Temperature increase and its effects on fish stress physiology in the context of global warming
The capacity of fishes to cope with environmental variation is considered to be a main determinant of their fitness and is partly determined by their stress physiology. By 2100, global ocean temperature is expected to rise by 1–4°C, with potential consequences for stress physiology. Global warming i...
Saved in:
Published in | Journal of fish biology Vol. 98; no. 6; pp. 1496 - 1508 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.06.2021
Wiley Subscription Services, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The capacity of fishes to cope with environmental variation is considered to be a main determinant of their fitness and is partly determined by their stress physiology. By 2100, global ocean temperature is expected to rise by 1–4°C, with potential consequences for stress physiology. Global warming is affecting animal populations worldwide through chronic temperature increases and an increase in the frequency of extreme heatwave events. As ectotherms, fishes are expected to be particularly vulnerable to global warming. Although little information is available about the effects of global warming on stress physiology in nature, multiple studies describe the consequences of temperature increases on stress physiology in controlled laboratory conditions, providing insight into what can be expected in the wild. Chronic temperature increase constitutes a physiological load that can alter the ability of fishes to cope with additional stressors, which might compromise their fitness. In addition, rapid temperature increases are known to induce acute stress responses in fishes and might be of ecological relevance in particular situations. This review summarizes knowledge about effects of temperature increases on the stress physiology of fishes and discusses these in the context of global warming. |
---|---|
AbstractList | The capacity of fishes to cope with environmental variation is considered to be a main determinant of their fitness and is partly determined by their stress physiology. By 2100, global ocean temperature is expected to rise by 1–4°C, with potential consequences for stress physiology. Global warming is affecting animal populations worldwide through chronic temperature increases and an increase in the frequency of extreme heatwave events. As ectotherms, fishes are expected to be particularly vulnerable to global warming. Although little information is available about the effects of global warming on stress physiology in nature, multiple studies describe the consequences of temperature increases on stress physiology in controlled laboratory conditions, providing insight into what can be expected in the wild. Chronic temperature increase constitutes a physiological load that can alter the ability of fishes to cope with additional stressors, which might compromise their fitness. In addition, rapid temperature increases are known to induce acute stress responses in fishes and might be of ecological relevance in particular situations. This review summarizes knowledge about effects of temperature increases on the stress physiology of fishes and discusses these in the context of global warming. The capacity of fishes to cope with environmental variation is considered to be a main determinant of their fitness and is partly determined by their stress physiology. By 2100, global ocean temperature is expected to rise by 1-4 degrees C, with potential consequences for stress physiology. Global warming is affecting animal populations worldwide through chronic temperature increases and an increase in the frequency of extreme heatwave events. As ectotherms, fishes are expected to be particularly vulnerable to global warming. Although little information is available about the effects of global warming on stress physiology in nature, multiple studies describe the consequences of temperature increases on stress physiology in controlled laboratory conditions, providing insight into what can be expected in the wild. Chronic temperature increase constitutes a physiological load that can alter the ability of fishes to cope with additional stressors, which might compromise their fitness. In addition, rapid temperature increases are known to induce acute stress responses in fishes and might be of ecological relevance in particular situations. This review summarizes knowledge about effects of temperature increases on the stress physiology of fishes and discusses these in the context of global warming. The capacity of fishes to cope with environmental variation is considered to be a main determinant of their fitness and is partly determined by their stress physiology. By 2100, global ocean temperature is expected to rise by 1-4°C, with potential consequences for stress physiology. Global warming is affecting animal populations worldwide through chronic temperature increases and an increase in the frequency of extreme heatwave events. As ectotherms, fishes are expected to be particularly vulnerable to global warming. Although little information is available about the effects of global warming on stress physiology in nature, multiple studies describe the consequences of temperature increases on stress physiology in controlled laboratory conditions, providing insight into what can be expected in the wild. Chronic temperature increase constitutes a physiological load that can alter the ability of fishes to cope with additional stressors, which might compromise their fitness. In addition, rapid temperature increases are known to induce acute stress responses in fishes and might be of ecological relevance in particular situations. This review summarizes knowledge about effects of temperature increases on the stress physiology of fishes and discusses these in the context of global warming.The capacity of fishes to cope with environmental variation is considered to be a main determinant of their fitness and is partly determined by their stress physiology. By 2100, global ocean temperature is expected to rise by 1-4°C, with potential consequences for stress physiology. Global warming is affecting animal populations worldwide through chronic temperature increases and an increase in the frequency of extreme heatwave events. As ectotherms, fishes are expected to be particularly vulnerable to global warming. Although little information is available about the effects of global warming on stress physiology in nature, multiple studies describe the consequences of temperature increases on stress physiology in controlled laboratory conditions, providing insight into what can be expected in the wild. Chronic temperature increase constitutes a physiological load that can alter the ability of fishes to cope with additional stressors, which might compromise their fitness. In addition, rapid temperature increases are known to induce acute stress responses in fishes and might be of ecological relevance in particular situations. This review summarizes knowledge about effects of temperature increases on the stress physiology of fishes and discusses these in the context of global warming. |
Author | Gesto, Manuel Alfonso, Sébastien Sadoul, Bastien |
Author_xml | – sequence: 1 givenname: Sébastien orcidid: 0000-0002-2471-2876 surname: Alfonso fullname: Alfonso, Sébastien email: salfonso@coispa.eu organization: COISPA Tecnologia & Ricerca, Stazione Sperimentale per lo Studio delle Risorse del Mare – sequence: 2 givenname: Manuel orcidid: 0000-0002-9136-7857 surname: Gesto fullname: Gesto, Manuel organization: Section for Aquaculture, DTU Aqua, Technical University of Denmark – sequence: 3 givenname: Bastien surname: Sadoul fullname: Sadoul, Bastien organization: ESE, Ecology and Ecosystem Health, Institut Agro, INRAE |
BackLink | https://hal.inrae.fr/hal-03137601$$DView record in HAL |
BookMark | eNqFkU9vEzEQxS1UJNLCgW9giQsctvV_r4-loi0oEpdytuzdceJoYwd7Q5tvj9sgkCoBc3nS6PdGM_NO0UnKCRB6S8k5bXWxCf6cCmnMC7SgxMiuV8KcoAUhjHUNYK_Qaa0bQojhhi-QvYPtDoqb9wVwTEMBVwG7NOI4VwwhwNA0JxxiXeM6F6gV79aHGvOUV4dmwfMa8JDTDA8zzgGvpuzdhO9d2ca0eo1eBjdVePNLz9C36093V7fd8uvN56vLZTcI05tOE907A1x5TUEq4vnIpRg9Y9Kz3ksR2OBBDEZJoagXyvkgR8WkHp0wzPMz9OE4d-0muytx68rBZhft7eXSPvYIp1wrQn_Qxr4_sruSv--hznYb6wDT5BLkfbVM057znir1f1RISbXuiW7ou2foJu9LakdbJqVkSrUI_uw5lFxrgfB7WUrsY4K2JWifEmzsxTN2iLObY_t1cXH6l-M-TnD4-2j75frj0fETdB6s5A |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2023_126404 crossref_primary_10_1371_journal_pone_0272510 crossref_primary_10_3390_ijms23158691 crossref_primary_10_1016_j_aquaculture_2022_738965 crossref_primary_10_4236_ojas_2023_132017 crossref_primary_10_1007_s42823_022_00380_4 crossref_primary_10_1007_s11356_022_20450_4 crossref_primary_10_1016_j_cbpa_2023_111435 crossref_primary_10_1088_1755_1315_1217_1_012026 crossref_primary_10_3390_ijms231810905 crossref_primary_10_1007_s10584_024_03833_z crossref_primary_10_1111_fwb_14246 crossref_primary_10_3390_life13102083 crossref_primary_10_1016_j_jtherbio_2025_104055 crossref_primary_10_1111_gcb_16022 crossref_primary_10_1242_jeb_245335 crossref_primary_10_1016_j_marenvres_2024_106618 crossref_primary_10_1080_02705060_2023_2192237 crossref_primary_10_55355_snv2023124104 crossref_primary_10_1016_j_ecolmodel_2023_110605 crossref_primary_10_3389_fphys_2022_937432 crossref_primary_10_1016_j_fsi_2024_109913 crossref_primary_10_3390_fishes8030132 crossref_primary_10_1186_s12864_024_10567_w crossref_primary_10_3390_biology12060784 crossref_primary_10_3390_en15155412 crossref_primary_10_1016_j_fsi_2023_108647 crossref_primary_10_1007_s10126_024_10382_0 crossref_primary_10_1016_j_aquaculture_2023_740421 crossref_primary_10_1111_fwb_14375 crossref_primary_10_3390_ani13111791 crossref_primary_10_1016_j_jhazmat_2024_133448 crossref_primary_10_3390_fishes7060374 crossref_primary_10_1016_j_ecoinf_2022_101780 crossref_primary_10_3390_cleantechnol6030044 crossref_primary_10_1016_j_aquaculture_2024_741336 crossref_primary_10_1038_s41598_023_48533_3 crossref_primary_10_1093_conphys_coac023 crossref_primary_10_1002_ece3_10864 crossref_primary_10_1007_s10661_024_12313_x crossref_primary_10_1016_j_jtherbio_2025_104073 crossref_primary_10_1016_j_isci_2024_110673 crossref_primary_10_1016_j_fsi_2023_108877 crossref_primary_10_3390_antiox12122020 crossref_primary_10_1111_jfb_15342 crossref_primary_10_1111_fog_12601 crossref_primary_10_1016_j_aqrep_2024_102448 crossref_primary_10_1002_tafs_10453 crossref_primary_10_1016_j_scitotenv_2023_163400 crossref_primary_10_1007_s10695_024_01361_2 crossref_primary_10_1016_j_aqrep_2024_102566 crossref_primary_10_1016_j_scitotenv_2023_161580 crossref_primary_10_3389_fphys_2023_1142398 crossref_primary_10_1111_gcb_17255 crossref_primary_10_3390_metabo11080547 crossref_primary_10_1016_j_scitotenv_2024_170329 crossref_primary_10_1371_journal_pone_0294656 crossref_primary_10_1002_aff2_44 crossref_primary_10_1002_jez_2667 crossref_primary_10_1016_j_cbpb_2024_111029 crossref_primary_10_1016_j_rser_2024_114578 crossref_primary_10_1016_j_jembe_2023_151955 crossref_primary_10_1002_ecs2_3990 crossref_primary_10_3389_fmars_2022_784418 crossref_primary_10_1093_conphys_coac048 crossref_primary_10_3390_vaccines12101170 crossref_primary_10_1016_j_fishres_2022_106434 crossref_primary_10_1016_j_envpol_2024_125384 crossref_primary_10_1016_j_marpolbul_2024_116438 crossref_primary_10_1038_s41598_021_93116_9 crossref_primary_10_1111_gcb_17437 crossref_primary_10_1093_conphys_coae081 crossref_primary_10_1111_eva_13351 crossref_primary_10_3390_antiox13111316 crossref_primary_10_1016_j_aquaculture_2024_740698 crossref_primary_10_1016_j_aquaculture_2024_740574 crossref_primary_10_1016_j_scitotenv_2025_178960 crossref_primary_10_1016_j_aquaculture_2023_739746 crossref_primary_10_1111_jfb_15368 crossref_primary_10_1007_s00704_023_04648_1 crossref_primary_10_1242_jeb_246227 crossref_primary_10_3390_ani14182701 crossref_primary_10_3389_faquc_2024_1476881 crossref_primary_10_3389_fphys_2024_1464123 crossref_primary_10_1016_j_aquaculture_2024_740694 crossref_primary_10_1016_j_aquaculture_2024_742073 crossref_primary_10_1016_j_jcou_2024_102842 crossref_primary_10_1007_s10695_024_01307_8 crossref_primary_10_1007_s10695_024_01431_5 crossref_primary_10_3389_fmars_2023_1159261 crossref_primary_10_37251_jee_v6i1_1273 crossref_primary_10_3389_fevo_2021_735487 crossref_primary_10_1111_1365_2435_14709 crossref_primary_10_3389_fcosc_2024_1383370 crossref_primary_10_1016_j_cbpa_2024_111648 crossref_primary_10_1016_j_fsi_2022_03_002 crossref_primary_10_1016_j_chemosphere_2023_140366 crossref_primary_10_1016_j_bbrc_2024_150682 crossref_primary_10_71064_spu_amjr_1_1_128 crossref_primary_10_1016_j_aquaculture_2022_738373 crossref_primary_10_1016_j_advwatres_2023_104387 crossref_primary_10_1016_j_aquaculture_2023_740188 crossref_primary_10_1016_j_aquaculture_2024_741537 crossref_primary_10_1016_j_jtherbio_2022_103279 crossref_primary_10_1002_ecs2_4264 crossref_primary_10_1007_s11356_021_17869_6 crossref_primary_10_3390_ani13081340 crossref_primary_10_12714_egejfas_40_1_10 crossref_primary_10_1007_s13762_023_04971_0 crossref_primary_10_1016_j_ygcen_2024_114659 crossref_primary_10_13005_bbra_3076 crossref_primary_10_1371_journal_pone_0317563 crossref_primary_10_3390_ijms24076068 crossref_primary_10_1016_j_scitotenv_2024_171103 crossref_primary_10_1016_j_enbuild_2024_114908 crossref_primary_10_1002_er_7938 crossref_primary_10_1016_j_cbd_2025_101485 crossref_primary_10_1111_eva_13337 crossref_primary_10_1139_cjfas_2023_0377 crossref_primary_10_3389_fmars_2021_717360 crossref_primary_10_1016_j_cbd_2025_101481 crossref_primary_10_1016_j_aqrep_2021_100817 crossref_primary_10_1016_j_beproc_2025_105169 crossref_primary_10_1016_j_jtherbio_2023_103544 crossref_primary_10_1016_j_jtherbio_2024_103987 crossref_primary_10_1016_j_scitotenv_2023_163684 crossref_primary_10_1155_2024_3496627 crossref_primary_10_3390_plants12071556 crossref_primary_10_3390_su151712973 crossref_primary_10_3390_fishes8080414 crossref_primary_10_1007_s10641_022_01306_9 crossref_primary_10_1007_s10695_023_01263_9 crossref_primary_10_1016_j_egyr_2022_08_275 crossref_primary_10_1002_ece3_70813 crossref_primary_10_1016_j_aquaculture_2021_737401 crossref_primary_10_1016_j_scitotenv_2024_176001 crossref_primary_10_1016_j_cbpc_2025_110147 crossref_primary_10_1111_jfd_13619 crossref_primary_10_1016_j_fsi_2023_108704 crossref_primary_10_3390_fishes7010016 crossref_primary_10_1111_raq_12612 crossref_primary_10_1007_s10646_025_02875_y crossref_primary_10_1086_716927 crossref_primary_10_1093_icesjms_fsae025 crossref_primary_10_1038_s43247_024_01407_6 crossref_primary_10_1016_j_aquaculture_2023_739858 crossref_primary_10_1111_gcb_17564 crossref_primary_10_1111_mec_16967 crossref_primary_10_1111_eva_13553 crossref_primary_10_1016_j_envpol_2024_125184 crossref_primary_10_3390_ani14203005 crossref_primary_10_1016_j_aquaculture_2021_737632 crossref_primary_10_1016_j_aquaculture_2022_738688 crossref_primary_10_1016_j_cbpa_2022_111318 crossref_primary_10_1155_2024_2925959 crossref_primary_10_3390_ijms24108569 crossref_primary_10_1016_j_scitotenv_2025_179172 crossref_primary_10_1007_s13201_023_01954_x crossref_primary_10_3390_fishes10030095 crossref_primary_10_1016_j_ygeno_2023_110735 crossref_primary_10_3390_biology13121045 crossref_primary_10_1016_j_scitotenv_2023_166655 crossref_primary_10_3390_biology12101342 crossref_primary_10_1016_j_aquaculture_2023_740490 crossref_primary_10_1007_s10641_025_01684_w crossref_primary_10_3390_ijms24119348 crossref_primary_10_3390_ani12192523 crossref_primary_10_1016_j_ecolind_2024_112931 crossref_primary_10_1016_j_aqrep_2024_102392 crossref_primary_10_1016_j_envres_2024_118349 crossref_primary_10_1016_j_scitotenv_2024_175659 crossref_primary_10_3390_ani14202962 crossref_primary_10_3390_fishes9030092 crossref_primary_10_1016_j_heliyon_2024_e25559 crossref_primary_10_1093_pnasnexus_pgad137 crossref_primary_10_3389_fmars_2023_1307617 crossref_primary_10_1007_s10126_024_10315_x crossref_primary_10_1016_j_aquaculture_2023_739830 crossref_primary_10_3390_ijms25168848 crossref_primary_10_3390_fishes7020075 crossref_primary_10_1002_ecs2_4221 crossref_primary_10_1007_s10228_023_00914_4 crossref_primary_10_1080_10236244_2024_2378752 crossref_primary_10_1038_s42003_025_07558_2 crossref_primary_10_3389_fmicb_2022_860079 crossref_primary_10_1007_s10695_022_01104_1 crossref_primary_10_1016_j_gene_2022_146388 crossref_primary_10_1016_j_cbd_2024_101288 crossref_primary_10_1016_j_jglr_2024_102310 crossref_primary_10_1139_facets_2023_0206 crossref_primary_10_1007_s00343_024_3127_8 crossref_primary_10_3390_life14101273 crossref_primary_10_1016_j_marpolbul_2023_114959 crossref_primary_10_3390_ani15060809 crossref_primary_10_1002_ece3_8738 crossref_primary_10_3390_ani14192839 crossref_primary_10_3390_toxics9110286 crossref_primary_10_1016_j_cbpa_2024_111775 crossref_primary_10_1016_j_aqrep_2024_101998 crossref_primary_10_7717_peerj_15729 crossref_primary_10_1016_j_aquaculture_2023_739806 crossref_primary_10_1016_j_foodchem_2025_143199 crossref_primary_10_3409_fb_72_2_08 crossref_primary_10_3389_fmars_2024_1466656 crossref_primary_10_1007_s00227_024_04510_6 crossref_primary_10_1016_j_mce_2025_112494 crossref_primary_10_1016_j_scitotenv_2023_169452 crossref_primary_10_1098_rspb_2024_2913 crossref_primary_10_3390_fishes7050270 crossref_primary_10_1016_j_ecoenv_2025_117895 crossref_primary_10_1016_j_scitotenv_2024_174664 crossref_primary_10_3390_foods12010124 crossref_primary_10_1016_j_ecss_2023_108305 crossref_primary_10_1111_jfb_14762 crossref_primary_10_1016_j_aaf_2021_12_005 crossref_primary_10_46989_001c_127273 crossref_primary_10_1016_j_crphys_2022_03_002 crossref_primary_10_1016_j_envres_2025_121151 crossref_primary_10_1016_j_jtherbio_2023_103599 crossref_primary_10_1016_j_fsi_2024_110042 crossref_primary_10_1111_1365_2435_70014 crossref_primary_10_3390_ani13243870 crossref_primary_10_1016_j_etap_2025_104654 crossref_primary_10_1007_s00343_023_3003_y crossref_primary_10_1089_zeb_2024_0128 crossref_primary_10_3389_fphys_2023_1272267 crossref_primary_10_1016_j_aqrep_2024_102298 crossref_primary_10_58626_menba_1513525 crossref_primary_10_1016_j_aquaculture_2022_738529 crossref_primary_10_1089_zeb_2024_0153 crossref_primary_10_1016_j_ecoenv_2024_117249 crossref_primary_10_2478_cjf_2024_0011 crossref_primary_10_1002_ece3_9604 crossref_primary_10_1007_s12601_023_00117_y crossref_primary_10_1111_mec_17332 crossref_primary_10_3389_fmars_2022_1017142 crossref_primary_10_1016_j_jembe_2024_152022 crossref_primary_10_1007_s10750_024_05726_9 crossref_primary_10_1111_jwas_12853 crossref_primary_10_3354_meps14535 crossref_primary_10_1002_ece3_70540 crossref_primary_10_1016_j_aquaculture_2024_741025 crossref_primary_10_1007_s00506_021_00765_1 crossref_primary_10_1016_j_triboint_2022_107615 crossref_primary_10_1016_j_aquaculture_2023_740450 crossref_primary_10_1007_s12011_023_03637_9 crossref_primary_10_1007_s10973_024_13753_w crossref_primary_10_1098_rspb_2024_0511 crossref_primary_10_1186_s12711_023_00811_4 crossref_primary_10_7717_peerj_17847 crossref_primary_10_3390_oceans5010003 crossref_primary_10_1016_j_marenvres_2024_106531 crossref_primary_10_1002_naaq_10256 crossref_primary_10_1016_j_scitotenv_2024_173275 crossref_primary_10_1016_j_tem_2022_07_002 crossref_primary_10_1371_journal_pclm_0000017 crossref_primary_10_1007_s10695_024_01304_x crossref_primary_10_1016_j_aquaculture_2023_740465 crossref_primary_10_1016_j_aqrep_2023_101524 crossref_primary_10_1016_j_yhbeh_2023_105396 crossref_primary_10_1111_eva_70041 crossref_primary_10_1016_j_stress_2024_100642 crossref_primary_10_1016_j_aquaculture_2024_741017 crossref_primary_10_1016_j_ijbiomac_2023_124246 crossref_primary_10_1016_j_mcat_2024_114192 crossref_primary_10_1098_rsbl_2023_0346 crossref_primary_10_3389_fmars_2024_1448313 crossref_primary_10_3389_fmars_2024_1329254 crossref_primary_10_3390_fishes8070340 crossref_primary_10_1111_brv_13111 crossref_primary_10_1016_j_cbpb_2023_110927 crossref_primary_10_3389_fphys_2024_1386413 crossref_primary_10_3389_fphys_2023_1189375 crossref_primary_10_1016_j_aquaculture_2024_741716 crossref_primary_10_13000_JFMSE_2023_12_35_6_1023 crossref_primary_10_3390_ani14060919 crossref_primary_10_1007_s10750_023_05234_2 crossref_primary_10_1093_conphys_coae015 crossref_primary_10_1155_2024_4876582 crossref_primary_10_1016_j_aqrep_2024_102120 crossref_primary_10_1111_are_15667 crossref_primary_10_1071_MF23137 crossref_primary_10_1016_j_scitotenv_2024_171510 crossref_primary_10_1016_j_cbd_2023_101058 crossref_primary_10_1016_j_rsma_2023_102856 crossref_primary_10_3390_ani11061800 crossref_primary_10_1017_S0967199424000285 crossref_primary_10_1007_s10126_024_10375_z crossref_primary_10_1186_s12917_024_04303_5 crossref_primary_10_1016_j_palaeo_2024_112423 crossref_primary_10_1007_s12601_024_00190_x crossref_primary_10_1016_j_apenergy_2022_120180 crossref_primary_10_1093_conphys_coae022 crossref_primary_10_3390_fishes8060303 crossref_primary_10_1016_j_aquaculture_2024_741951 crossref_primary_10_31398_tpjf_31_2_2023_0014 crossref_primary_10_1093_jhered_esae024 crossref_primary_10_1111_are_15778 |
Cites_doi | 10.1016/j.aquaculture.2018.07.056 10.1046/j.1365-2656.1999.00337.x 10.1371/journal.pone.0080713 10.1038/s41598-018-23950-x 10.1038/s41598-020-58846-2 10.1079/9781786393982.0136 10.1098/rspb.2009.1346 10.1126/science.1098704 10.1016/j.ygcen.2008.07.002 10.7717/peerj.6338 10.3906/vet-1606-32 10.1038/s41559-018-0669-1 10.1126/science.1163156 10.1111/j.1095-8649.1989.tb02972.x 10.1111/j.1365-2761.2010.01183.x 10.1038/ncomms11447 10.1016/j.pocean.2018.09.001 10.1016/j.fishres.2004.10.006 10.1093/conphys/cov017 10.1242/jeb.091751 10.1016/S1095-6433(03)00075-8 10.1016/j.aquaculture.2018.05.042 10.1126/science.1189930 10.1016/j.yhbeh.2004.01.001 10.1016/j.ygcen.2018.09.017 10.1242/jeb.156174 10.1242/bio.20149829 10.1152/ajpregu.00196.2011 10.1152/japplphysiol.01122.2001 10.1016/j.dci.2011.07.002 10.1016/j.fsi.2005.04.005 10.1016/j.cbpb.2004.09.012 10.1038/s41598-017-10861-6 10.1038/nature09407 10.1038/nclimate1323 10.1007/s40011-014-0357-0 10.1016/j.scitotenv.2019.05.357 10.1016/j.jtherbio.2020.102526 10.1073/pnas.1015178108 10.1002/ece3.1465 10.1242/jeb.61.2.455 10.1016/B978-0-12-802728-8.00004-7 10.1152/physrev.1997.77.3.591 10.1016/j.ecolind.2020.106118 10.1111/j.1865-1682.2010.01150.x 10.1086/589095 10.1093/icb/45.3.463 10.1016/j.anbehav.2013.02.017 10.1111/jfb.12055 10.1016/j.fsi.2018.08.042 10.1007/s00338-015-1333-8 10.1038/s41558-019-0631-5 10.1242/jeb.050096 10.1007/BF01922428 10.1016/j.cbpc.2004.05.003 10.1093/icb/42.3.517 10.1016/0044-8486(87)90172-4 10.1038/s41598-019-49086-0 10.1126/science.1199158 10.1093/icesjms/39.2.175 10.1111/1365-2435.13538 10.1038/497320a 10.1073/pnas.0701638104 10.1016/j.ecolind.2020.106937 10.1523/JNEUROSCI.1039-10.2010 10.1111/jfb.13546 10.1111/mec.14884 10.1242/jeb.199.7.1605 10.1016/j.aquaculture.2019.03.045 10.1016/j.bbr.2014.07.052 10.1139/facets-2016-0053 10.1038/s41586-019-1132-4 10.1126/science.1135471 10.1530/JOE-16-0610 10.1023/A:1008924418720 10.1111/j.1095-8649.2007.01763.x 10.1016/S0304-3940(97)00618-6 10.1242/jeb.02260 10.3354/ab00707 10.1007/s00300-008-0438-8 10.1016/S0304-3940(97)00488-6 10.1111/j.1095-8649.2007.01697.x 10.1186/s12864-015-1503-7 10.1111/gcb.13028 10.1016/j.jtherbio.2010.12.008 10.1016/j.ygeno.2018.11.011 10.1016/j.cbpb.2015.10.002 10.3354/meps11758 10.1016/j.cbpa.2019.05.029 10.1016/j.aquaculture.2018.09.016 10.1038/nclimate3382 10.1006/hbeh.2002.1796 10.1242/jeb.056135 10.1371/journal.pone.0194353 10.1007/s11160-018-9535-0 10.1111/jfb.12796 10.1126/science.aau1758 10.1242/jeb.019281 10.1111/jfb.14429 10.1038/s41586-018-0383-9 10.1111/eth.12437 10.1016/j.physbeh.2017.08.001 10.1007/BF01869450 10.1242/jeb.161224 10.1016/j.envint.2009.02.006 10.1038/srep32965 10.1016/0305-0491(89)90138-7 10.1126/science.1061967 10.1006/gcen.2001.7688 10.1098/rspb.2017.0784 10.1111/gcb.14745 10.1016/j.ygcen.2017.06.022 10.1038/s41558-018-0159-0 10.1016/j.jtherbio.2018.09.006 10.1007/s10641-004-5353-4 10.1016/j.cbpa.2013.06.008 10.1007/s00360-012-0735-y 10.1242/jeb.186.1.289 10.1098/rspb.2013.2612 10.1139/cjz-2018-0157 10.1242/jeb.037473 10.1242/jeb.49.1.71 10.1126/science.aam7240 10.1111/gcb.14554 10.1016/j.anbehav.2019.09.005 10.1098/rspb.2015.2592 10.1111/jfb.13904 10.1007/s10750-019-3948-1 10.1016/j.aquatox.2019.105312 10.1080/02656730500307298 10.1016/j.tree.2019.02.012 10.1038/s41598-020-62331-1 10.1016/j.bbr.2016.09.026 |
ContentType | Journal Article |
Copyright | 2020 Fisheries Society of the British Isles Journal of Fish Biology © 2021 The Fisheries Society of the British Isles 2020 Fisheries Society of the British Isles. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2020 Fisheries Society of the British Isles – notice: Journal of Fish Biology © 2021 The Fisheries Society of the British Isles – notice: 2020 Fisheries Society of the British Isles. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7QG 7SN 7TN 8FD C1K F1W FR3 H95 L.G P64 RC3 7X8 7S9 L.6 1XC |
DOI | 10.1111/jfb.14599 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Oceanic Abstracts Technology Research Database Animal Behavior Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology Environmental Sciences |
EISSN | 1095-8649 |
EndPage | 1508 |
ExternalDocumentID | oai_HAL_hal_03137601v1 10_1111_jfb_14599 JFB14599 |
Genre | reviewArticle |
GroupedDBID | --- --K -~X .3N .GA .Y3 05W 0R~ 10A 1B1 1OB 1OC 29K 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAJYS AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPPZ ABPVW ACAHQ ACBWZ ACCZN ACGFO ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AI. AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BGJEQ BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F D-I DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LG5 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NQ- O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RPZ RX1 SAMSI SUPJJ TN5 TWZ UB1 UPT V8K VH1 W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WUPDE WXSBR WYISQ XG1 XOL XPP YK3 YQT ZCG ZMT ZY4 ZZTAW ~02 ~IA ~WT AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION 7QG 7SN 7TN 8FD C1K F1W FR3 H95 L.G P64 RC3 7X8 7S9 L.6 1XC |
ID | FETCH-LOGICAL-c4989-7078a9e36b71e560b3d354db225b28b54f2cbe4c965461b46abf5d6257da492b3 |
IEDL.DBID | DR2 |
ISSN | 0022-1112 1095-8649 |
IngestDate | Thu Jul 17 06:20:34 EDT 2025 Fri Jul 11 18:34:30 EDT 2025 Fri Jul 11 10:48:41 EDT 2025 Thu Aug 07 19:10:48 EDT 2025 Tue Jul 01 01:50:53 EDT 2025 Thu Apr 24 23:12:27 EDT 2025 Wed Aug 20 07:25:53 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | heat cortisol plasticity adaptive capacity teleost coping |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4989-7078a9e36b71e560b3d354db225b28b54f2cbe4c965461b46abf5d6257da492b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-9136-7857 0000-0002-2471-2876 0000-0001-5968-3983 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jfb.14599?download=true |
PQID | 2555266022 |
PQPubID | 1086393 |
PageCount | 13 |
ParticipantIDs | hal_primary_oai_HAL_hal_03137601v1 proquest_miscellaneous_2718338166 proquest_miscellaneous_2455177807 proquest_journals_2555266022 crossref_primary_10_1111_jfb_14599 crossref_citationtrail_10_1111_jfb_14599 wiley_primary_10_1111_jfb_14599_JFB14599 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
PublicationTitle | Journal of fish biology |
PublicationYear | 2021 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2017; 317 2018; 560 2007; 104 2019; 94 2019; 97 2017b; 220 2010; 467 2019; 14 2020; 10 2008; 31 2019; 569 2013; 8 2016; 35 2019; 684 1980; 39 2018; 8 2018; 2 2006; 20 2006; 209 1990 2020; 97 2019; 836 2015; 85 2019; 25 2019; 28 2005; 73 2019; 157 2017; 284 2002; 93 2016; 555 2020; 88 2005; 72 2019; 270 1989; 35 2010; 30 2010; 33 2017a; 233 1995; 51 2019; 9 2018; 28 2010; 328 2019; 506 2019; 34 2004; 45 2015; 121 2013; 85 2019; 500 2020; 34 2017; 252 2013; 183 2004; 305 1915 1972; 66 2018; 27 2016; 283 1999 2016; 6 2016; 7 1987; 62 1990; 115 2007; 315 2018; 359 1974; 61 2010; 213 2013; 216 2018; 92 2013; 82 1996; 199 2019; 216 2019; 174 2018; 13 2016; 22 2015; 34 2017; 7 2017; 41 2017; 2 1997; 230 1997; 233 2013; 166 2005; 21 2021; 120 2018; 82 2008; 72 2019; 363 57 2018; 495 2001; 293 2002; 42 2018; 497 1994; 186 2010; 277 2016; 199 2019; 235 2008; 158 2014; 281 2018; 78 2004; 139 2019; 111 2016; 88 2011; 214 2001; 124 2015; 16 2015; 5 1968; 49 2015; 4 2015; 3 1999; 68 2011; 35 2008; 322 2011; 36 2012; 302 2003; 135 2011; 332 2005; 45 1989; 94 2009; 35 2012; 2 2011; 108 1997; 77 2020 2015; 277 2013; 497 2017; 180 2019 2016 2020; 112 2011; 45 2014 2017; 220 2008; 211 2008; 81 e_1_2_6_114_1 e_1_2_6_137_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_91_1 e_1_2_6_110_1 e_1_2_6_133_1 e_1_2_6_11_1 e_1_2_6_34_1 Arrhenius S. (e_1_2_6_7_1) 1915 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_99_1 e_1_2_6_125_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_106_1 e_1_2_6_129_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 Gorissen M. (e_1_2_6_59_1) 2016; 35 e_1_2_6_140_1 e_1_2_6_102_1 e_1_2_6_144_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_136_1 e_1_2_6_54_1 e_1_2_6_96_1 e_1_2_6_117_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_92_1 e_1_2_6_132_1 e_1_2_6_113_1 e_1_2_6_35_1 e_1_2_6_12_1 Schreck C. B. (e_1_2_6_121_1) 2016 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_84_1 Nivelle R. (e_1_2_6_95_1) 2019; 14 e_1_2_6_42_1 e_1_2_6_105_1 e_1_2_6_128_1 e_1_2_6_80_1 e_1_2_6_109_1 e_1_2_6_61_1 e_1_2_6_120_1 e_1_2_6_101_1 e_1_2_6_124_1 e_1_2_6_143_1 e_1_2_6_6_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_116_1 e_1_2_6_139_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_131_1 e_1_2_6_112_1 e_1_2_6_135_1 IPCC (e_1_2_6_65_1) 2014 Mravec B. (e_1_2_6_93_1) 2011; 45 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_104_1 e_1_2_6_43_1 e_1_2_6_127_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_108_1 Sadoul B. (e_1_2_6_118_1) 2016 e_1_2_6_100_1 e_1_2_6_123_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_115_1 e_1_2_6_75_1 e_1_2_6_138_1 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_119_1 e_1_2_6_71_1 e_1_2_6_90_1 e_1_2_6_130_1 e_1_2_6_111_1 e_1_2_6_134_1 e_1_2_6_14_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_79_1 e_1_2_6_103_1 e_1_2_6_126_1 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_21_1 e_1_2_6_107_1 Boltzmann L. (e_1_2_6_19_1) 1972; 66 e_1_2_6_40_1 e_1_2_6_82_1 e_1_2_6_141_1 e_1_2_6_122_1 e_1_2_6_8_1 e_1_2_6_4_1 Yada T. (e_1_2_6_142_1) 2016 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 |
References_xml | – volume: 108 start-page: 10591 year: 2011 end-page: 10596 article-title: Systematic variation in the temperature dependence of physiological and ecological traits publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 2 start-page: 1745 year: 2018 end-page: 1750 article-title: Global change in marine aquaculture production potential under climate change publication-title: Nature Ecology & Evolution – volume: 21 start-page: 681 year: 2005 end-page: 687 article-title: How do cells respond to their thermal environment ? publication-title: International Journal of Hyperthermia – volume: 495 start-page: 196 year: 2018 end-page: 204 article-title: Chronic exposure to increased water temperature reveals few impacts on stress physiology and growth responses in juvenile Atlantic salmon publication-title: Aquaculture – volume: 28 start-page: 925 year: 2018 end-page: 940 article-title: Effects of short‐term thermal stress on the plasma biochemical profiles of two Antarctic Nototheniid species publication-title: Reviews in Fish Biology and Fisheries – volume: 157 start-page: 153 year: 2019 end-page: 167 article-title: High‐stress rearing temperature in affects physiology, behaviour and predation rates publication-title: Animal Behaviour – volume: 500 start-page: 24 year: 2019 end-page: 30 – volume: 93 start-page: 107 year: 2002 end-page: 115 article-title: β‐Adrenergic signaling and thyroid hormones affect HSP72 expression during heat acclimation publication-title: Journal of Applied Physiology – volume: 283 start-page: 1 year: 2016 end-page: 9 article-title: Interactions among ecosystem stressors and their importance in conservation publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 72 start-page: 311 year: 2005 end-page: 322 article-title: Physiological response of wild rainbow trout to angling: impact of angling duration, fish size, body condition, and temperature publication-title: Fisheries Research – volume: 28 start-page: 21 year: 2019 end-page: 32 article-title: Phenotypic plasticity and epigenetics of fish: embryo temperature affects later‐developing life‐history traits publication-title: Aquatic Biology – volume: 363 start-page: 979 year: 2019 end-page: 983 article-title: Impacts of historical warming on marine fisheries production publication-title: Science – volume: 4 start-page: 547 year: 2015 end-page: 552 article-title: The effect of water temperature on routine swimming behaviour of new born guppies ( ) publication-title: Biology Open – volume: 115 start-page: 109 year: 1990 end-page: 121 article-title: Subunit assembly and functional maturation of Na,K‐ATPase publication-title: Journal of Membrane Biology – volume: 36 start-page: 142 year: 2011 end-page: 149 article-title: The role of the heat shock proteins (HSP70 and SHSP) in the thermotolerance of freshwater amphipods from contrasting habitats publication-title: Journal of Thermal Biology – volume: 332 start-page: 109 year: 2011 end-page: 112 article-title: Differences in thermal tolerance among sockeye salmon populations publication-title: Science – year: 1990 – volume: 81 start-page: 414 year: 2008 end-page: 425 article-title: β‐Adrenergic stimulation enhances the heat‐shock response in fish publication-title: Physiological and Biochemical Zoology – year: 2014 – volume: 467 start-page: 704 year: 2010 end-page: 706 article-title: Global metabolic impacts of recent climate warming publication-title: Nature – volume: 62 start-page: 299 year: 1987 end-page: 310 article-title: Influence of acclimation temperature on interrenal and carbohydrate stress responses in juvenile Chinook salmon ( ) publication-title: Aquaculture – volume: 73 start-page: 89 year: 2005 end-page: 96 article-title: Thermal preference of Arctic charr, S , and Brown trout, – implications for their niche segregation publication-title: Environmental Biology of Fishes – volume: 497 start-page: 365 year: 2013 end-page: 366 article-title: Climate change at the dinner table publication-title: Nature – volume: 183 start-page: 625 year: 2013 end-page: 639 article-title: Seasonal variations of cellular stress response of the Gilthead Sea bream ( ) publication-title: Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology – volume: 8 start-page: 1 year: 2018 end-page: 12 article-title: Early life stress induces long‐term changes in limbic areas of a teleost fish: the role of catecholamine systems in stress coping publication-title: Scientific Reports – volume: 121 start-page: 1191 year: 2015 end-page: 1201 article-title: Egg cortisol exposure enhances fearfulness in larvae and juvenile rainbow trout publication-title: Ethology – volume: 85 start-page: 485 year: 2015 end-page: 490 publication-title: Proceedings of the National Academy of Sciences India Section B ‐ Biological Sciences – volume: 94 start-page: 540 year: 2019 end-page: 555 article-title: Measuring cortisol, the major stress hormone in fishes publication-title: Journal of Fish Biology – volume: 41 start-page: 400 year: 2017 end-page: 406 article-title: The physiological stress response to acute thermal exposure in Black Sea trout ( , 1814) publication-title: Turkish Journal of Veterinary and Animal Sciences – volume: 124 start-page: 97 year: 2001 end-page: 105 article-title: The effects of cortisol on heat shock protein 70 levels in two fish species publication-title: General and Comparative Endocrinology – volume: 14 start-page: 1 year: 2019 end-page: 19 article-title: Temperature preference of Nile tilapia ( ) juveniles induces spontaneous sex reversal publication-title: PLoS One – volume: 85 start-page: 1077 year: 2013 end-page: 1088 article-title: Understanding variation in behavioural responses to human‐induced rapid environmental change: a conceptual overview publication-title: Animal Behaviour – volume: 45 start-page: 37 year: 2011 end-page: 41 article-title: Role of catecholamine‐induced activation of vagal afferent pathways in regulation of sympathoadrenal system activity: negative feedback loop of stress response publication-title: Endocrine Regulations – volume: 77 start-page: 591 year: 1997 end-page: 625 article-title: The stress response in fish publication-title: Physiological Reviews – volume: 92 start-page: 804 year: 2018 end-page: 827 article-title: Fishes in a changing world: learning from the past to promote sustainability of fish populations publication-title: Journal of Fish Biology – volume: 42 start-page: 53 year: 2002 end-page: 61 article-title: Effects of cortisol on aggression and locomotor activity in rainbow trout publication-title: Hormones and Behavior – volume: 281 start-page: 281 issue: 1779 year: 2014 article-title: Increased temperature variation poses a greater risk to species than climate warming publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 317 start-page: 109 year: 2017 end-page: 121 article-title: Early life low intensity stress experience modifies acute stress effects on juvenile brain cell proliferation of European Sea bass (D. labrax) publication-title: Behavioural Brain Research – volume: 45 start-page: 324 year: 2004 end-page: 329 article-title: Behavioral and neuroendocrine correlates of displaced aggression in trout publication-title: Hormones and Behavior – volume: 39 start-page: 175 year: 1980 end-page: 192 article-title: On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks publication-title: ICES Journal of Marine Science – volume: 34 start-page: 1205 issue: 6 year: 2020 end-page: 1214 article-title: Multigenerational exposure to elevated temperatures leads to a reduction in standard metabolic rate in the wild publication-title: Functional Ecology – volume: 302 start-page: 184 year: 2012 end-page: 192 article-title: Hormonal modulation of the heat shock response: insights from fish with divergent cortisol stress responses publication-title: American Journal of Physiology ‐ Regulatory Integrative and Comparative Physiology – volume: 211 start-page: 3915 year: 2008 end-page: 3926 article-title: The effect of acute temperature increases on the cardiorespiratory performance of resting and swimming sockeye salmon ( ) publication-title: Journal of Experimental Biology – start-page: 1 year: 2016 end-page: 34 – volume: 34 start-page: 1255 year: 2015 end-page: 1260 article-title: Ghosts of thermal past: reef fish exposed to historic high temperatures have heightened stress response to further stressors publication-title: Coral Reefs – year: 2019 article-title: Maternal temperature exposure impairs emotional and cognitive responses and triggers dysregulation of neurodevelopment genes in fish publication-title: PeerJ – volume: 233 start-page: 77 year: 1997 end-page: 80 article-title: Effects of thermal acclimation on the neurotransmitters, serotonin and norepinephrine in the discrete brain of male and female tilapia, publication-title: Neuroscience Letters – volume: 230 start-page: 113 year: 1997 end-page: 116 article-title: Serotonin as a regulator of hypothalamic‐pituitary‐interrenal activity in teleost fish publication-title: Neuroscience Letters – volume: 9 year: 2019 article-title: Neurobiological and behavioural responses of cleaning mutualisms to ocean warming and acidification publication-title: Scientific Reports – volume: 139 start-page: 321 year: 2004 end-page: 333 article-title: Adaptation of enzymes to temperature: searching for basic ‘strategies publication-title: Comparative Biochemistry and Physiology ‐ B Biochemistry and Molecular Biology – volume: 174 start-page: 37 year: 2019 end-page: 43 article-title: The Antarctic fish under current temperatures and salinities and future scenarios of climate change publication-title: Progress in Oceanography – volume: 88 start-page: 102526 year: 2020 article-title: Water temperature affects osmoregulatory responses in Gilthead Sea bream ( .) publication-title: Journal of Thermal Biology – volume: 72 start-page: 157 year: 2008 end-page: 167 publication-title: Journal of Fish Biology – start-page: 136 year: 2020 end-page: 162 – volume: 111 start-page: 242 year: 2019 end-page: 250 article-title: Transcriptome profiling and histology changes in juvenile blunt snout bream ( ) liver tissue in response to acutethermal stress publication-title: Genomics – volume: 569 start-page: 108 year: 2019 end-page: 111 article-title: Greater vulnerability to warming of marine versus terrestrial ectotherms publication-title: Nature – start-page: 167 year: 2016 end-page: 205 – volume: 2 start-page: 330 year: 2017 end-page: 341 article-title: Physiological responses to a short‐term, environmentally realistic, acute heat dtress in Atlantic dalmon, publication-title: Facets – volume: 33 start-page: 789 year: 2010 end-page: 801 article-title: Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: a review publication-title: Journal of Fish Diseases – volume: 66 start-page: 275 year: 1972 end-page: 370 article-title: Weitere studien uber das warmegleich‐ gewicht unter gasmolekulen publication-title: Berichte Wiene – volume: 57 start-page: 293 end-page: 304 publication-title: Transboundary and Emerging Diseases – volume: 20 start-page: 83 year: 2006 end-page: 96 article-title: Husbandry stress during early life stages affects the stress response and health status of juvenile sea bass, publication-title: Fish & Shellfish Immunology – volume: 34 start-page: 628 issue: 7 year: 2019 end-page: 640 article-title: The adaptive sex in stressful environements publication-title: Trends in Ecology & Evolution – volume: 220 start-page: 3976 year: 2017 end-page: 3987 article-title: Upper thermal limits of growth in brook trout and their relationship to stress physiology publication-title: Journal of Experimental Biology – volume: 27 start-page: 4516 year: 2018 end-page: 4528 article-title: Phenotypic and molecular consequences of stepwise temperature increase across generations in a coral reef fish publication-title: Molecular Ecology – volume: 120 start-page: 106937 year: 2021 article-title: Genetic pathways underpinning hormonal stress responses in fish exposed to short‐ and long‐term warm ocean temperatures publication-title: Ecological Indicators – volume: 497 start-page: 331 year: 2018 end-page: 335 article-title: Effects of acclimation temperature on cortisol and oxygen consumption in Atlantic salmon ( ) post‐smolt exposed to acute stress publication-title: Aquaculture – volume: 35 start-page: 1366 year: 2011 end-page: 1375 article-title: Stress and immune modulation in fish publication-title: Developmental and Comparative Immunology – volume: 30 start-page: 13130 year: 2010 end-page: 13137 article-title: Maternal care and DNA methylation of a glutamic acid decarboxylase 1 promoter in rat hippocampus publication-title: Journal of Neuroscience – volume: 16 start-page: 1 year: 2015 end-page: 12 article-title: Temperature during early development has long‐term effects on MicroRNA expression in Atlantic cod publication-title: BMC Genomics – volume: 6 start-page: 1 year: 2016 end-page: 8 article-title: Predicting the synergy of multiple stress effects publication-title: Scientific Reports – volume: 82 start-page: 492 year: 2018 end-page: 503 article-title: Temperature modulates the immunological response of the sub‐Antarctic Notothenioid fish injected with Piscirickettsia Salmonis publication-title: Fish and Shellfish Immunology – volume: 72 start-page: 899 year: 2008 end-page: 916 publication-title: Journal of Fish Biology – volume: 9 start-page: 959 year: 2019 end-page: 963 article-title: Ocean community warming responses explained by thermal affinities and temperature gradients publication-title: Nature Climate Change – volume: 8 start-page: 1 year: 2013 end-page: 8 publication-title: PLoS ONE – volume: 216 start-page: 105312 year: 2019 article-title: Mechanisms behind interactive effects of temperature and bifenthrin on the predator avoidance behaviors in parr of Chinook salmon ( ) publication-title: Aquatic Toxicology – volume: 7 start-page: 718 year: 2017 end-page: 722 article-title: Climatic vulnerability of the world's freshwater and marine fishes publication-title: Nature Climate Change – volume: 555 start-page: 151 year: 2016 end-page: 165 article-title: Functional responses of North Atlantic fish eggs to increasing temperature publication-title: Marine Ecology Progress Series – volume: 199 start-page: 74 year: 2016 end-page: 86 article-title: Adrenergic signaling in teleost fish liver, a challenging path publication-title: Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology – volume: 78 start-page: 84 year: 2018 end-page: 91 article-title: Water temperature modifies the acute stress response of European sea bass, . (1758) publication-title: Journal of Thermal Biology – volume: 220 start-page: 3442 year: 2017b end-page: 3454 article-title: Thermal imprinting modifies bone homeostasis in cold‐challenged sea bream ( ) publication-title: Journal of Experimental Biology – volume: 322 start-page: 690 year: 2008 end-page: 692 article-title: Physiology and climate change publication-title: Science – volume: 49 start-page: 71 year: 1968 end-page: 81 article-title: Thermoacclimatory variations in the haematology of the common carp, publication-title: Journal of Experimental Biology – volume: 180 start-page: 15 year: 2017 end-page: 24 article-title: Effects of maternal cortisol treatment on offspring size, responses to stress, and anxiety‐related behavior in wild largemouth bass ( ) publication-title: Physiology and Behavior – volume: 836 start-page: 155 year: 2019 end-page: 167 article-title: Acute exposure of larval rainbow trout ( ) to elevated temperature limits Hsp70b expression and influences future thermotolerance publication-title: Hydrobiologia – volume: 214 start-page: 1791 year: 2011 end-page: 1801 article-title: Temperature‐dependent modification of muscle precursor cell behaviour is an underlying reason for lasting effects on muscle cellularity and body growth of teleost fish publication-title: Journal of Experimental Biology – volume: 216 start-page: 4435 year: 2013 end-page: 4442 article-title: The response of brain serotonergic and dopaminergic systems to an acute stressor in rainbow trout: a time course study publication-title: Journal of Experimental Biology – volume: 94 start-page: 621 year: 1989 end-page: 623 article-title: 70 KDa heat shock proteins from Mollusc and human cells have common structural and functional domains publication-title: Comparative Biochemistry and Physiology ‐ B Biochemistry and Molecular Biology – volume: 13 start-page: 1 year: 2018 end-page: 23 publication-title: PLoS ONE – volume: 82 start-page: 1159 year: 2013 end-page: 1176 article-title: Provenance matters: thermal reaction norms for embryo survival among sockeye salmon populations publication-title: Journal of Fish Biology – volume: 213 start-page: 912 year: 2010 end-page: 920 article-title: The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers publication-title: Journal of Experimental Biology – volume: 139 start-page: 433 year: 2004 end-page: 440 article-title: Temperature affects physiological stress responses to acute confinement in sunshine bass ( ) publication-title: Comparative Biochemistry and Physiology – A Molecular and Integrative Physiology – volume: 315 start-page: 95 year: 2007 end-page: 97 article-title: Climate change affects marine fishes through the oxygen limitation of thermal tolerance publication-title: Science – volume: 7 start-page: 1 year: 2017 end-page: 12 article-title: Small ocean temperature increases elicit stage‐dependent changes in DNA methylation and gene expression in a fish, the European Sea bass publication-title: Scientific Reports – volume: 359 start-page: eaam7240 year: 2018 article-title: Declining oxygen in the global ocean and coastal waters publication-title: Science – volume: 42 start-page: 517 year: 2002 end-page: 525 article-title: Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids publication-title: Integrative and Comparative Biology – volume: 305 start-page: 994 year: 2004 end-page: 997 article-title: More intense, more frequent, and longer lasting heat waves in the 21st century publication-title: Science – volume: 10 start-page: 1 year: 2020 end-page: 12 article-title: Increase in rnvironmental temperature affects exploratory behaviour, anxiety and social preference in publication-title: Scientific Reports – volume: 35 start-page: 229 year: 1989 end-page: 236 article-title: The response of trout red cells to adrenaline during seasonal acclimation and changes in temperature publication-title: Journal of Fish Biology – volume: 45 start-page: 463 year: 2005 end-page: 474 article-title: Behavioral and neuroendocrine correlates of selection for stress responsiveness in rainbow trout publication-title: Integrative and Comparative Biology – volume: 31 start-page: 991 year: 2008 end-page: 997 article-title: Effects of warm acclimation on serum osmolality, cortisol and hematocrit levels in the Antarctic fish, publication-title: Polar Biology – volume: 284 start-page: 1 year: 2017 end-page: 9 article-title: Warming has a greater effect than elevated CO2 on predator–prey interactions in coral reef fish publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 97 start-page: 596 year: 2020 end-page: 606 article-title: Effects of global warming on sex ratios in fishes publication-title: Journal of Fish Biology – volume: 209 start-page: 2859 year: 2006 end-page: 2872 article-title: Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, publication-title: Journal of Experimental Biology – volume: 277 start-page: 71 year: 2010 end-page: 77 article-title: Small within‐day increases in temperature affects boldness and alters personality in coral reef fish publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 8 start-page: 504 year: 2018 end-page: 509 article-title: The epigenetic landscape of transgenerational acclimation to ocean warming publication-title: Nature Climate Change – volume: 199 start-page: 1605 year: 1996 end-page: 1611 article-title: Central monoaminergic responses to salinity and temperature rises in common carp publication-title: Journal of Experimental Biology – volume: 3 start-page: 1 year: 2015 end-page: 12 article-title: Thermal onset of cellular and endocrine stress responses correspond to ecological limits in brook trout, an iconic cold‐water fish publication-title: Conservation Physiology – volume: 7 start-page: 1 year: 2016 end-page: 8 article-title: Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings publication-title: Nature Communications – volume: 61 start-page: 455 year: 1974 end-page: 461 article-title: Thermoacclimatory variation in the haemoglobin systems of goldfish ( ) and rainbow trout ( ) publication-title: Journal of Experimental Biology – volume: 270 start-page: 18 year: 2019 end-page: 25 article-title: Cortisol responses of goldfish ( ) to air exposure, chasing, and increased water temperature publication-title: General and Comparative Endocrinology – volume: 2 start-page: 30 year: 2012 end-page: 32 article-title: Rapid transgenerational acclimation of a tropical reef fish to climate change publication-title: Nature Climate Change – volume: 112 start-page: 106 year: 2020 end-page: 118 publication-title: Ecological Indicators – volume: 186 start-page: 289 year: 1994 end-page: 307 article-title: The effects of acclimation temperature on the dynamics of catecholamine release during acute hypoxia in the rainbow trout publication-title: Journal of Experimental Biology – volume: 684 start-page: 371 year: 2019 end-page: 380 article-title: Stress responses in fish: From molecular to evolutionary processes publication-title: Science of the Total Environment – volume: 10 start-page: 2338 year: 2020 article-title: Food availability modulates the combined effects of ocean acidification and warming on fish growth publication-title: Scientific Reports – volume: 88 start-page: 122 year: 2016 end-page: 151 article-title: Measurement and relevance of maximum metabolic rate in fishes publication-title: Journal of Fish Biology – volume: 35 start-page: 971 year: 2009 end-page: 986 article-title: The toxicology of climate change: environmental contaminants in a warming world publication-title: Environment International – volume: 252 start-page: 173 year: 2017 end-page: 185 article-title: Effects of thermal stress on the expression of glucocorticoid receptor complex linked genes in Senegalese sole ( ): Acute and adaptive stress responses publication-title: General and Comparative Endocrinology – volume: 135 start-page: 291 year: 2003 end-page: 302 article-title: Time of day and water temperature modify the physiological stress response in green sturgeon, publication-title: Comparative Biochemistry and Physiology ‐ A Molecular and Integrative Physiology – start-page: 365 year: 2016 end-page: 403 – volume: 214 start-page: 1721 year: 2011 end-page: 1731 article-title: Chronic social stress impairs thermal tolerance in the rainbow trout ( ) publication-title: Journal of Experimental Biology – volume: 506 start-page: 453 year: 2019 end-page: 458 article-title: Temperature‐mediated changes in stress responses, acetylcholinesterase, and immune responses of juvenile olive flounder in a bio‐floc environment publication-title: Aquaculture – volume: 560 start-page: 360 year: 2018 end-page: 364 article-title: Marine heatwaves under global warming publication-title: Nature – volume: 235 start-page: 131 year: 2019 end-page: 137 article-title: The effect of alterations in salinity and temperature on neuroendocrine responses of the Antarctic fish publication-title: Comparative Biochemistry and Physiology ‐Part A: Molecular and Integrative Physiology – year: 1915 – volume: 97 start-page: 567 year: 2019 end-page: 572 article-title: The effects of repeat acute thermal stress on the critical thermal maximum (CTmax) and physiology of juvenile shortnose sturgeon publication-title: Canadian Journal of Zoology – volume: 51 start-page: 768 year: 1995 end-page: 774 article-title: The effect of chronic heat stress on cortisol levels in the Antarctic fish publication-title: Experientia – volume: 35 start-page: 74 year: 2016 end-page: 111 article-title: The endocrinology of the stress response in fish: an adaptation‐physiological view publication-title: Fish Physiology – volume: 35 year: 2016 – volume: 158 start-page: 234 year: 2008 end-page: 239 article-title: Plasma cortisol response to stress in juvenile rainbow trout is influenced by their life history during early development and by egg cortisol content publication-title: General and Comparative Endocrinology – volume: 5 start-page: 1538 year: 2015 end-page: 1547 article-title: Reconceptualizing synergism and antagonism among multiple stressors publication-title: Ecology and Evolution – volume: 293 start-page: 2248 year: 2001 end-page: 2251 article-title: Effects of size and temperature on metabolic rate publication-title: Science – volume: 22 start-page: 180 year: 2016 end-page: 189 article-title: Net effects of multiple stressors in freshwater ecosystems: a meta‐analysis publication-title: Global Change Biology – volume: 25 start-page: 839 year: 2019 end-page: 849 article-title: Divergent responses of Atlantic cod to ocean acidification and food limitation publication-title: Global Change Biology – volume: 25 start-page: 3539 year: 2019 end-page: 3548 article-title: Future ocean climate homogenizes communities across habitats through diversity loss and rise of generalist species publication-title: Global Change Biology – volume: 277 start-page: 58 year: 2015 end-page: 67 article-title: Serotonin and stress coping publication-title: Behavioural Brain Research – volume: 104 start-page: 9715 year: 2007 end-page: 9719 article-title: Mechanisms for climate‐induced mortality of fish populations in whole‐lake experiments publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 68 start-page: 893 year: 1999 end-page: 905 article-title: Scaling of metabolic rate with body mass and temperature in teleost fish publication-title: Journal of Animal Ecology – volume: 328 start-page: 1523 year: 2010 end-page: 1528 article-title: The impact of climate change on the world's marine ecosystems publication-title: Science – volume: 166 start-page: 237 year: 2013 end-page: 243 article-title: Influence of temperature in thermal and oxidative stress responses in estuarine fish publication-title: Comparative Biochemistry and Physiology ‐ A Molecular and Integrative Physiology – volume: 233 start-page: 381 year: 2017a end-page: 394 article-title: Thermal imprinting modifies adult stress and innate immune responsiveness in the teleost sea bream publication-title: Journal of Endocrinology – start-page: 211 year: 1999 end-page: 268 – volume: 14 start-page: 1 year: 2019 ident: e_1_2_6_95_1 article-title: Temperature preference of Nile tilapia (Oreochromis niloticus) juveniles induces spontaneous sex reversal publication-title: PLoS One – ident: e_1_2_6_80_1 doi: 10.1016/j.aquaculture.2018.07.056 – ident: e_1_2_6_25_1 doi: 10.1046/j.1365-2656.1999.00337.x – ident: e_1_2_6_143_1 doi: 10.1371/journal.pone.0080713 – ident: e_1_2_6_137_1 doi: 10.1038/s41598-018-23950-x – ident: e_1_2_6_30_1 doi: 10.1038/s41598-020-58846-2 – ident: e_1_2_6_44_1 doi: 10.1079/9781786393982.0136 – ident: e_1_2_6_16_1 doi: 10.1098/rspb.2009.1346 – start-page: 1 volume-title: Fish physiology year: 2016 ident: e_1_2_6_121_1 – ident: e_1_2_6_88_1 doi: 10.1126/science.1098704 – ident: e_1_2_6_8_1 doi: 10.1016/j.ygcen.2008.07.002 – ident: e_1_2_6_28_1 doi: 10.7717/peerj.6338 – ident: e_1_2_6_37_1 doi: 10.3906/vet-1606-32 – ident: e_1_2_6_48_1 doi: 10.1038/s41559-018-0669-1 – ident: e_1_2_6_110_1 doi: 10.1126/science.1163156 – ident: e_1_2_6_90_1 doi: 10.1111/j.1095-8649.1989.tb02972.x – volume-title: Climate Change 2014: Synthesis report. contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change year: 2014 ident: e_1_2_6_65_1 – ident: e_1_2_6_114_1 doi: 10.1111/j.1365-2761.2010.01183.x – ident: e_1_2_6_120_1 doi: 10.1038/ncomms11447 – ident: e_1_2_6_94_1 doi: 10.1016/j.pocean.2018.09.001 – ident: e_1_2_6_89_1 doi: 10.1016/j.fishres.2004.10.006 – ident: e_1_2_6_24_1 doi: 10.1093/conphys/cov017 – ident: e_1_2_6_54_1 doi: 10.1242/jeb.091751 – volume: 35 start-page: 74 year: 2016 ident: e_1_2_6_59_1 article-title: The endocrinology of the stress response in fish: an adaptation‐physiological view publication-title: Fish Physiology – ident: e_1_2_6_73_1 doi: 10.1016/S1095-6433(03)00075-8 – ident: e_1_2_6_130_1 doi: 10.1016/j.aquaculture.2018.05.042 – ident: e_1_2_6_61_1 doi: 10.1126/science.1189930 – ident: e_1_2_6_99_1 doi: 10.1016/j.yhbeh.2004.01.001 – ident: e_1_2_6_26_1 doi: 10.1016/j.ygcen.2018.09.017 – ident: e_1_2_6_87_1 doi: 10.1242/jeb.156174 – ident: e_1_2_6_70_1 doi: 10.1242/bio.20149829 – ident: e_1_2_6_76_1 doi: 10.1152/ajpregu.00196.2011 – ident: e_1_2_6_82_1 doi: 10.1152/japplphysiol.01122.2001 – ident: e_1_2_6_129_1 doi: 10.1016/j.dci.2011.07.002 – ident: e_1_2_6_135_1 doi: 10.1016/j.fsi.2005.04.005 – ident: e_1_2_6_35_1 doi: 10.1016/j.cbpb.2004.09.012 – ident: e_1_2_6_5_1 doi: 10.1038/s41598-017-10861-6 – ident: e_1_2_6_38_1 doi: 10.1038/nature09407 – ident: e_1_2_6_39_1 doi: 10.1038/nclimate1323 – ident: e_1_2_6_72_1 doi: 10.1007/s40011-014-0357-0 – ident: e_1_2_6_106_1 doi: 10.1016/j.scitotenv.2019.05.357 – ident: e_1_2_6_133_1 doi: 10.1016/j.jtherbio.2020.102526 – ident: e_1_2_6_36_1 doi: 10.1073/pnas.1015178108 – ident: e_1_2_6_107_1 doi: 10.1002/ece3.1465 – start-page: 167 volume-title: Fish physiology year: 2016 ident: e_1_2_6_118_1 – ident: e_1_2_6_62_1 doi: 10.1242/jeb.61.2.455 – ident: e_1_2_6_43_1 doi: 10.1016/B978-0-12-802728-8.00004-7 – ident: e_1_2_6_139_1 doi: 10.1152/physrev.1997.77.3.591 – ident: e_1_2_6_66_1 doi: 10.1016/j.ecolind.2020.106118 – ident: e_1_2_6_83_1 doi: 10.1111/j.1865-1682.2010.01150.x – ident: e_1_2_6_34_1 doi: 10.1086/589095 – ident: e_1_2_6_98_1 doi: 10.1093/icb/45.3.463 – ident: e_1_2_6_123_1 doi: 10.1016/j.anbehav.2013.02.017 – ident: e_1_2_6_140_1 doi: 10.1111/jfb.12055 – ident: e_1_2_6_2_1 – ident: e_1_2_6_85_1 doi: 10.1016/j.fsi.2018.08.042 – ident: e_1_2_6_91_1 doi: 10.1007/s00338-015-1333-8 – ident: e_1_2_6_22_1 doi: 10.1038/s41558-019-0631-5 – ident: e_1_2_6_126_1 doi: 10.1242/jeb.050096 – ident: e_1_2_6_115_1 doi: 10.1007/BF01922428 – ident: e_1_2_6_124_1 doi: 10.1016/j.cbpc.2004.05.003 – ident: e_1_2_6_10_1 doi: 10.1093/icb/42.3.517 – ident: e_1_2_6_11_1 doi: 10.1016/0044-8486(87)90172-4 – ident: e_1_2_6_101_1 doi: 10.1038/s41598-019-49086-0 – volume-title: Quantitative laws in biological chemistry year: 1915 ident: e_1_2_6_7_1 – ident: e_1_2_6_40_1 doi: 10.1126/science.1199158 – ident: e_1_2_6_102_1 doi: 10.1093/icesjms/39.2.175 – ident: e_1_2_6_108_1 doi: 10.1111/1365-2435.13538 – ident: e_1_2_6_103_1 doi: 10.1038/497320a – ident: e_1_2_6_15_1 doi: 10.1073/pnas.0701638104 – ident: e_1_2_6_57_1 doi: 10.1016/j.ecolind.2020.106937 – ident: e_1_2_6_144_1 doi: 10.1523/JNEUROSCI.1039-10.2010 – ident: e_1_2_6_58_1 doi: 10.1111/jfb.13546 – ident: e_1_2_6_14_1 doi: 10.1111/mec.14884 – ident: e_1_2_6_20_1 doi: 10.1242/jeb.199.7.1605 – ident: e_1_2_6_71_1 doi: 10.1016/j.aquaculture.2019.03.045 – ident: e_1_2_6_112_1 doi: 10.1016/j.bbr.2014.07.052 – ident: e_1_2_6_50_1 doi: 10.1139/facets-2016-0053 – ident: e_1_2_6_109_1 doi: 10.1038/s41586-019-1132-4 – ident: e_1_2_6_111_1 doi: 10.1126/science.1135471 – ident: e_1_2_6_86_1 doi: 10.1530/JOE-16-0610 – ident: e_1_2_6_92_1 doi: 10.1023/A:1008924418720 – ident: e_1_2_6_104_1 doi: 10.1111/j.1095-8649.2007.01763.x – ident: e_1_2_6_131_1 doi: 10.1016/S0304-3940(97)00618-6 – ident: e_1_2_6_42_1 doi: 10.1242/jeb.02260 – ident: e_1_2_6_68_1 doi: 10.3354/ab00707 – ident: e_1_2_6_64_1 doi: 10.1007/s00300-008-0438-8 – ident: e_1_2_6_141_1 doi: 10.1016/S0304-3940(97)00488-6 – ident: e_1_2_6_3_1 doi: 10.1111/j.1095-8649.2007.01697.x – ident: e_1_2_6_17_1 doi: 10.1186/s12864-015-1503-7 – ident: e_1_2_6_67_1 doi: 10.1111/gcb.13028 – ident: e_1_2_6_122_1 doi: 10.1016/j.jtherbio.2010.12.008 – ident: e_1_2_6_78_1 doi: 10.1016/j.ygeno.2018.11.011 – ident: e_1_2_6_41_1 doi: 10.1016/j.cbpb.2015.10.002 – start-page: 365 volume-title: Fish physiology year: 2016 ident: e_1_2_6_142_1 – ident: e_1_2_6_132_1 doi: 10.3354/meps11758 – ident: e_1_2_6_134_1 doi: 10.1016/j.cbpa.2019.05.029 – ident: e_1_2_6_60_1 doi: 10.1016/j.aquaculture.2018.09.016 – ident: e_1_2_6_31_1 doi: 10.1038/nclimate3382 – ident: e_1_2_6_100_1 doi: 10.1006/hbeh.2002.1796 – ident: e_1_2_6_75_1 doi: 10.1242/jeb.056135 – ident: e_1_2_6_32_1 doi: 10.1371/journal.pone.0194353 – ident: e_1_2_6_69_1 doi: 10.1007/s11160-018-9535-0 – ident: e_1_2_6_96_1 doi: 10.1111/jfb.12796 – ident: e_1_2_6_47_1 doi: 10.1126/science.aau1758 – ident: e_1_2_6_127_1 doi: 10.1242/jeb.019281 – ident: e_1_2_6_53_1 doi: 10.1111/jfb.14429 – ident: e_1_2_6_49_1 doi: 10.1038/s41586-018-0383-9 – ident: e_1_2_6_29_1 doi: 10.1111/eth.12437 – ident: e_1_2_6_113_1 doi: 10.1016/j.physbeh.2017.08.001 – ident: e_1_2_6_51_1 doi: 10.1007/BF01869450 – ident: e_1_2_6_23_1 doi: 10.1242/jeb.161224 – ident: e_1_2_6_97_1 doi: 10.1016/j.envint.2009.02.006 – ident: e_1_2_6_79_1 doi: 10.1038/srep32965 – ident: e_1_2_6_84_1 doi: 10.1016/0305-0491(89)90138-7 – ident: e_1_2_6_55_1 doi: 10.1126/science.1061967 – ident: e_1_2_6_12_1 doi: 10.1006/gcen.2001.7688 – ident: e_1_2_6_4_1 doi: 10.1098/rspb.2017.0784 – ident: e_1_2_6_27_1 doi: 10.1111/gcb.14745 – ident: e_1_2_6_13_1 doi: 10.1016/j.ygcen.2017.06.022 – ident: e_1_2_6_116_1 doi: 10.1038/s41558-018-0159-0 – ident: e_1_2_6_119_1 doi: 10.1016/j.jtherbio.2018.09.006 – ident: e_1_2_6_74_1 doi: 10.1007/s10641-004-5353-4 – ident: e_1_2_6_81_1 doi: 10.1016/j.cbpa.2013.06.008 – ident: e_1_2_6_45_1 doi: 10.1007/s00360-012-0735-y – ident: e_1_2_6_105_1 doi: 10.1242/jeb.186.1.289 – volume: 45 start-page: 37 year: 2011 ident: e_1_2_6_93_1 article-title: Role of catecholamine‐induced activation of vagal afferent pathways in regulation of sympathoadrenal system activity: negative feedback loop of stress response publication-title: Endocrine Regulations – ident: e_1_2_6_136_1 doi: 10.1098/rspb.2013.2612 – ident: e_1_2_6_9_1 doi: 10.1139/cjz-2018-0157 – ident: e_1_2_6_125_1 doi: 10.1242/jeb.037473 – ident: e_1_2_6_63_1 doi: 10.1242/jeb.49.1.71 – ident: e_1_2_6_21_1 doi: 10.1126/science.aam7240 – ident: e_1_2_6_128_1 doi: 10.1111/gcb.14554 – ident: e_1_2_6_138_1 doi: 10.1016/j.anbehav.2019.09.005 – ident: e_1_2_6_33_1 doi: 10.1098/rspb.2015.2592 – ident: e_1_2_6_117_1 doi: 10.1111/jfb.13904 – ident: e_1_2_6_18_1 doi: 10.1007/s10750-019-3948-1 – ident: e_1_2_6_56_1 doi: 10.1016/j.aquatox.2019.105312 – ident: e_1_2_6_77_1 doi: 10.1080/02656730500307298 – ident: e_1_2_6_52_1 doi: 10.1016/j.tree.2019.02.012 – ident: e_1_2_6_6_1 doi: 10.1038/s41598-020-62331-1 – volume: 66 start-page: 275 year: 1972 ident: e_1_2_6_19_1 article-title: Weitere studien uber das warmegleich‐ gewicht unter gasmolekulen publication-title: Berichte Wiene – ident: e_1_2_6_46_1 doi: 10.1016/j.bbr.2016.09.026 |
SSID | ssj0009393 |
Score | 2.6951756 |
SecondaryResourceType | review_article |
Snippet | The capacity of fishes to cope with environmental variation is considered to be a main determinant of their fitness and is partly determined by their stress... |
SourceID | hal proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1496 |
SubjectTerms | adaptive capacity Animal population Animal populations Climate change coping cortisol Ecological effects ectothermy environmental factors Environmental Sciences Fish Fitness Global Changes Global temperatures Global warming heat Heat waves Ocean temperature oceans Physiology plasticity Stress response teleost Temperature effects water temperature |
Title | Temperature increase and its effects on fish stress physiology in the context of global warming |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjfb.14599 https://www.proquest.com/docview/2555266022 https://www.proquest.com/docview/2455177807 https://www.proquest.com/docview/2718338166 https://hal.inrae.fr/hal-03137601 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66IHjxLa4vonjwUnGb9BE8reKyiHoQBRGhZNpUF6UVu6vgr3cmfbiKingr7aRtmkzyTfrNF8Z2QBgtkjBxQiGVI7UMHZwUtBMLof195ca-oWzks3O_fyVPrr3rCXZQ58KU-hDNght5hh2vycE1FONOngK6uacoeY-4WgSILj6ko5SoBHcx2MICbqUqZFk8dclPc9HkPTEhx2DmOFi1s01vlt3W71mSTB72RkPYi9--SDj-syJzbKZCobxbdpt5NmGyBTZ1k9s19kUWXRpE06XaMh9kBCwLw3WW8MGw4BUFhOcZTwfFPS_TTbhdI7E3wCIccSUnGjyO_TxPeak7wl81UW_ulthV7_jyqO9UOzE4sSROFUkCaWWED0HHIEYCkQhPJoCDAbgheDJ1YzAyVpQa1QHpa0i9BEOrINFSuSCWWSvLM7PCeKqESdAukGCDJSUDD5svDt1OChi9tdlu3SZRXMmU024Zj1ETrqQQ2e_VZtuN6VOpzfGtETZsc53UtPvd04jOkWwlUYJe8KHrdbtHlQ8XEQZbHsIX7EBtttVcRu-jXyo6M_kIbSQiziAI94NfbHD6F_b_LNbNdoSf3zY66R3ag9W_m66xaZeINnZpaJ21hs8js4FIaQib1iXeAZziDQI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB71IQQXKI-qC6UYBBKXVF3befjAobRdbdttD2grVVyMnTjtiiqpyC4V_Cb-Cv-JGefRBQHi0gO3aDObOMmM5xv782eAl1Y4I7IkCxIhVSCNTAJMCiZIhTDRluJp5Gg18tFxNDyRB6fh6QJ8a9fC1PoQ3YAbRYbvrynAaUB6Pspzi3EeKtVQKg_dlyss2Ko3-7v4dV9xPtgb7wyDZk-BIJXEDiJxG6OciGzcd5jtrchEKDOLbm15YkOZ89Q6mSpa5NO3MjI2DzMsEuLMSMWtwOsuwjLtIE5K_bvvrsWqlGgkfrG8wxbyRsfI84bapv6U_RbPiXs5B2zn4bHPb4N78L19MzWt5ePmbGo306-_iEb-L69uBe42QJtt15FxHxZc8QBuvS_9NMJD0GOHBUMtKM0mBWHnyjFTZGwyrVjDcmFlwfJJdc7qFTXMDwP5C-BfGEJnRkx_TG-szFktrcKuDLGLzh7ByY083SosFWXh1oDlSrgM7WJpfT2oZBz2RZQmvJ9bLFB78Lp1Ap02Suy0IciF7iqy3Gr_fXrwojO9rOVHfmuEntSdJ8Hw4fZI02-kzEmsp8940_XW0XTTTVUa68kQERp6bA-ed6exg6FZI1O4coY2EkF1HCdb8V9sEOEIPwWNz-Y978-t1QeDt_7g8b-bPoPbw_HRSI_2jw-fwB1OvCI_ErYOS9NPM_cUgeHUbvh4ZPDhpr34B8RSadM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB61RSAuvFEDBQwCictWje19-NBDIUTpgwqhVqq4GHvtbSPQbsUmVPCX-lf4Ucx4HwQEiEsP3KLsZGPvzni-sT9_BnhqhTfCZS7KhFSRNDKLMCmYKBfCJBuK54mn3civ95PJodw5io-W4LzbC9PoQ_QTbhQZYbymAD91xWKQFxbDPFaqZVTu-i9nWK_Vm9sjfLnPOB-_Ong5idojBaJcEjmItG2M8iKx6dBjsrfCiVg6i15teWZjWfDcepkr2uMztDIxtogd1gipM1JxK_C-y3BJYjfonIjR2x9aVUq0Cr9Y3WELeStjFGhDXVN_Sn7LJ0S9XMC1i-g4pLfxdfjWPZiG1fJhfT6z6_nXXzQj_5MndwOutTCbbTVxcROWfHkLLr-rwiLCbdAHHsuFRk6aTUtCzrVnpnRsOqtZy3FhVcmKaX3Cmv00LEwChRvgTxgCZ0Y8f0xurCpYI6zCzgxxi47vwOGF9O4urJRV6VeBFUp4h3aptKEaVDKNhyLJMz4sLJanA3je-YDOWx12Og7ko-7rscLq8H4G8KQ3PW3ER35rhI7UXye58MnWnqbvSJeTOE-f8U_XOj_T7SBVa6wmY8Rn6LADeNxfxuGF1oxM6as52kiE1GmabaR_sUF8I8ICNPYtON6fW6t3xi_Ch3v_bvoIrrwZjfXe9v7ufbjKiVQUpsHWYGX2ae4fICqc2YchGhm8v2gn_g7_xGiC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+increase+and+its+effects+on+fish+stress+physiology+in+the+context+of+global+warming&rft.jtitle=Journal+of+fish+biology&rft.au=Alfonso%2C+S%C3%A9bastien&rft.au=Gesto%2C+Manuel&rft.au=Sadoul%2C+Bastien&rft.date=2021-06-01&rft.pub=Wiley&rft.issn=0022-1112&rft.eissn=1095-8649&rft.volume=98&rft.issue=6&rft.spage=1496&rft.epage=1508&rft_id=info:doi/10.1111%2Fjfb.14599&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03137601v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1112&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1112&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1112&client=summon |