Seasonal, not annual precipitation drives community productivity across ecosystems
Understanding drivers of aboveground net primary production (ANPP) has long been a goal of ecology. Decades of investigation have shown total annual precipitation to be an important determinant of ANPP within and across ecosystems. Recently a few studies at individual sites have shown precipitation...
Saved in:
Published in | Oikos Vol. 122; no. 5; pp. 727 - 738 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.05.2013
Blackwell Publishing Blackwell |
Subjects | |
Online Access | Get full text |
ISSN | 0030-1299 1600-0706 |
DOI | 10.1111/j.1600-0706.2012.20655.x |
Cover
Loading…
Abstract | Understanding drivers of aboveground net primary production (ANPP) has long been a goal of ecology. Decades of investigation have shown total annual precipitation to be an important determinant of ANPP within and across ecosystems. Recently a few studies at individual sites have shown precipitation during specific seasons of the year can more effectively predict ANPP. Here we determined whether seasonal or total precipitation better predicted ANPP across a range of terrestrial ecosystems, from deserts to forests, using long-term data from 36 plant communities. We also determined whether ANPP responses were dependent on ecosystem type or plant functional group. We found that seasonal precipitation generally explained ANPP better than total precipitation. Precipitation in multiple parts of the growing season often correlated with ANPP, but rarely interacted with each other. Surprisingly, the amount of variation explained by seasonal precipitation was not correlated with ecosystem type or plant functional group. Overall, examining seasonal precipitation can significantly improve ANPP predictions across a broad range of ecosystems and plant types, with implications for understanding current and future ANPP variation. Further work examining precipitation timing relative to species phenology may further improve our ability to predict ANPP, especially in response to climate change. |
---|---|
AbstractList | Understanding drivers of aboveground net primary production (ANPP) has long been a goal of ecology. Decades of investigation have shown total annual precipitation to be an important determinant of ANPP within and across ecosystems. Recently a few studies at individual sites have shown precipitation during specific seasons of the year can more effectively predict ANPP. Here we determined whether seasonal or total precipitation better predicted ANPP across a range of terrestrial ecosystems, from deserts to forests, using long-term data from 36 plant communities. We also determined whether ANPP responses were dependent on ecosystem type or plant functional group. We found that seasonal precipitation generally explained ANPP better than total precipitation. Precipitation in multiple parts of the growing season often correlated with ANPP, but rarely interacted with each other. Surprisingly, the amount of variation explained by seasonal precipitation was not correlated with ecosystem type or plant functional group. Overall, examining seasonal precipitation can significantly improve ANPP predictions across a broad range of ecosystems and plant types, with implications for understanding current and future ANPP variation. Further work examining precipitation timing relative to species phenology may further improve our ability to predict ANPP, especially in response to climate change. [PUBLICATION ABSTRACT] Understanding drivers of aboveground net primary production (ANPP) has long been a goal of ecology. Decades of investigation have shown total annual precipitation to be an important determinant of ANPP within and across ecosystems. Recently a few studies at individual sites have shown precipitation during specific seasons of the year can more effectively predict ANPP. Here we determined whether seasonal or total precipitation better predicted ANPP across a range of terrestrial ecosystems, from deserts to forests, using long‐term data from 36 plant communities. We also determined whether ANPP responses were dependent on ecosystem type or plant functional group. We found that seasonal precipitation generally explained ANPP better than total precipitation. Precipitation in multiple parts of the growing season often correlated with ANPP, but rarely interacted with each other. Surprisingly, the amount of variation explained by seasonal precipitation was not correlated with ecosystem type or plant functional group. Overall, examining seasonal precipitation can significantly improve ANPP predictions across a broad range of ecosystems and plant types, with implications for understanding current and future ANPP variation. Further work examining precipitation timing relative to species phenology may further improve our ability to predict ANPP, especially in response to climate change. |
Author | La Pierre, Kimberly J. Vadeboncoeur, Matthew A. Robinson, Todd M. P. Thomey, Michell L. Colby, Samantha E. Byrne, Kerry M. |
Author_xml | – sequence: 1 givenname: Todd M. P. surname: Robinson fullname: Robinson, Todd M. P. – sequence: 2 givenname: Kimberly J. surname: La Pierre fullname: La Pierre, Kimberly J. – sequence: 3 givenname: Matthew A. surname: Vadeboncoeur fullname: Vadeboncoeur, Matthew A. – sequence: 4 givenname: Kerry M. surname: Byrne fullname: Byrne, Kerry M. – sequence: 5 givenname: Michell L. surname: Thomey fullname: Thomey, Michell L. – sequence: 6 givenname: Samantha E. surname: Colby fullname: Colby, Samantha E. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27278309$$DView record in Pascal Francis |
BookMark | eNqVkUtv1DAUhS1UJKaFn4AUCSGxIIMfcWxvkNAI2kKhCIpgZzmOLTkk9tROysy_rzMzmkU3gBd-6Hz3XOueU3DigzcAFAguUV5vuiWqISwhg_USQ4TzVlO63DwCi6NwAhYQElgiLMQTcJpSByFkjFUL8O27USl41b8ufBgL5f2k-mIdjXZrN6rRBV-00d2ZVOgwDJN34zbLoZ306O7mh9IxpFQYHdI2jWZIT8Fjq_pknh3OM_Djw_ub1UV5dX1-uXp3VepKcFpyVRkiGqKMVrRqSWOFsrgilHPLaKMbW1e21lwgCGmLq6ZuaoUgN1a31uSCM_Bq75u_czuZNMrBJW36XnkTpiRRJSBFNRXi7yihGHNKCcvoiwdoF6aYBzRTmENMBEeZenmgVNKqt1F57ZJcRzeouJWYYcYJnBvzPbcbUjT2iCAo5_xkJ-eY5ByTnPOTu_zkJpe-fVCqD4GMUbn-Pwz-uN5s_7mxvL78tLtmg-d7gy6NIR4NKiQIY3geQrnXXc59c9RV_C1rRhiVP7-cy6-f-cdfK47lDbkHjXnPuA |
CODEN | OIKSAA |
CitedBy_id | crossref_primary_10_3832_ifor1196_008 crossref_primary_10_1016_j_scitotenv_2021_148264 crossref_primary_10_1016_j_ecolind_2021_108432 crossref_primary_10_1080_01431161_2013_871593 crossref_primary_10_1007_s10021_015_9949_7 crossref_primary_10_1111_ele_13474 crossref_primary_10_1371_journal_pone_0190450 crossref_primary_10_1111_jvs_12464 crossref_primary_10_1016_j_gecco_2023_e02456 crossref_primary_10_1175_JHM_D_18_0154_1 crossref_primary_10_1002_ecy_4492 crossref_primary_10_1016_j_flora_2018_11_008 crossref_primary_10_1002_ecs2_3661 crossref_primary_10_3389_fpls_2021_798633 crossref_primary_10_3390_rs14071564 crossref_primary_10_1016_j_agrformet_2016_06_020 crossref_primary_10_1016_j_jaridenv_2013_08_004 crossref_primary_10_1590_0001_3765202220201793 crossref_primary_10_1111_gcb_13941 crossref_primary_10_1002_ldr_3603 crossref_primary_10_1002_ldr_3845 crossref_primary_10_1002_joc_4544 crossref_primary_10_1007_s10265_014_0685_4 crossref_primary_10_1007_s10661_017_6251_5 crossref_primary_10_1088_1748_9326_ad5b06 crossref_primary_10_1186_s40068_022_00275_3 crossref_primary_10_1086_676304 crossref_primary_10_1098_rspa_2014_0623 crossref_primary_10_3390_atmos16010066 crossref_primary_10_3390_agronomy14081772 crossref_primary_10_1007_s00484_016_1149_4 crossref_primary_10_1016_j_fcr_2018_03_007 crossref_primary_10_1002_ece3_9385 crossref_primary_10_1002_ldr_2985 crossref_primary_10_1016_j_ejrh_2024_102048 crossref_primary_10_1007_s00442_016_3579_4 crossref_primary_10_1111_jvs_12486 crossref_primary_10_1002_ece3_3326 crossref_primary_10_1371_journal_pone_0254032 crossref_primary_10_1371_journal_pone_0125300 crossref_primary_10_1002_wat2_1481 crossref_primary_10_1016_j_scitotenv_2022_155844 crossref_primary_10_1016_j_scitotenv_2024_174421 crossref_primary_10_1016_j_actao_2020_103656 crossref_primary_10_1016_j_gecco_2020_e01231 crossref_primary_10_5194_hess_22_1665_2018 crossref_primary_10_1002_ecy_2981 crossref_primary_10_1007_s11629_017_4772_6 crossref_primary_10_1890_13_0526_1 crossref_primary_10_1002_ecs2_1577 crossref_primary_10_1890_14_1989_1 crossref_primary_10_1080_15324982_2015_1053629 crossref_primary_10_3389_fpls_2023_1119101 crossref_primary_10_1016_j_ecolind_2022_109163 crossref_primary_10_1016_j_ecolind_2017_12_031 crossref_primary_10_1002_2014WR016013 crossref_primary_10_1002_eap_2834 crossref_primary_10_1007_s10342_015_0867_1 crossref_primary_10_1016_j_scitotenv_2018_12_126 crossref_primary_10_1016_j_agee_2021_107372 crossref_primary_10_1111_1365_2745_12610 crossref_primary_10_1016_j_soilbio_2024_109427 crossref_primary_10_1016_j_agrformet_2016_11_006 crossref_primary_10_1038_s41598_020_65922_0 crossref_primary_10_1007_s40333_018_0013_2 crossref_primary_10_1016_j_jhydrol_2020_125212 crossref_primary_10_1093_ornithology_ukad017 crossref_primary_10_3390_rs16193687 crossref_primary_10_3390_rs13081513 crossref_primary_10_1111_nph_20144 crossref_primary_10_1016_j_agrformet_2023_109740 crossref_primary_10_1111_aec_12563 crossref_primary_10_1088_1748_9326_ac027a crossref_primary_10_1016_j_ecolind_2022_108925 crossref_primary_10_1111_jofo_12185 crossref_primary_10_1016_j_ecolmodel_2014_11_010 crossref_primary_10_1002_ldr_4732 crossref_primary_10_1016_j_biocon_2025_111088 crossref_primary_10_3390_hydrology11060085 crossref_primary_10_1111_2041_210X_13094 crossref_primary_10_1016_j_scitotenv_2022_154322 crossref_primary_10_1111_1365_2664_13250 crossref_primary_10_1371_journal_pone_0203881 crossref_primary_10_7717_peerj_9465 crossref_primary_10_5194_bg_10_8129_2013 crossref_primary_10_1071_RJ21060 crossref_primary_10_1016_j_rama_2023_04_006 crossref_primary_10_1371_journal_pone_0162310 crossref_primary_10_1007_s10531_024_02868_z crossref_primary_10_3389_fpls_2022_1088202 crossref_primary_10_1016_j_gecco_2020_e01154 crossref_primary_10_1016_j_scitotenv_2019_134553 crossref_primary_10_1002_ece3_3414 crossref_primary_10_1016_j_agrformet_2022_109274 crossref_primary_10_1029_2021JG006735 crossref_primary_10_1093_ornithology_ukab028 crossref_primary_10_1111_avsc_12232 crossref_primary_10_1371_journal_pone_0297053 crossref_primary_10_1111_gfs_12165 crossref_primary_10_1016_j_catena_2020_104478 crossref_primary_10_1111_gcb_16110 |
Cites_doi | 10.1111/j.1654-1103.2011.01301.x 10.1016/j.jaridenv.2009.08.016 10.1006/jare.2000.0678 10.1111/j.1365-2435.2012.01979.x 10.2111/07-140R2.1 10.1641/B580908 10.1007/BF00044884 10.1111/j.1600-0706.2012.20400.x 10.2307/1936309 10.1126/science.291.5503.481 10.1002/j.1537-2197.1995.tb11567.x 10.1007/s11258-005-9052-9 10.1111/j.1365-2486.2008.01572.x 10.2307/3899276 10.1007/s11427-008-0029-5 10.1038/nature02561 10.1086/282523 10.1126/science.289.5487.2068 10.1371/journal.pone.0032088 10.1111/j.1365-2486.2008.01605.x 10.1111/j.1365-2486.2009.01961.x 10.1038/341142a0 10.1046/j.1365-2745.2002.00682.x 10.1126/science.1136401 10.1029/2009JD013030 10.1007/s00442-004-1507-5 10.1046/j.1365-2486.2002.00473.x 10.1007/s00442-004-1520-8 10.1111/j.1365-2486.2010.02253.x 10.1641/0006-3568(2003)053[0941:ATROTE]2.0.CO;2 10.1007/s00442-009-1449-z 10.1073/pnas.0506042102 10.1007/s11258-010-9729-6 10.1139/x93-292 10.1007/s00442-007-0745-8 10.1111/j.1365-2745.2011.01844.x 10.1007/978-3-642-80913-2 10.1007/s00442-004-1570-y 10.2307/4002821 10.2307/3896168 10.1007/BF01661200 10.1007/s10021-006-0015-3 10.1098/rstb.2010.0102 10.1086/339718 10.1007/s00442-007-0880-2 10.1007/978-1-4612-1224-9_3 10.1007/s00442-006-0468-2 10.1111/j.1365-2486.2011.02628.x 10.1890/1051-0761(2000)010[0541:COGASA]2.0.CO;2 10.1111/j.1469-8137.2005.01569.x 10.2307/1941874 10.2307/1938237 10.2307/1937336 10.1007/s10584-005-5940-1 10.1038/35102500 10.1111/j.1365-2486.2010.02363.x 10.2307/1943158 10.1029/2010JG001506 10.1029/2010JG001382 10.3732/ajb.1000125 |
ContentType | Journal Article |
Copyright | Copyright © 2013 Nordic Society Oikos 2012 The Authors 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2013 Nordic Society Oikos – notice: 2012 The Authors – notice: 2015 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW 7QG 7SN 7SS 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7ST 7TG 7U6 KL. 7S9 L.6 |
DOI | 10.1111/j.1600-0706.2012.20655.x |
DatabaseName | Istex CrossRef Pascal-Francis Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts Sustainability Science Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Technology Research Database Animal Behavior Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts CrossRef Meteorological & Geoastrophysical Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1600-0706 |
EndPage | 738 |
ExternalDocumentID | 2946563821 27278309 10_1111_j_1600_0706_2012_20655_x OIK20655 41937721 ark_67375_WNG_PM8JXC82_T |
Genre | article Feature |
GroupedDBID | -DZ -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 29N 2AX 2~F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AANLZ AAONW AASGY AAXRX AAXTN AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPLY ABPVW ABTAH ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACKIV ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADACV ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEEJZ AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AGUYK AHBTC AHXOZ AIAGR AICQM AIDBO AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AQVQM ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG CBGCD COF CS3 D-E D-F DATOO DCZOG DOOOF DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HTVGU HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBC OBS OES OIG OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ TEORI TN5 UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 Y2W YFH YNT YUY YV5 ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMMB AAMNL AANHP AAYCA ACHIC ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX ADXHL AETEA AGHNM CITATION IQODW 7QG 7SN 7SS 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7ST 7TG 7U6 KL. 7S9 L.6 |
ID | FETCH-LOGICAL-c4985-8a4e39b3aeca54d3bf9af243588f75bcbf64f6c891005d24b6b6a108efcdfe4d3 |
IEDL.DBID | DR2 |
ISSN | 0030-1299 |
IngestDate | Fri Jul 11 18:23:42 EDT 2025 Fri Jul 11 01:10:02 EDT 2025 Fri Jul 25 10:54:53 EDT 2025 Wed Apr 02 07:17:40 EDT 2025 Tue Jul 01 04:11:00 EDT 2025 Thu Apr 24 23:00:41 EDT 2025 Wed Jan 22 16:43:58 EST 2025 Thu Jul 03 22:31:25 EDT 2025 Wed Oct 30 09:49:48 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Productivity Precipitation Seasonal variation Ecosystem Community |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4985-8a4e39b3aeca54d3bf9af243588f75bcbf64f6c891005d24b6b6a108efcdfe4d3 |
Notes | istex:7B7FE5F885AEE27DDBA63B88104476A1CAE0F32A ArticleID:OIK20655 ark:/67375/WNG-PM8JXC82-T SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1328023981 |
PQPubID | 33978 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1490516599 proquest_miscellaneous_1352285537 proquest_journals_1328023981 pascalfrancis_primary_27278309 crossref_primary_10_1111_j_1600_0706_2012_20655_x crossref_citationtrail_10_1111_j_1600_0706_2012_20655_x wiley_primary_10_1111_j_1600_0706_2012_20655_x_OIK20655 jstor_primary_41937721 istex_primary_ark_67375_WNG_PM8JXC82_T |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2013 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: May 2013 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: Lund |
PublicationTitle | Oikos |
PublicationTitleAlternate | Oikos |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Blackwell Publishing Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell Publishing – name: Blackwell |
References | IPCC 2007. Climate change 2007: the physical science basis. Summary for policymakers. - Cambridge Univ. Press. Webb W. L. et al. 1983. Primary production and abiotic controls in forests, grasslands and desert ecosystems in the United States. Ecology 64: 134-151. Milchunas D. G. et al. 1994. Productivity of long-term grazing treatments in response to seasonal precipitation. J. Range Manage. 47: 133-139. Yang H. J. et al. 2011. Community structure and composition in response to climate change in a temperate steppe. Global Change Biol. 17: 452-465. Webb W. L. et al. 1978. Primary productivity and water-use in native forest, grassland and desert ecosystems. Ecology 59: 1239-1247. Xia Y. et al. 2010. Aboveground production and species richness of annuals in Chihuahuan Desert grassland and shrubland plant communities. J. Arid Environ. 74: 378-385. Xia J. and Wan S. 2012. The effects of warming-shifted plant phenology on ecosystem carbon exchange are regulated by precipitation in a semi-arid grassland. PLoS One 7(2): e32088. Sponseller R. A. et al. 2012. Variation in monsoon precipitation drives spatial and temporal patterns of Larrea tridentata growth in the Sonoran Desert. Funct. Ecol. 26: 750-758. Easterling D. R. et al. 2000. Climate extremes: observations, modeling and impacts. Science 289: 2068-2074. Thomey M. L. et al. 2011. Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland. Global Change Biol. 17: 1505-1515. Motha R. P. and Baier W. 2005. Impacts of present and future climate change and climate variability on agriculture in the temperate regions: North America. Climate Change 70: 137-164. Walter H. 1979. Vegetation of the Earth. - Springer. Deutsch E. S. et al. 2010. Separation of grassland litter and ecosite influences on seasonal soil moisture and plant growth dynamics. Plant Ecol. 209: 135-145. Huenneke L. F. et al. 2002. Desertification alters patterns of aboveground net primary production in Chihuahuan ecosystems. Global Change Biol. 8: 247-264. Fay P. A. et al. 2002. Altered rainfall patterns, gas exchange, and growth in grasses and forbs. Int. J. Plant Sci. 163: 549-557. Loik M. E. et al. 2004. A multi-scale perspective of water pulses in dryland ecosystems: climatology and ecohydrology of the western USA. Oecologia 141: 269-281. Barger N. N. et al. 2011. Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. J. Geophys. Res. 116, G00K07, doi: 10.1029/2010JG001506. Jobbágy E. G. and Sala O. E. 2000. Controls of grass and shrub aboveground production in the Patagonian steppe. Ecol. Appl. 10: 541-549. Baker B. B. et al. 1993. The potential effects of climate-change on ecosystem processes and cattle production on US rangelands. Climate Change 25: 97-117. Leith H. and Whittaker R. J. (eds) 1975. Primary productivity of the biosphere. - Springer. Diffenbaugh N. S. et al. 2005. Fine-scale processes regulate the response of extreme events to global climate change. Proc. Natl Acad. Sci. USA 102: 5774-15778. Nippert J. B. et al. 2006. Intra-annual rainfall variability and grassland productivity: can the past predict the future? Plant Ecol. 184: 65-74. Vermeire L. T. et al. 2009. Primary productivity and precipitation-use efficiency in mixed-grass prairie: a comparison of northern and southern US Sites. Rangeland Ecol. Manage. 62: 230-239. Robertson T. et al. 2010. Precipitation magnitude and timing differentially affect species richness and plant density in the sotol grassland of the Chihuahuan Desert. Oecologia 162: 185-197. Armas C. et al. 2011. A field test of the stress-gradient hypothesis along an aridity gradient. J. Veg. Sci. 22: 818-827. Briggs J. M. and Knapp A. K. 1995. Interannual variability in primary production in tallgrass prairie: climate, soil moisture, topographic position, and fire as determinants of aboveground biomass. Am. J. Bot. 82: 1024-1030. Rosenzweig M. 1968. Net primary productivity of terrestrial communities - prediction from climatological data. Am. Nat. 102: 67-74. Chou W. W. et al. 2008. The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall. Global Change Biol. 14: 1382-1394. Smoliak S. 1986. Influence of climatic conditions on production of Stipa bouteloua prairie over a 50-year period. J. Range Manage. 39: 100-103. Xiao X. M. et al. 1996. Temporal variation in aboveground biomass of Leymus chinense steppe from species to community levels in the Xilin River basin, Inner Mongolia, China. Vegetatio 123: 1-12. Ma W. H. et al. 2008. Above- and belowground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia. Sci. China Ser. C Life Sci. 51: 263-270. Lane C. J. et al. 1993. Width of sugar maple (Acer saccharum) tree rings as affected by climate. Can. J. For. Res. 23: 2370-2375. Robinson T. M. P. and Gross K. L. 2010. The impact of altered precipitation variability on annual weed species. Am. J. Bot. 97: 1-5. Ogle K. and Reynolds J. F. 2004. Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds and delays. Oecologia 141: 282-294. Knapp A. K. et al. 2008. Consequences of more extreme precipitation regimes for terrestrial ecosystems. BioScience 58: 811-821. Nippert J. B. and Knapp A. K. 2007. Linking water uptake with rooting patterns in grassland species. Oecologia 153: 261-272. Sala O. E. et al. 1988. Primary production of the central grassland region of the USA. Ecology 69: 40-45. Lauenroth W. K. and Sala O. E. 1992. Long-term forage production of North American shortgrass steppe. Ecol. Appl. 2: 397-403. Muldavin E. H. et al. 2008. Aboveground net primary production dynamics in a northern Chihuahuan Desert ecosystem. Oecologia 155: 123-132. Notaro M. et al. 2010. Complex seasonal cycle of ecohydrology in the southwest United States. J. Geophys. Res. Biogeosci. 115 doi:10.1029/2010JC006261. La Pierre K. J. et al. 2011. Explaining temporal variation in above-ground productivity in a mesic grassland: the role of climate and flowering. J. Ecol. 99: 1250-1262. Schenk H. J. and Jackson R. B. 2002. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J. Ecol. 90: 480-494. Richardson A. D. et al. 2010. Influence of spring and autumn phonological transitions on forest ecosystem productivity. Phil. Trans. R. Soc. B 365: 3227-3246. Hui D. and Jackson R. B. 2006. Geographical and interannual variability I biomass partitioning in grassland ecosystems: a synthesis of field data. New Phytol. 169: 85-93. Huxman T. E. et al. 2004. Convergence across biomes to a common rain-use efficiency. Nature 429: 651-654. Huenneke L. F. et al. 2001. Spatial heterogeneity in Chihuahuan Desert vegetation: implications for sampling methods in semi-arid ecosystems. J. Arid Environ. 47: 257-270. Newman G. S. et al. 2006. Above- and belowground net primary production in a temperate mixed deciduous forest. Ecosystems 9: 317-329. Cable D. R. 1975. Influence of precipitation on perennial grass production in the semidesert southwest. Ecology 56: 981-986. Schwinning S. and Sala O. E. 2004. Hierarchy of responses to resource pulses in and and semi-arid ecosystems. Oecologia 141: 211-220. Heisler-White J. L. et al. 2009. Contingent productivity responses to more extreme rainfall regimes across a grassland biome. Global Change Biol. 15: 2894-2904. Knapp A. K. and Smith M. D. 2001. Variation among biomes in temporal dynamics of aboveground primary production. Science 291: 481-484. Burnham K. P. and Anderson D. R. 2002. Model selection and multi-model inference, 2nd edn. - Springer. Weltzin J. F. et al. 2003. Assessing the response of terrestrial ecosystems to potential changes in precipitation. BioScience 53: 941-952. McNaughton S. J. et al. 1989. Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 341: 142-144. Schoof J. T. et al. 2010. Development of daily precipitation projections for the United States based on probabilistic downscaling. J. Geophys. Res. Atmospheres 115 D13106, doi:10.1029/2009JD013030. Suttle K. B. et al. 2007. Species interactions reverse grassland responses to changing climate. Science 315: 640-642. Knapp A. K. et al. 2006. Convergence and contingency in production-precipitation relationships in North American and south african C-4 grasslands. Oecologia 149: 456-464. Vargas R. et al. 2012. Precipitation variability and fire influence the temporal dynamics of soil CO2 efflux in an arid grassland. Global Change Biol. 18: 1401-1411. Schimel D. S. et al. 2001. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414: 169-172. Craine J. M. et al. 2012. Precipitation timing and grazer performance in a tallgrass prairie. Oikos. 122: 191-198. Fay P. A. et al. 2008. Changes in grassland ecosystem function due to extreme rainfall events: implications for responses to climate change. Global Change Biol. 14: 1600-1608. Murphy A. H. 1970. Predicted forage yield based on fall preci pi tation in California annual grasslands. J. Range Manage. 23: 363-365. 2011; 116 1993; 25 1993; 23 2010; 97 2012; 122 1975; 56 1975 1986; 39 2011; 99 2012; 18 2011; 17 2001; 47 2003; 53 1979 2000; 289 2000 2005; 102 2001; 291 2000; 10 2010; 115 1989; 341 1970; 23 1983; 64 2011; 22 2005; 70 2002; 90 2012; 26 2008; 155 1992; 2 2010; 74 2009; 15 2006; 169 2001; 414 2009; 62 2010; 209 2004; 141 2006; 9 2010; 365 1968; 102 2002; 8 2008; 14 2008; 58 2007 1994; 47 1993 2010; 162 1978; 59 2002 2008; 51 1996; 123 2004; 429 1995; 82 2007; 315 2002; 163 1988; 69 2007; 153 2006; 184 2006; 149 2012; 7 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 Burnham K. P. (e_1_2_6_6_1) 2002 Rawls W. J. (e_1_2_6_41_1) 1993 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_60_1 e_1_2_6_9_1 IPCC (e_1_2_6_20_1) 2007 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 Walter H (e_1_2_6_58_1) 1979 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – reference: Yang H. J. et al. 2011. Community structure and composition in response to climate change in a temperate steppe. Global Change Biol. 17: 452-465. – reference: Chou W. W. et al. 2008. The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall. Global Change Biol. 14: 1382-1394. – reference: Craine J. M. et al. 2012. Precipitation timing and grazer performance in a tallgrass prairie. Oikos. 122: 191-198. – reference: Huenneke L. F. et al. 2002. Desertification alters patterns of aboveground net primary production in Chihuahuan ecosystems. Global Change Biol. 8: 247-264. – reference: Nippert J. B. et al. 2006. Intra-annual rainfall variability and grassland productivity: can the past predict the future? Plant Ecol. 184: 65-74. – reference: McNaughton S. J. et al. 1989. Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 341: 142-144. – reference: Richardson A. D. et al. 2010. Influence of spring and autumn phonological transitions on forest ecosystem productivity. Phil. Trans. R. Soc. B 365: 3227-3246. – reference: Armas C. et al. 2011. A field test of the stress-gradient hypothesis along an aridity gradient. J. Veg. Sci. 22: 818-827. – reference: Ma W. H. et al. 2008. Above- and belowground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia. Sci. China Ser. C Life Sci. 51: 263-270. – reference: Robertson T. et al. 2010. Precipitation magnitude and timing differentially affect species richness and plant density in the sotol grassland of the Chihuahuan Desert. Oecologia 162: 185-197. – reference: Sala O. E. et al. 1988. Primary production of the central grassland region of the USA. Ecology 69: 40-45. – reference: Leith H. and Whittaker R. J. (eds) 1975. Primary productivity of the biosphere. - Springer. – reference: Smoliak S. 1986. Influence of climatic conditions on production of Stipa bouteloua prairie over a 50-year period. J. Range Manage. 39: 100-103. – reference: Deutsch E. S. et al. 2010. Separation of grassland litter and ecosite influences on seasonal soil moisture and plant growth dynamics. Plant Ecol. 209: 135-145. – reference: Ogle K. and Reynolds J. F. 2004. Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds and delays. Oecologia 141: 282-294. – reference: Huenneke L. F. et al. 2001. Spatial heterogeneity in Chihuahuan Desert vegetation: implications for sampling methods in semi-arid ecosystems. J. Arid Environ. 47: 257-270. – reference: Vermeire L. T. et al. 2009. Primary productivity and precipitation-use efficiency in mixed-grass prairie: a comparison of northern and southern US Sites. Rangeland Ecol. Manage. 62: 230-239. – reference: Baker B. B. et al. 1993. The potential effects of climate-change on ecosystem processes and cattle production on US rangelands. Climate Change 25: 97-117. – reference: Knapp A. K. et al. 2008. Consequences of more extreme precipitation regimes for terrestrial ecosystems. BioScience 58: 811-821. – reference: Jobbágy E. G. and Sala O. E. 2000. Controls of grass and shrub aboveground production in the Patagonian steppe. Ecol. Appl. 10: 541-549. – reference: Rosenzweig M. 1968. Net primary productivity of terrestrial communities - prediction from climatological data. Am. Nat. 102: 67-74. – reference: Muldavin E. H. et al. 2008. Aboveground net primary production dynamics in a northern Chihuahuan Desert ecosystem. Oecologia 155: 123-132. – reference: Sponseller R. A. et al. 2012. Variation in monsoon precipitation drives spatial and temporal patterns of Larrea tridentata growth in the Sonoran Desert. Funct. Ecol. 26: 750-758. – reference: Weltzin J. F. et al. 2003. Assessing the response of terrestrial ecosystems to potential changes in precipitation. BioScience 53: 941-952. – reference: Notaro M. et al. 2010. Complex seasonal cycle of ecohydrology in the southwest United States. J. Geophys. Res. Biogeosci. 115 doi:10.1029/2010JC006261. – reference: Xiao X. M. et al. 1996. Temporal variation in aboveground biomass of Leymus chinense steppe from species to community levels in the Xilin River basin, Inner Mongolia, China. Vegetatio 123: 1-12. – reference: Nippert J. B. and Knapp A. K. 2007. Linking water uptake with rooting patterns in grassland species. Oecologia 153: 261-272. – reference: Briggs J. M. and Knapp A. K. 1995. Interannual variability in primary production in tallgrass prairie: climate, soil moisture, topographic position, and fire as determinants of aboveground biomass. Am. J. Bot. 82: 1024-1030. – reference: Fay P. A. et al. 2002. Altered rainfall patterns, gas exchange, and growth in grasses and forbs. Int. J. Plant Sci. 163: 549-557. – reference: Schoof J. T. et al. 2010. Development of daily precipitation projections for the United States based on probabilistic downscaling. J. Geophys. Res. Atmospheres 115 D13106, doi:10.1029/2009JD013030. – reference: Newman G. S. et al. 2006. Above- and belowground net primary production in a temperate mixed deciduous forest. Ecosystems 9: 317-329. – reference: Knapp A. K. and Smith M. D. 2001. Variation among biomes in temporal dynamics of aboveground primary production. Science 291: 481-484. – reference: Vargas R. et al. 2012. Precipitation variability and fire influence the temporal dynamics of soil CO2 efflux in an arid grassland. Global Change Biol. 18: 1401-1411. – reference: Loik M. E. et al. 2004. A multi-scale perspective of water pulses in dryland ecosystems: climatology and ecohydrology of the western USA. Oecologia 141: 269-281. – reference: Diffenbaugh N. S. et al. 2005. Fine-scale processes regulate the response of extreme events to global climate change. Proc. Natl Acad. Sci. USA 102: 5774-15778. – reference: Schimel D. S. et al. 2001. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414: 169-172. – reference: Lauenroth W. K. and Sala O. E. 1992. Long-term forage production of North American shortgrass steppe. Ecol. Appl. 2: 397-403. – reference: Fay P. A. et al. 2008. Changes in grassland ecosystem function due to extreme rainfall events: implications for responses to climate change. Global Change Biol. 14: 1600-1608. – reference: Webb W. L. et al. 1978. Primary productivity and water-use in native forest, grassland and desert ecosystems. Ecology 59: 1239-1247. – reference: Xia J. and Wan S. 2012. The effects of warming-shifted plant phenology on ecosystem carbon exchange are regulated by precipitation in a semi-arid grassland. PLoS One 7(2): e32088. – reference: Burnham K. P. and Anderson D. R. 2002. Model selection and multi-model inference, 2nd edn. - Springer. – reference: La Pierre K. J. et al. 2011. Explaining temporal variation in above-ground productivity in a mesic grassland: the role of climate and flowering. J. Ecol. 99: 1250-1262. – reference: Huxman T. E. et al. 2004. Convergence across biomes to a common rain-use efficiency. Nature 429: 651-654. – reference: Knapp A. K. et al. 2006. Convergence and contingency in production-precipitation relationships in North American and south african C-4 grasslands. Oecologia 149: 456-464. – reference: Barger N. N. et al. 2011. Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. J. Geophys. Res. 116, G00K07, doi: 10.1029/2010JG001506. – reference: Suttle K. B. et al. 2007. Species interactions reverse grassland responses to changing climate. Science 315: 640-642. – reference: Schenk H. J. and Jackson R. B. 2002. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J. Ecol. 90: 480-494. – reference: Heisler-White J. L. et al. 2009. Contingent productivity responses to more extreme rainfall regimes across a grassland biome. Global Change Biol. 15: 2894-2904. – reference: Lane C. J. et al. 1993. Width of sugar maple (Acer saccharum) tree rings as affected by climate. Can. J. For. Res. 23: 2370-2375. – reference: Thomey M. L. et al. 2011. Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland. Global Change Biol. 17: 1505-1515. – reference: Motha R. P. and Baier W. 2005. Impacts of present and future climate change and climate variability on agriculture in the temperate regions: North America. Climate Change 70: 137-164. – reference: Murphy A. H. 1970. Predicted forage yield based on fall preci pi tation in California annual grasslands. J. Range Manage. 23: 363-365. – reference: Milchunas D. G. et al. 1994. Productivity of long-term grazing treatments in response to seasonal precipitation. J. Range Manage. 47: 133-139. – reference: Walter H. 1979. Vegetation of the Earth. - Springer. – reference: Easterling D. R. et al. 2000. Climate extremes: observations, modeling and impacts. Science 289: 2068-2074. – reference: Hui D. and Jackson R. B. 2006. Geographical and interannual variability I biomass partitioning in grassland ecosystems: a synthesis of field data. New Phytol. 169: 85-93. – reference: Schwinning S. and Sala O. E. 2004. Hierarchy of responses to resource pulses in and and semi-arid ecosystems. Oecologia 141: 211-220. – reference: Webb W. L. et al. 1983. Primary production and abiotic controls in forests, grasslands and desert ecosystems in the United States. Ecology 64: 134-151. – reference: Xia Y. et al. 2010. Aboveground production and species richness of annuals in Chihuahuan Desert grassland and shrubland plant communities. J. Arid Environ. 74: 378-385. – reference: Robinson T. M. P. and Gross K. L. 2010. The impact of altered precipitation variability on annual weed species. Am. J. Bot. 97: 1-5. – reference: IPCC 2007. Climate change 2007: the physical science basis. Summary for policymakers. - Cambridge Univ. Press. – reference: Cable D. R. 1975. Influence of precipitation on perennial grass production in the semidesert southwest. Ecology 56: 981-986. – volume: 209 start-page: 135 year: 2010 end-page: 145 article-title: Separation of grassland litter and ecosite influences on seasonal soil moisture and plant growth dynamics publication-title: Plant Ecol. – volume: 122 start-page: 191 year: 2012 end-page: 198 article-title: Precipitation timing and grazer performance in a tallgrass prairie publication-title: Oikos. – volume: 22 start-page: 818 year: 2011 end-page: 827 article-title: A field test of the stress‐gradient hypothesis along an aridity gradient publication-title: J. Veg. Sci. – volume: 2 start-page: 397 year: 1992 end-page: 403 article-title: Long‐term forage production of North American shortgrass steppe publication-title: Ecol. Appl. – volume: 315 start-page: 640 year: 2007 end-page: 642 article-title: Species interactions reverse grassland responses to changing climate publication-title: Science – volume: 153 start-page: 261 year: 2007 end-page: 272 article-title: Linking water uptake with rooting patterns in grassland species publication-title: Oecologia – year: 1975 – volume: 14 start-page: 1382 year: 2008 end-page: 1394 article-title: The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall publication-title: Global Change Biol. – volume: 162 start-page: 185 year: 2010 end-page: 197 article-title: Precipitation magnitude and timing differentially affect species richness and plant density in the sotol grassland of the Chihuahuan Desert publication-title: Oecologia – volume: 115 year: 2010 article-title: Development of daily precipitation projections for the United States based on probabilistic downscaling publication-title: J. Geophys. Res. Atmospheres – volume: 17 start-page: 1505 year: 2011 end-page: 1515 article-title: Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland publication-title: Global Change Biol. – volume: 141 start-page: 282 year: 2004 end-page: 294 article-title: Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds and delays publication-title: Oecologia – volume: 123 start-page: 1 year: 1996 end-page: 12 article-title: Temporal variation in aboveground biomass of steppe from species to community levels in the Xilin River basin, Inner Mongolia, China publication-title: Vegetatio – volume: 10 start-page: 541 year: 2000 end-page: 549 article-title: Controls of grass and shrub aboveground production in the Patagonian steppe publication-title: Ecol. Appl. – volume: 184 start-page: 65 year: 2006 end-page: 74 article-title: Intra‐annual rainfall variability and grassland productivity: can the past predict the future? publication-title: Plant Ecol. – year: 1979 – volume: 26 start-page: 750 year: 2012 end-page: 758 article-title: Variation in monsoon precipitation drives spatial and temporal patterns of growth in the Sonoran Desert publication-title: Funct. Ecol. – volume: 141 start-page: 211 year: 2004 end-page: 220 article-title: Hierarchy of responses to resource pulses in and and semi‐arid ecosystems publication-title: Oecologia – volume: 8 start-page: 247 year: 2002 end-page: 264 article-title: Desertification alters patterns of aboveground net primary production in Chihuahuan ecosystems publication-title: Global Change Biol. – volume: 99 start-page: 1250 year: 2011 end-page: 1262 article-title: Explaining temporal variation in above‐ground productivity in a mesic grassland: the role of climate and flowering publication-title: J. Ecol. – volume: 365 start-page: 3227 year: 2010 end-page: 3246 article-title: Influence of spring and autumn phonological transitions on forest ecosystem productivity publication-title: Phil. Trans. R. Soc. B – volume: 169 start-page: 85 year: 2006 end-page: 93 article-title: Geographical and interannual variability I biomass partitioning in grassland ecosystems: a synthesis of field data publication-title: New Phytol. – volume: 141 start-page: 269 year: 2004 end-page: 281 article-title: A multi‐scale perspective of water pulses in dryland ecosystems: climatology and ecohydrology of the western USA publication-title: Oecologia – volume: 115 year: 2010 article-title: Complex seasonal cycle of ecohydrology in the southwest United States publication-title: J. Geophys. Res. Biogeosci. – start-page: 1 year: 1993 end-page: 51 – volume: 102 start-page: 67 year: 1968 end-page: 74 article-title: Net primary productivity of terrestrial communities ‐ prediction from climatological data publication-title: Am. Nat. – volume: 47 start-page: 133 year: 1994 end-page: 139 article-title: Productivity of long‐term grazing treatments in response to seasonal precipitation publication-title: J. Range Manage. – volume: 23 start-page: 363 year: 1970 end-page: 365 article-title: Predicted forage yield based on fall preci pi tation in California annual grasslands publication-title: J. Range Manage. – volume: 51 start-page: 263 year: 2008 end-page: 270 article-title: Above‐ and belowground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia publication-title: Sci. China Ser. C Life Sci. – volume: 9 start-page: 317 year: 2006 end-page: 329 article-title: Above‐ and belowground net primary production in a temperate mixed deciduous forest publication-title: Ecosystems – volume: 70 start-page: 137 year: 2005 end-page: 164 article-title: Impacts of present and future climate change and climate variability on agriculture in the temperate regions: North America publication-title: Climate Change – volume: 18 start-page: 1401 year: 2012 end-page: 1411 article-title: Precipitation variability and fire influence the temporal dynamics of soil CO2 efflux in an arid grassland publication-title: Global Change Biol. – volume: 58 start-page: 811 year: 2008 end-page: 821 article-title: Consequences of more extreme precipitation regimes for terrestrial ecosystems publication-title: BioScience – volume: 17 start-page: 452 year: 2011 end-page: 465 article-title: Community structure and composition in response to climate change in a temperate steppe publication-title: Global Change Biol. – volume: 14 start-page: 1600 year: 2008 end-page: 1608 article-title: Changes in grassland ecosystem function due to extreme rainfall events: implications for responses to climate change publication-title: Global Change Biol. – volume: 97 start-page: 1 year: 2010 end-page: 5 article-title: The impact of altered precipitation variability on annual weed species publication-title: Am. J. Bot. – volume: 25 start-page: 97 year: 1993 end-page: 117 article-title: The potential effects of climate‐change on ecosystem processes and cattle production on US rangelands publication-title: Climate Change – volume: 39 start-page: 100 year: 1986 end-page: 103 article-title: Influence of climatic conditions on production of prairie over a 50‐year period publication-title: J. Range Manage. – volume: 163 start-page: 549 year: 2002 end-page: 557 article-title: Altered rainfall patterns, gas exchange, and growth in grasses and forbs publication-title: Int. J. Plant Sci. – volume: 291 start-page: 481 year: 2001 end-page: 484 article-title: Variation among biomes in temporal dynamics of aboveground primary production publication-title: Science – volume: 62 start-page: 230 year: 2009 end-page: 239 article-title: Primary productivity and precipitation‐use efficiency in mixed‐grass prairie: a comparison of northern and southern US Sites publication-title: Rangeland Ecol. Manage. – volume: 56 start-page: 981 year: 1975 end-page: 986 article-title: Influence of precipitation on perennial grass production in the semidesert southwest publication-title: Ecology – volume: 149 start-page: 456 year: 2006 end-page: 464 article-title: Convergence and contingency in production‐precipitation relationships in North American and south african C‐4 grasslands publication-title: Oecologia – volume: 74 start-page: 378 year: 2010 end-page: 385 article-title: Aboveground production and species richness of annuals in Chihuahuan Desert grassland and shrubland plant communities publication-title: J. Arid Environ. – year: 2007 – start-page: 31 year: 2000 end-page: 43 – volume: 53 start-page: 941 year: 2003 end-page: 952 article-title: Assessing the response of terrestrial ecosystems to potential changes in precipitation publication-title: BioScience – volume: 90 start-page: 480 year: 2002 end-page: 494 article-title: Rooting depths, lateral root spreads and below‐ground/above‐ground allometries of plants in water‐limited ecosystems publication-title: J. Ecol. – volume: 155 start-page: 123 year: 2008 end-page: 132 article-title: Aboveground net primary production dynamics in a northern Chihuahuan Desert ecosystem publication-title: Oecologia – volume: 15 start-page: 2894 year: 2009 end-page: 2904 article-title: Contingent productivity responses to more extreme rainfall regimes across a grassland biome publication-title: Global Change Biol. – volume: 429 start-page: 651 year: 2004 end-page: 654 article-title: Convergence across biomes to a common rain‐use efficiency publication-title: Nature – volume: 69 start-page: 40 year: 1988 end-page: 45 article-title: Primary production of the central grassland region of the USA publication-title: Ecology – volume: 7 start-page: e32088 issue: (2) year: 2012 article-title: The effects of warming‐shifted plant phenology on ecosystem carbon exchange are regulated by precipitation in a semi‐arid grassland publication-title: PLoS One – volume: 289 start-page: 2068 year: 2000 end-page: 2074 article-title: Climate extremes: observations, modeling and impacts publication-title: Science – volume: 64 start-page: 134 year: 1983 end-page: 151 article-title: Primary production and abiotic controls in forests, grasslands and desert ecosystems in the United States publication-title: Ecology – year: 2002 – volume: 47 start-page: 257 year: 2001 end-page: 270 article-title: Spatial heterogeneity in Chihuahuan Desert vegetation: implications for sampling methods in semi‐arid ecosystems publication-title: J. Arid Environ. – volume: 102 start-page: 5774 year: 2005 end-page: 15778 article-title: Fine‐scale processes regulate the response of extreme events to global climate change publication-title: Proc. Natl Acad. Sci. USA – volume: 59 start-page: 1239 year: 1978 end-page: 1247 article-title: Primary productivity and water‐use in native forest, grassland and desert ecosystems publication-title: Ecology – volume: 23 start-page: 2370 year: 1993 end-page: 2375 article-title: Width of sugar maple ( ) tree rings as affected by climate publication-title: Can. J. For. Res. – volume: 341 start-page: 142 year: 1989 end-page: 144 article-title: Ecosystem‐level patterns of primary productivity and herbivory in terrestrial habitats publication-title: Nature – volume: 116 year: 2011 article-title: Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance publication-title: J. Geophys. Res. – volume: 82 start-page: 1024 year: 1995 end-page: 1030 article-title: Interannual variability in primary production in tallgrass prairie: climate, soil moisture, topographic position, and fire as determinants of aboveground biomass publication-title: Am. J. Bot. – volume: 414 start-page: 169 year: 2001 end-page: 172 article-title: Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems publication-title: Nature – ident: e_1_2_6_2_1 doi: 10.1111/j.1654-1103.2011.01301.x – ident: e_1_2_6_63_1 doi: 10.1016/j.jaridenv.2009.08.016 – ident: e_1_2_6_16_1 doi: 10.1006/jare.2000.0678 – ident: e_1_2_6_53_1 doi: 10.1111/j.1365-2435.2012.01979.x – ident: e_1_2_6_57_1 doi: 10.2111/07-140R2.1 – ident: e_1_2_6_24_1 doi: 10.1641/B580908 – ident: e_1_2_6_64_1 doi: 10.1007/BF00044884 – ident: e_1_2_6_9_1 doi: 10.1111/j.1600-0706.2012.20400.x – ident: e_1_2_6_7_1 doi: 10.2307/1936309 – volume-title: Vegetation of the Earth year: 1979 ident: e_1_2_6_58_1 – ident: e_1_2_6_22_1 doi: 10.1126/science.291.5503.481 – ident: e_1_2_6_5_1 doi: 10.1002/j.1537-2197.1995.tb11567.x – ident: e_1_2_6_38_1 doi: 10.1007/s11258-005-9052-9 – volume-title: Model selection and multi‐model inference year: 2002 ident: e_1_2_6_6_1 – ident: e_1_2_6_8_1 doi: 10.1111/j.1365-2486.2008.01572.x – ident: e_1_2_6_52_1 doi: 10.2307/3899276 – ident: e_1_2_6_30_1 doi: 10.1007/s11427-008-0029-5 – ident: e_1_2_6_19_1 doi: 10.1038/nature02561 – ident: e_1_2_6_45_1 doi: 10.1086/282523 – ident: e_1_2_6_12_1 doi: 10.1126/science.289.5487.2068 – ident: e_1_2_6_62_1 doi: 10.1371/journal.pone.0032088 – ident: e_1_2_6_14_1 doi: 10.1111/j.1365-2486.2008.01605.x – ident: e_1_2_6_15_1 doi: 10.1111/j.1365-2486.2009.01961.x – ident: e_1_2_6_31_1 doi: 10.1038/341142a0 – ident: e_1_2_6_48_1 doi: 10.1046/j.1365-2745.2002.00682.x – ident: e_1_2_6_54_1 doi: 10.1126/science.1136401 – ident: e_1_2_6_50_1 doi: 10.1029/2009JD013030 – ident: e_1_2_6_40_1 doi: 10.1007/s00442-004-1507-5 – ident: e_1_2_6_17_1 doi: 10.1046/j.1365-2486.2002.00473.x – start-page: 1 volume-title: Handbook of hydrology year: 1993 ident: e_1_2_6_41_1 – ident: e_1_2_6_51_1 doi: 10.1007/s00442-004-1520-8 – ident: e_1_2_6_65_1 doi: 10.1111/j.1365-2486.2010.02253.x – ident: e_1_2_6_61_1 doi: 10.1641/0006-3568(2003)053[0941:ATROTE]2.0.CO;2 – ident: e_1_2_6_43_1 doi: 10.1007/s00442-009-1449-z – ident: e_1_2_6_11_1 doi: 10.1073/pnas.0506042102 – ident: e_1_2_6_10_1 doi: 10.1007/s11258-010-9729-6 – ident: e_1_2_6_26_1 doi: 10.1139/x93-292 – ident: e_1_2_6_37_1 doi: 10.1007/s00442-007-0745-8 – ident: e_1_2_6_25_1 doi: 10.1111/j.1365-2745.2011.01844.x – ident: e_1_2_6_28_1 doi: 10.1007/978-3-642-80913-2 – volume-title: Climate change 2007: the physical science basis. Summary for policymakers year: 2007 ident: e_1_2_6_20_1 – ident: e_1_2_6_29_1 doi: 10.1007/s00442-004-1570-y – ident: e_1_2_6_32_1 doi: 10.2307/4002821 – ident: e_1_2_6_35_1 doi: 10.2307/3896168 – ident: e_1_2_6_3_1 doi: 10.1007/BF01661200 – ident: e_1_2_6_36_1 doi: 10.1007/s10021-006-0015-3 – ident: e_1_2_6_42_1 doi: 10.1098/rstb.2010.0102 – ident: e_1_2_6_13_1 doi: 10.1086/339718 – ident: e_1_2_6_34_1 doi: 10.1007/s00442-007-0880-2 – ident: e_1_2_6_46_1 doi: 10.1007/978-1-4612-1224-9_3 – ident: e_1_2_6_23_1 doi: 10.1007/s00442-006-0468-2 – ident: e_1_2_6_56_1 doi: 10.1111/j.1365-2486.2011.02628.x – ident: e_1_2_6_21_1 doi: 10.1890/1051-0761(2000)010[0541:COGASA]2.0.CO;2 – ident: e_1_2_6_18_1 doi: 10.1111/j.1469-8137.2005.01569.x – ident: e_1_2_6_27_1 doi: 10.2307/1941874 – ident: e_1_2_6_59_1 doi: 10.2307/1938237 – ident: e_1_2_6_60_1 doi: 10.2307/1937336 – ident: e_1_2_6_33_1 doi: 10.1007/s10584-005-5940-1 – ident: e_1_2_6_49_1 doi: 10.1038/35102500 – ident: e_1_2_6_55_1 doi: 10.1111/j.1365-2486.2010.02363.x – ident: e_1_2_6_47_1 doi: 10.2307/1943158 – ident: e_1_2_6_4_1 doi: 10.1029/2010JG001506 – ident: e_1_2_6_39_1 doi: 10.1029/2010JG001382 – ident: e_1_2_6_44_1 doi: 10.3732/ajb.1000125 |
SSID | ssj0007774 |
Score | 2.426121 |
Snippet | Understanding drivers of aboveground net primary production (ANPP) has long been a goal of ecology. Decades of investigation have shown total annual... |
SourceID | proquest pascalfrancis crossref wiley jstor istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 727 |
SubjectTerms | Animal and plant ecology Animal, plant and microbial ecology atmospheric precipitation Biological and medical sciences Climate change deserts Ecosystem studies ecosystems forests Fundamental and applied biological sciences. Psychology General aspects Growing season Phenology Plant communities Precipitation Primary production primary productivity Seasons Synecology Terrestrial ecosystems |
Title | Seasonal, not annual precipitation drives community productivity across ecosystems |
URI | https://api.istex.fr/ark:/67375/WNG-PM8JXC82-T/fulltext.pdf https://www.jstor.org/stable/41937721 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1600-0706.2012.20655.x https://www.proquest.com/docview/1328023981 https://www.proquest.com/docview/1352285537 https://www.proquest.com/docview/1490516599 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBajY7CX_Q7z1hUNxp7mINuSLT2Okq7tWAddy_ImJFl6SXFC7EC7v346yXHrMUopfRNEl6DL6fTJ_u47hD4Zywmz2qVZZkxKBRGpcNakxpHMKeNPGANvdH-clIfn9HjO5j3_CWphoj7E8MANdkbI17DBlW7Hm7yEquiKANMgg6KqkrEp4EmgbgE-Or1WkqqqXpC5ADKCEGNSz3-_aHRSPQanX25Ji8CgVK13oovdL0bw9CbIDafUwXO02K4vklMW002np-bPP9KPD-OAF-hZD2bx1xh9L9Ej27xCT2J7yys_mpl-NJld19N5gz6htK_R6S-rwmXgC26WHY4KqXgFkhurXj0c12uQxsUmlrJ0V3gVVWpD2wusgvewv0VHUer2DTo_mJ3tH6Z9m4fUUMFZyhW1hdCFskYxWhfaCeVyD-M4dxXTRruSutJwD2wIq3OqS12qjHDrTO2sN5ignWbZ2LcIE5NpwmviALUoEJfPa2o5F5a6mtYqQdX2L5WmXwW04riQN-5C3qkSnCrBqTI4VV4mKBssV1EH5A42n0PUDAZqvQAeXcXk75Nv0qe04_k-z-VZgiYhrIaJ1MNqf-3JErQ3irNhQl5BhxQiErS7DTzZJ59WZkUOsn6Ce_uPw8c-bcC7INXY5QbmeODNGSuqW-ZQEG8rmfA_U4VIvPPS5c-j72H47t6W79HTPLQeAXLpLtrp1hv7wQPATu-Frf0XUnBLZg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBejZWwv-w7z1nUajD3NQbYlW3ocJV36lUGXsrwJSZZeWpyQONDur59OctxmjFHG3gTW2eh8Ov3OvvsdQh-N5YRZ7dIsMyalgohUOGtS40jmlPEnjIE_umeTcnxBj2ds1rUDglqYyA_Rf3CDnRH8NWxw-CC9vctLKIuuCKQaZFBVVTI29IByFxp8h_jq_JZLqqo6SuYC0hGE2E7r-eOdts6qXVD79SZtEXIo1cqr0cX-F1sA9S7MDefU4VN0tVlhTE-5HK5bPTQ_fyN__E8qeIaedHgWf4kG-Bw9sM0L9DB2uLzxo5HpRoPRbUmdF-h8yuolOv9uVYgHPuNm3uJIkooXwLqx6AjEcb0EdlxsYjVLe4MXkag2dL7AKqgP-0A68lKvXqGLw9H0YJx2nR5SQwVnKVfUFkIXyhrFaF1oJ5TLPZLj3FVMG-1K6krDPbYhrM6pLnWpMsKtM7WzXmCAdpp5Y18jTEymCa-JA-CigF8-r6nlXFjqalqrBFWbdypNtwroxnEl74RDXqkSlCpBqTIoVV4nKOslF5EK5B4yn4LZ9AJqeQmpdBWTPyZfpfdqx7MDnstpggbBrvqJ1CNrH_lkCdrfMrR-Ql5BkxQiErS3sTzZ-Z-VzIocmP0E9_If-svec8DvINXY-RrmeOzNGSuqv8yhwN9WMuEfUwVTvPfS5bejkzB888-S79Gj8fTsVJ4eTU7eosd56EQCuaZ7aKddru07jwdbvR_2-S_6PE-B |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELbQJhAv_K4IjBEkxBOpnMRO7Ee0tewHFDQ20TfLduyXojRqU2njr8dnp9mCEJoQb5bqa-Xr-fw5-e47hN5qwzA1yiZpqnVCOOYJt0Yn2uLUSu1OGA1vdD_PiqMLcjKn847_BLUwQR-if-AGO8Pna9jgTWWHm7yAqugSA9MghaKqgtKxw5O7pMAMIvzw7FpKqiw7ReYc2AicD1k9f_ymwVG1C16_3LIWgUIp186LNrS_GODTmyjXH1PTh2ixXWBgpyzGm1aN9c_ftB__jwceoQcdmo0_hPB7jO6Y-gm6G_pbXrnRRHej0eS6oM4ZdBll_RSdfTPS3wbex_WyjYNEatyA5kbTyYfH1Qq0cWMdalnaq7gJMrW-70Usvfdid40OqtTrZ-hiOjk_OEq6Pg-JJpzRhElicq5yabSkpMqV5dJmDscxZkuqtLIFsYVmDtlgWmVEFaqQKWbG6soaZzBCO_WyNs9RjHWqMKuwBdgiQV0-q4hhjBtiK1LJCJXbv1TobhXQi-OHuHEZck4V4FQBThXeqeIyQmlv2QQhkFvYvPNR0xvI1QKIdCUV32cfhctpJ_MDlonzCI18WPUTicPV7t6TRmh_EGf9hKyEFimYR2hvG3iiyz5rkeYZ6Ppx5uzf9B-7vAEvg2RtlhuY45A3ozQv_zKHgHpbQbn7mdJH4q2XLr4cn_rhi3-2fI3ufT2cik_Hs9OX6H7m25AA0XQP7bSrjXnlwGCr9v0u_wXaeU45 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seasonal%2C+not+annual+precipitation+drives+community+productivity+across+ecosystems&rft.jtitle=Oikos&rft.au=ROBINSON%2C+Todd+M.+P&rft.au=LA+PIERRE%2C+Kimberly+J&rft.au=VADEBONCOEUR%2C+Matthew+A&rft.au=BYRNE%2C+Kerry+M&rft.date=2013-05-01&rft.pub=Blackwell&rft.issn=0030-1299&rft.volume=122&rft.issue=5&rft.spage=727&rft.epage=738&rft_id=info:doi/10.1111%2Fj.1600-0706.2012.20655.x&rft.externalDBID=n%2Fa&rft.externalDocID=27278309 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-1299&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-1299&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-1299&client=summon |