Genomic adaptation of flowering‐time genes during the expansion of rice cultivation area

Summary The diversification of flowering time in response to natural environments is critical for the spread of crops to diverse geographic regions. In contrast with recent advances in understanding the molecular basis of photoperiodic flowering in rice (Oryza sativa), little is known about how flow...

Full description

Saved in:
Bibliographic Details
Published inThe Plant journal : for cell and molecular biology Vol. 94; no. 5; pp. 895 - 909
Main Authors Itoh, Hironori, Wada, Kaede C., Sakai, Hiroaki, Shibasaki, Kyohei, Fukuoka, Shuichi, Wu, Jianzhong, Yonemaru, Jun‐ichi, Yano, Masahiro, Izawa, Takeshi
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.06.2018
Subjects
Online AccessGet full text
ISSN0960-7412
1365-313X
1365-313X
DOI10.1111/tpj.13906

Cover

Abstract Summary The diversification of flowering time in response to natural environments is critical for the spread of crops to diverse geographic regions. In contrast with recent advances in understanding the molecular basis of photoperiodic flowering in rice (Oryza sativa), little is known about how flowering‐time diversification is structured within rice subspecies. By analyzing genome sequencing data and a set of 429 chromosome segment substitution lines (CSSLs) originating from 10 diverse rice accessions with wide distributions, we revealed diverse effects of allelic variations for common flowering‐time quantitative trait loci in the recipient's background. Although functional variations associated with a few loci corresponded to standing variations among subspecies, the identified functional nucleotide polymorphisms occurred recently after rice subgroup differentiation, indicating that the functional diversity of flowering‐time gene sequences was not particularly associated with phylogenetic relationship between rice subspecies. Intensive analysis of the Hd1 genomic region identified the signature of an early introgression of the Hd1 with key mutation(s) in aus and temperate japonica accessions. Our data suggested that, after such key introgressions, new mutations were selected and accelerated the flowering‐time diversity within subspecies during the expansion of rice cultivation area. This finding may imply that new genome‐wide changes for flowering‐time adaptation are one of the critical determinants for establishing genomic architecture of local rice subgroups. In‐depth analyses of various rice genomes coupling with the genetically confirmed phenotypic changes in a large set of CSSLs enabled us to demonstrate how rice genome dynamics has coordinated with the adaptation of cultivated rice during the expansion of cultivation area. Significance Statement This work comprehensively identified functional nucleotide polymorphisms in flowering‐time genes from various rice genomes through phylogenetic analyses combined with genetically confirmed phenotypic changes by a large set of chromosome segment substitution lines. Our data indicate that a specific introgression and subsequent accumulation of newly occurring mutations greatly contributed to genetic improvement of photoperiodic flowering for northward expansion of rice cultivation area.
AbstractList The diversification of flowering time in response to natural environments is critical for the spread of crops to diverse geographic regions. In contrast with recent advances in understanding the molecular basis of photoperiodic flowering in rice (Oryza sativa), little is known about how flowering-time diversification is structured within rice subspecies. By analyzing genome sequencing data and a set of 429 chromosome segment substitution lines (CSSLs) originating from 10 diverse rice accessions with wide distributions, we revealed diverse effects of allelic variations for common flowering-time quantitative trait loci in the recipient's background. Although functional variations associated with a few loci corresponded to standing variations among subspecies, the identified functional nucleotide polymorphisms occurred recently after rice subgroup differentiation, indicating that the functional diversity of flowering-time gene sequences was not particularly associated with phylogenetic relationship between rice subspecies. Intensive analysis of the Hd1 genomic region identified the signature of an early introgression of the Hd1 with key mutation(s) in aus and temperate japonica accessions. Our data suggested that, after such key introgressions, new mutations were selected and accelerated the flowering-time diversity within subspecies during the expansion of rice cultivation area. This finding may imply that new genome-wide changes for flowering-time adaptation are one of the critical determinants for establishing genomic architecture of local rice subgroups. In-depth analyses of various rice genomes coupling with the genetically confirmed phenotypic changes in a large set of CSSLs enabled us to demonstrate how rice genome dynamics has coordinated with the adaptation of cultivated rice during the expansion of cultivation area.
The diversification of flowering time in response to natural environments is critical for the spread of crops to diverse geographic regions. In contrast with recent advances in understanding the molecular basis of photoperiodic flowering in rice ( Oryza sativa ), little is known about how flowering‐time diversification is structured within rice subspecies. By analyzing genome sequencing data and a set of 429 chromosome segment substitution lines ( CSSL s) originating from 10 diverse rice accessions with wide distributions, we revealed diverse effects of allelic variations for common flowering‐time quantitative trait loci in the recipient's background. Although functional variations associated with a few loci corresponded to standing variations among subspecies, the identified functional nucleotide polymorphisms occurred recently after rice subgroup differentiation, indicating that the functional diversity of flowering‐time gene sequences was not particularly associated with phylogenetic relationship between rice subspecies. Intensive analysis of the Hd1 genomic region identified the signature of an early introgression of the Hd1 with key mutation(s) in aus and temperate japonica accessions. Our data suggested that, after such key introgressions, new mutations were selected and accelerated the flowering‐time diversity within subspecies during the expansion of rice cultivation area. This finding may imply that new genome‐wide changes for flowering‐time adaptation are one of the critical determinants for establishing genomic architecture of local rice subgroups. In‐depth analyses of various rice genomes coupling with the genetically confirmed phenotypic changes in a large set of CSSL s enabled us to demonstrate how rice genome dynamics has coordinated with the adaptation of cultivated rice during the expansion of cultivation area. This work comprehensively identified functional nucleotide polymorphisms in flowering‐time genes from various rice genomes through phylogenetic analyses combined with genetically confirmed phenotypic changes by a large set of chromosome segment substitution lines. Our data indicate that a specific introgression and subsequent accumulation of newly occurring mutations greatly contributed to genetic improvement of photoperiodic flowering for northward expansion of rice cultivation area.
Summary The diversification of flowering time in response to natural environments is critical for the spread of crops to diverse geographic regions. In contrast with recent advances in understanding the molecular basis of photoperiodic flowering in rice (Oryza sativa), little is known about how flowering‐time diversification is structured within rice subspecies. By analyzing genome sequencing data and a set of 429 chromosome segment substitution lines (CSSLs) originating from 10 diverse rice accessions with wide distributions, we revealed diverse effects of allelic variations for common flowering‐time quantitative trait loci in the recipient's background. Although functional variations associated with a few loci corresponded to standing variations among subspecies, the identified functional nucleotide polymorphisms occurred recently after rice subgroup differentiation, indicating that the functional diversity of flowering‐time gene sequences was not particularly associated with phylogenetic relationship between rice subspecies. Intensive analysis of the Hd1 genomic region identified the signature of an early introgression of the Hd1 with key mutation(s) in aus and temperate japonica accessions. Our data suggested that, after such key introgressions, new mutations were selected and accelerated the flowering‐time diversity within subspecies during the expansion of rice cultivation area. This finding may imply that new genome‐wide changes for flowering‐time adaptation are one of the critical determinants for establishing genomic architecture of local rice subgroups. In‐depth analyses of various rice genomes coupling with the genetically confirmed phenotypic changes in a large set of CSSLs enabled us to demonstrate how rice genome dynamics has coordinated with the adaptation of cultivated rice during the expansion of cultivation area. Significance Statement This work comprehensively identified functional nucleotide polymorphisms in flowering‐time genes from various rice genomes through phylogenetic analyses combined with genetically confirmed phenotypic changes by a large set of chromosome segment substitution lines. Our data indicate that a specific introgression and subsequent accumulation of newly occurring mutations greatly contributed to genetic improvement of photoperiodic flowering for northward expansion of rice cultivation area.
The diversification of flowering time in response to natural environments is critical for the spread of crops to diverse geographic regions. In contrast with recent advances in understanding the molecular basis of photoperiodic flowering in rice (Oryza sativa), little is known about how flowering-time diversification is structured within rice subspecies. By analyzing genome sequencing data and a set of 429 chromosome segment substitution lines (CSSLs) originating from 10 diverse rice accessions with wide distributions, we revealed diverse effects of allelic variations for common flowering-time quantitative trait loci in the recipient's background. Although functional variations associated with a few loci corresponded to standing variations among subspecies, the identified functional nucleotide polymorphisms occurred recently after rice subgroup differentiation, indicating that the functional diversity of flowering-time gene sequences was not particularly associated with phylogenetic relationship between rice subspecies. Intensive analysis of the Hd1 genomic region identified the signature of an early introgression of the Hd1 with key mutation(s) in aus and temperate japonica accessions. Our data suggested that, after such key introgressions, new mutations were selected and accelerated the flowering-time diversity within subspecies during the expansion of rice cultivation area. This finding may imply that new genome-wide changes for flowering-time adaptation are one of the critical determinants for establishing genomic architecture of local rice subgroups. In-depth analyses of various rice genomes coupling with the genetically confirmed phenotypic changes in a large set of CSSLs enabled us to demonstrate how rice genome dynamics has coordinated with the adaptation of cultivated rice during the expansion of cultivation area.The diversification of flowering time in response to natural environments is critical for the spread of crops to diverse geographic regions. In contrast with recent advances in understanding the molecular basis of photoperiodic flowering in rice (Oryza sativa), little is known about how flowering-time diversification is structured within rice subspecies. By analyzing genome sequencing data and a set of 429 chromosome segment substitution lines (CSSLs) originating from 10 diverse rice accessions with wide distributions, we revealed diverse effects of allelic variations for common flowering-time quantitative trait loci in the recipient's background. Although functional variations associated with a few loci corresponded to standing variations among subspecies, the identified functional nucleotide polymorphisms occurred recently after rice subgroup differentiation, indicating that the functional diversity of flowering-time gene sequences was not particularly associated with phylogenetic relationship between rice subspecies. Intensive analysis of the Hd1 genomic region identified the signature of an early introgression of the Hd1 with key mutation(s) in aus and temperate japonica accessions. Our data suggested that, after such key introgressions, new mutations were selected and accelerated the flowering-time diversity within subspecies during the expansion of rice cultivation area. This finding may imply that new genome-wide changes for flowering-time adaptation are one of the critical determinants for establishing genomic architecture of local rice subgroups. In-depth analyses of various rice genomes coupling with the genetically confirmed phenotypic changes in a large set of CSSLs enabled us to demonstrate how rice genome dynamics has coordinated with the adaptation of cultivated rice during the expansion of cultivation area.
Author Izawa, Takeshi
Shibasaki, Kyohei
Fukuoka, Shuichi
Yano, Masahiro
Yonemaru, Jun‐ichi
Wada, Kaede C.
Itoh, Hironori
Sakai, Hiroaki
Wu, Jianzhong
Author_xml – sequence: 1
  givenname: Hironori
  surname: Itoh
  fullname: Itoh, Hironori
  email: hiroitoh@affrc.go.jp
  organization: NARO (NICS)
– sequence: 2
  givenname: Kaede C.
  surname: Wada
  fullname: Wada, Kaede C.
  organization: Ibaraki Agricultural Center
– sequence: 3
  givenname: Hiroaki
  surname: Sakai
  fullname: Sakai, Hiroaki
  organization: NARO
– sequence: 4
  givenname: Kyohei
  surname: Shibasaki
  fullname: Shibasaki, Kyohei
  organization: RIKEN Center for Sustainable Resource Science
– sequence: 5
  givenname: Shuichi
  surname: Fukuoka
  fullname: Fukuoka, Shuichi
  organization: NIAS
– sequence: 6
  givenname: Jianzhong
  surname: Wu
  fullname: Wu, Jianzhong
  organization: NARO
– sequence: 7
  givenname: Jun‐ichi
  surname: Yonemaru
  fullname: Yonemaru, Jun‐ichi
  organization: NIAS
– sequence: 8
  givenname: Masahiro
  surname: Yano
  fullname: Yano, Masahiro
  organization: NIAS
– sequence: 9
  givenname: Takeshi
  surname: Izawa
  fullname: Izawa, Takeshi
  email: a-izawa@mail.ecc.u-tokyo.ac.jp
  organization: University of Tokyo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29570873$$D View this record in MEDLINE/PubMed
BookMark eNp90ctKxDAUBuAgio6XhS8gBTe6qCZNJmmWMnhF0IWCuCmZ9FQztElNWi87H8Fn9EmMdnQhaDaBw3cOyflX0aJ1FhDaJHiPxLPftbM9QiXmC2hEKB-nlNCbRTTCkuNUMJKtoNUQZhgTQTlbRiuZHAucCzpCt8dgXWN0okrVdqozziauSqraPYE39u799a0zDSR3YCEkZf9ZS7p7SOC5VTbMuTcaEt3XnXkcRigPah0tVaoOsDG_19D10eHV5CQ9vzg-nRycp5rJnKe8rOSUl0RJyaes1JIrysSYVxXPYnEqgFESP5GDwFpTwbmSmSYsH4NUuiJ0De0Mc1vvHnoIXdGYoKGulQXXhyLDJMeZyBmOdPsXnbne2_i6qJigkglGo9qaq37aQFm03jTKvxTfW4tgdwDauxA8VD-E4OIzkSImUnwlEu3-L6vNsOfOK1P_1_Fkanj5e3RxdXk2dHwAktmc4w
CitedBy_id crossref_primary_10_1111_nph_16010
crossref_primary_10_1111_tpj_16143
crossref_primary_10_1186_s12284_021_00527_3
crossref_primary_10_1270_jsbbs_18172
crossref_primary_10_1270_jsbbs_22095
crossref_primary_10_3390_plants13131869
crossref_primary_10_1270_jsbbs_19064
crossref_primary_10_1007_s11427_021_2024_0
crossref_primary_10_1146_annurev_arplant_060223_030954
crossref_primary_10_31742_ISGPB_84_3_9
crossref_primary_10_3390_plants10112408
crossref_primary_10_1007_s42994_021_00039_0
crossref_primary_10_1038_s41598_023_30471_9
crossref_primary_10_3389_fpls_2020_00864
crossref_primary_10_1016_j_xplc_2023_100610
crossref_primary_10_1038_s41598_021_94552_3
crossref_primary_10_1186_s12284_024_00726_8
crossref_primary_10_3390_ijms22031024
crossref_primary_10_1371_journal_pone_0239028
crossref_primary_10_1093_pcp_pcac073
crossref_primary_10_1186_s12864_018_5086_y
crossref_primary_10_1155_2022_7431151
crossref_primary_10_1111_pbr_13254
crossref_primary_10_1093_g3journal_jkad300
crossref_primary_10_1007_s10709_019_00075_1
crossref_primary_10_3390_ijms21176155
crossref_primary_10_1093_pcp_pcaa019
crossref_primary_10_3390_genes9100489
Cites_doi 10.1007/s00122-012-2005-5
10.1104/pp.111.181792
10.1270/jsbbs.57.257
10.1038/nrg3605
10.1111/tpj.12268
10.1104/pp.113.231308
10.1073/pnas.1213962110
10.1270/jsbbs.60.509
10.1093/pcp/pcf156
10.1270/jsbbs.65.308
10.1007/s12284-008-9019-2
10.1104/pp.010710
10.1023/A:1005810616885
10.1093/pcp/pct188
10.1093/pcp/pcs028
10.1626/jcs.43.224
10.1242/dev.008631
10.1266/ggs.86.175
10.1104/pp.110.156943
10.1073/pnas.0900992106
10.1038/nature11532
10.1371/journal.pgen.1003281
10.1038/ng.3819
10.1093/pcp/pcw105
10.1270/jsbbs.55.65
10.1007/s00122-010-1275-z
10.1266/ggs.82.217
10.1093/bioinformatics/btp352
10.1101/gr.107524.110
10.1093/molbev/msr121
10.1186/1939-8433-6-4
10.1270/jsbbs.63.284
10.1101/gad.1189604
10.1038/ng.143
10.1038/ng.3596
10.1104/pp.109.148908
10.1073/pnas.1418204111
10.1093/jxb/erm159
10.1038/ng.3784
10.1007/s00438-010-0555-2
10.1007/BF01731581
10.1093/pcp/pcn118
10.1093/bioinformatics/btu170
10.1038/ng.695
10.1371/journal.pone.0075959
10.1270/jsbbs.55.431
10.1626/jcs.39.468
10.1093/nar/8.19.4321
10.1017/CBO9780511623486
10.1038/ng.606
10.1016/j.cell.2006.12.006
10.1105/tpc.12.12.2473
10.1270/jsbbs1951.17.131
10.1186/s12870-015-0501-x
10.1093/bioinformatics/btp324
10.1093/bioinformatics/btr074
ContentType Journal Article
Copyright 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd
2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.
Copyright © 2018 John Wiley & Sons Ltd and the Society for Experimental Biology
Copyright_xml – notice: 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd
– notice: 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.
– notice: Copyright © 2018 John Wiley & Sons Ltd and the Society for Experimental Biology
DBID AAYXX
CITATION
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7X8
DOI 10.1111/tpj.13906
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef

MEDLINE - Academic
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1365-313X
EndPage 909
ExternalDocumentID 29570873
10_1111_tpj_13906
TPJ13906
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Agriculture, Forestry and Fisheries
  funderid: GPN0001; IVG2002; IVG3005; NVR0001; PFT1001; QT1005; QTL5003
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7QO
7QP
7QR
7TM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c4986-6df9b6d1a996b4dc96a34756ff621a9b7e4317418e70cc3766a92c1485e9acf13
IEDL.DBID DR2
ISSN 0960-7412
1365-313X
IngestDate Fri Jul 11 05:41:10 EDT 2025
Fri Jul 25 10:50:07 EDT 2025
Wed Feb 19 02:36:20 EST 2025
Thu Apr 24 23:07:05 EDT 2025
Tue Jul 01 03:57:26 EDT 2025
Wed Jan 22 16:40:14 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords northward progression
rice (Oryza sativa)
functional nucleotide polymorphisms
chromosome segment substitution lines
genome resequencing
photoperiodic flowering
Language English
License 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4986-6df9b6d1a996b4dc96a34756ff621a9b7e4317418e70cc3766a92c1485e9acf13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/tpj.13906
PMID 29570873
PQID 2047394743
PQPubID 31702
PageCount 15
ParticipantIDs proquest_miscellaneous_2018027840
proquest_journals_2047394743
pubmed_primary_29570873
crossref_primary_10_1111_tpj_13906
crossref_citationtrail_10_1111_tpj_13906
wiley_primary_10_1111_tpj_13906_TPJ13906
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2018
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle The Plant journal : for cell and molecular biology
PublicationTitleAlternate Plant J
PublicationYear 2018
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2011; 157
2015a; 65
2017; 49
2013; 126
2013; 63
2011; 15
2013; 8
2013; 6
1970; 39
2012; 53
2013; 9
2010; 60
2010; 20
2013; 14
2000; 12
2002; 43
2012; 490
2010; 110
2010; 152
2010; 153
1983
1975; 43
2006; 127
2011; 28
2014; 164
2016; 48
2014; 55
2015; 15
2009; 25
2010; 284
2010; 120
2014; 111
2007; 57
2007; 58
2016; 57
2001; 127
1980; 16
2010; 42
2004; 18
2013; 76
1997; 35
2008; 49
2011; 86
1980; 8
2015b; 17
2007; 82
2008; 135
2014; 30
2008; 40
2009; 2
2005; 55
2009; 106
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 25
  start-page: 2078
  year: 2009
  end-page: 2079
  article-title: The Sequence Alignment/Map format and SAMtools
  publication-title: Bioinformatics
– volume: 63
  start-page: 284
  year: 2013
  end-page: 291
  article-title: Detection of QTLs to reduce cadmium content in rice grains using LAC23/Koshihikari chromosome segment substitution lines
  publication-title: Breed. Sci.
– volume: 20
  start-page: 1297
  year: 2010
  end-page: 1303
  article-title: The Genome Analysis Toolkit: a MapReduce framework for analyzing next‐generation DNA sequencing data
  publication-title: Genome Res.
– volume: 82
  start-page: 217
  year: 2007
  end-page: 229
  article-title: Phylogenetic analysis of strains and their relations to strains by insertion polymorphism of rice s
  publication-title: Genes Genet. Syst.
– volume: 153
  start-page: 1747
  year: 2010
  end-page: 1758
  article-title: suppresses flowering in rice, influencing plant height and yield potential simultaneously
  publication-title: Plant Physiol.
– volume: 57
  start-page: 1828
  year: 2016
  end-page: 1838
  article-title: , encoding histone acetylase related to , is involved in the control of flowering time in rice
  publication-title: Plant Cell Physiol.
– volume: 8
  start-page: e75959
  year: 2013
  article-title: Natural variation of the contributes to flowering time divergence in rice
  publication-title: PLoS ONE
– volume: 42
  start-page: 635
  year: 2010
  end-page: 638
  article-title: A pair of floral regulators sets critical day length for florigen expression in rice
  publication-title: Nat. Genet.
– volume: 126
  start-page: 611
  year: 2013
  end-page: 618
  article-title: Roles of the Hd5 gene controlling heading date for adaptation to the northern limits of rice cultivation
  publication-title: Theor. Appl. Genet.
– volume: 111
  start-page: 16337
  year: 2014
  end-page: 16342
  article-title: , a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 28
  start-page: 2731
  year: 2011
  end-page: 2739
  article-title: MEGA5: Molecular Evolutionary Genetic Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods
  publication-title: Mol. Biol. Evol.
– volume: 58
  start-page: 3091
  year: 2007
  end-page: 3097
  article-title: Adaptation of flowering‐time by natural and artificial selection in Arabidopsis and rice
  publication-title: J. Exp. Bot.
– volume: 60
  start-page: 509
  year: 2010
  end-page: 517
  article-title: Germplasm enhancement by developing advanced plant materials from diverse rice accessions
  publication-title: Breed. Sci.
– volume: 86
  start-page: 175
  year: 2011
  end-page: 182
  article-title: ( ), an ortholog of Arabidopsis , is a possible target of human selection during domestication to diversity flowering times of cultivated rice
  publication-title: Genes Genet. Syst.
– volume: 120
  start-page: 1547
  year: 2010
  end-page: 1557
  article-title: Detection of quantitative loci controlling pre‐harvest sprouting resistance by using backcrossed populations of japonica rice cultivars
  publication-title: Theor. Appl. Genet.
– volume: 127
  start-page: 1425
  year: 2001
  end-page: 1429
  article-title: Genetic control of flowering time in rice, a short‐day plant
  publication-title: Plant Physiol.
– volume: 55
  start-page: e9
  year: 2014
  article-title: HapRice, an SNP haplotype database and a web tool for rice
  publication-title: Plant Cell Physiol.
– volume: 106
  start-page: 12273
  year: 2009
  end-page: 12278
  article-title: Genomewide SNP variation reveals relationships among landraces and modern varieties of rice
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 49
  start-page: 773
  year: 2017
  end-page: 779
  article-title: Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield
  publication-title: Nat. Genet.
– volume: 490
  start-page: 497
  year: 2012
  end-page: 501
  article-title: A map of rice genome variation reveals the origin of cultivated rice
  publication-title: Nature
– volume: 8
  start-page: 4321
  year: 1980
  end-page: 4326
  article-title: Rapid isolation of high molecular weight plant DNA
  publication-title: Nucleic Acids Res.
– volume: 40
  start-page: 761
  year: 2008
  end-page: 767
  article-title: Natural variation in is an important regulator of heading date and yield potential in rice
  publication-title: Nat. Genet.
– volume: 39
  start-page: 468
  year: 1970
  end-page: 473
  article-title: Male sterility caused by cooling treatment at the young microspore stage in rice plant. V. Estimation of pollen development stage and the most sensitive stage to coolness
  publication-title: Proc. Crop Sci. Soc. Jpn.
– volume: 14
  start-page: 840
  year: 2013
  end-page: 852
  article-title: Evolution of crop species: genetics of domestication and diversification
  publication-title: Nat. Rev. Genet.
– volume: 76
  start-page: 36
  year: 2013
  end-page: 46
  article-title: , a gene for casein kinase I, is involved in the control of rice flowering‐time by modulating the day‐length response
  publication-title: Plant J.
– volume: 152
  start-page: 808
  year: 2010
  end-page: 820
  article-title: The role of casein kinase II in flowering time regulation has diversified during evolution
  publication-title: Plant Physiol.
– volume: 49
  start-page: 476
  year: 2017
  end-page: 480
  article-title: A study of allelic diversity underlying flowering‐time adaptation in maize landraces
  publication-title: Nat. Genet.
– volume: 57
  start-page: 257
  year: 2007
  end-page: 261
  article-title: Development of chromosome segment substitution lines derived from backcross between indica donor rice cultivar ‘Nona Bokra’ and japonica recipient cultivar ‘Koshihikari’
  publication-title: Breed. Sci.
– volume: 42
  start-page: 961
  year: 2010
  end-page: 967
  article-title: Genome‐wide association studies of 14 agronomic traits in rice landraces
  publication-title: Nat. Genet.
– year: 1983
– volume: 15
  start-page: 1094
  year: 2011
  end-page: 1100
  article-title: Defining an informativeness metric for clustaling gene expression data
  publication-title: Bioinformatics
– volume: 55
  start-page: 431
  year: 2005
  end-page: 440
  article-title: Development of an RFLP‐based rice diversity research set of germplasm
  publication-title: Breed. Sci.
– volume: 49
  start-page: 1283
  year: 2008
  end-page: 1293
  article-title: Inference of the japonica rice domestication process from the distribution of six functional nucleotide polymorphisms of domestication‐related genes in various landraces and modern cultivars
  publication-title: Plant Cell Physiol.
– volume: 43
  start-page: 224
  year: 1975
  end-page: 236
  article-title: Photoperiodism in the genus IV. Combinations of plant age, day length and number of treatment
  publication-title: Proc. Crop. Sci. Soc. Jpn.
– volume: 110
  start-page: 2775
  year: 2010
  end-page: 2780
  article-title: Association of functional nucleotide polymorphisms at with the northward expansion of rice cultivation in Asia
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 2
  start-page: 56
  year: 2009
  end-page: 66
  article-title: Molecular and evolutionary analysis of the photoperiod sensitivity gene within genus
  publication-title: Rice
– volume: 30
  start-page: 2114
  year: 2014
  end-page: 2120
  article-title: Trimmomatic: a flexible trimmer for Illumina sequence data
  publication-title: Bioinformatics
– volume: 25
  start-page: 1754
  year: 2009
  end-page: 1760
  article-title: Fast and accurate short read alignment with Burrows‐Wheeler transform
  publication-title: Bioinformatics
– volume: 18
  start-page: 926
  year: 2004
  end-page: 936
  article-title: Ehd1, a B‐type response regulator in rice, confers short‐day promotion of flowering and controls FT‐like gene expression independently of Hd1
  publication-title: Genes Dev.
– volume: 6
  start-page: 4
  year: 2013
  article-title: Improvement of the Nipponbare reference genome using next generation sequence and optical map data
  publication-title: Rice
– volume: 284
  start-page: 137
  year: 2010
  end-page: 146
  article-title: Multiple introgression events surrounding the flowering‐time gene in cultivated rice, L
  publication-title: Mol. Genet. Genomics
– volume: 48
  start-page: 927
  year: 2016
  end-page: 934
  article-title: Genome‐wide association study using whole‐genome sequencing rapidly identifies new genes influencing agronomic traits in rice
  publication-title: Nat. Genet.
– volume: 127
  start-page: 1309
  year: 2006
  end-page: 1321
  article-title: The molecular genetics of crop domestication
  publication-title: Cell
– volume: 15
  start-page: 115
  year: 2015
  article-title: Genetic architecture of variation in heading date among Asian rice accessions
  publication-title: BMC Plant Biol.
– volume: 43
  start-page: 1096
  year: 2002
  end-page: 1105
  article-title: , a rice ortholog of the Arabidopsis gene, promotes transition to flowering downstream of under short‐day conditions
  publication-title: Plant Cell Physiol.
– volume: 164
  start-page: 735
  year: 2014
  end-page: 747
  article-title: , , is a central regulator of growth, development, and stress response
  publication-title: Plant Physiol.
– volume: 53
  start-page: 709
  year: 2012
  end-page: 716
  article-title: Natural variation in , a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering
  publication-title: Plant Cell Physiol.
– volume: 55
  start-page: 65
  year: 2005
  end-page: 73
  article-title: Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of rice cultivar ‘Kasalath’ in a genetic background of elite cultivar ‘Koshihikari’
  publication-title: Breed. Sci.
– volume: 9
  start-page: e1003281
  year: 2013
  article-title: Ehd4 encodes a novel and Oryza‐genus‐specific regulator of photoperiodic flowering in rice
  publication-title: PLoS Genet.
– volume: 35
  start-page: 25
  year: 1997
  end-page: 34
  article-title: Origin, dispersal, cultivation and variation of rice
  publication-title: Plant Mol. Biol.
– volume: 157
  start-page: 1128
  year: 2011
  end-page: 1137
  article-title: Molecular dissection of the roles of phytochrome in photoperiodic flowering in rice
  publication-title: Plant Physiol.
– volume: 16
  start-page: 111
  year: 1980
  end-page: 120
  article-title: A simple method for estimation evolutionary rate of base substitutions through comparative studies of nucleotide sequences
  publication-title: J. Mol. Evol.
– volume: 135
  start-page: 767
  year: 2008
  end-page: 774
  article-title: and are essential for flowering in rice
  publication-title: Development
– volume: 12
  start-page: 2473
  year: 2000
  end-page: 2484
  article-title: Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS
  publication-title: Plant Cell
– volume: 17
  start-page: 131
  year: 2015b
  article-title: Development of twelve sets of chromosomal segment substitution lines that enhance allele mining in cultivated rice
  publication-title: Ikushugaku Kennkyu
– volume: 65
  start-page: 308
  year: 2015a
  end-page: 318
  article-title: Advanced backcross QTL analysis reveals complicated genetic control of rice grain shape in a japonica x indica cross
  publication-title: Breed. Sci.
– ident: e_1_2_9_8_1
  doi: 10.1007/s00122-012-2005-5
– ident: e_1_2_9_42_1
  doi: 10.1104/pp.111.181792
– ident: e_1_2_9_46_1
  doi: 10.1270/jsbbs.57.257
– ident: e_1_2_9_35_1
  doi: 10.1038/nrg3605
– ident: e_1_2_9_13_1
  doi: 10.1111/tpj.12268
– ident: e_1_2_9_49_1
  doi: 10.1104/pp.113.231308
– ident: e_1_2_9_50_1
  doi: 10.1073/pnas.1213962110
– ident: e_1_2_9_9_1
  doi: 10.1270/jsbbs.60.509
– ident: e_1_2_9_24_1
  doi: 10.1093/pcp/pcf156
– ident: e_1_2_9_37_1
  doi: 10.1270/jsbbs.65.308
– ident: e_1_2_9_53_1
  doi: 10.1007/s12284-008-9019-2
– ident: e_1_2_9_55_1
  doi: 10.1104/pp.010710
– ident: e_1_2_9_21_1
  doi: 10.1023/A:1005810616885
– ident: e_1_2_9_57_1
  doi: 10.1093/pcp/pct188
– ident: e_1_2_9_32_1
  doi: 10.1093/pcp/pcs028
– ident: e_1_2_9_19_1
  doi: 10.1626/jcs.43.224
– ident: e_1_2_9_26_1
  doi: 10.1242/dev.008631
– ident: e_1_2_9_45_1
  doi: 10.1266/ggs.86.175
– ident: e_1_2_9_48_1
  doi: 10.1104/pp.110.156943
– ident: e_1_2_9_34_1
  doi: 10.1073/pnas.0900992106
– ident: e_1_2_9_16_1
  doi: 10.1038/nature11532
– ident: e_1_2_9_10_1
  doi: 10.1371/journal.pgen.1003281
– ident: e_1_2_9_30_1
  doi: 10.1038/ng.3819
– ident: e_1_2_9_44_1
  doi: 10.1093/pcp/pcw105
– ident: e_1_2_9_6_1
  doi: 10.1270/jsbbs.55.65
– ident: e_1_2_9_12_1
  doi: 10.1007/s00122-010-1275-z
– ident: e_1_2_9_51_1
  doi: 10.1266/ggs.82.217
– ident: e_1_2_9_29_1
  doi: 10.1093/bioinformatics/btp352
– ident: e_1_2_9_33_1
  doi: 10.1101/gr.107524.110
– ident: e_1_2_9_47_1
  doi: 10.1093/molbev/msr121
– ident: e_1_2_9_20_1
  doi: 10.1186/1939-8433-6-4
– ident: e_1_2_9_2_1
  doi: 10.1270/jsbbs.63.284
– ident: e_1_2_9_5_1
  doi: 10.1101/gad.1189604
– ident: e_1_2_9_52_1
  doi: 10.1038/ng.143
– ident: e_1_2_9_56_1
  doi: 10.1038/ng.3596
– ident: e_1_2_9_40_1
  doi: 10.1104/pp.109.148908
– ident: e_1_2_9_11_1
  doi: 10.1073/pnas.1418204111
– ident: e_1_2_9_18_1
  doi: 10.1093/jxb/erm159
– ident: e_1_2_9_39_1
  doi: 10.1038/ng.3784
– ident: e_1_2_9_7_1
  doi: 10.1007/s00438-010-0555-2
– ident: e_1_2_9_22_1
  doi: 10.1007/BF01731581
– ident: e_1_2_9_27_1
  doi: 10.1093/pcp/pcn118
– ident: e_1_2_9_3_1
  doi: 10.1093/bioinformatics/btu170
– ident: e_1_2_9_15_1
  doi: 10.1038/ng.695
– ident: e_1_2_9_41_1
  doi: 10.1371/journal.pone.0075959
– ident: e_1_2_9_25_1
  doi: 10.1270/jsbbs.55.431
– ident: e_1_2_9_43_1
  doi: 10.1626/jcs.39.468
– ident: e_1_2_9_36_1
  doi: 10.1093/nar/8.19.4321
– ident: e_1_2_9_23_1
  doi: 10.1017/CBO9780511623486
– ident: e_1_2_9_17_1
  doi: 10.1038/ng.606
– ident: e_1_2_9_4_1
  doi: 10.1016/j.cell.2006.12.006
– ident: e_1_2_9_54_1
  doi: 10.1105/tpc.12.12.2473
– ident: e_1_2_9_38_1
  doi: 10.1270/jsbbs1951.17.131
– ident: e_1_2_9_14_1
  doi: 10.1186/s12870-015-0501-x
– ident: e_1_2_9_28_1
  doi: 10.1093/bioinformatics/btp324
– ident: e_1_2_9_31_1
  doi: 10.1093/bioinformatics/btr074
SSID ssj0017364
Score 2.4185212
Snippet Summary The diversification of flowering time in response to natural environments is critical for the spread of crops to diverse geographic regions. In...
The diversification of flowering time in response to natural environments is critical for the spread of crops to diverse geographic regions. In contrast with...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 895
SubjectTerms Adaptation
chromosome segment substitution lines
Coupling (molecular)
Cultivation
Data processing
Flowering
functional nucleotide polymorphisms
Gene loci
Gene mapping
Gene sequencing
genome resequencing
Genomes
Genomics
Grain cultivation
Molecular chains
Mutation
Natural environment
northward progression
Oryza sativa japonica
Phenotypes
photoperiodic flowering
Phylogeny
Quantitative trait loci
Rice
rice (Oryza sativa)
Subgroups
Title Genomic adaptation of flowering‐time genes during the expansion of rice cultivation area
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.13906
https://www.ncbi.nlm.nih.gov/pubmed/29570873
https://www.proquest.com/docview/2047394743
https://www.proquest.com/docview/2018027840
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFD6I-NAXb611dStR-uDLyFwyyQSfrFZFsJTiwiKFIckkPnTZXbq7oD75E_yN_hJPkplBWwXxbZg5Q2aSc_lOLt8B-Gqp0IVI0fsZxSLKsyoqaJFH3B9jTKgNUwPnP9hpj5718_4c7DdnYQI_RDvh5izD-2tn4FJNnhj5dOz2aAlPt51kzPHmH_1qqaMSngXqKEToEUbNtGYVcrt42jefx6L_AOZzvOoDzvES_G4-Newz-bM3m6o9ffsPi-M7_2UZFmsgSg6C5qzAnBmuwsK3EYLFm49weWL8eWUiKzkOq_VkZIkduKJqGO0e7u5dVXpy5VwlCWcdCWJJYq7RvUxqcUdYRBy3R11CjUiEqJ-gd_z94vA0qsswRJqKgkWsskKxKpGYGilaacFkRnnOrGUp3lTcOBBCk8LwWGt0WEyKVGOalRshtU2yNZgfjoZmHUguM0NjKVAxJJUpF7mN80oWstKVKlTSgd1mQEpdc5S7UhmDsslVsKdK31Md2GlFx4GY4yWhbjOqZW2bkzKNUSUFRejUge32MVqVWyqRQzOaORnHjMcx--3A56ANbSupyHlccHx714_p682XFz_P_MXG20U34YNrPOxG68L89O_MfEHcM1VbXsEfAbyQ_oM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hqNRegJYWlkIxiAOXoDwcO5Z6oaWw5aUKLRJCQpHj2BxY7a5gVwJO_Qn9jf0lnYmTqBQqVb1FyVh27JnxN358A7DpuDKZitH72UIEXCZlkPEsDWR1jTHizi8NHJ-I7hk_OE_Pp-BjcxfG80O0C25kGZW_JgOnBenfrHw8okNaivi2ZzgCDQq9dk9b8qhIJp48CjF6gPNmXPMK0Tmetujj2egJxHyMWKspZ28OLpvG-pMm19uTcbFtHv7gcfzfv5mH2RqLsh2vPK9hyg7ewItPQ8SL9wtwsW-rK8tMl3rkN-zZ0DHXp7xqOOH9_P6DEtOzK_KWzF93ZAgnmb1DD3NbixNnESN6jzqLGtOIUt_C2d6X3uduUGdiCAxXmQhE6VQhykhjdFTw0iihEy5T4ZyI8WUhLeEQHmVWhsagzxJaxQYjrdQqbVyUvIPpwXBgl4ClOrE81Ap1Q3MdS5W6MC11pktTFlkRdWCrGZHc1DTllC2jnzfhCvZUXvVUBzZa0ZHn5nhOaKUZ1rw2z9s8DlErFUf01IH19jMaFu2W6IEdTkiGyPEkBsAdWPTq0NYSq1SGmcTSW9Wg_r36vPftoHpY_nfRNXjZ7R0f5UdfTw7fwytqiD-ctgLT45uJXUUYNC4-VNr-C6JZArE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT9wwEB6hbYV4oQdHlwI1qA-8BOXwEatPlLIcBYQQSCuEFDk--gDaXcGu1PapP6G_sb-EcZxEhYJU8RYlY9mxZ8bf-PgG4KOjUucyRe9nSx5RkZkopzmLRHWNMaEuLA0cHfO9c3rQZ_0p-NTchQn8EO2Cm7eMyl97Ax8Z95eRj0f-jJb0dNsvKEck4RHRacsdlYgscEchRI9w2kxrWiF_jKcten8y-gdh3ges1YzTewWXTVvDQZOrzcm43NQ_H9A4PvNnXsNsjUTJVlCdNzBlB2_h5echosUfc3Cxa6sLy0QZNQrb9WToiLv2WdVwuvvz67dPS0--eV9JwmVHgmCS2O_oX25rcc9YRDy5R51DjSjEqPNw3ts5296L6jwMkaYy5xE3TpbcJApjo5IaLbnKqGDcOZ7iy1JYj0JoklsRa40eiyuZaoyzmJVKuyRbgM5gOLDvgDCVWRoriZqhqEqFZC5mRuXKaFPmZdKFjWZACl2TlPtcGddFE6xgTxVVT3VhvRUdBWaOx4SWm1EtauO8LdIYdVJSxE5dWGs_o1n5vRI1sMOJl_HUeALD3y4sBm1oa0klE3EusPRGNaZPV1-cnRxUD0v_L_oBpk--9IrD_eOv72EG28HCQaFl6IxvJnYFMdC4XK10_Q6gWgFb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genomic+adaptation+of+flowering-time+genes+during+the+expansion+of+rice+cultivation+area&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Itoh%2C+Hironori&rft.au=Wada%2C+Kaede+C&rft.au=Sakai%2C+Hiroaki&rft.au=Shibasaki%2C+Kyohei&rft.date=2018-06-01&rft.eissn=1365-313X&rft.volume=94&rft.issue=5&rft.spage=895&rft_id=info:doi/10.1111%2Ftpj.13906&rft_id=info%3Apmid%2F29570873&rft.externalDocID=29570873
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon