_bib10 article-title: HIF-1alpha-activated long non-coding RNA KDM4A-AS1 promotes hepatocellular carcinoma progression via the miR-411-5p/KPNA2/AKT pathway publication-title: Cell Death Dis. doi: 10.1038/s41419-021-04449-2 – volume: 20 start-page: 204 year: 2016 ident: 10.1016/j.isci.2022.104597_bib48 article-title: miR-212 downregulation contributes to the protective effect of exercise against non-alcoholic fatty liver via targeting FGF-21 publication-title: J Cell Mol Med doi: 10.1111/jcmm.12733 |
SSID | ssj0002002496 |
Score | 2.3702302 |
Snippet | Liver fibrosis is a severe stage of nonalcoholic fatty liver disease (NAFLD), which is closely associated with the activation of hepatic stellate cells (HSCs)... |
SourceID | doaj pubmedcentral proquest crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104597 |
SubjectTerms | Biological sciences Fibrosis Immunology |
Title | M2 macrophage-derived exosomal microRNA-411-5p impedes the activation of hepatic stellate cells by targeting CAMSAP1 in NASH model |
URI | https://dx.doi.org/10.1016/j.isci.2022.104597 https://www.proquest.com/docview/2685030438 https://pubmed.ncbi.nlm.nih.gov/PMC9249826 https://doaj.org/article/b126cc72f8574ef893c6a714d8227518 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp1xKS1O6faFAb0U0kiU_jm5oWAJZStNAbsIaj9gNXTvEm9Je-8s7Y3uDfUkvvdqSLGtGmm-kTzNCfKhBc14jVGm0hbKVqWlKhUQVeQoRIMG86gmyq3R5Zc-v3fUk1RdzwobwwMPAfQrapACZibnLLEYyr5BWmbY1WTY-MuDVl2zexJm66Y_XOBRen1nOMSeIVHO8MTOQu_jGKzmHxvAZp-OITxOr1AfvnxmnCficUycntujsmXg6gkhZDp1_Lp5g80L8uTByW3FGrjWtEaom1fqJtcRfbdduqfSWqXffVqWyWit3KzcEmGvsJCFAybcbhr1Z2Ua5RqZZg-z4hglhUcm7-50Mv-XAGydrJ0_Li8vyq5abRq7Ky6XsM-ociauzL99Pl2rMsKDAFvlOaR1cXpFjCjpkuU5NiOTwQUDMI9B0hTSJCLXBqBOkIQckwFhAUQR3YupQJS_FQdM2-EpIpMGENBQVRFoUbCwyE0zMTmKwOVUoFkLvR9jDGH6cs2D88Hue2Y1nqXiWih-kshAfH-rcDsE3Hi39mQX3UJIDZ_cPSJ38qE7-X-q0EG4vdj9ikAFbUFObRz9-vNcRTxOU5VI12N533qS54_PnhNrOZsoz6-n8TbNZ96G-2TsmB_D1__i1N-KQO8wb09q9FQe7u3t8R4hqF973k-cvHacc9A |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=M2+macrophage-derived+exosomal+microRNA-411-5p+impedes+the+activation+of+hepatic+stellate+cells+by+targeting+CAMSAP1+in+NASH+model&rft.jtitle=iScience&rft.au=Zhiping+Wan&rft.au=Xiaoan+Yang&rft.au=Xiaoquan+Liu&rft.au=Yinfang+Sun&rft.date=2022-07-15&rft.pub=Elsevier&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=25&rft.issue=7&rft.spage=104597&rft_id=info:doi/10.1016%2Fj.isci.2022.104597&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b126cc72f8574ef893c6a714d8227518 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |