Temperature increase and its effects on fish stress physiology in the context of global warming

The capacity of fishes to cope with environmental variation is considered to be a main determinant of their fitness and is partly determined by their stress physiology. By 2100, global ocean temperature is expected to rise by 1–4°C, with potential consequences for stress physiology. Global warming i...

Full description

Saved in:
Bibliographic Details
Published inJournal of fish biology Vol. 98; no. 6; pp. 1496 - 1508
Main Authors Alfonso, Sébastien, Gesto, Manuel, Sadoul, Bastien
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.06.2021
Wiley Subscription Services, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The capacity of fishes to cope with environmental variation is considered to be a main determinant of their fitness and is partly determined by their stress physiology. By 2100, global ocean temperature is expected to rise by 1–4°C, with potential consequences for stress physiology. Global warming is affecting animal populations worldwide through chronic temperature increases and an increase in the frequency of extreme heatwave events. As ectotherms, fishes are expected to be particularly vulnerable to global warming. Although little information is available about the effects of global warming on stress physiology in nature, multiple studies describe the consequences of temperature increases on stress physiology in controlled laboratory conditions, providing insight into what can be expected in the wild. Chronic temperature increase constitutes a physiological load that can alter the ability of fishes to cope with additional stressors, which might compromise their fitness. In addition, rapid temperature increases are known to induce acute stress responses in fishes and might be of ecological relevance in particular situations. This review summarizes knowledge about effects of temperature increases on the stress physiology of fishes and discusses these in the context of global warming.
AbstractList The capacity of fishes to cope with environmental variation is considered to be a main determinant of their fitness and is partly determined by their stress physiology. By 2100, global ocean temperature is expected to rise by 1–4°C, with potential consequences for stress physiology. Global warming is affecting animal populations worldwide through chronic temperature increases and an increase in the frequency of extreme heatwave events. As ectotherms, fishes are expected to be particularly vulnerable to global warming. Although little information is available about the effects of global warming on stress physiology in nature, multiple studies describe the consequences of temperature increases on stress physiology in controlled laboratory conditions, providing insight into what can be expected in the wild. Chronic temperature increase constitutes a physiological load that can alter the ability of fishes to cope with additional stressors, which might compromise their fitness. In addition, rapid temperature increases are known to induce acute stress responses in fishes and might be of ecological relevance in particular situations. This review summarizes knowledge about effects of temperature increases on the stress physiology of fishes and discusses these in the context of global warming.
The capacity of fishes to cope with environmental variation is considered to be a main determinant of their fitness and is partly determined by their stress physiology. By 2100, global ocean temperature is expected to rise by 1-4 degrees C, with potential consequences for stress physiology. Global warming is affecting animal populations worldwide through chronic temperature increases and an increase in the frequency of extreme heatwave events. As ectotherms, fishes are expected to be particularly vulnerable to global warming. Although little information is available about the effects of global warming on stress physiology in nature, multiple studies describe the consequences of temperature increases on stress physiology in controlled laboratory conditions, providing insight into what can be expected in the wild. Chronic temperature increase constitutes a physiological load that can alter the ability of fishes to cope with additional stressors, which might compromise their fitness. In addition, rapid temperature increases are known to induce acute stress responses in fishes and might be of ecological relevance in particular situations. This review summarizes knowledge about effects of temperature increases on the stress physiology of fishes and discusses these in the context of global warming.
The capacity of fishes to cope with environmental variation is considered to be a main determinant of their fitness and is partly determined by their stress physiology. By 2100, global ocean temperature is expected to rise by 1-4°C, with potential consequences for stress physiology. Global warming is affecting animal populations worldwide through chronic temperature increases and an increase in the frequency of extreme heatwave events. As ectotherms, fishes are expected to be particularly vulnerable to global warming. Although little information is available about the effects of global warming on stress physiology in nature, multiple studies describe the consequences of temperature increases on stress physiology in controlled laboratory conditions, providing insight into what can be expected in the wild. Chronic temperature increase constitutes a physiological load that can alter the ability of fishes to cope with additional stressors, which might compromise their fitness. In addition, rapid temperature increases are known to induce acute stress responses in fishes and might be of ecological relevance in particular situations. This review summarizes knowledge about effects of temperature increases on the stress physiology of fishes and discusses these in the context of global warming.The capacity of fishes to cope with environmental variation is considered to be a main determinant of their fitness and is partly determined by their stress physiology. By 2100, global ocean temperature is expected to rise by 1-4°C, with potential consequences for stress physiology. Global warming is affecting animal populations worldwide through chronic temperature increases and an increase in the frequency of extreme heatwave events. As ectotherms, fishes are expected to be particularly vulnerable to global warming. Although little information is available about the effects of global warming on stress physiology in nature, multiple studies describe the consequences of temperature increases on stress physiology in controlled laboratory conditions, providing insight into what can be expected in the wild. Chronic temperature increase constitutes a physiological load that can alter the ability of fishes to cope with additional stressors, which might compromise their fitness. In addition, rapid temperature increases are known to induce acute stress responses in fishes and might be of ecological relevance in particular situations. This review summarizes knowledge about effects of temperature increases on the stress physiology of fishes and discusses these in the context of global warming.
Author Gesto, Manuel
Alfonso, Sébastien
Sadoul, Bastien
Author_xml – sequence: 1
  givenname: Sébastien
  orcidid: 0000-0002-2471-2876
  surname: Alfonso
  fullname: Alfonso, Sébastien
  email: salfonso@coispa.eu
  organization: COISPA Tecnologia & Ricerca, Stazione Sperimentale per lo Studio delle Risorse del Mare
– sequence: 2
  givenname: Manuel
  orcidid: 0000-0002-9136-7857
  surname: Gesto
  fullname: Gesto, Manuel
  organization: Section for Aquaculture, DTU Aqua, Technical University of Denmark
– sequence: 3
  givenname: Bastien
  surname: Sadoul
  fullname: Sadoul, Bastien
  organization: ESE, Ecology and Ecosystem Health, Institut Agro, INRAE
BackLink https://hal.inrae.fr/hal-03137601$$DView record in HAL
BookMark eNqFkU9vEzEQxS1UJNLCgW9giQsctvV_r4-loi0oEpdytuzdceJoYwd7Q5tvj9sgkCoBc3nS6PdGM_NO0UnKCRB6S8k5bXWxCf6cCmnMC7SgxMiuV8KcoAUhjHUNYK_Qaa0bQojhhi-QvYPtDoqb9wVwTEMBVwG7NOI4VwwhwNA0JxxiXeM6F6gV79aHGvOUV4dmwfMa8JDTDA8zzgGvpuzdhO9d2ca0eo1eBjdVePNLz9C36093V7fd8uvN56vLZTcI05tOE907A1x5TUEq4vnIpRg9Y9Kz3ksR2OBBDEZJoagXyvkgR8WkHp0wzPMz9OE4d-0muytx68rBZhft7eXSPvYIp1wrQn_Qxr4_sruSv--hznYb6wDT5BLkfbVM057znir1f1RISbXuiW7ou2foJu9LakdbJqVkSrUI_uw5lFxrgfB7WUrsY4K2JWifEmzsxTN2iLObY_t1cXH6l-M-TnD4-2j75frj0fETdB6s5A
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2023_126404
crossref_primary_10_1371_journal_pone_0272510
crossref_primary_10_3390_ijms23158691
crossref_primary_10_1016_j_aquaculture_2022_738965
crossref_primary_10_4236_ojas_2023_132017
crossref_primary_10_1007_s42823_022_00380_4
crossref_primary_10_1007_s11356_022_20450_4
crossref_primary_10_1016_j_cbpa_2023_111435
crossref_primary_10_1088_1755_1315_1217_1_012026
crossref_primary_10_3390_ijms231810905
crossref_primary_10_1007_s10584_024_03833_z
crossref_primary_10_1111_fwb_14246
crossref_primary_10_3390_life13102083
crossref_primary_10_1016_j_jtherbio_2025_104055
crossref_primary_10_1111_gcb_16022
crossref_primary_10_1242_jeb_245335
crossref_primary_10_1016_j_marenvres_2024_106618
crossref_primary_10_1080_02705060_2023_2192237
crossref_primary_10_55355_snv2023124104
crossref_primary_10_1016_j_ecolmodel_2023_110605
crossref_primary_10_3389_fphys_2022_937432
crossref_primary_10_1016_j_fsi_2024_109913
crossref_primary_10_3390_fishes8030132
crossref_primary_10_1186_s12864_024_10567_w
crossref_primary_10_3390_biology12060784
crossref_primary_10_3390_en15155412
crossref_primary_10_1016_j_fsi_2023_108647
crossref_primary_10_1007_s10126_024_10382_0
crossref_primary_10_1016_j_aquaculture_2023_740421
crossref_primary_10_1111_fwb_14375
crossref_primary_10_3390_ani13111791
crossref_primary_10_1016_j_jhazmat_2024_133448
crossref_primary_10_3390_fishes7060374
crossref_primary_10_1016_j_ecoinf_2022_101780
crossref_primary_10_3390_cleantechnol6030044
crossref_primary_10_1016_j_aquaculture_2024_741336
crossref_primary_10_1038_s41598_023_48533_3
crossref_primary_10_1093_conphys_coac023
crossref_primary_10_1002_ece3_10864
crossref_primary_10_1007_s10661_024_12313_x
crossref_primary_10_1016_j_jtherbio_2025_104073
crossref_primary_10_1016_j_isci_2024_110673
crossref_primary_10_1016_j_fsi_2023_108877
crossref_primary_10_3390_antiox12122020
crossref_primary_10_1111_jfb_15342
crossref_primary_10_1111_fog_12601
crossref_primary_10_1016_j_aqrep_2024_102448
crossref_primary_10_1002_tafs_10453
crossref_primary_10_1016_j_scitotenv_2023_163400
crossref_primary_10_1007_s10695_024_01361_2
crossref_primary_10_1016_j_aqrep_2024_102566
crossref_primary_10_1016_j_scitotenv_2023_161580
crossref_primary_10_3389_fphys_2023_1142398
crossref_primary_10_1111_gcb_17255
crossref_primary_10_3390_metabo11080547
crossref_primary_10_1016_j_scitotenv_2024_170329
crossref_primary_10_1371_journal_pone_0294656
crossref_primary_10_1002_aff2_44
crossref_primary_10_1002_jez_2667
crossref_primary_10_1016_j_cbpb_2024_111029
crossref_primary_10_1016_j_rser_2024_114578
crossref_primary_10_1016_j_jembe_2023_151955
crossref_primary_10_1002_ecs2_3990
crossref_primary_10_3389_fmars_2022_784418
crossref_primary_10_1093_conphys_coac048
crossref_primary_10_3390_vaccines12101170
crossref_primary_10_1016_j_fishres_2022_106434
crossref_primary_10_1016_j_envpol_2024_125384
crossref_primary_10_1016_j_marpolbul_2024_116438
crossref_primary_10_1038_s41598_021_93116_9
crossref_primary_10_1111_gcb_17437
crossref_primary_10_1093_conphys_coae081
crossref_primary_10_1111_eva_13351
crossref_primary_10_3390_antiox13111316
crossref_primary_10_1016_j_aquaculture_2024_740698
crossref_primary_10_1016_j_aquaculture_2024_740574
crossref_primary_10_1016_j_scitotenv_2025_178960
crossref_primary_10_1016_j_aquaculture_2023_739746
crossref_primary_10_1111_jfb_15368
crossref_primary_10_1007_s00704_023_04648_1
crossref_primary_10_1242_jeb_246227
crossref_primary_10_3390_ani14182701
crossref_primary_10_3389_faquc_2024_1476881
crossref_primary_10_3389_fphys_2024_1464123
crossref_primary_10_1016_j_aquaculture_2024_740694
crossref_primary_10_1016_j_aquaculture_2024_742073
crossref_primary_10_1016_j_jcou_2024_102842
crossref_primary_10_1007_s10695_024_01307_8
crossref_primary_10_1007_s10695_024_01431_5
crossref_primary_10_3389_fmars_2023_1159261
crossref_primary_10_37251_jee_v6i1_1273
crossref_primary_10_3389_fevo_2021_735487
crossref_primary_10_1111_1365_2435_14709
crossref_primary_10_3389_fcosc_2024_1383370
crossref_primary_10_1016_j_cbpa_2024_111648
crossref_primary_10_1016_j_fsi_2022_03_002
crossref_primary_10_1016_j_chemosphere_2023_140366
crossref_primary_10_1016_j_bbrc_2024_150682
crossref_primary_10_71064_spu_amjr_1_1_128
crossref_primary_10_1016_j_aquaculture_2022_738373
crossref_primary_10_1016_j_advwatres_2023_104387
crossref_primary_10_1016_j_aquaculture_2023_740188
crossref_primary_10_1016_j_aquaculture_2024_741537
crossref_primary_10_1016_j_jtherbio_2022_103279
crossref_primary_10_1002_ecs2_4264
crossref_primary_10_1007_s11356_021_17869_6
crossref_primary_10_3390_ani13081340
crossref_primary_10_12714_egejfas_40_1_10
crossref_primary_10_1007_s13762_023_04971_0
crossref_primary_10_1016_j_ygcen_2024_114659
crossref_primary_10_13005_bbra_3076
crossref_primary_10_1371_journal_pone_0317563
crossref_primary_10_3390_ijms24076068
crossref_primary_10_1016_j_scitotenv_2024_171103
crossref_primary_10_1016_j_enbuild_2024_114908
crossref_primary_10_1002_er_7938
crossref_primary_10_1016_j_cbd_2025_101485
crossref_primary_10_1111_eva_13337
crossref_primary_10_1139_cjfas_2023_0377
crossref_primary_10_3389_fmars_2021_717360
crossref_primary_10_1016_j_cbd_2025_101481
crossref_primary_10_1016_j_aqrep_2021_100817
crossref_primary_10_1016_j_beproc_2025_105169
crossref_primary_10_1016_j_jtherbio_2023_103544
crossref_primary_10_1016_j_jtherbio_2024_103987
crossref_primary_10_1016_j_scitotenv_2023_163684
crossref_primary_10_1155_2024_3496627
crossref_primary_10_3390_plants12071556
crossref_primary_10_3390_su151712973
crossref_primary_10_3390_fishes8080414
crossref_primary_10_1007_s10641_022_01306_9
crossref_primary_10_1007_s10695_023_01263_9
crossref_primary_10_1016_j_egyr_2022_08_275
crossref_primary_10_1002_ece3_70813
crossref_primary_10_1016_j_aquaculture_2021_737401
crossref_primary_10_1016_j_scitotenv_2024_176001
crossref_primary_10_1016_j_cbpc_2025_110147
crossref_primary_10_1111_jfd_13619
crossref_primary_10_1016_j_fsi_2023_108704
crossref_primary_10_3390_fishes7010016
crossref_primary_10_1111_raq_12612
crossref_primary_10_1007_s10646_025_02875_y
crossref_primary_10_1086_716927
crossref_primary_10_1093_icesjms_fsae025
crossref_primary_10_1038_s43247_024_01407_6
crossref_primary_10_1016_j_aquaculture_2023_739858
crossref_primary_10_1111_gcb_17564
crossref_primary_10_1111_mec_16967
crossref_primary_10_1111_eva_13553
crossref_primary_10_1016_j_envpol_2024_125184
crossref_primary_10_3390_ani14203005
crossref_primary_10_1016_j_aquaculture_2021_737632
crossref_primary_10_1016_j_aquaculture_2022_738688
crossref_primary_10_1016_j_cbpa_2022_111318
crossref_primary_10_1155_2024_2925959
crossref_primary_10_3390_ijms24108569
crossref_primary_10_1016_j_scitotenv_2025_179172
crossref_primary_10_1007_s13201_023_01954_x
crossref_primary_10_3390_fishes10030095
crossref_primary_10_1016_j_ygeno_2023_110735
crossref_primary_10_3390_biology13121045
crossref_primary_10_1016_j_scitotenv_2023_166655
crossref_primary_10_3390_biology12101342
crossref_primary_10_1016_j_aquaculture_2023_740490
crossref_primary_10_1007_s10641_025_01684_w
crossref_primary_10_3390_ijms24119348
crossref_primary_10_3390_ani12192523
crossref_primary_10_1016_j_ecolind_2024_112931
crossref_primary_10_1016_j_aqrep_2024_102392
crossref_primary_10_1016_j_envres_2024_118349
crossref_primary_10_1016_j_scitotenv_2024_175659
crossref_primary_10_3390_ani14202962
crossref_primary_10_3390_fishes9030092
crossref_primary_10_1016_j_heliyon_2024_e25559
crossref_primary_10_1093_pnasnexus_pgad137
crossref_primary_10_3389_fmars_2023_1307617
crossref_primary_10_1007_s10126_024_10315_x
crossref_primary_10_1016_j_aquaculture_2023_739830
crossref_primary_10_3390_ijms25168848
crossref_primary_10_3390_fishes7020075
crossref_primary_10_1002_ecs2_4221
crossref_primary_10_1007_s10228_023_00914_4
crossref_primary_10_1080_10236244_2024_2378752
crossref_primary_10_1038_s42003_025_07558_2
crossref_primary_10_3389_fmicb_2022_860079
crossref_primary_10_1007_s10695_022_01104_1
crossref_primary_10_1016_j_gene_2022_146388
crossref_primary_10_1016_j_cbd_2024_101288
crossref_primary_10_1016_j_jglr_2024_102310
crossref_primary_10_1139_facets_2023_0206
crossref_primary_10_1007_s00343_024_3127_8
crossref_primary_10_3390_life14101273
crossref_primary_10_1016_j_marpolbul_2023_114959
crossref_primary_10_3390_ani15060809
crossref_primary_10_1002_ece3_8738
crossref_primary_10_3390_ani14192839
crossref_primary_10_3390_toxics9110286
crossref_primary_10_1016_j_cbpa_2024_111775
crossref_primary_10_1016_j_aqrep_2024_101998
crossref_primary_10_7717_peerj_15729
crossref_primary_10_1016_j_aquaculture_2023_739806
crossref_primary_10_1016_j_foodchem_2025_143199
crossref_primary_10_3409_fb_72_2_08
crossref_primary_10_3389_fmars_2024_1466656
crossref_primary_10_1007_s00227_024_04510_6
crossref_primary_10_1016_j_mce_2025_112494
crossref_primary_10_1016_j_scitotenv_2023_169452
crossref_primary_10_1098_rspb_2024_2913
crossref_primary_10_3390_fishes7050270
crossref_primary_10_1016_j_ecoenv_2025_117895
crossref_primary_10_1016_j_scitotenv_2024_174664
crossref_primary_10_3390_foods12010124
crossref_primary_10_1016_j_ecss_2023_108305
crossref_primary_10_1111_jfb_14762
crossref_primary_10_1016_j_aaf_2021_12_005
crossref_primary_10_46989_001c_127273
crossref_primary_10_1016_j_crphys_2022_03_002
crossref_primary_10_1016_j_envres_2025_121151
crossref_primary_10_1016_j_jtherbio_2023_103599
crossref_primary_10_1016_j_fsi_2024_110042
crossref_primary_10_1111_1365_2435_70014
crossref_primary_10_3390_ani13243870
crossref_primary_10_1016_j_etap_2025_104654
crossref_primary_10_1007_s00343_023_3003_y
crossref_primary_10_1089_zeb_2024_0128
crossref_primary_10_3389_fphys_2023_1272267
crossref_primary_10_1016_j_aqrep_2024_102298
crossref_primary_10_58626_menba_1513525
crossref_primary_10_1016_j_aquaculture_2022_738529
crossref_primary_10_1089_zeb_2024_0153
crossref_primary_10_1016_j_ecoenv_2024_117249
crossref_primary_10_2478_cjf_2024_0011
crossref_primary_10_1002_ece3_9604
crossref_primary_10_1007_s12601_023_00117_y
crossref_primary_10_1111_mec_17332
crossref_primary_10_3389_fmars_2022_1017142
crossref_primary_10_1016_j_jembe_2024_152022
crossref_primary_10_1007_s10750_024_05726_9
crossref_primary_10_1111_jwas_12853
crossref_primary_10_3354_meps14535
crossref_primary_10_1002_ece3_70540
crossref_primary_10_1016_j_aquaculture_2024_741025
crossref_primary_10_1007_s00506_021_00765_1
crossref_primary_10_1016_j_triboint_2022_107615
crossref_primary_10_1016_j_aquaculture_2023_740450
crossref_primary_10_1007_s12011_023_03637_9
crossref_primary_10_1007_s10973_024_13753_w
crossref_primary_10_1098_rspb_2024_0511
crossref_primary_10_1186_s12711_023_00811_4
crossref_primary_10_7717_peerj_17847
crossref_primary_10_3390_oceans5010003
crossref_primary_10_1016_j_marenvres_2024_106531
crossref_primary_10_1002_naaq_10256
crossref_primary_10_1016_j_scitotenv_2024_173275
crossref_primary_10_1016_j_tem_2022_07_002
crossref_primary_10_1371_journal_pclm_0000017
crossref_primary_10_1007_s10695_024_01304_x
crossref_primary_10_1016_j_aquaculture_2023_740465
crossref_primary_10_1016_j_aqrep_2023_101524
crossref_primary_10_1016_j_yhbeh_2023_105396
crossref_primary_10_1111_eva_70041
crossref_primary_10_1016_j_stress_2024_100642
crossref_primary_10_1016_j_aquaculture_2024_741017
crossref_primary_10_1016_j_ijbiomac_2023_124246
crossref_primary_10_1016_j_mcat_2024_114192
crossref_primary_10_1098_rsbl_2023_0346
crossref_primary_10_3389_fmars_2024_1448313
crossref_primary_10_3389_fmars_2024_1329254
crossref_primary_10_3390_fishes8070340
crossref_primary_10_1111_brv_13111
crossref_primary_10_1016_j_cbpb_2023_110927
crossref_primary_10_3389_fphys_2024_1386413
crossref_primary_10_3389_fphys_2023_1189375
crossref_primary_10_1016_j_aquaculture_2024_741716
crossref_primary_10_13000_JFMSE_2023_12_35_6_1023
crossref_primary_10_3390_ani14060919
crossref_primary_10_1007_s10750_023_05234_2
crossref_primary_10_1093_conphys_coae015
crossref_primary_10_1155_2024_4876582
crossref_primary_10_1016_j_aqrep_2024_102120
crossref_primary_10_1111_are_15667
crossref_primary_10_1071_MF23137
crossref_primary_10_1016_j_scitotenv_2024_171510
crossref_primary_10_1016_j_cbd_2023_101058
crossref_primary_10_1016_j_rsma_2023_102856
crossref_primary_10_3390_ani11061800
crossref_primary_10_1017_S0967199424000285
crossref_primary_10_1007_s10126_024_10375_z
crossref_primary_10_1186_s12917_024_04303_5
crossref_primary_10_1016_j_palaeo_2024_112423
crossref_primary_10_1007_s12601_024_00190_x
crossref_primary_10_1016_j_apenergy_2022_120180
crossref_primary_10_1093_conphys_coae022
crossref_primary_10_3390_fishes8060303
crossref_primary_10_1016_j_aquaculture_2024_741951
crossref_primary_10_31398_tpjf_31_2_2023_0014
crossref_primary_10_1093_jhered_esae024
crossref_primary_10_1111_are_15778
Cites_doi 10.1016/j.aquaculture.2018.07.056
10.1046/j.1365-2656.1999.00337.x
10.1371/journal.pone.0080713
10.1038/s41598-018-23950-x
10.1038/s41598-020-58846-2
10.1079/9781786393982.0136
10.1098/rspb.2009.1346
10.1126/science.1098704
10.1016/j.ygcen.2008.07.002
10.7717/peerj.6338
10.3906/vet-1606-32
10.1038/s41559-018-0669-1
10.1126/science.1163156
10.1111/j.1095-8649.1989.tb02972.x
10.1111/j.1365-2761.2010.01183.x
10.1038/ncomms11447
10.1016/j.pocean.2018.09.001
10.1016/j.fishres.2004.10.006
10.1093/conphys/cov017
10.1242/jeb.091751
10.1016/S1095-6433(03)00075-8
10.1016/j.aquaculture.2018.05.042
10.1126/science.1189930
10.1016/j.yhbeh.2004.01.001
10.1016/j.ygcen.2018.09.017
10.1242/jeb.156174
10.1242/bio.20149829
10.1152/ajpregu.00196.2011
10.1152/japplphysiol.01122.2001
10.1016/j.dci.2011.07.002
10.1016/j.fsi.2005.04.005
10.1016/j.cbpb.2004.09.012
10.1038/s41598-017-10861-6
10.1038/nature09407
10.1038/nclimate1323
10.1007/s40011-014-0357-0
10.1016/j.scitotenv.2019.05.357
10.1016/j.jtherbio.2020.102526
10.1073/pnas.1015178108
10.1002/ece3.1465
10.1242/jeb.61.2.455
10.1016/B978-0-12-802728-8.00004-7
10.1152/physrev.1997.77.3.591
10.1016/j.ecolind.2020.106118
10.1111/j.1865-1682.2010.01150.x
10.1086/589095
10.1093/icb/45.3.463
10.1016/j.anbehav.2013.02.017
10.1111/jfb.12055
10.1016/j.fsi.2018.08.042
10.1007/s00338-015-1333-8
10.1038/s41558-019-0631-5
10.1242/jeb.050096
10.1007/BF01922428
10.1016/j.cbpc.2004.05.003
10.1093/icb/42.3.517
10.1016/0044-8486(87)90172-4
10.1038/s41598-019-49086-0
10.1126/science.1199158
10.1093/icesjms/39.2.175
10.1111/1365-2435.13538
10.1038/497320a
10.1073/pnas.0701638104
10.1016/j.ecolind.2020.106937
10.1523/JNEUROSCI.1039-10.2010
10.1111/jfb.13546
10.1111/mec.14884
10.1242/jeb.199.7.1605
10.1016/j.aquaculture.2019.03.045
10.1016/j.bbr.2014.07.052
10.1139/facets-2016-0053
10.1038/s41586-019-1132-4
10.1126/science.1135471
10.1530/JOE-16-0610
10.1023/A:1008924418720
10.1111/j.1095-8649.2007.01763.x
10.1016/S0304-3940(97)00618-6
10.1242/jeb.02260
10.3354/ab00707
10.1007/s00300-008-0438-8
10.1016/S0304-3940(97)00488-6
10.1111/j.1095-8649.2007.01697.x
10.1186/s12864-015-1503-7
10.1111/gcb.13028
10.1016/j.jtherbio.2010.12.008
10.1016/j.ygeno.2018.11.011
10.1016/j.cbpb.2015.10.002
10.3354/meps11758
10.1016/j.cbpa.2019.05.029
10.1016/j.aquaculture.2018.09.016
10.1038/nclimate3382
10.1006/hbeh.2002.1796
10.1242/jeb.056135
10.1371/journal.pone.0194353
10.1007/s11160-018-9535-0
10.1111/jfb.12796
10.1126/science.aau1758
10.1242/jeb.019281
10.1111/jfb.14429
10.1038/s41586-018-0383-9
10.1111/eth.12437
10.1016/j.physbeh.2017.08.001
10.1007/BF01869450
10.1242/jeb.161224
10.1016/j.envint.2009.02.006
10.1038/srep32965
10.1016/0305-0491(89)90138-7
10.1126/science.1061967
10.1006/gcen.2001.7688
10.1098/rspb.2017.0784
10.1111/gcb.14745
10.1016/j.ygcen.2017.06.022
10.1038/s41558-018-0159-0
10.1016/j.jtherbio.2018.09.006
10.1007/s10641-004-5353-4
10.1016/j.cbpa.2013.06.008
10.1007/s00360-012-0735-y
10.1242/jeb.186.1.289
10.1098/rspb.2013.2612
10.1139/cjz-2018-0157
10.1242/jeb.037473
10.1242/jeb.49.1.71
10.1126/science.aam7240
10.1111/gcb.14554
10.1016/j.anbehav.2019.09.005
10.1098/rspb.2015.2592
10.1111/jfb.13904
10.1007/s10750-019-3948-1
10.1016/j.aquatox.2019.105312
10.1080/02656730500307298
10.1016/j.tree.2019.02.012
10.1038/s41598-020-62331-1
10.1016/j.bbr.2016.09.026
ContentType Journal Article
Copyright 2020 Fisheries Society of the British Isles
Journal of Fish Biology © 2021 The Fisheries Society of the British Isles
2020 Fisheries Society of the British Isles.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 Fisheries Society of the British Isles
– notice: Journal of Fish Biology © 2021 The Fisheries Society of the British Isles
– notice: 2020 Fisheries Society of the British Isles.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7QG
7SN
7TN
8FD
C1K
F1W
FR3
H95
L.G
P64
RC3
7X8
7S9
L.6
1XC
DOI 10.1111/jfb.14599
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Oceanic Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Oceanic Abstracts
Technology Research Database
Animal Behavior Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
CrossRef

MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Environmental Sciences
EISSN 1095-8649
EndPage 1508
ExternalDocumentID oai_HAL_hal_03137601v1
10_1111_jfb_14599
JFB14599
Genre reviewArticle
GroupedDBID ---
--K
-~X
.3N
.GA
.Y3
05W
0R~
10A
1B1
1OB
1OC
29K
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAJYS
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AI.
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BGJEQ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
D-I
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LG5
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NQ-
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RPZ
RX1
SAMSI
SUPJJ
TN5
TWZ
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WUPDE
WXSBR
WYISQ
XG1
XOL
XPP
YK3
YQT
ZCG
ZMT
ZY4
ZZTAW
~02
~IA
~WT
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7QG
7SN
7TN
8FD
C1K
F1W
FR3
H95
L.G
P64
RC3
7X8
7S9
L.6
1XC
ID FETCH-LOGICAL-c4989-7078a9e36b71e560b3d354db225b28b54f2cbe4c965461b46abf5d6257da492b3
IEDL.DBID DR2
ISSN 0022-1112
1095-8649
IngestDate Thu Jul 17 06:20:34 EDT 2025
Fri Jul 11 18:34:30 EDT 2025
Fri Jul 11 10:48:41 EDT 2025
Thu Aug 07 19:10:48 EDT 2025
Tue Jul 01 01:50:53 EDT 2025
Thu Apr 24 23:12:27 EDT 2025
Wed Aug 20 07:25:53 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords heat
cortisol
plasticity
adaptive capacity
teleost
coping
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4989-7078a9e36b71e560b3d354db225b28b54f2cbe4c965461b46abf5d6257da492b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-9136-7857
0000-0002-2471-2876
0000-0001-5968-3983
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jfb.14599?download=true
PQID 2555266022
PQPubID 1086393
PageCount 13
ParticipantIDs hal_primary_oai_HAL_hal_03137601v1
proquest_miscellaneous_2718338166
proquest_miscellaneous_2455177807
proquest_journals_2555266022
crossref_primary_10_1111_jfb_14599
crossref_citationtrail_10_1111_jfb_14599
wiley_primary_10_1111_jfb_14599_JFB14599
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Journal of fish biology
PublicationYear 2021
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: Wiley
References 2017; 317
2018; 560
2007; 104
2019; 94
2019; 97
2017b; 220
2010; 467
2019; 14
2020; 10
2008; 31
2019; 569
2013; 8
2016; 35
2019; 684
1980; 39
2018; 8
2018; 2
2006; 20
2006; 209
1990
2020; 97
2019; 836
2015; 85
2019; 25
2019; 28
2005; 73
2019; 157
2017; 284
2002; 93
2016; 555
2020; 88
2005; 72
2019; 270
1989; 35
2010; 30
2010; 33
2017a; 233
1995; 51
2019; 9
2018; 28
2010; 328
2019; 506
2019; 34
2004; 45
2015; 121
2013; 85
2019; 500
2020; 34
2017; 252
2013; 183
2004; 305
1915
1972; 66
2018; 27
2016; 283
1999
2016; 6
2016; 7
1987; 62
1990; 115
2007; 315
2018; 359
1974; 61
2010; 213
2013; 216
2018; 92
2013; 82
1996; 199
2019; 216
2019; 174
2018; 13
2016; 22
2015; 34
2017; 7
2017; 41
2017; 2
1997; 230
1997; 233
2013; 166
2005; 21
2021; 120
2018; 82
2008; 72
2019; 363
57
2018; 495
2001; 293
2002; 42
2018; 497
1994; 186
2010; 277
2016; 199
2019; 235
2008; 158
2014; 281
2018; 78
2004; 139
2019; 111
2016; 88
2011; 214
2001; 124
2015; 16
2015; 5
1968; 49
2015; 4
2015; 3
1999; 68
2011; 35
2008; 322
2011; 36
2012; 302
2003; 135
2011; 332
2005; 45
1989; 94
2009; 35
2012; 2
2011; 108
1997; 77
2020
2015; 277
2013; 497
2017; 180
2019
2016
2020; 112
2011; 45
2014
2017; 220
2008; 211
2008; 81
e_1_2_6_114_1
e_1_2_6_137_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
e_1_2_6_110_1
e_1_2_6_133_1
e_1_2_6_11_1
e_1_2_6_34_1
Arrhenius S. (e_1_2_6_7_1) 1915
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_99_1
e_1_2_6_125_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_106_1
e_1_2_6_129_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
Gorissen M. (e_1_2_6_59_1) 2016; 35
e_1_2_6_140_1
e_1_2_6_102_1
e_1_2_6_144_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_136_1
e_1_2_6_54_1
e_1_2_6_96_1
e_1_2_6_117_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_92_1
e_1_2_6_132_1
e_1_2_6_113_1
e_1_2_6_35_1
e_1_2_6_12_1
Schreck C. B. (e_1_2_6_121_1) 2016
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_84_1
Nivelle R. (e_1_2_6_95_1) 2019; 14
e_1_2_6_42_1
e_1_2_6_105_1
e_1_2_6_128_1
e_1_2_6_80_1
e_1_2_6_109_1
e_1_2_6_61_1
e_1_2_6_120_1
e_1_2_6_101_1
e_1_2_6_124_1
e_1_2_6_143_1
e_1_2_6_6_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_116_1
e_1_2_6_139_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_131_1
e_1_2_6_112_1
e_1_2_6_135_1
IPCC (e_1_2_6_65_1) 2014
Mravec B. (e_1_2_6_93_1) 2011; 45
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_127_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_108_1
Sadoul B. (e_1_2_6_118_1) 2016
e_1_2_6_100_1
e_1_2_6_123_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_115_1
e_1_2_6_75_1
e_1_2_6_138_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_119_1
e_1_2_6_71_1
e_1_2_6_90_1
e_1_2_6_130_1
e_1_2_6_111_1
e_1_2_6_134_1
e_1_2_6_14_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_37_1
e_1_2_6_79_1
e_1_2_6_103_1
e_1_2_6_126_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_107_1
Boltzmann L. (e_1_2_6_19_1) 1972; 66
e_1_2_6_40_1
e_1_2_6_82_1
e_1_2_6_141_1
e_1_2_6_122_1
e_1_2_6_8_1
e_1_2_6_4_1
Yada T. (e_1_2_6_142_1) 2016
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
References_xml – volume: 108
  start-page: 10591
  year: 2011
  end-page: 10596
  article-title: Systematic variation in the temperature dependence of physiological and ecological traits
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 2
  start-page: 1745
  year: 2018
  end-page: 1750
  article-title: Global change in marine aquaculture production potential under climate change
  publication-title: Nature Ecology & Evolution
– volume: 21
  start-page: 681
  year: 2005
  end-page: 687
  article-title: How do cells respond to their thermal environment ?
  publication-title: International Journal of Hyperthermia
– volume: 495
  start-page: 196
  year: 2018
  end-page: 204
  article-title: Chronic exposure to increased water temperature reveals few impacts on stress physiology and growth responses in juvenile Atlantic salmon
  publication-title: Aquaculture
– volume: 28
  start-page: 925
  year: 2018
  end-page: 940
  article-title: Effects of short‐term thermal stress on the plasma biochemical profiles of two Antarctic Nototheniid species
  publication-title: Reviews in Fish Biology and Fisheries
– volume: 157
  start-page: 153
  year: 2019
  end-page: 167
  article-title: High‐stress rearing temperature in affects physiology, behaviour and predation rates
  publication-title: Animal Behaviour
– volume: 500
  start-page: 24
  year: 2019
  end-page: 30
– volume: 93
  start-page: 107
  year: 2002
  end-page: 115
  article-title: β‐Adrenergic signaling and thyroid hormones affect HSP72 expression during heat acclimation
  publication-title: Journal of Applied Physiology
– volume: 283
  start-page: 1
  year: 2016
  end-page: 9
  article-title: Interactions among ecosystem stressors and their importance in conservation
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 72
  start-page: 311
  year: 2005
  end-page: 322
  article-title: Physiological response of wild rainbow trout to angling: impact of angling duration, fish size, body condition, and temperature
  publication-title: Fisheries Research
– volume: 28
  start-page: 21
  year: 2019
  end-page: 32
  article-title: Phenotypic plasticity and epigenetics of fish: embryo temperature affects later‐developing life‐history traits
  publication-title: Aquatic Biology
– volume: 363
  start-page: 979
  year: 2019
  end-page: 983
  article-title: Impacts of historical warming on marine fisheries production
  publication-title: Science
– volume: 4
  start-page: 547
  year: 2015
  end-page: 552
  article-title: The effect of water temperature on routine swimming behaviour of new born guppies ( )
  publication-title: Biology Open
– volume: 115
  start-page: 109
  year: 1990
  end-page: 121
  article-title: Subunit assembly and functional maturation of Na,K‐ATPase
  publication-title: Journal of Membrane Biology
– volume: 36
  start-page: 142
  year: 2011
  end-page: 149
  article-title: The role of the heat shock proteins (HSP70 and SHSP) in the thermotolerance of freshwater amphipods from contrasting habitats
  publication-title: Journal of Thermal Biology
– volume: 332
  start-page: 109
  year: 2011
  end-page: 112
  article-title: Differences in thermal tolerance among sockeye salmon populations
  publication-title: Science
– year: 1990
– volume: 81
  start-page: 414
  year: 2008
  end-page: 425
  article-title: β‐Adrenergic stimulation enhances the heat‐shock response in fish
  publication-title: Physiological and Biochemical Zoology
– year: 2014
– volume: 467
  start-page: 704
  year: 2010
  end-page: 706
  article-title: Global metabolic impacts of recent climate warming
  publication-title: Nature
– volume: 62
  start-page: 299
  year: 1987
  end-page: 310
  article-title: Influence of acclimation temperature on interrenal and carbohydrate stress responses in juvenile Chinook salmon ( )
  publication-title: Aquaculture
– volume: 73
  start-page: 89
  year: 2005
  end-page: 96
  article-title: Thermal preference of Arctic charr, S , and Brown trout, – implications for their niche segregation
  publication-title: Environmental Biology of Fishes
– volume: 497
  start-page: 365
  year: 2013
  end-page: 366
  article-title: Climate change at the dinner table
  publication-title: Nature
– volume: 183
  start-page: 625
  year: 2013
  end-page: 639
  article-title: Seasonal variations of cellular stress response of the Gilthead Sea bream ( )
  publication-title: Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology
– volume: 8
  start-page: 1
  year: 2018
  end-page: 12
  article-title: Early life stress induces long‐term changes in limbic areas of a teleost fish: the role of catecholamine systems in stress coping
  publication-title: Scientific Reports
– volume: 121
  start-page: 1191
  year: 2015
  end-page: 1201
  article-title: Egg cortisol exposure enhances fearfulness in larvae and juvenile rainbow trout
  publication-title: Ethology
– volume: 85
  start-page: 485
  year: 2015
  end-page: 490
  publication-title: Proceedings of the National Academy of Sciences India Section B ‐ Biological Sciences
– volume: 94
  start-page: 540
  year: 2019
  end-page: 555
  article-title: Measuring cortisol, the major stress hormone in fishes
  publication-title: Journal of Fish Biology
– volume: 41
  start-page: 400
  year: 2017
  end-page: 406
  article-title: The physiological stress response to acute thermal exposure in Black Sea trout ( , 1814)
  publication-title: Turkish Journal of Veterinary and Animal Sciences
– volume: 124
  start-page: 97
  year: 2001
  end-page: 105
  article-title: The effects of cortisol on heat shock protein 70 levels in two fish species
  publication-title: General and Comparative Endocrinology
– volume: 14
  start-page: 1
  year: 2019
  end-page: 19
  article-title: Temperature preference of Nile tilapia ( ) juveniles induces spontaneous sex reversal
  publication-title: PLoS One
– volume: 85
  start-page: 1077
  year: 2013
  end-page: 1088
  article-title: Understanding variation in behavioural responses to human‐induced rapid environmental change: a conceptual overview
  publication-title: Animal Behaviour
– volume: 45
  start-page: 37
  year: 2011
  end-page: 41
  article-title: Role of catecholamine‐induced activation of vagal afferent pathways in regulation of sympathoadrenal system activity: negative feedback loop of stress response
  publication-title: Endocrine Regulations
– volume: 77
  start-page: 591
  year: 1997
  end-page: 625
  article-title: The stress response in fish
  publication-title: Physiological Reviews
– volume: 92
  start-page: 804
  year: 2018
  end-page: 827
  article-title: Fishes in a changing world: learning from the past to promote sustainability of fish populations
  publication-title: Journal of Fish Biology
– volume: 42
  start-page: 53
  year: 2002
  end-page: 61
  article-title: Effects of cortisol on aggression and locomotor activity in rainbow trout
  publication-title: Hormones and Behavior
– volume: 281
  start-page: 281
  issue: 1779
  year: 2014
  article-title: Increased temperature variation poses a greater risk to species than climate warming
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 317
  start-page: 109
  year: 2017
  end-page: 121
  article-title: Early life low intensity stress experience modifies acute stress effects on juvenile brain cell proliferation of European Sea bass (D. labrax)
  publication-title: Behavioural Brain Research
– volume: 45
  start-page: 324
  year: 2004
  end-page: 329
  article-title: Behavioral and neuroendocrine correlates of displaced aggression in trout
  publication-title: Hormones and Behavior
– volume: 39
  start-page: 175
  year: 1980
  end-page: 192
  article-title: On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks
  publication-title: ICES Journal of Marine Science
– volume: 34
  start-page: 1205
  issue: 6
  year: 2020
  end-page: 1214
  article-title: Multigenerational exposure to elevated temperatures leads to a reduction in standard metabolic rate in the wild
  publication-title: Functional Ecology
– volume: 302
  start-page: 184
  year: 2012
  end-page: 192
  article-title: Hormonal modulation of the heat shock response: insights from fish with divergent cortisol stress responses
  publication-title: American Journal of Physiology ‐ Regulatory Integrative and Comparative Physiology
– volume: 211
  start-page: 3915
  year: 2008
  end-page: 3926
  article-title: The effect of acute temperature increases on the cardiorespiratory performance of resting and swimming sockeye salmon ( )
  publication-title: Journal of Experimental Biology
– start-page: 1
  year: 2016
  end-page: 34
– volume: 34
  start-page: 1255
  year: 2015
  end-page: 1260
  article-title: Ghosts of thermal past: reef fish exposed to historic high temperatures have heightened stress response to further stressors
  publication-title: Coral Reefs
– year: 2019
  article-title: Maternal temperature exposure impairs emotional and cognitive responses and triggers dysregulation of neurodevelopment genes in fish
  publication-title: PeerJ
– volume: 233
  start-page: 77
  year: 1997
  end-page: 80
  article-title: Effects of thermal acclimation on the neurotransmitters, serotonin and norepinephrine in the discrete brain of male and female tilapia,
  publication-title: Neuroscience Letters
– volume: 230
  start-page: 113
  year: 1997
  end-page: 116
  article-title: Serotonin as a regulator of hypothalamic‐pituitary‐interrenal activity in teleost fish
  publication-title: Neuroscience Letters
– volume: 9
  year: 2019
  article-title: Neurobiological and behavioural responses of cleaning mutualisms to ocean warming and acidification
  publication-title: Scientific Reports
– volume: 139
  start-page: 321
  year: 2004
  end-page: 333
  article-title: Adaptation of enzymes to temperature: searching for basic ‘strategies
  publication-title: Comparative Biochemistry and Physiology ‐ B Biochemistry and Molecular Biology
– volume: 174
  start-page: 37
  year: 2019
  end-page: 43
  article-title: The Antarctic fish under current temperatures and salinities and future scenarios of climate change
  publication-title: Progress in Oceanography
– volume: 88
  start-page: 102526
  year: 2020
  article-title: Water temperature affects osmoregulatory responses in Gilthead Sea bream ( .)
  publication-title: Journal of Thermal Biology
– volume: 72
  start-page: 157
  year: 2008
  end-page: 167
  publication-title: Journal of Fish Biology
– start-page: 136
  year: 2020
  end-page: 162
– volume: 111
  start-page: 242
  year: 2019
  end-page: 250
  article-title: Transcriptome profiling and histology changes in juvenile blunt snout bream ( ) liver tissue in response to acutethermal stress
  publication-title: Genomics
– volume: 569
  start-page: 108
  year: 2019
  end-page: 111
  article-title: Greater vulnerability to warming of marine versus terrestrial ectotherms
  publication-title: Nature
– start-page: 167
  year: 2016
  end-page: 205
– volume: 2
  start-page: 330
  year: 2017
  end-page: 341
  article-title: Physiological responses to a short‐term, environmentally realistic, acute heat dtress in Atlantic dalmon,
  publication-title: Facets
– volume: 33
  start-page: 789
  year: 2010
  end-page: 801
  article-title: Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: a review
  publication-title: Journal of Fish Diseases
– volume: 66
  start-page: 275
  year: 1972
  end-page: 370
  article-title: Weitere studien uber das warmegleich‐ gewicht unter gasmolekulen
  publication-title: Berichte Wiene
– volume: 57
  start-page: 293
  end-page: 304
  publication-title: Transboundary and Emerging Diseases
– volume: 20
  start-page: 83
  year: 2006
  end-page: 96
  article-title: Husbandry stress during early life stages affects the stress response and health status of juvenile sea bass,
  publication-title: Fish & Shellfish Immunology
– volume: 34
  start-page: 628
  issue: 7
  year: 2019
  end-page: 640
  article-title: The adaptive sex in stressful environements
  publication-title: Trends in Ecology & Evolution
– volume: 220
  start-page: 3976
  year: 2017
  end-page: 3987
  article-title: Upper thermal limits of growth in brook trout and their relationship to stress physiology
  publication-title: Journal of Experimental Biology
– volume: 27
  start-page: 4516
  year: 2018
  end-page: 4528
  article-title: Phenotypic and molecular consequences of stepwise temperature increase across generations in a coral reef fish
  publication-title: Molecular Ecology
– volume: 120
  start-page: 106937
  year: 2021
  article-title: Genetic pathways underpinning hormonal stress responses in fish exposed to short‐ and long‐term warm ocean temperatures
  publication-title: Ecological Indicators
– volume: 497
  start-page: 331
  year: 2018
  end-page: 335
  article-title: Effects of acclimation temperature on cortisol and oxygen consumption in Atlantic salmon ( ) post‐smolt exposed to acute stress
  publication-title: Aquaculture
– volume: 35
  start-page: 1366
  year: 2011
  end-page: 1375
  article-title: Stress and immune modulation in fish
  publication-title: Developmental and Comparative Immunology
– volume: 30
  start-page: 13130
  year: 2010
  end-page: 13137
  article-title: Maternal care and DNA methylation of a glutamic acid decarboxylase 1 promoter in rat hippocampus
  publication-title: Journal of Neuroscience
– volume: 16
  start-page: 1
  year: 2015
  end-page: 12
  article-title: Temperature during early development has long‐term effects on MicroRNA expression in Atlantic cod
  publication-title: BMC Genomics
– volume: 6
  start-page: 1
  year: 2016
  end-page: 8
  article-title: Predicting the synergy of multiple stress effects
  publication-title: Scientific Reports
– volume: 82
  start-page: 492
  year: 2018
  end-page: 503
  article-title: Temperature modulates the immunological response of the sub‐Antarctic Notothenioid fish injected with Piscirickettsia Salmonis
  publication-title: Fish and Shellfish Immunology
– volume: 72
  start-page: 899
  year: 2008
  end-page: 916
  publication-title: Journal of Fish Biology
– volume: 9
  start-page: 959
  year: 2019
  end-page: 963
  article-title: Ocean community warming responses explained by thermal affinities and temperature gradients
  publication-title: Nature Climate Change
– volume: 8
  start-page: 1
  year: 2013
  end-page: 8
  publication-title: PLoS ONE
– volume: 216
  start-page: 105312
  year: 2019
  article-title: Mechanisms behind interactive effects of temperature and bifenthrin on the predator avoidance behaviors in parr of Chinook salmon ( )
  publication-title: Aquatic Toxicology
– volume: 7
  start-page: 718
  year: 2017
  end-page: 722
  article-title: Climatic vulnerability of the world's freshwater and marine fishes
  publication-title: Nature Climate Change
– volume: 555
  start-page: 151
  year: 2016
  end-page: 165
  article-title: Functional responses of North Atlantic fish eggs to increasing temperature
  publication-title: Marine Ecology Progress Series
– volume: 199
  start-page: 74
  year: 2016
  end-page: 86
  article-title: Adrenergic signaling in teleost fish liver, a challenging path
  publication-title: Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology
– volume: 78
  start-page: 84
  year: 2018
  end-page: 91
  article-title: Water temperature modifies the acute stress response of European sea bass, . (1758)
  publication-title: Journal of Thermal Biology
– volume: 220
  start-page: 3442
  year: 2017b
  end-page: 3454
  article-title: Thermal imprinting modifies bone homeostasis in cold‐challenged sea bream ( )
  publication-title: Journal of Experimental Biology
– volume: 322
  start-page: 690
  year: 2008
  end-page: 692
  article-title: Physiology and climate change
  publication-title: Science
– volume: 49
  start-page: 71
  year: 1968
  end-page: 81
  article-title: Thermoacclimatory variations in the haematology of the common carp,
  publication-title: Journal of Experimental Biology
– volume: 180
  start-page: 15
  year: 2017
  end-page: 24
  article-title: Effects of maternal cortisol treatment on offspring size, responses to stress, and anxiety‐related behavior in wild largemouth bass ( )
  publication-title: Physiology and Behavior
– volume: 836
  start-page: 155
  year: 2019
  end-page: 167
  article-title: Acute exposure of larval rainbow trout ( ) to elevated temperature limits Hsp70b expression and influences future thermotolerance
  publication-title: Hydrobiologia
– volume: 214
  start-page: 1791
  year: 2011
  end-page: 1801
  article-title: Temperature‐dependent modification of muscle precursor cell behaviour is an underlying reason for lasting effects on muscle cellularity and body growth of teleost fish
  publication-title: Journal of Experimental Biology
– volume: 216
  start-page: 4435
  year: 2013
  end-page: 4442
  article-title: The response of brain serotonergic and dopaminergic systems to an acute stressor in rainbow trout: a time course study
  publication-title: Journal of Experimental Biology
– volume: 94
  start-page: 621
  year: 1989
  end-page: 623
  article-title: 70 KDa heat shock proteins from Mollusc and human cells have common structural and functional domains
  publication-title: Comparative Biochemistry and Physiology ‐ B Biochemistry and Molecular Biology
– volume: 13
  start-page: 1
  year: 2018
  end-page: 23
  publication-title: PLoS ONE
– volume: 82
  start-page: 1159
  year: 2013
  end-page: 1176
  article-title: Provenance matters: thermal reaction norms for embryo survival among sockeye salmon populations
  publication-title: Journal of Fish Biology
– volume: 213
  start-page: 912
  year: 2010
  end-page: 920
  article-title: The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers
  publication-title: Journal of Experimental Biology
– volume: 139
  start-page: 433
  year: 2004
  end-page: 440
  article-title: Temperature affects physiological stress responses to acute confinement in sunshine bass ( )
  publication-title: Comparative Biochemistry and Physiology – A Molecular and Integrative Physiology
– volume: 315
  start-page: 95
  year: 2007
  end-page: 97
  article-title: Climate change affects marine fishes through the oxygen limitation of thermal tolerance
  publication-title: Science
– volume: 7
  start-page: 1
  year: 2017
  end-page: 12
  article-title: Small ocean temperature increases elicit stage‐dependent changes in DNA methylation and gene expression in a fish, the European Sea bass
  publication-title: Scientific Reports
– volume: 359
  start-page: eaam7240
  year: 2018
  article-title: Declining oxygen in the global ocean and coastal waters
  publication-title: Science
– volume: 42
  start-page: 517
  year: 2002
  end-page: 525
  article-title: Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids
  publication-title: Integrative and Comparative Biology
– volume: 305
  start-page: 994
  year: 2004
  end-page: 997
  article-title: More intense, more frequent, and longer lasting heat waves in the 21st century
  publication-title: Science
– volume: 10
  start-page: 1
  year: 2020
  end-page: 12
  article-title: Increase in rnvironmental temperature affects exploratory behaviour, anxiety and social preference in
  publication-title: Scientific Reports
– volume: 35
  start-page: 229
  year: 1989
  end-page: 236
  article-title: The response of trout red cells to adrenaline during seasonal acclimation and changes in temperature
  publication-title: Journal of Fish Biology
– volume: 45
  start-page: 463
  year: 2005
  end-page: 474
  article-title: Behavioral and neuroendocrine correlates of selection for stress responsiveness in rainbow trout
  publication-title: Integrative and Comparative Biology
– volume: 31
  start-page: 991
  year: 2008
  end-page: 997
  article-title: Effects of warm acclimation on serum osmolality, cortisol and hematocrit levels in the Antarctic fish,
  publication-title: Polar Biology
– volume: 284
  start-page: 1
  year: 2017
  end-page: 9
  article-title: Warming has a greater effect than elevated CO2 on predator–prey interactions in coral reef fish
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 97
  start-page: 596
  year: 2020
  end-page: 606
  article-title: Effects of global warming on sex ratios in fishes
  publication-title: Journal of Fish Biology
– volume: 209
  start-page: 2859
  year: 2006
  end-page: 2872
  article-title: Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish,
  publication-title: Journal of Experimental Biology
– volume: 277
  start-page: 71
  year: 2010
  end-page: 77
  article-title: Small within‐day increases in temperature affects boldness and alters personality in coral reef fish
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 8
  start-page: 504
  year: 2018
  end-page: 509
  article-title: The epigenetic landscape of transgenerational acclimation to ocean warming
  publication-title: Nature Climate Change
– volume: 199
  start-page: 1605
  year: 1996
  end-page: 1611
  article-title: Central monoaminergic responses to salinity and temperature rises in common carp
  publication-title: Journal of Experimental Biology
– volume: 3
  start-page: 1
  year: 2015
  end-page: 12
  article-title: Thermal onset of cellular and endocrine stress responses correspond to ecological limits in brook trout, an iconic cold‐water fish
  publication-title: Conservation Physiology
– volume: 7
  start-page: 1
  year: 2016
  end-page: 8
  article-title: Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings
  publication-title: Nature Communications
– volume: 61
  start-page: 455
  year: 1974
  end-page: 461
  article-title: Thermoacclimatory variation in the haemoglobin systems of goldfish ( ) and rainbow trout ( )
  publication-title: Journal of Experimental Biology
– volume: 270
  start-page: 18
  year: 2019
  end-page: 25
  article-title: Cortisol responses of goldfish ( ) to air exposure, chasing, and increased water temperature
  publication-title: General and Comparative Endocrinology
– volume: 2
  start-page: 30
  year: 2012
  end-page: 32
  article-title: Rapid transgenerational acclimation of a tropical reef fish to climate change
  publication-title: Nature Climate Change
– volume: 112
  start-page: 106
  year: 2020
  end-page: 118
  publication-title: Ecological Indicators
– volume: 186
  start-page: 289
  year: 1994
  end-page: 307
  article-title: The effects of acclimation temperature on the dynamics of catecholamine release during acute hypoxia in the rainbow trout
  publication-title: Journal of Experimental Biology
– volume: 684
  start-page: 371
  year: 2019
  end-page: 380
  article-title: Stress responses in fish: From molecular to evolutionary processes
  publication-title: Science of the Total Environment
– volume: 10
  start-page: 2338
  year: 2020
  article-title: Food availability modulates the combined effects of ocean acidification and warming on fish growth
  publication-title: Scientific Reports
– volume: 88
  start-page: 122
  year: 2016
  end-page: 151
  article-title: Measurement and relevance of maximum metabolic rate in fishes
  publication-title: Journal of Fish Biology
– volume: 35
  start-page: 971
  year: 2009
  end-page: 986
  article-title: The toxicology of climate change: environmental contaminants in a warming world
  publication-title: Environment International
– volume: 252
  start-page: 173
  year: 2017
  end-page: 185
  article-title: Effects of thermal stress on the expression of glucocorticoid receptor complex linked genes in Senegalese sole ( ): Acute and adaptive stress responses
  publication-title: General and Comparative Endocrinology
– volume: 135
  start-page: 291
  year: 2003
  end-page: 302
  article-title: Time of day and water temperature modify the physiological stress response in green sturgeon,
  publication-title: Comparative Biochemistry and Physiology ‐ A Molecular and Integrative Physiology
– start-page: 365
  year: 2016
  end-page: 403
– volume: 214
  start-page: 1721
  year: 2011
  end-page: 1731
  article-title: Chronic social stress impairs thermal tolerance in the rainbow trout ( )
  publication-title: Journal of Experimental Biology
– volume: 506
  start-page: 453
  year: 2019
  end-page: 458
  article-title: Temperature‐mediated changes in stress responses, acetylcholinesterase, and immune responses of juvenile olive flounder in a bio‐floc environment
  publication-title: Aquaculture
– volume: 560
  start-page: 360
  year: 2018
  end-page: 364
  article-title: Marine heatwaves under global warming
  publication-title: Nature
– volume: 235
  start-page: 131
  year: 2019
  end-page: 137
  article-title: The effect of alterations in salinity and temperature on neuroendocrine responses of the Antarctic fish
  publication-title: Comparative Biochemistry and Physiology ‐Part A: Molecular and Integrative Physiology
– year: 1915
– volume: 97
  start-page: 567
  year: 2019
  end-page: 572
  article-title: The effects of repeat acute thermal stress on the critical thermal maximum (CTmax) and physiology of juvenile shortnose sturgeon
  publication-title: Canadian Journal of Zoology
– volume: 51
  start-page: 768
  year: 1995
  end-page: 774
  article-title: The effect of chronic heat stress on cortisol levels in the Antarctic fish
  publication-title: Experientia
– volume: 35
  start-page: 74
  year: 2016
  end-page: 111
  article-title: The endocrinology of the stress response in fish: an adaptation‐physiological view
  publication-title: Fish Physiology
– volume: 35
  year: 2016
– volume: 158
  start-page: 234
  year: 2008
  end-page: 239
  article-title: Plasma cortisol response to stress in juvenile rainbow trout is influenced by their life history during early development and by egg cortisol content
  publication-title: General and Comparative Endocrinology
– volume: 5
  start-page: 1538
  year: 2015
  end-page: 1547
  article-title: Reconceptualizing synergism and antagonism among multiple stressors
  publication-title: Ecology and Evolution
– volume: 293
  start-page: 2248
  year: 2001
  end-page: 2251
  article-title: Effects of size and temperature on metabolic rate
  publication-title: Science
– volume: 22
  start-page: 180
  year: 2016
  end-page: 189
  article-title: Net effects of multiple stressors in freshwater ecosystems: a meta‐analysis
  publication-title: Global Change Biology
– volume: 25
  start-page: 839
  year: 2019
  end-page: 849
  article-title: Divergent responses of Atlantic cod to ocean acidification and food limitation
  publication-title: Global Change Biology
– volume: 25
  start-page: 3539
  year: 2019
  end-page: 3548
  article-title: Future ocean climate homogenizes communities across habitats through diversity loss and rise of generalist species
  publication-title: Global Change Biology
– volume: 277
  start-page: 58
  year: 2015
  end-page: 67
  article-title: Serotonin and stress coping
  publication-title: Behavioural Brain Research
– volume: 104
  start-page: 9715
  year: 2007
  end-page: 9719
  article-title: Mechanisms for climate‐induced mortality of fish populations in whole‐lake experiments
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 68
  start-page: 893
  year: 1999
  end-page: 905
  article-title: Scaling of metabolic rate with body mass and temperature in teleost fish
  publication-title: Journal of Animal Ecology
– volume: 328
  start-page: 1523
  year: 2010
  end-page: 1528
  article-title: The impact of climate change on the world's marine ecosystems
  publication-title: Science
– volume: 166
  start-page: 237
  year: 2013
  end-page: 243
  article-title: Influence of temperature in thermal and oxidative stress responses in estuarine fish
  publication-title: Comparative Biochemistry and Physiology ‐ A Molecular and Integrative Physiology
– volume: 233
  start-page: 381
  year: 2017a
  end-page: 394
  article-title: Thermal imprinting modifies adult stress and innate immune responsiveness in the teleost sea bream
  publication-title: Journal of Endocrinology
– start-page: 211
  year: 1999
  end-page: 268
– volume: 14
  start-page: 1
  year: 2019
  ident: e_1_2_6_95_1
  article-title: Temperature preference of Nile tilapia (Oreochromis niloticus) juveniles induces spontaneous sex reversal
  publication-title: PLoS One
– ident: e_1_2_6_80_1
  doi: 10.1016/j.aquaculture.2018.07.056
– ident: e_1_2_6_25_1
  doi: 10.1046/j.1365-2656.1999.00337.x
– ident: e_1_2_6_143_1
  doi: 10.1371/journal.pone.0080713
– ident: e_1_2_6_137_1
  doi: 10.1038/s41598-018-23950-x
– ident: e_1_2_6_30_1
  doi: 10.1038/s41598-020-58846-2
– ident: e_1_2_6_44_1
  doi: 10.1079/9781786393982.0136
– ident: e_1_2_6_16_1
  doi: 10.1098/rspb.2009.1346
– start-page: 1
  volume-title: Fish physiology
  year: 2016
  ident: e_1_2_6_121_1
– ident: e_1_2_6_88_1
  doi: 10.1126/science.1098704
– ident: e_1_2_6_8_1
  doi: 10.1016/j.ygcen.2008.07.002
– ident: e_1_2_6_28_1
  doi: 10.7717/peerj.6338
– ident: e_1_2_6_37_1
  doi: 10.3906/vet-1606-32
– ident: e_1_2_6_48_1
  doi: 10.1038/s41559-018-0669-1
– ident: e_1_2_6_110_1
  doi: 10.1126/science.1163156
– ident: e_1_2_6_90_1
  doi: 10.1111/j.1095-8649.1989.tb02972.x
– volume-title: Climate Change 2014: Synthesis report. contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change
  year: 2014
  ident: e_1_2_6_65_1
– ident: e_1_2_6_114_1
  doi: 10.1111/j.1365-2761.2010.01183.x
– ident: e_1_2_6_120_1
  doi: 10.1038/ncomms11447
– ident: e_1_2_6_94_1
  doi: 10.1016/j.pocean.2018.09.001
– ident: e_1_2_6_89_1
  doi: 10.1016/j.fishres.2004.10.006
– ident: e_1_2_6_24_1
  doi: 10.1093/conphys/cov017
– ident: e_1_2_6_54_1
  doi: 10.1242/jeb.091751
– volume: 35
  start-page: 74
  year: 2016
  ident: e_1_2_6_59_1
  article-title: The endocrinology of the stress response in fish: an adaptation‐physiological view
  publication-title: Fish Physiology
– ident: e_1_2_6_73_1
  doi: 10.1016/S1095-6433(03)00075-8
– ident: e_1_2_6_130_1
  doi: 10.1016/j.aquaculture.2018.05.042
– ident: e_1_2_6_61_1
  doi: 10.1126/science.1189930
– ident: e_1_2_6_99_1
  doi: 10.1016/j.yhbeh.2004.01.001
– ident: e_1_2_6_26_1
  doi: 10.1016/j.ygcen.2018.09.017
– ident: e_1_2_6_87_1
  doi: 10.1242/jeb.156174
– ident: e_1_2_6_70_1
  doi: 10.1242/bio.20149829
– ident: e_1_2_6_76_1
  doi: 10.1152/ajpregu.00196.2011
– ident: e_1_2_6_82_1
  doi: 10.1152/japplphysiol.01122.2001
– ident: e_1_2_6_129_1
  doi: 10.1016/j.dci.2011.07.002
– ident: e_1_2_6_135_1
  doi: 10.1016/j.fsi.2005.04.005
– ident: e_1_2_6_35_1
  doi: 10.1016/j.cbpb.2004.09.012
– ident: e_1_2_6_5_1
  doi: 10.1038/s41598-017-10861-6
– ident: e_1_2_6_38_1
  doi: 10.1038/nature09407
– ident: e_1_2_6_39_1
  doi: 10.1038/nclimate1323
– ident: e_1_2_6_72_1
  doi: 10.1007/s40011-014-0357-0
– ident: e_1_2_6_106_1
  doi: 10.1016/j.scitotenv.2019.05.357
– ident: e_1_2_6_133_1
  doi: 10.1016/j.jtherbio.2020.102526
– ident: e_1_2_6_36_1
  doi: 10.1073/pnas.1015178108
– ident: e_1_2_6_107_1
  doi: 10.1002/ece3.1465
– start-page: 167
  volume-title: Fish physiology
  year: 2016
  ident: e_1_2_6_118_1
– ident: e_1_2_6_62_1
  doi: 10.1242/jeb.61.2.455
– ident: e_1_2_6_43_1
  doi: 10.1016/B978-0-12-802728-8.00004-7
– ident: e_1_2_6_139_1
  doi: 10.1152/physrev.1997.77.3.591
– ident: e_1_2_6_66_1
  doi: 10.1016/j.ecolind.2020.106118
– ident: e_1_2_6_83_1
  doi: 10.1111/j.1865-1682.2010.01150.x
– ident: e_1_2_6_34_1
  doi: 10.1086/589095
– ident: e_1_2_6_98_1
  doi: 10.1093/icb/45.3.463
– ident: e_1_2_6_123_1
  doi: 10.1016/j.anbehav.2013.02.017
– ident: e_1_2_6_140_1
  doi: 10.1111/jfb.12055
– ident: e_1_2_6_2_1
– ident: e_1_2_6_85_1
  doi: 10.1016/j.fsi.2018.08.042
– ident: e_1_2_6_91_1
  doi: 10.1007/s00338-015-1333-8
– ident: e_1_2_6_22_1
  doi: 10.1038/s41558-019-0631-5
– ident: e_1_2_6_126_1
  doi: 10.1242/jeb.050096
– ident: e_1_2_6_115_1
  doi: 10.1007/BF01922428
– ident: e_1_2_6_124_1
  doi: 10.1016/j.cbpc.2004.05.003
– ident: e_1_2_6_10_1
  doi: 10.1093/icb/42.3.517
– ident: e_1_2_6_11_1
  doi: 10.1016/0044-8486(87)90172-4
– ident: e_1_2_6_101_1
  doi: 10.1038/s41598-019-49086-0
– volume-title: Quantitative laws in biological chemistry
  year: 1915
  ident: e_1_2_6_7_1
– ident: e_1_2_6_40_1
  doi: 10.1126/science.1199158
– ident: e_1_2_6_102_1
  doi: 10.1093/icesjms/39.2.175
– ident: e_1_2_6_108_1
  doi: 10.1111/1365-2435.13538
– ident: e_1_2_6_103_1
  doi: 10.1038/497320a
– ident: e_1_2_6_15_1
  doi: 10.1073/pnas.0701638104
– ident: e_1_2_6_57_1
  doi: 10.1016/j.ecolind.2020.106937
– ident: e_1_2_6_144_1
  doi: 10.1523/JNEUROSCI.1039-10.2010
– ident: e_1_2_6_58_1
  doi: 10.1111/jfb.13546
– ident: e_1_2_6_14_1
  doi: 10.1111/mec.14884
– ident: e_1_2_6_20_1
  doi: 10.1242/jeb.199.7.1605
– ident: e_1_2_6_71_1
  doi: 10.1016/j.aquaculture.2019.03.045
– ident: e_1_2_6_112_1
  doi: 10.1016/j.bbr.2014.07.052
– ident: e_1_2_6_50_1
  doi: 10.1139/facets-2016-0053
– ident: e_1_2_6_109_1
  doi: 10.1038/s41586-019-1132-4
– ident: e_1_2_6_111_1
  doi: 10.1126/science.1135471
– ident: e_1_2_6_86_1
  doi: 10.1530/JOE-16-0610
– ident: e_1_2_6_92_1
  doi: 10.1023/A:1008924418720
– ident: e_1_2_6_104_1
  doi: 10.1111/j.1095-8649.2007.01763.x
– ident: e_1_2_6_131_1
  doi: 10.1016/S0304-3940(97)00618-6
– ident: e_1_2_6_42_1
  doi: 10.1242/jeb.02260
– ident: e_1_2_6_68_1
  doi: 10.3354/ab00707
– ident: e_1_2_6_64_1
  doi: 10.1007/s00300-008-0438-8
– ident: e_1_2_6_141_1
  doi: 10.1016/S0304-3940(97)00488-6
– ident: e_1_2_6_3_1
  doi: 10.1111/j.1095-8649.2007.01697.x
– ident: e_1_2_6_17_1
  doi: 10.1186/s12864-015-1503-7
– ident: e_1_2_6_67_1
  doi: 10.1111/gcb.13028
– ident: e_1_2_6_122_1
  doi: 10.1016/j.jtherbio.2010.12.008
– ident: e_1_2_6_78_1
  doi: 10.1016/j.ygeno.2018.11.011
– ident: e_1_2_6_41_1
  doi: 10.1016/j.cbpb.2015.10.002
– start-page: 365
  volume-title: Fish physiology
  year: 2016
  ident: e_1_2_6_142_1
– ident: e_1_2_6_132_1
  doi: 10.3354/meps11758
– ident: e_1_2_6_134_1
  doi: 10.1016/j.cbpa.2019.05.029
– ident: e_1_2_6_60_1
  doi: 10.1016/j.aquaculture.2018.09.016
– ident: e_1_2_6_31_1
  doi: 10.1038/nclimate3382
– ident: e_1_2_6_100_1
  doi: 10.1006/hbeh.2002.1796
– ident: e_1_2_6_75_1
  doi: 10.1242/jeb.056135
– ident: e_1_2_6_32_1
  doi: 10.1371/journal.pone.0194353
– ident: e_1_2_6_69_1
  doi: 10.1007/s11160-018-9535-0
– ident: e_1_2_6_96_1
  doi: 10.1111/jfb.12796
– ident: e_1_2_6_47_1
  doi: 10.1126/science.aau1758
– ident: e_1_2_6_127_1
  doi: 10.1242/jeb.019281
– ident: e_1_2_6_53_1
  doi: 10.1111/jfb.14429
– ident: e_1_2_6_49_1
  doi: 10.1038/s41586-018-0383-9
– ident: e_1_2_6_29_1
  doi: 10.1111/eth.12437
– ident: e_1_2_6_113_1
  doi: 10.1016/j.physbeh.2017.08.001
– ident: e_1_2_6_51_1
  doi: 10.1007/BF01869450
– ident: e_1_2_6_23_1
  doi: 10.1242/jeb.161224
– ident: e_1_2_6_97_1
  doi: 10.1016/j.envint.2009.02.006
– ident: e_1_2_6_79_1
  doi: 10.1038/srep32965
– ident: e_1_2_6_84_1
  doi: 10.1016/0305-0491(89)90138-7
– ident: e_1_2_6_55_1
  doi: 10.1126/science.1061967
– ident: e_1_2_6_12_1
  doi: 10.1006/gcen.2001.7688
– ident: e_1_2_6_4_1
  doi: 10.1098/rspb.2017.0784
– ident: e_1_2_6_27_1
  doi: 10.1111/gcb.14745
– ident: e_1_2_6_13_1
  doi: 10.1016/j.ygcen.2017.06.022
– ident: e_1_2_6_116_1
  doi: 10.1038/s41558-018-0159-0
– ident: e_1_2_6_119_1
  doi: 10.1016/j.jtherbio.2018.09.006
– ident: e_1_2_6_74_1
  doi: 10.1007/s10641-004-5353-4
– ident: e_1_2_6_81_1
  doi: 10.1016/j.cbpa.2013.06.008
– ident: e_1_2_6_45_1
  doi: 10.1007/s00360-012-0735-y
– ident: e_1_2_6_105_1
  doi: 10.1242/jeb.186.1.289
– volume: 45
  start-page: 37
  year: 2011
  ident: e_1_2_6_93_1
  article-title: Role of catecholamine‐induced activation of vagal afferent pathways in regulation of sympathoadrenal system activity: negative feedback loop of stress response
  publication-title: Endocrine Regulations
– ident: e_1_2_6_136_1
  doi: 10.1098/rspb.2013.2612
– ident: e_1_2_6_9_1
  doi: 10.1139/cjz-2018-0157
– ident: e_1_2_6_125_1
  doi: 10.1242/jeb.037473
– ident: e_1_2_6_63_1
  doi: 10.1242/jeb.49.1.71
– ident: e_1_2_6_21_1
  doi: 10.1126/science.aam7240
– ident: e_1_2_6_128_1
  doi: 10.1111/gcb.14554
– ident: e_1_2_6_138_1
  doi: 10.1016/j.anbehav.2019.09.005
– ident: e_1_2_6_33_1
  doi: 10.1098/rspb.2015.2592
– ident: e_1_2_6_117_1
  doi: 10.1111/jfb.13904
– ident: e_1_2_6_18_1
  doi: 10.1007/s10750-019-3948-1
– ident: e_1_2_6_56_1
  doi: 10.1016/j.aquatox.2019.105312
– ident: e_1_2_6_77_1
  doi: 10.1080/02656730500307298
– ident: e_1_2_6_52_1
  doi: 10.1016/j.tree.2019.02.012
– ident: e_1_2_6_6_1
  doi: 10.1038/s41598-020-62331-1
– volume: 66
  start-page: 275
  year: 1972
  ident: e_1_2_6_19_1
  article-title: Weitere studien uber das warmegleich‐ gewicht unter gasmolekulen
  publication-title: Berichte Wiene
– ident: e_1_2_6_46_1
  doi: 10.1016/j.bbr.2016.09.026
SSID ssj0009393
Score 2.6951756
SecondaryResourceType review_article
Snippet The capacity of fishes to cope with environmental variation is considered to be a main determinant of their fitness and is partly determined by their stress...
SourceID hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1496
SubjectTerms adaptive capacity
Animal population
Animal populations
Climate change
coping
cortisol
Ecological effects
ectothermy
environmental factors
Environmental Sciences
Fish
Fitness
Global Changes
Global temperatures
Global warming
heat
Heat waves
Ocean temperature
oceans
Physiology
plasticity
Stress response
teleost
Temperature effects
water temperature
Title Temperature increase and its effects on fish stress physiology in the context of global warming
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjfb.14599
https://www.proquest.com/docview/2555266022
https://www.proquest.com/docview/2455177807
https://www.proquest.com/docview/2718338166
https://hal.inrae.fr/hal-03137601
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66IHjxLa4vonjwUnGb9BE8reKyiHoQBRGhZNpUF6UVu6vgr3cmfbiKingr7aRtmkzyTfrNF8Z2QBgtkjBxQiGVI7UMHZwUtBMLof195ca-oWzks3O_fyVPrr3rCXZQ58KU-hDNght5hh2vycE1FONOngK6uacoeY-4WgSILj6ko5SoBHcx2MICbqUqZFk8dclPc9HkPTEhx2DmOFi1s01vlt3W71mSTB72RkPYi9--SDj-syJzbKZCobxbdpt5NmGyBTZ1k9s19kUWXRpE06XaMh9kBCwLw3WW8MGw4BUFhOcZTwfFPS_TTbhdI7E3wCIccSUnGjyO_TxPeak7wl81UW_ulthV7_jyqO9UOzE4sSROFUkCaWWED0HHIEYCkQhPJoCDAbgheDJ1YzAyVpQa1QHpa0i9BEOrINFSuSCWWSvLM7PCeKqESdAukGCDJSUDD5svDt1OChi9tdlu3SZRXMmU024Zj1ETrqQQ2e_VZtuN6VOpzfGtETZsc53UtPvd04jOkWwlUYJe8KHrdbtHlQ8XEQZbHsIX7EBtttVcRu-jXyo6M_kIbSQiziAI94NfbHD6F_b_LNbNdoSf3zY66R3ag9W_m66xaZeINnZpaJ21hs8js4FIaQib1iXeAZziDQI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB71IQQXKI-qC6UYBBKXVF3befjAobRdbdttD2grVVyMnTjtiiqpyC4V_Cb-Cv-JGefRBQHi0gO3aDObOMmM5xv782eAl1Y4I7IkCxIhVSCNTAJMCiZIhTDRluJp5Gg18tFxNDyRB6fh6QJ8a9fC1PoQ3YAbRYbvrynAaUB6Pspzi3EeKtVQKg_dlyss2Ko3-7v4dV9xPtgb7wyDZk-BIJXEDiJxG6OciGzcd5jtrchEKDOLbm15YkOZ89Q6mSpa5NO3MjI2DzMsEuLMSMWtwOsuwjLtIE5K_bvvrsWqlGgkfrG8wxbyRsfI84bapv6U_RbPiXs5B2zn4bHPb4N78L19MzWt5ePmbGo306-_iEb-L69uBe42QJtt15FxHxZc8QBuvS_9NMJD0GOHBUMtKM0mBWHnyjFTZGwyrVjDcmFlwfJJdc7qFTXMDwP5C-BfGEJnRkx_TG-szFktrcKuDLGLzh7ByY083SosFWXh1oDlSrgM7WJpfT2oZBz2RZQmvJ9bLFB78Lp1Ap02Suy0IciF7iqy3Gr_fXrwojO9rOVHfmuEntSdJ8Hw4fZI02-kzEmsp8940_XW0XTTTVUa68kQERp6bA-ed6exg6FZI1O4coY2EkF1HCdb8V9sEOEIPwWNz-Y978-t1QeDt_7g8b-bPoPbw_HRSI_2jw-fwB1OvCI_ErYOS9NPM_cUgeHUbvh4ZPDhpr34B8RSadM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB61RSAuvFEDBQwCictWje19-NBDIUTpgwqhVqq4GHvtbSPQbsUmVPCX-lf4Ucx4HwQEiEsP3KLsZGPvzni-sT9_BnhqhTfCZS7KhFSRNDKLMCmYKBfCJBuK54mn3civ95PJodw5io-W4LzbC9PoQ_QTbhQZYbymAD91xWKQFxbDPFaqZVTu-i9nWK_Vm9sjfLnPOB-_Ong5idojBaJcEjmItG2M8iKx6dBjsrfCiVg6i15teWZjWfDcepkr2uMztDIxtogd1gipM1JxK_C-y3BJYjfonIjR2x9aVUq0Cr9Y3WELeStjFGhDXVN_Sn7LJ0S9XMC1i-g4pLfxdfjWPZiG1fJhfT6z6_nXXzQj_5MndwOutTCbbTVxcROWfHkLLr-rwiLCbdAHHsuFRk6aTUtCzrVnpnRsOqtZy3FhVcmKaX3Cmv00LEwChRvgTxgCZ0Y8f0xurCpYI6zCzgxxi47vwOGF9O4urJRV6VeBFUp4h3aptKEaVDKNhyLJMz4sLJanA3je-YDOWx12Og7ko-7rscLq8H4G8KQ3PW3ER35rhI7UXye58MnWnqbvSJeTOE-f8U_XOj_T7SBVa6wmY8Rn6LADeNxfxuGF1oxM6as52kiE1GmabaR_sUF8I8ICNPYtON6fW6t3xi_Ch3v_bvoIrrwZjfXe9v7ufbjKiVQUpsHWYGX2ae4fICqc2YchGhm8v2gn_g7_xGiC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+increase+and+its+effects+on+fish+stress+physiology+in+the+context+of+global+warming&rft.jtitle=Journal+of+fish+biology&rft.au=Alfonso%2C+S%C3%A9bastien&rft.au=Gesto%2C+Manuel&rft.au=Sadoul%2C+Bastien&rft.date=2021-06-01&rft.pub=Wiley&rft.issn=0022-1112&rft.eissn=1095-8649&rft.volume=98&rft.issue=6&rft.spage=1496&rft.epage=1508&rft_id=info:doi/10.1111%2Fjfb.14599&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03137601v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1112&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1112&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1112&client=summon