Mycorrhizal associations change root functionality a 3D modelling study on competitive interactions between plants for light and nutrients
• Recent studies show that the variation in root functional traits can be explained by a two-dimensional trait framework, containing a ‘collaboration’ axis in addition to the classical fast–slow ‘conservation’ axis. This collaboration axis spans from thin and highly branched roots that employ a ‘do-...
Saved in:
Published in | The New phytologist Vol. 231; no. 3; pp. 1171 - 1182 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley
01.08.2021
Wiley Subscription Services, Inc John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | • Recent studies show that the variation in root functional traits can be explained by a two-dimensional trait framework, containing a ‘collaboration’ axis in addition to the classical fast–slow ‘conservation’ axis. This collaboration axis spans from thin and highly branched roots that employ a ‘do-it-yourself’ strategy to thick and sparsely branched roots that ‘outsource’ nutrient uptake to symbiotic arbuscular mycorrhizal fungi (AMF).
• Here, we explore the functionality of this collaboration axis by quantifying how interactions with AMF change the impact of root traits on plant performance. To this end, we developed a novel functional–structural plant (FSP) modelling approach that simulates plants competing for light and nutrients in the presence or absence of AMF.
• Our simulation results support the notion that in the absence of AMF, plants rely on thin, highly branched roots for their nutrient uptake. The presence of AMF, however, promotes thick, unbranched roots as an alternative strategy for uptake of immobile phosphorus, but not for mobile nitrogen.
• This provides further support for a root trait framework that accommodates for the interactive effect of roots and AMF. Our modelling study offers unique opportunities to incorporate soil microbial interactions into root functionality as it integrates consequences of belowground trait expression. |
---|---|
AbstractList | Recent studies show that the variation in root functional traits can be explained by a two-dimensional trait framework, containing a 'collaboration' axis in addition to the classical fast-slow 'conservation' axis. This collaboration axis spans from thin and highly branched roots that employ a 'do-it-yourself' strategy to thick and sparsely branched roots that 'outsource' nutrient uptake to symbiotic arbuscular mycorrhizal fungi (AMF). Here, we explore the functionality of this collaboration axis by quantifying how interactions with AMF change the impact of root traits on plant performance. To this end, we developed a novel functional-structural plant (FSP) modelling approach that simulates plants competing for light and nutrients in the presence or absence of AMF. Our simulation results support the notion that in the absence of AMF, plants rely on thin, highly branched roots for their nutrient uptake. The presence of AMF, however, promotes thick, unbranched roots as an alternative strategy for uptake of immobile phosphorus, but not for mobile nitrogen. This provides further support for a root trait framework that accommodates for the interactive effect of roots and AMF. Our modelling study offers unique opportunities to incorporate soil microbial interactions into root functionality as it integrates consequences of belowground trait expression.Recent studies show that the variation in root functional traits can be explained by a two-dimensional trait framework, containing a 'collaboration' axis in addition to the classical fast-slow 'conservation' axis. This collaboration axis spans from thin and highly branched roots that employ a 'do-it-yourself' strategy to thick and sparsely branched roots that 'outsource' nutrient uptake to symbiotic arbuscular mycorrhizal fungi (AMF). Here, we explore the functionality of this collaboration axis by quantifying how interactions with AMF change the impact of root traits on plant performance. To this end, we developed a novel functional-structural plant (FSP) modelling approach that simulates plants competing for light and nutrients in the presence or absence of AMF. Our simulation results support the notion that in the absence of AMF, plants rely on thin, highly branched roots for their nutrient uptake. The presence of AMF, however, promotes thick, unbranched roots as an alternative strategy for uptake of immobile phosphorus, but not for mobile nitrogen. This provides further support for a root trait framework that accommodates for the interactive effect of roots and AMF. Our modelling study offers unique opportunities to incorporate soil microbial interactions into root functionality as it integrates consequences of belowground trait expression. Recent studies show that the variation in root functional traits can be explained by a two‐dimensional trait framework, containing a ‘collaboration’ axis in addition to the classical fast–slow ‘conservation’ axis. This collaboration axis spans from thin and highly branched roots that employ a ‘do‐it‐yourself’ strategy to thick and sparsely branched roots that ‘outsource’ nutrient uptake to symbiotic arbuscular mycorrhizal fungi (AMF). Here, we explore the functionality of this collaboration axis by quantifying how interactions with AMF change the impact of root traits on plant performance. To this end, we developed a novel functional–structural plant (FSP) modelling approach that simulates plants competing for light and nutrients in the presence or absence of AMF. Our simulation results support the notion that in the absence of AMF, plants rely on thin, highly branched roots for their nutrient uptake. The presence of AMF, however, promotes thick, unbranched roots as an alternative strategy for uptake of immobile phosphorus, but not for mobile nitrogen. This provides further support for a root trait framework that accommodates for the interactive effect of roots and AMF. Our modelling study offers unique opportunities to incorporate soil microbial interactions into root functionality as it integrates consequences of belowground trait expression. Summary Recent studies show that the variation in root functional traits can be explained by a two‐dimensional trait framework, containing a ‘collaboration’ axis in addition to the classical fast–slow ‘conservation’ axis. This collaboration axis spans from thin and highly branched roots that employ a ‘do‐it‐yourself’ strategy to thick and sparsely branched roots that ‘outsource’ nutrient uptake to symbiotic arbuscular mycorrhizal fungi (AMF). Here, we explore the functionality of this collaboration axis by quantifying how interactions with AMF change the impact of root traits on plant performance. To this end, we developed a novel functional–structural plant (FSP) modelling approach that simulates plants competing for light and nutrients in the presence or absence of AMF. Our simulation results support the notion that in the absence of AMF, plants rely on thin, highly branched roots for their nutrient uptake. The presence of AMF, however, promotes thick, unbranched roots as an alternative strategy for uptake of immobile phosphorus, but not for mobile nitrogen. This provides further support for a root trait framework that accommodates for the interactive effect of roots and AMF. Our modelling study offers unique opportunities to incorporate soil microbial interactions into root functionality as it integrates consequences of belowground trait expression. Recent studies show that the variation in root functional traits can be explained by a two‐dimensional trait framework, containing a ‘collaboration’ axis in addition to the classical fast–slow ‘conservation’ axis. This collaboration axis spans from thin and highly branched roots that employ a ‘do‐it‐yourself’ strategy to thick and sparsely branched roots that ‘outsource’ nutrient uptake to symbiotic arbuscular mycorrhizal fungi (AMF).Here, we explore the functionality of this collaboration axis by quantifying how interactions with AMF change the impact of root traits on plant performance. To this end, we developed a novel functional–structural plant (FSP) modelling approach that simulates plants competing for light and nutrients in the presence or absence of AMF.Our simulation results support the notion that in the absence of AMF, plants rely on thin, highly branched roots for their nutrient uptake. The presence of AMF, however, promotes thick, unbranched roots as an alternative strategy for uptake of immobile phosphorus, but not for mobile nitrogen.This provides further support for a root trait framework that accommodates for the interactive effect of roots and AMF. Our modelling study offers unique opportunities to incorporate soil microbial interactions into root functionality as it integrates consequences of belowground trait expression. Recent studies show that the variation in root functional traits can be explained by a two-dimensional trait framework, containing a 'collaboration' axis in addition to the classical fast-slow 'conservation' axis. This collaboration axis spans from thin and highly branched roots that employ a 'do-it-yourself' strategy to thick and sparsely branched roots that 'outsource' nutrient uptake to symbiotic arbuscular mycorrhizal fungi (AMF). Here, we explore the functionality of this collaboration axis by quantifying how interactions with AMF change the impact of root traits on plant performance . To this end, we developed a novel functional-structural plant (FSP) modelling approach that simulates plants competing for light and nutrients in the presence or absence of AMF. Our simulation results support the notion that in the absence of AMF, plants rely on thin, highly branched roots for their nutrient uptake. The presence of AMF, however, promote thick, unbranched roots as an alternative strategy for uptake of immobile phosphorus, but not for mobile nitrogen. This provides further support for a root trait framework that accommodates for the interactive effect of roots and AMF. Our modelling study offers unique opportunities to incorporate soil microbial interactions into root functionality as it integrates consequences of belowground trait expression. • Recent studies show that the variation in root functional traits can be explained by a two-dimensional trait framework, containing a ‘collaboration’ axis in addition to the classical fast–slow ‘conservation’ axis. This collaboration axis spans from thin and highly branched roots that employ a ‘do-it-yourself’ strategy to thick and sparsely branched roots that ‘outsource’ nutrient uptake to symbiotic arbuscular mycorrhizal fungi (AMF). • Here, we explore the functionality of this collaboration axis by quantifying how interactions with AMF change the impact of root traits on plant performance. To this end, we developed a novel functional–structural plant (FSP) modelling approach that simulates plants competing for light and nutrients in the presence or absence of AMF. • Our simulation results support the notion that in the absence of AMF, plants rely on thin, highly branched roots for their nutrient uptake. The presence of AMF, however, promotes thick, unbranched roots as an alternative strategy for uptake of immobile phosphorus, but not for mobile nitrogen. • This provides further support for a root trait framework that accommodates for the interactive effect of roots and AMF. Our modelling study offers unique opportunities to incorporate soil microbial interactions into root functionality as it integrates consequences of belowground trait expression. |
Author | Evers, Jochem B. Kuyper, Thomas W. deVries, Jorad van Ruijven, Jasper Mommer, Liesje |
AuthorAffiliation | 2 Institute for Integrative Biology ETH Zürich Zürich 8092 Switzerland 3 Soil Biology Group Wageningen University PO Box 47 Wageningen 6700 AA the Netherlands 4 Plant Ecology and Nature Conservation Group Wageningen University PO Box 47 Wageningen 6700 AA the Netherlands 1 Centre for Crop System Analysis Wageningen University PO Box 430 Wageningen 6700 AK the Netherlands |
AuthorAffiliation_xml | – name: 2 Institute for Integrative Biology ETH Zürich Zürich 8092 Switzerland – name: 1 Centre for Crop System Analysis Wageningen University PO Box 430 Wageningen 6700 AK the Netherlands – name: 4 Plant Ecology and Nature Conservation Group Wageningen University PO Box 47 Wageningen 6700 AA the Netherlands – name: 3 Soil Biology Group Wageningen University PO Box 47 Wageningen 6700 AA the Netherlands |
Author_xml | – sequence: 1 givenname: Jorad surname: deVries fullname: deVries, Jorad – sequence: 2 givenname: Jochem B. surname: Evers fullname: Evers, Jochem B. – sequence: 3 givenname: Thomas W. surname: Kuyper fullname: Kuyper, Thomas W. – sequence: 4 givenname: Jasper surname: van Ruijven fullname: van Ruijven, Jasper – sequence: 5 givenname: Liesje surname: Mommer fullname: Mommer, Liesje |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33930184$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtPGzEUha0KVELooj-gVSQ2sBi4fozH3lRCiBYkXguQ2FmO8RBHEzu1Z1qlv74e8hCgVnhjyf7O0bnn7qItH7xF6DOGI5zPsZ9PjnDFaPkBDTDjshCYVltoAEBEwRl_2EG7KU0BQJacfEQ7lEoKWLABIlcLE2KcuD-6GemUgnG6dcGnkZlo_2RHMYR2VHfe9K-6ce1iD23Xukn20-oeovvvZ3en58XlzY-L05PLwjApykKUj0JTK6TmAGMBjFNjGR9LA9iWQGtMscwJoWaa5_RmXBkuNFBMLBZc0iH6tvSdd-OZfTTWt1E3ah7dTMeFCtqp1z_eTdRT-KUE7f1YNjhYGcTws7OpVTOXjG0a7W3okiKcYyAVF_J9tCQgKkoAZ3T_DToNXczV9BTjGSxpT319GX6Tet18Bo6XgIkhpWhrZVz7XH2exTUKg-p3q_Ju1fNus-LwjWJt-i925f7bNXbxf1Bd356vFV-WimlqQ9woSAUlYA70L9X4utA |
CitedBy_id | crossref_primary_10_1111_nph_20434 crossref_primary_10_1080_15592324_2024_2329842 crossref_primary_10_15407_agrisp10_01_054 crossref_primary_10_1093_jxb_erae298 crossref_primary_10_1111_oik_08827 crossref_primary_10_3389_fpls_2022_1052066 crossref_primary_10_1007_s11104_024_06808_2 crossref_primary_10_1007_s11104_024_07150_3 crossref_primary_10_3390_plants10122760 crossref_primary_10_1093_insilicoplants_diae018 crossref_primary_10_1007_s00572_024_01153_9 crossref_primary_10_1093_insilicoplants_diab029 crossref_primary_10_3390_agronomy13020550 crossref_primary_10_3389_fpls_2021_734167 crossref_primary_10_1016_j_pld_2021_12_004 crossref_primary_10_1007_s00572_022_01070_9 crossref_primary_10_3390_microorganisms12081550 crossref_primary_10_17660_ActaHortic_2024_1395_17 crossref_primary_10_1111_oik_08908 crossref_primary_10_1186_s40793_025_00676_8 crossref_primary_10_1093_insilicoplants_diad012 crossref_primary_10_1007_s00572_023_01126_4 crossref_primary_10_3389_fpls_2022_817909 crossref_primary_10_1007_s11104_023_06269_z crossref_primary_10_1007_s00572_024_01164_6 |
Cites_doi | 10.1111/j.1461-0248.2008.01254.x 10.1046/j.1365-313X.2002.01251.x 10.1093/aob/mcq249 10.1111/nph.14003 10.1046/j.1469-8137.1997.00729.x 10.1098/rsif.2016.0129 10.1093/insilicoplants/diaa001 10.1111/1365-2435.12217 10.1111/nph.14967 10.1086/431287 10.1007/s00572-006-0064-7 10.1007/s11104-013-1769-y 10.1038/nature25783 10.1071/FP08052 10.3389/fpls.2020.00708 10.1111/j.1469-8137.2005.01520.x 10.1111/nph.17072 10.1007/s004420050397 10.1111/j.1365-2745.2005.01089.x 10.1007/s00442-016-3771-6 10.1111/j.1469-8137.1991.tb00039.x 10.1007/978-3-540-38364-2_5 10.1002/9781119525417.ch7 10.5194/bg-13-415-2016 10.1007/s11104-017-3282-1 10.1111/nph.13363 10.1016/j.plantsci.2014.01.009 10.1890/0012-9658(2006)87[1225:CAIEGS]2.0.CO;2 10.1111/1365-2745.12562 10.1007/s11104-016-2843-z 10.1111/1365-2745.12984 10.1016/S0169-5347(03)00061-2 10.1007/s00572-003-0265-2 10.1007/BF00333217 10.1111/j.1469-8137.2011.03952.x 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2 10.1093/aob/mcx154 10.1093/aob/mcx221 10.1126/science.1208473 10.1111/nph.12883 10.1111/nph.14641 10.1007/s005720100097 10.1111/j.1469-8137.2007.02168.x 10.1093/aob/mcx212 10.1111/j.1469-8137.2004.01015.x 10.1046/j.1469-8137.2002.00397.x 10.1007/s00572-015-0627-6 10.1023/A:1003113131989 10.1071/CP09217 10.1111/1365-2745.12489 10.1007/3-540-27675-0_7 10.1007/s11104-011-0752-8 10.1111/j.1469-8137.2005.01349.x 10.2307/3558359 10.1111/j.1365-2435.2011.01916.x 10.1111/nph.13828 10.1016/0169-5347(90)90095-U 10.1073/pnas.1721629115 10.1016/0304-3800(94)90027-2 10.1590/S0103-90162004000200013 10.1023/A:1004276724310 10.1104/pp.112.195727 10.1093/aob/mcy050 10.1007/BF02376780 10.1086/688675 10.1007/s00572-017-0801-0 10.1016/j.ecolmodel.2013.11.014 10.1007/s00572-011-0398-7 10.1890/06-0822.1 10.1002/ece3.2207 10.1093/aob/mcaa120 10.1034/j.1600-0706.2000.900211.x 10.1111/1365-2435.13234 10.1126/sciadv.aba3756 10.1046/j.0022-0477.2001.00609.x 10.2307/2483412 10.1007/BF02370279 10.1111/j.1469-8137.1980.tb04555.x 10.1111/j.1469-8137.2006.01854.x 10.1093/aob/mcs285 10.1111/j.1365-3040.1996.tb00386.x 10.1111/nph.13172 10.1093/aob/mcs293 10.3389/fpls.2019.01215 10.1046/j.1469-8137.2000.00602.x 10.1086/657992 10.1016/S0065-2504(08)60016-1 10.1111/nph.14247 10.1007/978-1-4613-8476-2 10.1111/oik.03580 10.1890/0012-9658(2006)87[1627:MSITAM]2.0.CO;2 |
ContentType | Journal Article |
Copyright | 2021 The Authors © 2021 New Phytologist Foundation 2021 The Authors. © 2021 New Phytologist Foundation This article is protected by copyright. All rights reserved. 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation. |
Copyright_xml | – notice: 2021 The Authors © 2021 New Phytologist Foundation – notice: 2021 The Authors. © 2021 New Phytologist Foundation – notice: This article is protected by copyright. All rights reserved. – notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation. |
DBID | 24P AAYXX CITATION NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1111/nph.17435 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 1182 |
ExternalDocumentID | PMC8361744 33930184 10_1111_nph_17435 NPH17435 27050160 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek funderid: 864.14.006 – fundername: Graduate School for Production Ecology & Resource Conservation – fundername: ; grantid: 864.14.006 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAKGQ AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABLJU ABPLY ABPVW ABTLG ABVKB ACAHQ ACCZN ACFBH ACGFS ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IX1 J0M JBS JLS JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAISJ AASGY AASVR ABBHK ABEFU ABEML ABGDZ ABSQW ABXSQ ACHIC ACQPF ADULT ADXHL AEUPB AGUYK AHXOZ AILXY AQVQM AS~ CAG CBGCD COF CUYZI DEVKO EJD FIJ GTFYD HF~ HGD HQ2 HTVGU IPSME JAAYA JBMMH JEB JENOY JHFFW JKQEH JLXEF JPM LPU LW6 MVM NEJ RCA SA0 WHG XOL YXE ZCG AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION AEUQT AFPWT ESX NPM WRC 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c4985-85d8a3e89a600b80463ce46b9c01e503f13190020f4a6174cb7c68a0312e18693 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Thu Aug 21 13:50:16 EDT 2025 Fri Jul 11 18:30:18 EDT 2025 Tue Aug 05 11:38:50 EDT 2025 Wed Aug 13 06:08:31 EDT 2025 Wed Feb 19 02:28:03 EST 2025 Thu Apr 24 23:01:02 EDT 2025 Tue Jul 01 02:28:38 EDT 2025 Sun Jul 06 04:45:30 EDT 2025 Thu Jul 03 21:34:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | root economics space functional-structural plant modelling root traits outsourcing architectural whole-plant modelling resource competition arbuscular mycorrhizal fungi (AMF) |
Language | English |
License | Attribution-NonCommercial This article is protected by copyright. All rights reserved. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4985-85d8a3e89a600b80463ce46b9c01e503f13190020f4a6174cb7c68a0312e18693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0003-2363 0000-0002-3896-4943 0000-0002-3775-0716 0000-0003-2656-2231 0000-0002-3956-0190 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17435 |
PMID | 33930184 |
PQID | 2546520531 |
PQPubID | 2026848 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8361744 proquest_miscellaneous_2661027689 proquest_miscellaneous_2520873201 proquest_journals_2546520531 pubmed_primary_33930184 crossref_citationtrail_10_1111_nph_17435 crossref_primary_10_1111_nph_17435 wiley_primary_10_1111_nph_17435_NPH17435 jstor_primary_27050160 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2021 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster – name: Hoboken |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2021 |
Publisher | Wiley Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2018; 121 2004; 61 1989; 119 2002; 154 1980; 84 2019; 10 2004; 162 2020; 126 1975 1966; 93 2016; 188 2008; 35 2000; 90 2003; 18 2020; 11 2016; 104 2006; 172 2014; 28 2001; 88 2001; 89 1998; 396 1998; 113 1996; 108 1988; 105 2010; 61 1991; 119 2009; 12 2020; 6 2020; 2 1990 1997; 98 2018; 217 2007; 176 1997; 188 2013; 112 1981 2012; 26 2001; 11 2017a; 183 2012; 22 2014; 203 2014; (290) 1994; 75 1997; 135 2011; 333 2018; 28 1996; 19 2018; 106 1988; 18 2016; 407 2018; 424 2010 2019; 33 2006; 16 2005 2017b; 126 2015; 207 2003 2015; 205 2004; 428 2017; 213 2011; 177 2016; 13 2017; 215 1999 2016; 6 2015; 25 2011; 344 2002; 29 2011; 107 2005; 166 2006; 87 2021 2005; 168 2004; 14 2018; 555 2018; 115 2012; 193 2016; 211 2016; 210 2013; 372 2000; 145 2014; 221 2012; 159 1990; 5 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_93_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 Baylis G (e_1_2_8_9_1) 1975 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_88_1 Barber SA (e_1_2_8_6_1) 1981 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_84_1 Smith SE (e_1_2_8_79_1) 2010 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_96_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 88 start-page: 1824 year: 2001 end-page: 1829 article-title: Occurrence of arbuscular mycorrhizal fungi in a phosphorus‐poor wetland and mycorrhizal response to phosphorus fertilization publication-title: American Journal of Botany – volume: 18 start-page: 337 year: 2003 end-page: 343 article-title: Plant height and evolutionary games publication-title: Trends in Ecology & Evolution – volume: 6 start-page: 4332 year: 2016 end-page: 4346 article-title: Plant–fungus competition for nitrogen erases mycorrhizal growth benefits of under limited nitrogen supply publication-title: Ecology and Evolution – volume: 344 start-page: 347 year: 2011 article-title: Contrasting root behaviour in two grass species: a test of functionality in dynamic heterogeneous conditions publication-title: Plant and Soil – year: 1981 – volume: 407 start-page: 39 year: 2016 end-page: 53 article-title: Linking root traits and competitive success in grassland species publication-title: Plant and Soil – volume: 25 start-page: 499 year: 2015 end-page: 515 article-title: Nitrogen and carbon/nitrogen dynamics in arbuscular mycorrhiza: the great unknown publication-title: Mycorrhiza – volume: 5 start-page: 360 year: 1990 end-page: 364 article-title: Asymmetric competition in plant populations publication-title: Trends in Ecology & Evolution – volume: 172 start-page: 554 year: 2006 end-page: 562 article-title: Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system publication-title: New Phytologist – volume: 13 start-page: 20160129 year: 2016 article-title: L‐System model for the growth of arbuscular mycorrhizal fungi, both within and outside of their host roots publication-title: Journal of The Royal Society Interface – volume: 396 start-page: 69 year: 1998 article-title: Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity publication-title: Nature – volume: 26 start-page: 66 year: 2012 end-page: 73 article-title: Interactive effects of nutrient heterogeneity and competition: implications for root foraging theory? publication-title: Functional Ecology – volume: 112 start-page: 391 year: 2013 end-page: 408 article-title: Responses of root architecture development to low phosphorus availability: a review publication-title: Annals of Botany – year: 1975 – volume: 154 start-page: 275 year: 2002 end-page: 304 article-title: Coevolution of roots and mycorrhizas of land plants publication-title: New Phytologist – volume: 98 start-page: 177 year: 1997 end-page: 182 article-title: Variation in root hairs of barley cultivars doubled soil phosphorus uptake publication-title: Euphytica – volume: 33 start-page: 129 year: 2019 end-page: 138 article-title: Ecological interactions shape the adaptive value of plant defence: herbivore attack versus competition for light publication-title: Functional Ecology – volume: 176 start-page: 325 year: 2007 end-page: 336 article-title: Simulating the effects of localized red:far‐red ratio on tillering in spring wheat ( ) using a three‐dimensional virtual plant model publication-title: New Phytologist – volume: 168 start-page: 401 year: 2005 end-page: 412 article-title: Root proliferation and seed yield in response to spatial heterogeneity of below‐ground competition publication-title: New Phytologist – volume: 18 start-page: 243 year: 1988 end-page: 270 article-title: Mycorrhizal links between plants: their functioning and ecological significance publication-title: Advances in Ecological Research – volume: 211 start-page: 1159 year: 2016 end-page: 1169 article-title: Towards a multidimensional root trait framework: a tree root review publication-title: New Phytologist – volume: 14 start-page: 263 year: 2004 end-page: 269 article-title: Field response of wheat to arbuscular mycorrhizal fungi and drought stress publication-title: Mycorrhiza – year: 1990 – volume: 84 start-page: 483 year: 1980 end-page: 487 article-title: Root size, root hairs and mycorrhizal infection: a re‐examination of Baylis's hypothesis with tropical trees publication-title: New Phytologist – volume: 105 start-page: 169 year: 1988 end-page: 178 article-title: ROOTMAP—a model in three‐dimensional coordinates of the growth and structure of fibrous root systems publication-title: Plant and Soil – volume: 28 start-page: 1030 year: 2014 end-page: 1040 article-title: Hierarchy of root functional trait values and plasticity drive early‐stage competition for water and phosphorus among grasses publication-title: Functional Ecology – volume: 372 start-page: 93 year: 2013 end-page: 124 article-title: Modelling root–soil interactions using three–dimensional models of root growth, architecture and function publication-title: Plant and Soil – start-page: 147 year: 2005 end-page: 183 – volume: 188 start-page: 139 year: 1997 end-page: 151 article-title: SimRoot: modelling and visualization of root systems publication-title: Plant and Soil – volume: 61 start-page: 203 year: 2004 end-page: 209 article-title: Arbuscular mycorrhiza and kinetic parameters of phosphorus absorption by bean plants publication-title: Scientia Agricola – volume: 166 start-page: 216 year: 2005 end-page: 230 article-title: Plant phenotypic plasticity belowground: a phylogenetic perspective on root foraging trade‐offs publication-title: American Naturalist – volume: 203 start-page: 352 year: 2014 end-page: 354 article-title: The danger of mycorrhizal traps? publication-title: New Phytologist – volume: 121 start-page: 1019 year: 2018 end-page: 1031 article-title: Elucidating the interaction between light competition and herbivore feeding patterns using functional–structural plant modelling publication-title: Annals of Botany – start-page: 117 year: 2003 end-page: 133 – volume: 35 start-page: 739 year: 2008 end-page: 750 article-title: The rule‐based language XL and the modelling environment GroIMP illustrated with simulated tree competition publication-title: Functional Plant Biology – volume: 162 start-page: 9 year: 2004 end-page: 24 article-title: The plastic plant: root responses to heterogeneous supplies of nutrients publication-title: New Phytologist – volume: 87 start-page: 1733 year: 2006 end-page: 1743 article-title: Leaf traits are good predictors of plant performance across 53 rain forest species publication-title: Ecology – volume: 61 start-page: 122 year: 2010 end-page: 131 article-title: Root hair morphology and mycorrhizal colonisation of pasture species in response to phosphorus and nitrogen nutrition publication-title: Crop and Pasture Science – volume: 145 start-page: 575 year: 2000 end-page: 584 article-title: An arbuscular mycorrhizal inoculum enhances root proliferation in, but not nitrogen capture from, nutrient‐rich patches in soil publication-title: New Phytologist – volume: 104 start-page: 1299 year: 2016 end-page: 1310 article-title: Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum publication-title: Journal of Ecology – volume: 115 start-page: 5229 year: 2018 article-title: Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown publication-title: Proceedings of the National Academy of Sciences, USA – volume: 177 start-page: 153 year: 2011 end-page: 166 article-title: Evolutionarily stable strategy carbon allocation to foliage, wood, and fine roots in trees competing for light and nitrogen: an analytically tractable, individual‐based model and quantitative comparisons to data publication-title: American Naturalist – volume: 193 start-page: 30 year: 2012 end-page: 50 article-title: Biomass allocation to leaves, stems and roots: meta‐analyses of interspecific variation and environmental control publication-title: New Phytologist – volume: 215 start-page: 1274 year: 2017 end-page: 1286 article-title: OpenSimRoot: widening the scope and application of root architectural models publication-title: New Phytologist – volume: 207 start-page: 505 year: 2015 end-page: 518 article-title: Redefining fine roots improves understanding of below‐ground contributions to terrestrial biosphere processes publication-title: New Phytologist – volume: 205 start-page: 1473 year: 2015 end-page: 1484 article-title: Mycorrhizal phenotypes and the law of the minimum publication-title: New Phytologist – volume: 121 start-page: 767 year: 2018 end-page: 772 article-title: Computational botany: advancing plant science through functional–structural plant modelling publication-title: Annals of Botany – volume: 213 start-page: 1597 year: 2017 end-page: 1603 article-title: Below‐ground frontiers in trait‐based plant ecology publication-title: New Phytologist – volume: 108 start-page: 79 year: 1996 end-page: 84 article-title: Effect of arbuscular mycorrhiza on inter‐and intraspecific competition of two grassland species publication-title: Oecologia – volume: 126 start-page: 248 year: 2017b end-page: 258 article-title: Mycorrhizal feedback is not associated with the outcome of competition in old‐field perennial plants publication-title: Oikos – start-page: 193 year: 2021 end-page: 220 – start-page: 1 year: 1999 end-page: 67 – volume: 104 start-page: 206 year: 2016 end-page: 218 article-title: From pots to plots: hierarchical trait‐based prediction of plant performance in a mesic grassland publication-title: Journal of Ecology – volume: 11 start-page: 708 year: 2020 article-title: Modeling of root nitrate responses suggests preferential foraging arises from the integration of demand, supply and local presence signals publication-title: Frontiers in Plant Science – volume: 119 start-page: 397 year: 1991 end-page: 404 article-title: Phosphorus depletion and pH decrease at the root–soil and hyphae–soil interfaces of VA mycorrhizal white clover fertilized with ammonium publication-title: New Phytologist – volume: 210 start-page: 815 year: 2016 end-page: 826 article-title: Root structure–function relationships in 74 species: evidence of a root economics spectrum related to carbon economy publication-title: New Phytologist – volume: 135 start-page: 575 year: 1997 end-page: 585 article-title: Functioning of mycorrhizal associations along the mutualism–parasitism continuum publication-title: New Phytologist – volume: 428 start-page: 821 year: 2004 article-title: The worldwide leaf economics spectrum publication-title: Nature – volume: 221 start-page: 29 year: 2014 end-page: 41 article-title: Shedding light onto nutrient responses of arbuscular mycorrhizal plants: nutrient interactions may lead to unpredicted outcomes of the symbiosis publication-title: Plant Science – volume: 188 start-page: E113 year: 2016 end-page: E125 article-title: Mutualism persistence and abandonment during the evolution of the mycorrhizal symbiosis publication-title: American Naturalist – volume: 16 start-page: 495 year: 2006 end-page: 502 article-title: Wetland dicots and monocots differ in colonization by arbuscular mycorrhizal fungi and dark septate endophytes publication-title: Mycorrhiza – volume: 126 start-page: 789 year: 2020 end-page: 806 article-title: A functional‐structural model of upland rice root systems reveals the importance of laterals and growing root tips for phosphate uptake from wet and dry soils publication-title: Annals of Botany – volume: 22 start-page: 227 year: 2012 end-page: 235 article-title: Do arbuscular mycorrhizal fungi affect the allometric partition of host plant biomass to shoots and roots? A meta‐analysis of studies from 1990 to 2010 publication-title: Mycorrhiza – volume: 107 start-page: 407 year: 2011 end-page: 413 article-title: Arbuscular mycorrhizal fungi alter plant allometry and biomass–density relationships publication-title: Annals of Botany – volume: 29 start-page: 751 year: 2002 end-page: 760 article-title: Nitrate and phosphate availability and distribution have different effects on root system architecture of publication-title: The Plant Journal – volume: 424 start-page: 157 year: 2018 end-page: 169 article-title: Different sets of belowground traits predict the ability of plant species to suppress and tolerate their competitors publication-title: Plant and Soil – volume: 11 start-page: 3 year: 2001 end-page: 42 article-title: Water relations, drought and vesicular‐arbuscular mycorrhizal symbiosis publication-title: Mycorrhiza – volume: 121 start-page: 1033 year: 2018 end-page: 1053 article-title: CRootBox: a structural–functional modelling framework for root systems publication-title: Annals of Botany – volume: 87 start-page: 1627 year: 2006 end-page: 1636 article-title: Mutualistic stability in the arbuscular mycorrhizal symbiosis: exploring hypotheses of evolutionary cooperation publication-title: Ecology – volume: 93 start-page: 402 year: 1966 end-page: 406 article-title: Ecological importance of root/shoot ratios publication-title: Bulletin of the Torrey Botanical Club – volume: 13 start-page: 415 year: 2016 end-page: 424 article-title: Economic strategies of plant absorptive roots vary with root diameter publication-title: Biogeosciences – volume: 555 start-page: 94 year: 2018 article-title: Evolutionary history resolves global organization of root functional traits publication-title: Nature – volume: 2 start-page: diaa001 year: 2020 article-title: CPlantBox, a whole‐plant modelling framework for the simulation of water‐and carbon‐related processes publication-title: in silico. Plants – volume: 333 start-page: 880 year: 2011 end-page: 882 article-title: Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis publication-title: Science – year: 2010 – volume: 12 start-page: 13 year: 2009 end-page: 21 article-title: Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism publication-title: Ecology Letters – volume: 106 start-page: 2332 year: 2018 end-page: 2343 article-title: Experimental disconnection from common mycorrhizal networks has little effect on competitive interactions among common temperate grassland species publication-title: Journal of Ecology – volume: 75 start-page: 299 year: 1994 end-page: 308 article-title: Morphological models of plant growth: possibilities and ecological relevance publication-title: Ecological Modelling – volume: 10 start-page: 1215 year: 2019 article-title: Physical and functional constraints on viable belowground acquisition strategies publication-title: Frontiers in Plant Science – year: 2021 article-title: Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs publication-title: New Phytologist – volume: 90 start-page: 311 year: 2000 end-page: 320 article-title: Investigating the relationship between neighbor root biomass and belowground competition: field evidence for symmetric competition belowground publication-title: Oikos – volume: 119 start-page: 147 year: 1989 end-page: 154 article-title: A simulation model of the three‐dimensional architecture of the maize root system publication-title: Plant and Soil – volume: 183 start-page: 479 year: 2017a end-page: 491 article-title: Arbuscular mycorrhizal fungi alter the competitive hierarchy among old‐field plant species publication-title: Oecologia – volume: 6 start-page: eaba3756 year: 2020 article-title: The fungal collaboration gradient dominates the root economics space in plants. publication-title: Advances – volume: 217 start-page: 1420 year: 2018 end-page: 1427 article-title: Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence publication-title: New Phytologist – volume: 87 start-page: 1225 year: 2006 end-page: 1233 article-title: Community assembly in experimental grasslands: suitable environment or timely arrival? publication-title: Ecology – volume: 112 start-page: 347 year: 2013 end-page: 357 article-title: Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems publication-title: Annals of Botany – volume: (290) start-page: 76 year: 2014 end-page: 84 article-title: Calibration and evaluation of ArchiSimple, a simple model of root system architecture publication-title: Ecological Modelling – volume: 113 start-page: 447 year: 1998 end-page: 455 article-title: Mechanisms determining the degree of size asymmetry in competition among plants publication-title: Oecologia – volume: 159 start-page: 789 year: 2012 end-page: 797 article-title: Mycorrhizal networks: common goods of plants shared under unequal terms of trade publication-title: Plant Physiology – volume: 121 start-page: 875 year: 2018 end-page: 896 article-title: A generic individual‐based model to simulate morphogenesis, C‐N acquisition and population dynamics in contrasting forage legumes publication-title: Annals of Botany – volume: 89 start-page: 660 year: 2001 end-page: 669 article-title: Tragedy of the commons as a result of root competition publication-title: Journal of Ecology – volume: 19 start-page: 529 year: 1996 end-page: 538 article-title: Stimulation of root hair elongation in by low phosphorus availability publication-title: Plant, Cell & Environment – volume: 28 start-page: 71 year: 2018 end-page: 83 article-title: Arbuscular common mycorrhizal networks mediate intra‐and interspecific interactions of two prairie grasses publication-title: Mycorrhiza – ident: e_1_2_8_11_1 doi: 10.1111/j.1461-0248.2008.01254.x – ident: e_1_2_8_46_1 doi: 10.1046/j.1365-313X.2002.01251.x – ident: e_1_2_8_95_1 doi: 10.1093/aob/mcq249 – ident: e_1_2_8_89_1 doi: 10.1111/nph.14003 – ident: e_1_2_8_34_1 doi: 10.1046/j.1469-8137.1997.00729.x – ident: e_1_2_8_74_1 doi: 10.1098/rsif.2016.0129 – ident: e_1_2_8_96_1 doi: 10.1093/insilicoplants/diaa001 – ident: e_1_2_8_25_1 doi: 10.1111/1365-2435.12217 – ident: e_1_2_8_70_1 doi: 10.1111/nph.14967 – ident: e_1_2_8_36_1 doi: 10.1086/431287 – ident: e_1_2_8_91_1 doi: 10.1007/s00572-006-0064-7 – ident: e_1_2_8_19_1 doi: 10.1007/s11104-013-1769-y – ident: e_1_2_8_51_1 doi: 10.1038/nature25783 – ident: e_1_2_8_30_1 doi: 10.1071/FP08052 – ident: e_1_2_8_12_1 doi: 10.3389/fpls.2020.00708 – ident: e_1_2_8_62_1 doi: 10.1111/j.1469-8137.2005.01520.x – ident: e_1_2_8_26_1 doi: 10.1111/nph.17072 – ident: e_1_2_8_76_1 doi: 10.1007/s004420050397 – ident: e_1_2_8_60_1 doi: 10.1111/j.1365-2745.2005.01089.x – ident: e_1_2_8_81_1 doi: 10.1007/s00442-016-3771-6 – ident: e_1_2_8_45_1 doi: 10.1111/j.1469-8137.1991.tb00039.x – ident: e_1_2_8_2_1 doi: 10.1007/978-3-540-38364-2_5 – ident: e_1_2_8_43_1 doi: 10.1002/9781119525417.ch7 – ident: e_1_2_8_39_1 doi: 10.5194/bg-13-415-2016 – ident: e_1_2_8_77_1 doi: 10.1007/s11104-017-3282-1 – ident: e_1_2_8_53_1 doi: 10.1111/nph.13363 – ident: e_1_2_8_17_1 doi: 10.1016/j.plantsci.2014.01.009 – ident: e_1_2_8_21_1 doi: 10.1890/0012-9658(2006)87[1225:CAIEGS]2.0.CO;2 – ident: e_1_2_8_40_1 doi: 10.1111/1365-2745.12562 – ident: e_1_2_8_71_1 doi: 10.1007/s11104-016-2843-z – ident: e_1_2_8_55_1 doi: 10.1111/1365-2745.12984 – ident: e_1_2_8_24_1 doi: 10.1016/S0169-5347(03)00061-2 – ident: e_1_2_8_4_1 doi: 10.1007/s00572-003-0265-2 – ident: e_1_2_8_59_1 doi: 10.1007/BF00333217 – ident: e_1_2_8_65_1 doi: 10.1111/j.1469-8137.2011.03952.x – volume-title: Mycorrhizal symbiosis year: 2010 ident: e_1_2_8_79_1 – ident: e_1_2_8_66_1 doi: 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2 – volume-title: Endomycorrhizas; Proceedings of a Symposium year: 1975 ident: e_1_2_8_9_1 – ident: e_1_2_8_47_1 doi: 10.1093/aob/mcx154 – ident: e_1_2_8_73_1 doi: 10.1093/aob/mcx221 – ident: e_1_2_8_37_1 doi: 10.1126/science.1208473 – ident: e_1_2_8_42_1 doi: 10.1111/nph.12883 – ident: e_1_2_8_67_1 doi: 10.1111/nph.14641 – ident: e_1_2_8_5_1 doi: 10.1007/s005720100097 – ident: e_1_2_8_23_1 doi: 10.1111/j.1469-8137.2007.02168.x – ident: e_1_2_8_87_1 doi: 10.1093/aob/mcx212 – ident: e_1_2_8_32_1 doi: 10.1111/j.1469-8137.2004.01015.x – ident: e_1_2_8_13_1 doi: 10.1046/j.1469-8137.2002.00397.x – ident: e_1_2_8_16_1 doi: 10.1007/s00572-015-0627-6 – ident: e_1_2_8_27_1 doi: 10.1023/A:1003113131989 – ident: e_1_2_8_31_1 doi: 10.1071/CP09217 – ident: e_1_2_8_75_1 doi: 10.1111/1365-2745.12489 – ident: e_1_2_8_48_1 doi: 10.1007/3-540-27675-0_7 – volume-title: Nitrogen uptake model for agronomic crops. Modeling wastewater renovation: land treatment year: 1981 ident: e_1_2_8_6_1 – ident: e_1_2_8_57_1 doi: 10.1007/s11104-011-0752-8 – ident: e_1_2_8_94_1 doi: 10.1111/j.1469-8137.2005.01349.x – ident: e_1_2_8_15_1 doi: 10.2307/3558359 – ident: e_1_2_8_56_1 doi: 10.1111/j.1365-2435.2011.01916.x – ident: e_1_2_8_72_1 doi: 10.1111/nph.13828 – ident: e_1_2_8_90_1 doi: 10.1016/0169-5347(90)90095-U – ident: e_1_2_8_93_1 doi: 10.1073/pnas.1721629115 – ident: e_1_2_8_41_1 doi: 10.1016/0304-3800(94)90027-2 – ident: e_1_2_8_78_1 doi: 10.1590/S0103-90162004000200013 – ident: e_1_2_8_50_1 doi: 10.1023/A:1004276724310 – ident: e_1_2_8_88_1 doi: 10.1104/pp.112.195727 – ident: e_1_2_8_22_1 doi: 10.1093/aob/mcy050 – ident: e_1_2_8_18_1 doi: 10.1007/BF02376780 – ident: e_1_2_8_52_1 doi: 10.1086/688675 – ident: e_1_2_8_92_1 doi: 10.1007/s00572-017-0801-0 – ident: e_1_2_8_63_1 doi: 10.1016/j.ecolmodel.2013.11.014 – ident: e_1_2_8_84_1 doi: 10.1007/s00572-011-0398-7 – ident: e_1_2_8_29_1 doi: 10.1890/06-0822.1 – ident: e_1_2_8_69_1 doi: 10.1002/ece3.2207 – ident: e_1_2_8_8_1 doi: 10.1093/aob/mcaa120 – ident: e_1_2_8_14_1 doi: 10.1034/j.1600-0706.2000.900211.x – ident: e_1_2_8_83_1 doi: 10.1890/06-0822.1 – ident: e_1_2_8_86_1 doi: 10.1111/1365-2435.13234 – ident: e_1_2_8_10_1 doi: 10.1126/sciadv.aba3756 – ident: e_1_2_8_28_1 doi: 10.1046/j.0022-0477.2001.00609.x – ident: e_1_2_8_58_1 doi: 10.2307/2483412 – ident: e_1_2_8_64_1 doi: 10.1007/BF02370279 – ident: e_1_2_8_80_1 doi: 10.1111/j.1469-8137.1980.tb04555.x – ident: e_1_2_8_85_1 doi: 10.1111/j.1469-8137.2006.01854.x – ident: e_1_2_8_61_1 doi: 10.1093/aob/mcs285 – ident: e_1_2_8_7_1 doi: 10.1111/j.1365-3040.1996.tb00386.x – ident: e_1_2_8_35_1 doi: 10.1111/nph.13172 – ident: e_1_2_8_49_1 doi: 10.1093/aob/mcs293 – ident: e_1_2_8_54_1 doi: 10.3389/fpls.2019.01215 – ident: e_1_2_8_33_1 doi: 10.1046/j.1469-8137.2000.00602.x – ident: e_1_2_8_20_1 doi: 10.1086/657992 – ident: e_1_2_8_3_1 doi: 10.1016/S0065-2504(08)60016-1 – ident: e_1_2_8_44_1 doi: 10.1111/nph.14247 – ident: e_1_2_8_68_1 doi: 10.1007/978-1-4613-8476-2 – ident: e_1_2_8_82_1 doi: 10.1111/oik.03580 – ident: e_1_2_8_38_1 doi: 10.1890/0012-9658(2006)87[1627:MSITAM]2.0.CO;2 |
SSID | ssj0009562 |
Score | 2.4818132 |
Snippet | • Recent studies show that the variation in root functional traits can be explained by a two-dimensional trait framework, containing a ‘collaboration’ axis in... Summary Recent studies show that the variation in root functional traits can be explained by a two‐dimensional trait framework, containing a ‘collaboration’... Recent studies show that the variation in root functional traits can be explained by a two‐dimensional trait framework, containing a ‘collaboration’ axis in... Recent studies show that the variation in root functional traits can be explained by a two-dimensional trait framework, containing a 'collaboration' axis in... |
SourceID | pubmedcentral proquest pubmed crossref wiley jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1171 |
SubjectTerms | arbuscular mycorrhizal fungi (AMF) Arbuscular mycorrhizas architectural whole‐plant modelling Collaboration functional–structural plant modelling Fungi Microorganisms Mineral nutrients Modelling nitrogen Nutrient uptake Nutrients outsourcing Phosphorus resource competition root economics space root traits Roots soil Strategy Structure-function relationships Symbionts Three dimensional models Uptake vesicular arbuscular mycorrhizae |
Subtitle | a 3D modelling study on competitive interactions between plants for light and nutrients |
Title | Mycorrhizal associations change root functionality |
URI | https://www.jstor.org/stable/27050160 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17435 https://www.ncbi.nlm.nih.gov/pubmed/33930184 https://www.proquest.com/docview/2546520531 https://www.proquest.com/docview/2520873201 https://www.proquest.com/docview/2661027689 https://pubmed.ncbi.nlm.nih.gov/PMC8361744 |
Volume | 231 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VigMX3oVAqQzi0EuqxHYSB068qhVSqwpRaQ9Ike31aquuvKt9HNq_wJ9mxk7CLhSEuEXKRIqdmfFn55tvAF7rUtFG1aalrW0qhTapstU41ZlGNGvHMs-odvjktBycy8_DYrgDb7tamKgP0R-4UWSEfE0Brs1yI8j9fEJsHEEF5sTVIkD0hW8I7pa8U2AuZTlsVYWIxdM_ubUWRTriTUDzd77kJo4NC9HxPfjWDSHyTy6P1itzZK9_UXf8zzHeh7stQGXvokc9gB3nH8Lt9zMEkVeP4PvJFW5XF5OLa7TRPz_tksUKYoZAfMVosYxnjIjx3zDNxEcWWu5Q7TsLirZs5pkNmD2QlxjJVixikcWSteQxNp8SS4chrmZTOkRg2o-Yp_4BRP94DOfHn75-GKRtP4fUyloVqSpGSgunao0oyyjSKrNOlqa2We6KTIxzzAeEX8dSI7CS1lS2VBrTDnfUOUvswa6fefcUmFN54YwxvHalHNm6NoiMHFXdZvkoty6Bw-7LNrYVO6eeG9Om2_Tg1DZhahN41ZvOo8LHTUZ7wT16C15lBYnzJbDf-UvTRv-yoR4DBaf0lsDL_jbGLf2M0d7N1mTDM1UJxF9_sUHwlHHcENYJPIku2L-AEDXmZiUTqLacszcg3fDtO_5iEvTDlaDZxScPg-_9edTN6dkgXDz7d9PncIcT7SdwJPdhd7VYuxeI21bmAG5xeXYQwvQHDbtB_w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VggSX8mwbKGAQh15SJbaTOKiXtlAt0F0h1Ep7QZHt9WorVtnVPg7tX-BPM-M82IWCELdImUixMzP-7HzzDcAbnSraqNowtbkNpdAmVDYbhjrSiGbtUMYR1Q53e2nnQn7sJ_0NOGxqYSp9iPbAjSLD52sKcDqQXonycjoiOo5IbsFt6ujtN1Rf-IrkbsobDeZUpv1aV4h4PO2ja6tRRUi8CWr-zphcRbJ-KTq9D1-bQVQMlG8Hy4U5sNe_6Dv-7ygfwFaNUdlR5VQPYcOVj-DO8QRx5NVj-N69wh3rbHR5jTb659eds6qImCEWXzBaL6tjRoT5b5lm4h3zXXeo_J15UVs2KZn1sN3zlxgpV8yqOos5q_ljbDomog5DaM3GdI7AdDlgJbUQIAbIE7g4fX9-0gnrlg6hlblKQpUMlBZO5RqBllEkV2adTE1uo9glkRjGmBIIwg6lRmwlrclsqjRmHu6oeZbYhs1yUrpdYE7FiTPG8NylcmDz3CA4clR4G8WD2LoA9ptPW9ha75zaboyLZt-DU1v4qQ3gdWs6rUQ-bjLa9v7RWvAsSkifL4C9xmGKOgHMC2ozkHDKcAG8am9j6NL_GF26yZJseKQygRDsLzaInyKOe8I8gJ3KB9sXECLH9KxkANmad7YGJB2-fqe8HHkJcSVodvHJfe98fx510fvc8RdP_930JdztnHfPirMPvU_P4B4nFpCnTO7B5mK2dM8Rxi3MCx-tPwBii0VD |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VghAX3i2BAgZx6CVVEjteB07AsloeXVWISntAimzH0Vassqt9HNq_wJ9mxnmwCwUhbpEykWJnZvzZ-eYbgBdaKtqo2lDazIaCaxMq2ytDHWlEs7YUcUS1w8cjOTwVH8bpeAdetbUwtT5Ed-BGkeHzNQX4vCg3gryaT4iNw9MrcFXISJFL9z8nG4q7MmklmKWQ40ZWiGg83aNbi1HNR7wMaf5OmNwEsn4lGtyCr-0YagLKt6P1yhzZi1_kHf9zkLfhZoNQ2evape7AjqvuwrU3M0SR5_fg-_E57lcXk7MLtNE_v-2S1SXEDJH4itFqWR8yIsh_yTTjfeZ77lDxO_OStmxWMetBu2cvMdKtWNRVFkvWsMfYfEo0HYbAmk3pFIHpqmAVNRAg_sd9OB28-_J2GDYNHUIrMpWGKi2U5k5lGmGWUSRWZp2QJrNR7NKIlzEmBAKwpdCIrIQ1PSuVxryTOGqdxfdgt5pV7gEwp-LUGWOSzElR2CwzCI0cld1GcRFbF8Bh-2Vz26idU9ONad7uenBqcz-1ATzvTOe1xMdlRnvePTqLpBelpM4XwEHrL3kT_sucmgykCeW3AJ51tzFw6W-MrtxsTTZJpHocAdhfbBA9RQnuCLMA9msX7F6A8wyTsxIB9LacszMg4fDtO9XZxAuIK06zi08eet_786jz0cnQXzz8d9OncP2kP8g_vR99fAQ3EqIAeb7kAeyuFmv3GDHcyjzxsfoDiVBD-w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mycorrhizal+associations+change+root+functionality%3A+a+3D+modelling+study+on+competitive+interactions+between+plants+for+light+and+nutrients&rft.jtitle=The+New+phytologist&rft.au=de+Vries%2C+Jorad&rft.au=Evers%2C+Jochem+B.&rft.au=Kuyper%2C+Thomas+W.&rft.au=van+Ruijven%2C+Jasper&rft.date=2021-08-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=231&rft.issue=3&rft.spage=1171&rft.epage=1182&rft_id=info:doi/10.1111%2Fnph.17435&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_nph_17435 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |