Mycorrhizal associations change root functionality a 3D modelling study on competitive interactions between plants for light and nutrients

• Recent studies show that the variation in root functional traits can be explained by a two-dimensional trait framework, containing a ‘collaboration’ axis in addition to the classical fast–slow ‘conservation’ axis. This collaboration axis spans from thin and highly branched roots that employ a ‘do-...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 231; no. 3; pp. 1171 - 1182
Main Authors deVries, Jorad, Evers, Jochem B., Kuyper, Thomas W., van Ruijven, Jasper, Mommer, Liesje
Format Journal Article
LanguageEnglish
Published England Wiley 01.08.2021
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract • Recent studies show that the variation in root functional traits can be explained by a two-dimensional trait framework, containing a ‘collaboration’ axis in addition to the classical fast–slow ‘conservation’ axis. This collaboration axis spans from thin and highly branched roots that employ a ‘do-it-yourself’ strategy to thick and sparsely branched roots that ‘outsource’ nutrient uptake to symbiotic arbuscular mycorrhizal fungi (AMF). • Here, we explore the functionality of this collaboration axis by quantifying how interactions with AMF change the impact of root traits on plant performance. To this end, we developed a novel functional–structural plant (FSP) modelling approach that simulates plants competing for light and nutrients in the presence or absence of AMF. • Our simulation results support the notion that in the absence of AMF, plants rely on thin, highly branched roots for their nutrient uptake. The presence of AMF, however, promotes thick, unbranched roots as an alternative strategy for uptake of immobile phosphorus, but not for mobile nitrogen. • This provides further support for a root trait framework that accommodates for the interactive effect of roots and AMF. Our modelling study offers unique opportunities to incorporate soil microbial interactions into root functionality as it integrates consequences of belowground trait expression.
AbstractList Recent studies show that the variation in root functional traits can be explained by a two-dimensional trait framework, containing a 'collaboration' axis in addition to the classical fast-slow 'conservation' axis. This collaboration axis spans from thin and highly branched roots that employ a 'do-it-yourself' strategy to thick and sparsely branched roots that 'outsource' nutrient uptake to symbiotic arbuscular mycorrhizal fungi (AMF). Here, we explore the functionality of this collaboration axis by quantifying how interactions with AMF change the impact of root traits on plant performance. To this end, we developed a novel functional-structural plant (FSP) modelling approach that simulates plants competing for light and nutrients in the presence or absence of AMF. Our simulation results support the notion that in the absence of AMF, plants rely on thin, highly branched roots for their nutrient uptake. The presence of AMF, however, promotes thick, unbranched roots as an alternative strategy for uptake of immobile phosphorus, but not for mobile nitrogen. This provides further support for a root trait framework that accommodates for the interactive effect of roots and AMF. Our modelling study offers unique opportunities to incorporate soil microbial interactions into root functionality as it integrates consequences of belowground trait expression.Recent studies show that the variation in root functional traits can be explained by a two-dimensional trait framework, containing a 'collaboration' axis in addition to the classical fast-slow 'conservation' axis. This collaboration axis spans from thin and highly branched roots that employ a 'do-it-yourself' strategy to thick and sparsely branched roots that 'outsource' nutrient uptake to symbiotic arbuscular mycorrhizal fungi (AMF). Here, we explore the functionality of this collaboration axis by quantifying how interactions with AMF change the impact of root traits on plant performance. To this end, we developed a novel functional-structural plant (FSP) modelling approach that simulates plants competing for light and nutrients in the presence or absence of AMF. Our simulation results support the notion that in the absence of AMF, plants rely on thin, highly branched roots for their nutrient uptake. The presence of AMF, however, promotes thick, unbranched roots as an alternative strategy for uptake of immobile phosphorus, but not for mobile nitrogen. This provides further support for a root trait framework that accommodates for the interactive effect of roots and AMF. Our modelling study offers unique opportunities to incorporate soil microbial interactions into root functionality as it integrates consequences of belowground trait expression.
Recent studies show that the variation in root functional traits can be explained by a two‐dimensional trait framework, containing a ‘collaboration’ axis in addition to the classical fast–slow ‘conservation’ axis. This collaboration axis spans from thin and highly branched roots that employ a ‘do‐it‐yourself’ strategy to thick and sparsely branched roots that ‘outsource’ nutrient uptake to symbiotic arbuscular mycorrhizal fungi (AMF). Here, we explore the functionality of this collaboration axis by quantifying how interactions with AMF change the impact of root traits on plant performance. To this end, we developed a novel functional–structural plant (FSP) modelling approach that simulates plants competing for light and nutrients in the presence or absence of AMF. Our simulation results support the notion that in the absence of AMF, plants rely on thin, highly branched roots for their nutrient uptake. The presence of AMF, however, promotes thick, unbranched roots as an alternative strategy for uptake of immobile phosphorus, but not for mobile nitrogen. This provides further support for a root trait framework that accommodates for the interactive effect of roots and AMF. Our modelling study offers unique opportunities to incorporate soil microbial interactions into root functionality as it integrates consequences of belowground trait expression.
Summary Recent studies show that the variation in root functional traits can be explained by a two‐dimensional trait framework, containing a ‘collaboration’ axis in addition to the classical fast–slow ‘conservation’ axis. This collaboration axis spans from thin and highly branched roots that employ a ‘do‐it‐yourself’ strategy to thick and sparsely branched roots that ‘outsource’ nutrient uptake to symbiotic arbuscular mycorrhizal fungi (AMF). Here, we explore the functionality of this collaboration axis by quantifying how interactions with AMF change the impact of root traits on plant performance. To this end, we developed a novel functional–structural plant (FSP) modelling approach that simulates plants competing for light and nutrients in the presence or absence of AMF. Our simulation results support the notion that in the absence of AMF, plants rely on thin, highly branched roots for their nutrient uptake. The presence of AMF, however, promotes thick, unbranched roots as an alternative strategy for uptake of immobile phosphorus, but not for mobile nitrogen. This provides further support for a root trait framework that accommodates for the interactive effect of roots and AMF. Our modelling study offers unique opportunities to incorporate soil microbial interactions into root functionality as it integrates consequences of belowground trait expression.
Recent studies show that the variation in root functional traits can be explained by a two‐dimensional trait framework, containing a ‘collaboration’ axis in addition to the classical fast–slow ‘conservation’ axis. This collaboration axis spans from thin and highly branched roots that employ a ‘do‐it‐yourself’ strategy to thick and sparsely branched roots that ‘outsource’ nutrient uptake to symbiotic arbuscular mycorrhizal fungi (AMF).Here, we explore the functionality of this collaboration axis by quantifying how interactions with AMF change the impact of root traits on plant performance. To this end, we developed a novel functional–structural plant (FSP) modelling approach that simulates plants competing for light and nutrients in the presence or absence of AMF.Our simulation results support the notion that in the absence of AMF, plants rely on thin, highly branched roots for their nutrient uptake. The presence of AMF, however, promotes thick, unbranched roots as an alternative strategy for uptake of immobile phosphorus, but not for mobile nitrogen.This provides further support for a root trait framework that accommodates for the interactive effect of roots and AMF. Our modelling study offers unique opportunities to incorporate soil microbial interactions into root functionality as it integrates consequences of belowground trait expression.
Recent studies show that the variation in root functional traits can be explained by a two-dimensional trait framework, containing a 'collaboration' axis in addition to the classical fast-slow 'conservation' axis. This collaboration axis spans from thin and highly branched roots that employ a 'do-it-yourself' strategy to thick and sparsely branched roots that 'outsource' nutrient uptake to symbiotic arbuscular mycorrhizal fungi (AMF). Here, we explore the functionality of this collaboration axis by quantifying how interactions with AMF change the impact of root traits on plant performance . To this end, we developed a novel functional-structural plant (FSP) modelling approach that simulates plants competing for light and nutrients in the presence or absence of AMF. Our simulation results support the notion that in the absence of AMF, plants rely on thin, highly branched roots for their nutrient uptake. The presence of AMF, however, promote thick, unbranched roots as an alternative strategy for uptake of immobile phosphorus, but not for mobile nitrogen. This provides further support for a root trait framework that accommodates for the interactive effect of roots and AMF. Our modelling study offers unique opportunities to incorporate soil microbial interactions into root functionality as it integrates consequences of belowground trait expression.
• Recent studies show that the variation in root functional traits can be explained by a two-dimensional trait framework, containing a ‘collaboration’ axis in addition to the classical fast–slow ‘conservation’ axis. This collaboration axis spans from thin and highly branched roots that employ a ‘do-it-yourself’ strategy to thick and sparsely branched roots that ‘outsource’ nutrient uptake to symbiotic arbuscular mycorrhizal fungi (AMF). • Here, we explore the functionality of this collaboration axis by quantifying how interactions with AMF change the impact of root traits on plant performance. To this end, we developed a novel functional–structural plant (FSP) modelling approach that simulates plants competing for light and nutrients in the presence or absence of AMF. • Our simulation results support the notion that in the absence of AMF, plants rely on thin, highly branched roots for their nutrient uptake. The presence of AMF, however, promotes thick, unbranched roots as an alternative strategy for uptake of immobile phosphorus, but not for mobile nitrogen. • This provides further support for a root trait framework that accommodates for the interactive effect of roots and AMF. Our modelling study offers unique opportunities to incorporate soil microbial interactions into root functionality as it integrates consequences of belowground trait expression.
Author Evers, Jochem B.
Kuyper, Thomas W.
deVries, Jorad
van Ruijven, Jasper
Mommer, Liesje
AuthorAffiliation 2 Institute for Integrative Biology ETH Zürich Zürich 8092 Switzerland
3 Soil Biology Group Wageningen University PO Box 47 Wageningen 6700 AA the Netherlands
4 Plant Ecology and Nature Conservation Group Wageningen University PO Box 47 Wageningen 6700 AA the Netherlands
1 Centre for Crop System Analysis Wageningen University PO Box 430 Wageningen 6700 AK the Netherlands
AuthorAffiliation_xml – name: 2 Institute for Integrative Biology ETH Zürich Zürich 8092 Switzerland
– name: 1 Centre for Crop System Analysis Wageningen University PO Box 430 Wageningen 6700 AK the Netherlands
– name: 4 Plant Ecology and Nature Conservation Group Wageningen University PO Box 47 Wageningen 6700 AA the Netherlands
– name: 3 Soil Biology Group Wageningen University PO Box 47 Wageningen 6700 AA the Netherlands
Author_xml – sequence: 1
  givenname: Jorad
  surname: deVries
  fullname: deVries, Jorad
– sequence: 2
  givenname: Jochem B.
  surname: Evers
  fullname: Evers, Jochem B.
– sequence: 3
  givenname: Thomas W.
  surname: Kuyper
  fullname: Kuyper, Thomas W.
– sequence: 4
  givenname: Jasper
  surname: van Ruijven
  fullname: van Ruijven, Jasper
– sequence: 5
  givenname: Liesje
  surname: Mommer
  fullname: Mommer, Liesje
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33930184$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtPGzEUha0KVELooj-gVSQ2sBi4fozH3lRCiBYkXguQ2FmO8RBHEzu1Z1qlv74e8hCgVnhjyf7O0bnn7qItH7xF6DOGI5zPsZ9PjnDFaPkBDTDjshCYVltoAEBEwRl_2EG7KU0BQJacfEQ7lEoKWLABIlcLE2KcuD-6GemUgnG6dcGnkZlo_2RHMYR2VHfe9K-6ce1iD23Xukn20-oeovvvZ3en58XlzY-L05PLwjApykKUj0JTK6TmAGMBjFNjGR9LA9iWQGtMscwJoWaa5_RmXBkuNFBMLBZc0iH6tvSdd-OZfTTWt1E3ah7dTMeFCtqp1z_eTdRT-KUE7f1YNjhYGcTws7OpVTOXjG0a7W3okiKcYyAVF_J9tCQgKkoAZ3T_DToNXczV9BTjGSxpT319GX6Tet18Bo6XgIkhpWhrZVz7XH2exTUKg-p3q_Ju1fNus-LwjWJt-i925f7bNXbxf1Bd356vFV-WimlqQ9woSAUlYA70L9X4utA
CitedBy_id crossref_primary_10_1111_nph_20434
crossref_primary_10_1080_15592324_2024_2329842
crossref_primary_10_15407_agrisp10_01_054
crossref_primary_10_1093_jxb_erae298
crossref_primary_10_1111_oik_08827
crossref_primary_10_3389_fpls_2022_1052066
crossref_primary_10_1007_s11104_024_06808_2
crossref_primary_10_1007_s11104_024_07150_3
crossref_primary_10_3390_plants10122760
crossref_primary_10_1093_insilicoplants_diae018
crossref_primary_10_1007_s00572_024_01153_9
crossref_primary_10_1093_insilicoplants_diab029
crossref_primary_10_3390_agronomy13020550
crossref_primary_10_3389_fpls_2021_734167
crossref_primary_10_1016_j_pld_2021_12_004
crossref_primary_10_1007_s00572_022_01070_9
crossref_primary_10_3390_microorganisms12081550
crossref_primary_10_17660_ActaHortic_2024_1395_17
crossref_primary_10_1111_oik_08908
crossref_primary_10_1186_s40793_025_00676_8
crossref_primary_10_1093_insilicoplants_diad012
crossref_primary_10_1007_s00572_023_01126_4
crossref_primary_10_3389_fpls_2022_817909
crossref_primary_10_1007_s11104_023_06269_z
crossref_primary_10_1007_s00572_024_01164_6
Cites_doi 10.1111/j.1461-0248.2008.01254.x
10.1046/j.1365-313X.2002.01251.x
10.1093/aob/mcq249
10.1111/nph.14003
10.1046/j.1469-8137.1997.00729.x
10.1098/rsif.2016.0129
10.1093/insilicoplants/diaa001
10.1111/1365-2435.12217
10.1111/nph.14967
10.1086/431287
10.1007/s00572-006-0064-7
10.1007/s11104-013-1769-y
10.1038/nature25783
10.1071/FP08052
10.3389/fpls.2020.00708
10.1111/j.1469-8137.2005.01520.x
10.1111/nph.17072
10.1007/s004420050397
10.1111/j.1365-2745.2005.01089.x
10.1007/s00442-016-3771-6
10.1111/j.1469-8137.1991.tb00039.x
10.1007/978-3-540-38364-2_5
10.1002/9781119525417.ch7
10.5194/bg-13-415-2016
10.1007/s11104-017-3282-1
10.1111/nph.13363
10.1016/j.plantsci.2014.01.009
10.1890/0012-9658(2006)87[1225:CAIEGS]2.0.CO;2
10.1111/1365-2745.12562
10.1007/s11104-016-2843-z
10.1111/1365-2745.12984
10.1016/S0169-5347(03)00061-2
10.1007/s00572-003-0265-2
10.1007/BF00333217
10.1111/j.1469-8137.2011.03952.x
10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2
10.1093/aob/mcx154
10.1093/aob/mcx221
10.1126/science.1208473
10.1111/nph.12883
10.1111/nph.14641
10.1007/s005720100097
10.1111/j.1469-8137.2007.02168.x
10.1093/aob/mcx212
10.1111/j.1469-8137.2004.01015.x
10.1046/j.1469-8137.2002.00397.x
10.1007/s00572-015-0627-6
10.1023/A:1003113131989
10.1071/CP09217
10.1111/1365-2745.12489
10.1007/3-540-27675-0_7
10.1007/s11104-011-0752-8
10.1111/j.1469-8137.2005.01349.x
10.2307/3558359
10.1111/j.1365-2435.2011.01916.x
10.1111/nph.13828
10.1016/0169-5347(90)90095-U
10.1073/pnas.1721629115
10.1016/0304-3800(94)90027-2
10.1590/S0103-90162004000200013
10.1023/A:1004276724310
10.1104/pp.112.195727
10.1093/aob/mcy050
10.1007/BF02376780
10.1086/688675
10.1007/s00572-017-0801-0
10.1016/j.ecolmodel.2013.11.014
10.1007/s00572-011-0398-7
10.1890/06-0822.1
10.1002/ece3.2207
10.1093/aob/mcaa120
10.1034/j.1600-0706.2000.900211.x
10.1111/1365-2435.13234
10.1126/sciadv.aba3756
10.1046/j.0022-0477.2001.00609.x
10.2307/2483412
10.1007/BF02370279
10.1111/j.1469-8137.1980.tb04555.x
10.1111/j.1469-8137.2006.01854.x
10.1093/aob/mcs285
10.1111/j.1365-3040.1996.tb00386.x
10.1111/nph.13172
10.1093/aob/mcs293
10.3389/fpls.2019.01215
10.1046/j.1469-8137.2000.00602.x
10.1086/657992
10.1016/S0065-2504(08)60016-1
10.1111/nph.14247
10.1007/978-1-4613-8476-2
10.1111/oik.03580
10.1890/0012-9658(2006)87[1627:MSITAM]2.0.CO;2
ContentType Journal Article
Copyright 2021 The Authors © 2021 New Phytologist Foundation
2021 The Authors. © 2021 New Phytologist Foundation
This article is protected by copyright. All rights reserved.
2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.
Copyright_xml – notice: 2021 The Authors © 2021 New Phytologist Foundation
– notice: 2021 The Authors. © 2021 New Phytologist Foundation
– notice: This article is protected by copyright. All rights reserved.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.
DBID 24P
AAYXX
CITATION
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1111/nph.17435
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
PubMed
AGRICOLA

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 1182
ExternalDocumentID PMC8361744
33930184
10_1111_nph_17435
NPH17435
27050160
Genre article
Journal Article
GrantInformation_xml – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek
  funderid: 864.14.006
– fundername: Graduate School for Production Ecology & Resource Conservation
– fundername: ;
  grantid: 864.14.006
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ACAHQ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
JBS
JLS
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAISJ
AASGY
AASVR
ABBHK
ABEFU
ABEML
ABGDZ
ABSQW
ABXSQ
ACHIC
ACQPF
ADULT
ADXHL
AEUPB
AGUYK
AHXOZ
AILXY
AQVQM
AS~
CAG
CBGCD
COF
CUYZI
DEVKO
EJD
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPSME
JAAYA
JBMMH
JEB
JENOY
JHFFW
JKQEH
JLXEF
JPM
LPU
LW6
MVM
NEJ
RCA
SA0
WHG
XOL
YXE
ZCG
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
AEUQT
AFPWT
ESX
NPM
WRC
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c4985-85d8a3e89a600b80463ce46b9c01e503f13190020f4a6174cb7c68a0312e18693
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Thu Aug 21 13:50:16 EDT 2025
Fri Jul 11 18:30:18 EDT 2025
Tue Aug 05 11:38:50 EDT 2025
Wed Aug 13 06:08:31 EDT 2025
Wed Feb 19 02:28:03 EST 2025
Thu Apr 24 23:01:02 EDT 2025
Tue Jul 01 02:28:38 EDT 2025
Sun Jul 06 04:45:30 EDT 2025
Thu Jul 03 21:34:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords root economics space
functional-structural plant modelling
root traits
outsourcing
architectural whole-plant modelling
resource competition
arbuscular mycorrhizal fungi (AMF)
Language English
License Attribution-NonCommercial
This article is protected by copyright. All rights reserved.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4985-85d8a3e89a600b80463ce46b9c01e503f13190020f4a6174cb7c68a0312e18693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0003-2363
0000-0002-3896-4943
0000-0002-3775-0716
0000-0003-2656-2231
0000-0002-3956-0190
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17435
PMID 33930184
PQID 2546520531
PQPubID 2026848
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8361744
proquest_miscellaneous_2661027689
proquest_miscellaneous_2520873201
proquest_journals_2546520531
pubmed_primary_33930184
crossref_citationtrail_10_1111_nph_17435
crossref_primary_10_1111_nph_17435
wiley_primary_10_1111_nph_17435_NPH17435
jstor_primary_27050160
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2021
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
– name: Hoboken
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2021
Publisher Wiley
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2018; 121
2004; 61
1989; 119
2002; 154
1980; 84
2019; 10
2004; 162
2020; 126
1975
1966; 93
2016; 188
2008; 35
2000; 90
2003; 18
2020; 11
2016; 104
2006; 172
2014; 28
2001; 88
2001; 89
1998; 396
1998; 113
1996; 108
1988; 105
2010; 61
1991; 119
2009; 12
2020; 6
2020; 2
1990
1997; 98
2018; 217
2007; 176
1997; 188
2013; 112
1981
2012; 26
2001; 11
2017a; 183
2012; 22
2014; 203
2014; (290)
1994; 75
1997; 135
2011; 333
2018; 28
1996; 19
2018; 106
1988; 18
2016; 407
2018; 424
2010
2019; 33
2006; 16
2005
2017b; 126
2015; 207
2003
2015; 205
2004; 428
2017; 213
2011; 177
2016; 13
2017; 215
1999
2016; 6
2015; 25
2011; 344
2002; 29
2011; 107
2005; 166
2006; 87
2021
2005; 168
2004; 14
2018; 555
2018; 115
2012; 193
2016; 211
2016; 210
2013; 372
2000; 145
2014; 221
2012; 159
1990; 5
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_93_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
Baylis G (e_1_2_8_9_1) 1975
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_88_1
Barber SA (e_1_2_8_6_1) 1981
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_84_1
Smith SE (e_1_2_8_79_1) 2010
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_96_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 88
  start-page: 1824
  year: 2001
  end-page: 1829
  article-title: Occurrence of arbuscular mycorrhizal fungi in a phosphorus‐poor wetland and mycorrhizal response to phosphorus fertilization
  publication-title: American Journal of Botany
– volume: 18
  start-page: 337
  year: 2003
  end-page: 343
  article-title: Plant height and evolutionary games
  publication-title: Trends in Ecology & Evolution
– volume: 6
  start-page: 4332
  year: 2016
  end-page: 4346
  article-title: Plant–fungus competition for nitrogen erases mycorrhizal growth benefits of under limited nitrogen supply
  publication-title: Ecology and Evolution
– volume: 344
  start-page: 347
  year: 2011
  article-title: Contrasting root behaviour in two grass species: a test of functionality in dynamic heterogeneous conditions
  publication-title: Plant and Soil
– year: 1981
– volume: 407
  start-page: 39
  year: 2016
  end-page: 53
  article-title: Linking root traits and competitive success in grassland species
  publication-title: Plant and Soil
– volume: 25
  start-page: 499
  year: 2015
  end-page: 515
  article-title: Nitrogen and carbon/nitrogen dynamics in arbuscular mycorrhiza: the great unknown
  publication-title: Mycorrhiza
– volume: 5
  start-page: 360
  year: 1990
  end-page: 364
  article-title: Asymmetric competition in plant populations
  publication-title: Trends in Ecology & Evolution
– volume: 172
  start-page: 554
  year: 2006
  end-page: 562
  article-title: Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system
  publication-title: New Phytologist
– volume: 13
  start-page: 20160129
  year: 2016
  article-title: L‐System model for the growth of arbuscular mycorrhizal fungi, both within and outside of their host roots
  publication-title: Journal of The Royal Society Interface
– volume: 396
  start-page: 69
  year: 1998
  article-title: Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity
  publication-title: Nature
– volume: 26
  start-page: 66
  year: 2012
  end-page: 73
  article-title: Interactive effects of nutrient heterogeneity and competition: implications for root foraging theory?
  publication-title: Functional Ecology
– volume: 112
  start-page: 391
  year: 2013
  end-page: 408
  article-title: Responses of root architecture development to low phosphorus availability: a review
  publication-title: Annals of Botany
– year: 1975
– volume: 154
  start-page: 275
  year: 2002
  end-page: 304
  article-title: Coevolution of roots and mycorrhizas of land plants
  publication-title: New Phytologist
– volume: 98
  start-page: 177
  year: 1997
  end-page: 182
  article-title: Variation in root hairs of barley cultivars doubled soil phosphorus uptake
  publication-title: Euphytica
– volume: 33
  start-page: 129
  year: 2019
  end-page: 138
  article-title: Ecological interactions shape the adaptive value of plant defence: herbivore attack versus competition for light
  publication-title: Functional Ecology
– volume: 176
  start-page: 325
  year: 2007
  end-page: 336
  article-title: Simulating the effects of localized red:far‐red ratio on tillering in spring wheat ( ) using a three‐dimensional virtual plant model
  publication-title: New Phytologist
– volume: 168
  start-page: 401
  year: 2005
  end-page: 412
  article-title: Root proliferation and seed yield in response to spatial heterogeneity of below‐ground competition
  publication-title: New Phytologist
– volume: 18
  start-page: 243
  year: 1988
  end-page: 270
  article-title: Mycorrhizal links between plants: their functioning and ecological significance
  publication-title: Advances in Ecological Research
– volume: 211
  start-page: 1159
  year: 2016
  end-page: 1169
  article-title: Towards a multidimensional root trait framework: a tree root review
  publication-title: New Phytologist
– volume: 14
  start-page: 263
  year: 2004
  end-page: 269
  article-title: Field response of wheat to arbuscular mycorrhizal fungi and drought stress
  publication-title: Mycorrhiza
– year: 1990
– volume: 84
  start-page: 483
  year: 1980
  end-page: 487
  article-title: Root size, root hairs and mycorrhizal infection: a re‐examination of Baylis's hypothesis with tropical trees
  publication-title: New Phytologist
– volume: 105
  start-page: 169
  year: 1988
  end-page: 178
  article-title: ROOTMAP—a model in three‐dimensional coordinates of the growth and structure of fibrous root systems
  publication-title: Plant and Soil
– volume: 28
  start-page: 1030
  year: 2014
  end-page: 1040
  article-title: Hierarchy of root functional trait values and plasticity drive early‐stage competition for water and phosphorus among grasses
  publication-title: Functional Ecology
– volume: 372
  start-page: 93
  year: 2013
  end-page: 124
  article-title: Modelling root–soil interactions using three–dimensional models of root growth, architecture and function
  publication-title: Plant and Soil
– start-page: 147
  year: 2005
  end-page: 183
– volume: 188
  start-page: 139
  year: 1997
  end-page: 151
  article-title: SimRoot: modelling and visualization of root systems
  publication-title: Plant and Soil
– volume: 61
  start-page: 203
  year: 2004
  end-page: 209
  article-title: Arbuscular mycorrhiza and kinetic parameters of phosphorus absorption by bean plants
  publication-title: Scientia Agricola
– volume: 166
  start-page: 216
  year: 2005
  end-page: 230
  article-title: Plant phenotypic plasticity belowground: a phylogenetic perspective on root foraging trade‐offs
  publication-title: American Naturalist
– volume: 203
  start-page: 352
  year: 2014
  end-page: 354
  article-title: The danger of mycorrhizal traps?
  publication-title: New Phytologist
– volume: 121
  start-page: 1019
  year: 2018
  end-page: 1031
  article-title: Elucidating the interaction between light competition and herbivore feeding patterns using functional–structural plant modelling
  publication-title: Annals of Botany
– start-page: 117
  year: 2003
  end-page: 133
– volume: 35
  start-page: 739
  year: 2008
  end-page: 750
  article-title: The rule‐based language XL and the modelling environment GroIMP illustrated with simulated tree competition
  publication-title: Functional Plant Biology
– volume: 162
  start-page: 9
  year: 2004
  end-page: 24
  article-title: The plastic plant: root responses to heterogeneous supplies of nutrients
  publication-title: New Phytologist
– volume: 87
  start-page: 1733
  year: 2006
  end-page: 1743
  article-title: Leaf traits are good predictors of plant performance across 53 rain forest species
  publication-title: Ecology
– volume: 61
  start-page: 122
  year: 2010
  end-page: 131
  article-title: Root hair morphology and mycorrhizal colonisation of pasture species in response to phosphorus and nitrogen nutrition
  publication-title: Crop and Pasture Science
– volume: 145
  start-page: 575
  year: 2000
  end-page: 584
  article-title: An arbuscular mycorrhizal inoculum enhances root proliferation in, but not nitrogen capture from, nutrient‐rich patches in soil
  publication-title: New Phytologist
– volume: 104
  start-page: 1299
  year: 2016
  end-page: 1310
  article-title: Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum
  publication-title: Journal of Ecology
– volume: 115
  start-page: 5229
  year: 2018
  article-title: Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 177
  start-page: 153
  year: 2011
  end-page: 166
  article-title: Evolutionarily stable strategy carbon allocation to foliage, wood, and fine roots in trees competing for light and nitrogen: an analytically tractable, individual‐based model and quantitative comparisons to data
  publication-title: American Naturalist
– volume: 193
  start-page: 30
  year: 2012
  end-page: 50
  article-title: Biomass allocation to leaves, stems and roots: meta‐analyses of interspecific variation and environmental control
  publication-title: New Phytologist
– volume: 215
  start-page: 1274
  year: 2017
  end-page: 1286
  article-title: OpenSimRoot: widening the scope and application of root architectural models
  publication-title: New Phytologist
– volume: 207
  start-page: 505
  year: 2015
  end-page: 518
  article-title: Redefining fine roots improves understanding of below‐ground contributions to terrestrial biosphere processes
  publication-title: New Phytologist
– volume: 205
  start-page: 1473
  year: 2015
  end-page: 1484
  article-title: Mycorrhizal phenotypes and the law of the minimum
  publication-title: New Phytologist
– volume: 121
  start-page: 767
  year: 2018
  end-page: 772
  article-title: Computational botany: advancing plant science through functional–structural plant modelling
  publication-title: Annals of Botany
– volume: 213
  start-page: 1597
  year: 2017
  end-page: 1603
  article-title: Below‐ground frontiers in trait‐based plant ecology
  publication-title: New Phytologist
– volume: 108
  start-page: 79
  year: 1996
  end-page: 84
  article-title: Effect of arbuscular mycorrhiza on inter‐and intraspecific competition of two grassland species
  publication-title: Oecologia
– volume: 126
  start-page: 248
  year: 2017b
  end-page: 258
  article-title: Mycorrhizal feedback is not associated with the outcome of competition in old‐field perennial plants
  publication-title: Oikos
– start-page: 193
  year: 2021
  end-page: 220
– start-page: 1
  year: 1999
  end-page: 67
– volume: 104
  start-page: 206
  year: 2016
  end-page: 218
  article-title: From pots to plots: hierarchical trait‐based prediction of plant performance in a mesic grassland
  publication-title: Journal of Ecology
– volume: 11
  start-page: 708
  year: 2020
  article-title: Modeling of root nitrate responses suggests preferential foraging arises from the integration of demand, supply and local presence signals
  publication-title: Frontiers in Plant Science
– volume: 119
  start-page: 397
  year: 1991
  end-page: 404
  article-title: Phosphorus depletion and pH decrease at the root–soil and hyphae–soil interfaces of VA mycorrhizal white clover fertilized with ammonium
  publication-title: New Phytologist
– volume: 210
  start-page: 815
  year: 2016
  end-page: 826
  article-title: Root structure–function relationships in 74 species: evidence of a root economics spectrum related to carbon economy
  publication-title: New Phytologist
– volume: 135
  start-page: 575
  year: 1997
  end-page: 585
  article-title: Functioning of mycorrhizal associations along the mutualism–parasitism continuum
  publication-title: New Phytologist
– volume: 428
  start-page: 821
  year: 2004
  article-title: The worldwide leaf economics spectrum
  publication-title: Nature
– volume: 221
  start-page: 29
  year: 2014
  end-page: 41
  article-title: Shedding light onto nutrient responses of arbuscular mycorrhizal plants: nutrient interactions may lead to unpredicted outcomes of the symbiosis
  publication-title: Plant Science
– volume: 188
  start-page: E113
  year: 2016
  end-page: E125
  article-title: Mutualism persistence and abandonment during the evolution of the mycorrhizal symbiosis
  publication-title: American Naturalist
– volume: 16
  start-page: 495
  year: 2006
  end-page: 502
  article-title: Wetland dicots and monocots differ in colonization by arbuscular mycorrhizal fungi and dark septate endophytes
  publication-title: Mycorrhiza
– volume: 126
  start-page: 789
  year: 2020
  end-page: 806
  article-title: A functional‐structural model of upland rice root systems reveals the importance of laterals and growing root tips for phosphate uptake from wet and dry soils
  publication-title: Annals of Botany
– volume: 22
  start-page: 227
  year: 2012
  end-page: 235
  article-title: Do arbuscular mycorrhizal fungi affect the allometric partition of host plant biomass to shoots and roots? A meta‐analysis of studies from 1990 to 2010
  publication-title: Mycorrhiza
– volume: 107
  start-page: 407
  year: 2011
  end-page: 413
  article-title: Arbuscular mycorrhizal fungi alter plant allometry and biomass–density relationships
  publication-title: Annals of Botany
– volume: 29
  start-page: 751
  year: 2002
  end-page: 760
  article-title: Nitrate and phosphate availability and distribution have different effects on root system architecture of
  publication-title: The Plant Journal
– volume: 424
  start-page: 157
  year: 2018
  end-page: 169
  article-title: Different sets of belowground traits predict the ability of plant species to suppress and tolerate their competitors
  publication-title: Plant and Soil
– volume: 11
  start-page: 3
  year: 2001
  end-page: 42
  article-title: Water relations, drought and vesicular‐arbuscular mycorrhizal symbiosis
  publication-title: Mycorrhiza
– volume: 121
  start-page: 1033
  year: 2018
  end-page: 1053
  article-title: CRootBox: a structural–functional modelling framework for root systems
  publication-title: Annals of Botany
– volume: 87
  start-page: 1627
  year: 2006
  end-page: 1636
  article-title: Mutualistic stability in the arbuscular mycorrhizal symbiosis: exploring hypotheses of evolutionary cooperation
  publication-title: Ecology
– volume: 93
  start-page: 402
  year: 1966
  end-page: 406
  article-title: Ecological importance of root/shoot ratios
  publication-title: Bulletin of the Torrey Botanical Club
– volume: 13
  start-page: 415
  year: 2016
  end-page: 424
  article-title: Economic strategies of plant absorptive roots vary with root diameter
  publication-title: Biogeosciences
– volume: 555
  start-page: 94
  year: 2018
  article-title: Evolutionary history resolves global organization of root functional traits
  publication-title: Nature
– volume: 2
  start-page: diaa001
  year: 2020
  article-title: CPlantBox, a whole‐plant modelling framework for the simulation of water‐and carbon‐related processes
  publication-title: in silico. Plants
– volume: 333
  start-page: 880
  year: 2011
  end-page: 882
  article-title: Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis
  publication-title: Science
– year: 2010
– volume: 12
  start-page: 13
  year: 2009
  end-page: 21
  article-title: Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism
  publication-title: Ecology Letters
– volume: 106
  start-page: 2332
  year: 2018
  end-page: 2343
  article-title: Experimental disconnection from common mycorrhizal networks has little effect on competitive interactions among common temperate grassland species
  publication-title: Journal of Ecology
– volume: 75
  start-page: 299
  year: 1994
  end-page: 308
  article-title: Morphological models of plant growth: possibilities and ecological relevance
  publication-title: Ecological Modelling
– volume: 10
  start-page: 1215
  year: 2019
  article-title: Physical and functional constraints on viable belowground acquisition strategies
  publication-title: Frontiers in Plant Science
– year: 2021
  article-title: Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs
  publication-title: New Phytologist
– volume: 90
  start-page: 311
  year: 2000
  end-page: 320
  article-title: Investigating the relationship between neighbor root biomass and belowground competition: field evidence for symmetric competition belowground
  publication-title: Oikos
– volume: 119
  start-page: 147
  year: 1989
  end-page: 154
  article-title: A simulation model of the three‐dimensional architecture of the maize root system
  publication-title: Plant and Soil
– volume: 183
  start-page: 479
  year: 2017a
  end-page: 491
  article-title: Arbuscular mycorrhizal fungi alter the competitive hierarchy among old‐field plant species
  publication-title: Oecologia
– volume: 6
  start-page: eaba3756
  year: 2020
  article-title: The fungal collaboration gradient dominates the root economics space in plants.
  publication-title: Advances
– volume: 217
  start-page: 1420
  year: 2018
  end-page: 1427
  article-title: Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence
  publication-title: New Phytologist
– volume: 87
  start-page: 1225
  year: 2006
  end-page: 1233
  article-title: Community assembly in experimental grasslands: suitable environment or timely arrival?
  publication-title: Ecology
– volume: 112
  start-page: 347
  year: 2013
  end-page: 357
  article-title: Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems
  publication-title: Annals of Botany
– volume: (290)
  start-page: 76
  year: 2014
  end-page: 84
  article-title: Calibration and evaluation of ArchiSimple, a simple model of root system architecture
  publication-title: Ecological Modelling
– volume: 113
  start-page: 447
  year: 1998
  end-page: 455
  article-title: Mechanisms determining the degree of size asymmetry in competition among plants
  publication-title: Oecologia
– volume: 159
  start-page: 789
  year: 2012
  end-page: 797
  article-title: Mycorrhizal networks: common goods of plants shared under unequal terms of trade
  publication-title: Plant Physiology
– volume: 121
  start-page: 875
  year: 2018
  end-page: 896
  article-title: A generic individual‐based model to simulate morphogenesis, C‐N acquisition and population dynamics in contrasting forage legumes
  publication-title: Annals of Botany
– volume: 89
  start-page: 660
  year: 2001
  end-page: 669
  article-title: Tragedy of the commons as a result of root competition
  publication-title: Journal of Ecology
– volume: 19
  start-page: 529
  year: 1996
  end-page: 538
  article-title: Stimulation of root hair elongation in by low phosphorus availability
  publication-title: Plant, Cell & Environment
– volume: 28
  start-page: 71
  year: 2018
  end-page: 83
  article-title: Arbuscular common mycorrhizal networks mediate intra‐and interspecific interactions of two prairie grasses
  publication-title: Mycorrhiza
– ident: e_1_2_8_11_1
  doi: 10.1111/j.1461-0248.2008.01254.x
– ident: e_1_2_8_46_1
  doi: 10.1046/j.1365-313X.2002.01251.x
– ident: e_1_2_8_95_1
  doi: 10.1093/aob/mcq249
– ident: e_1_2_8_89_1
  doi: 10.1111/nph.14003
– ident: e_1_2_8_34_1
  doi: 10.1046/j.1469-8137.1997.00729.x
– ident: e_1_2_8_74_1
  doi: 10.1098/rsif.2016.0129
– ident: e_1_2_8_96_1
  doi: 10.1093/insilicoplants/diaa001
– ident: e_1_2_8_25_1
  doi: 10.1111/1365-2435.12217
– ident: e_1_2_8_70_1
  doi: 10.1111/nph.14967
– ident: e_1_2_8_36_1
  doi: 10.1086/431287
– ident: e_1_2_8_91_1
  doi: 10.1007/s00572-006-0064-7
– ident: e_1_2_8_19_1
  doi: 10.1007/s11104-013-1769-y
– ident: e_1_2_8_51_1
  doi: 10.1038/nature25783
– ident: e_1_2_8_30_1
  doi: 10.1071/FP08052
– ident: e_1_2_8_12_1
  doi: 10.3389/fpls.2020.00708
– ident: e_1_2_8_62_1
  doi: 10.1111/j.1469-8137.2005.01520.x
– ident: e_1_2_8_26_1
  doi: 10.1111/nph.17072
– ident: e_1_2_8_76_1
  doi: 10.1007/s004420050397
– ident: e_1_2_8_60_1
  doi: 10.1111/j.1365-2745.2005.01089.x
– ident: e_1_2_8_81_1
  doi: 10.1007/s00442-016-3771-6
– ident: e_1_2_8_45_1
  doi: 10.1111/j.1469-8137.1991.tb00039.x
– ident: e_1_2_8_2_1
  doi: 10.1007/978-3-540-38364-2_5
– ident: e_1_2_8_43_1
  doi: 10.1002/9781119525417.ch7
– ident: e_1_2_8_39_1
  doi: 10.5194/bg-13-415-2016
– ident: e_1_2_8_77_1
  doi: 10.1007/s11104-017-3282-1
– ident: e_1_2_8_53_1
  doi: 10.1111/nph.13363
– ident: e_1_2_8_17_1
  doi: 10.1016/j.plantsci.2014.01.009
– ident: e_1_2_8_21_1
  doi: 10.1890/0012-9658(2006)87[1225:CAIEGS]2.0.CO;2
– ident: e_1_2_8_40_1
  doi: 10.1111/1365-2745.12562
– ident: e_1_2_8_71_1
  doi: 10.1007/s11104-016-2843-z
– ident: e_1_2_8_55_1
  doi: 10.1111/1365-2745.12984
– ident: e_1_2_8_24_1
  doi: 10.1016/S0169-5347(03)00061-2
– ident: e_1_2_8_4_1
  doi: 10.1007/s00572-003-0265-2
– ident: e_1_2_8_59_1
  doi: 10.1007/BF00333217
– ident: e_1_2_8_65_1
  doi: 10.1111/j.1469-8137.2011.03952.x
– volume-title: Mycorrhizal symbiosis
  year: 2010
  ident: e_1_2_8_79_1
– ident: e_1_2_8_66_1
  doi: 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2
– volume-title: Endomycorrhizas; Proceedings of a Symposium
  year: 1975
  ident: e_1_2_8_9_1
– ident: e_1_2_8_47_1
  doi: 10.1093/aob/mcx154
– ident: e_1_2_8_73_1
  doi: 10.1093/aob/mcx221
– ident: e_1_2_8_37_1
  doi: 10.1126/science.1208473
– ident: e_1_2_8_42_1
  doi: 10.1111/nph.12883
– ident: e_1_2_8_67_1
  doi: 10.1111/nph.14641
– ident: e_1_2_8_5_1
  doi: 10.1007/s005720100097
– ident: e_1_2_8_23_1
  doi: 10.1111/j.1469-8137.2007.02168.x
– ident: e_1_2_8_87_1
  doi: 10.1093/aob/mcx212
– ident: e_1_2_8_32_1
  doi: 10.1111/j.1469-8137.2004.01015.x
– ident: e_1_2_8_13_1
  doi: 10.1046/j.1469-8137.2002.00397.x
– ident: e_1_2_8_16_1
  doi: 10.1007/s00572-015-0627-6
– ident: e_1_2_8_27_1
  doi: 10.1023/A:1003113131989
– ident: e_1_2_8_31_1
  doi: 10.1071/CP09217
– ident: e_1_2_8_75_1
  doi: 10.1111/1365-2745.12489
– ident: e_1_2_8_48_1
  doi: 10.1007/3-540-27675-0_7
– volume-title: Nitrogen uptake model for agronomic crops. Modeling wastewater renovation: land treatment
  year: 1981
  ident: e_1_2_8_6_1
– ident: e_1_2_8_57_1
  doi: 10.1007/s11104-011-0752-8
– ident: e_1_2_8_94_1
  doi: 10.1111/j.1469-8137.2005.01349.x
– ident: e_1_2_8_15_1
  doi: 10.2307/3558359
– ident: e_1_2_8_56_1
  doi: 10.1111/j.1365-2435.2011.01916.x
– ident: e_1_2_8_72_1
  doi: 10.1111/nph.13828
– ident: e_1_2_8_90_1
  doi: 10.1016/0169-5347(90)90095-U
– ident: e_1_2_8_93_1
  doi: 10.1073/pnas.1721629115
– ident: e_1_2_8_41_1
  doi: 10.1016/0304-3800(94)90027-2
– ident: e_1_2_8_78_1
  doi: 10.1590/S0103-90162004000200013
– ident: e_1_2_8_50_1
  doi: 10.1023/A:1004276724310
– ident: e_1_2_8_88_1
  doi: 10.1104/pp.112.195727
– ident: e_1_2_8_22_1
  doi: 10.1093/aob/mcy050
– ident: e_1_2_8_18_1
  doi: 10.1007/BF02376780
– ident: e_1_2_8_52_1
  doi: 10.1086/688675
– ident: e_1_2_8_92_1
  doi: 10.1007/s00572-017-0801-0
– ident: e_1_2_8_63_1
  doi: 10.1016/j.ecolmodel.2013.11.014
– ident: e_1_2_8_84_1
  doi: 10.1007/s00572-011-0398-7
– ident: e_1_2_8_29_1
  doi: 10.1890/06-0822.1
– ident: e_1_2_8_69_1
  doi: 10.1002/ece3.2207
– ident: e_1_2_8_8_1
  doi: 10.1093/aob/mcaa120
– ident: e_1_2_8_14_1
  doi: 10.1034/j.1600-0706.2000.900211.x
– ident: e_1_2_8_83_1
  doi: 10.1890/06-0822.1
– ident: e_1_2_8_86_1
  doi: 10.1111/1365-2435.13234
– ident: e_1_2_8_10_1
  doi: 10.1126/sciadv.aba3756
– ident: e_1_2_8_28_1
  doi: 10.1046/j.0022-0477.2001.00609.x
– ident: e_1_2_8_58_1
  doi: 10.2307/2483412
– ident: e_1_2_8_64_1
  doi: 10.1007/BF02370279
– ident: e_1_2_8_80_1
  doi: 10.1111/j.1469-8137.1980.tb04555.x
– ident: e_1_2_8_85_1
  doi: 10.1111/j.1469-8137.2006.01854.x
– ident: e_1_2_8_61_1
  doi: 10.1093/aob/mcs285
– ident: e_1_2_8_7_1
  doi: 10.1111/j.1365-3040.1996.tb00386.x
– ident: e_1_2_8_35_1
  doi: 10.1111/nph.13172
– ident: e_1_2_8_49_1
  doi: 10.1093/aob/mcs293
– ident: e_1_2_8_54_1
  doi: 10.3389/fpls.2019.01215
– ident: e_1_2_8_33_1
  doi: 10.1046/j.1469-8137.2000.00602.x
– ident: e_1_2_8_20_1
  doi: 10.1086/657992
– ident: e_1_2_8_3_1
  doi: 10.1016/S0065-2504(08)60016-1
– ident: e_1_2_8_44_1
  doi: 10.1111/nph.14247
– ident: e_1_2_8_68_1
  doi: 10.1007/978-1-4613-8476-2
– ident: e_1_2_8_82_1
  doi: 10.1111/oik.03580
– ident: e_1_2_8_38_1
  doi: 10.1890/0012-9658(2006)87[1627:MSITAM]2.0.CO;2
SSID ssj0009562
Score 2.4818132
Snippet • Recent studies show that the variation in root functional traits can be explained by a two-dimensional trait framework, containing a ‘collaboration’ axis in...
Summary Recent studies show that the variation in root functional traits can be explained by a two‐dimensional trait framework, containing a ‘collaboration’...
Recent studies show that the variation in root functional traits can be explained by a two‐dimensional trait framework, containing a ‘collaboration’ axis in...
Recent studies show that the variation in root functional traits can be explained by a two-dimensional trait framework, containing a 'collaboration' axis in...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1171
SubjectTerms arbuscular mycorrhizal fungi (AMF)
Arbuscular mycorrhizas
architectural whole‐plant modelling
Collaboration
functional–structural plant modelling
Fungi
Microorganisms
Mineral nutrients
Modelling
nitrogen
Nutrient uptake
Nutrients
outsourcing
Phosphorus
resource competition
root economics space
root traits
Roots
soil
Strategy
Structure-function relationships
Symbionts
Three dimensional models
Uptake
vesicular arbuscular mycorrhizae
Subtitle a 3D modelling study on competitive interactions between plants for light and nutrients
Title Mycorrhizal associations change root functionality
URI https://www.jstor.org/stable/27050160
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17435
https://www.ncbi.nlm.nih.gov/pubmed/33930184
https://www.proquest.com/docview/2546520531
https://www.proquest.com/docview/2520873201
https://www.proquest.com/docview/2661027689
https://pubmed.ncbi.nlm.nih.gov/PMC8361744
Volume 231
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VigMX3oVAqQzi0EuqxHYSB068qhVSqwpRaQ9Ike31aquuvKt9HNq_wJ9mxk7CLhSEuEXKRIqdmfFn55tvAF7rUtFG1aalrW0qhTapstU41ZlGNGvHMs-odvjktBycy8_DYrgDb7tamKgP0R-4UWSEfE0Brs1yI8j9fEJsHEEF5sTVIkD0hW8I7pa8U2AuZTlsVYWIxdM_ubUWRTriTUDzd77kJo4NC9HxPfjWDSHyTy6P1itzZK9_UXf8zzHeh7stQGXvokc9gB3nH8Lt9zMEkVeP4PvJFW5XF5OLa7TRPz_tksUKYoZAfMVosYxnjIjx3zDNxEcWWu5Q7TsLirZs5pkNmD2QlxjJVixikcWSteQxNp8SS4chrmZTOkRg2o-Yp_4BRP94DOfHn75-GKRtP4fUyloVqSpGSgunao0oyyjSKrNOlqa2We6KTIxzzAeEX8dSI7CS1lS2VBrTDnfUOUvswa6fefcUmFN54YwxvHalHNm6NoiMHFXdZvkoty6Bw-7LNrYVO6eeG9Om2_Tg1DZhahN41ZvOo8LHTUZ7wT16C15lBYnzJbDf-UvTRv-yoR4DBaf0lsDL_jbGLf2M0d7N1mTDM1UJxF9_sUHwlHHcENYJPIku2L-AEDXmZiUTqLacszcg3fDtO_5iEvTDlaDZxScPg-_9edTN6dkgXDz7d9PncIcT7SdwJPdhd7VYuxeI21bmAG5xeXYQwvQHDbtB_w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VggSX8mwbKGAQh15SJbaTOKiXtlAt0F0h1Ep7QZHt9WorVtnVPg7tX-BPM-M82IWCELdImUixMzP-7HzzDcAbnSraqNowtbkNpdAmVDYbhjrSiGbtUMYR1Q53e2nnQn7sJ_0NOGxqYSp9iPbAjSLD52sKcDqQXonycjoiOo5IbsFt6ujtN1Rf-IrkbsobDeZUpv1aV4h4PO2ja6tRRUi8CWr-zphcRbJ-KTq9D1-bQVQMlG8Hy4U5sNe_6Dv-7ygfwFaNUdlR5VQPYcOVj-DO8QRx5NVj-N69wh3rbHR5jTb659eds6qImCEWXzBaL6tjRoT5b5lm4h3zXXeo_J15UVs2KZn1sN3zlxgpV8yqOos5q_ljbDomog5DaM3GdI7AdDlgJbUQIAbIE7g4fX9-0gnrlg6hlblKQpUMlBZO5RqBllEkV2adTE1uo9glkRjGmBIIwg6lRmwlrclsqjRmHu6oeZbYhs1yUrpdYE7FiTPG8NylcmDz3CA4clR4G8WD2LoA9ptPW9ha75zaboyLZt-DU1v4qQ3gdWs6rUQ-bjLa9v7RWvAsSkifL4C9xmGKOgHMC2ozkHDKcAG8am9j6NL_GF26yZJseKQygRDsLzaInyKOe8I8gJ3KB9sXECLH9KxkANmad7YGJB2-fqe8HHkJcSVodvHJfe98fx510fvc8RdP_930JdztnHfPirMPvU_P4B4nFpCnTO7B5mK2dM8Rxi3MCx-tPwBii0VD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VghAX3i2BAgZx6CVVEjteB07AsloeXVWISntAimzH0Vassqt9HNq_wJ9mxnmwCwUhbpEykWJnZvzZ-eYbgBdaKtqo2lDazIaCaxMq2ytDHWlEs7YUcUS1w8cjOTwVH8bpeAdetbUwtT5Ed-BGkeHzNQX4vCg3gryaT4iNw9MrcFXISJFL9z8nG4q7MmklmKWQ40ZWiGg83aNbi1HNR7wMaf5OmNwEsn4lGtyCr-0YagLKt6P1yhzZi1_kHf9zkLfhZoNQ2evape7AjqvuwrU3M0SR5_fg-_E57lcXk7MLtNE_v-2S1SXEDJH4itFqWR8yIsh_yTTjfeZ77lDxO_OStmxWMetBu2cvMdKtWNRVFkvWsMfYfEo0HYbAmk3pFIHpqmAVNRAg_sd9OB28-_J2GDYNHUIrMpWGKi2U5k5lGmGWUSRWZp2QJrNR7NKIlzEmBAKwpdCIrIQ1PSuVxryTOGqdxfdgt5pV7gEwp-LUGWOSzElR2CwzCI0cld1GcRFbF8Bh-2Vz26idU9ONad7uenBqcz-1ATzvTOe1xMdlRnvePTqLpBelpM4XwEHrL3kT_sucmgykCeW3AJ51tzFw6W-MrtxsTTZJpHocAdhfbBA9RQnuCLMA9msX7F6A8wyTsxIB9LacszMg4fDtO9XZxAuIK06zi08eet_786jz0cnQXzz8d9OncP2kP8g_vR99fAQ3EqIAeb7kAeyuFmv3GDHcyjzxsfoDiVBD-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mycorrhizal+associations+change+root+functionality%3A+a+3D+modelling+study+on+competitive+interactions+between+plants+for+light+and+nutrients&rft.jtitle=The+New+phytologist&rft.au=de+Vries%2C+Jorad&rft.au=Evers%2C+Jochem+B.&rft.au=Kuyper%2C+Thomas+W.&rft.au=van+Ruijven%2C+Jasper&rft.date=2021-08-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=231&rft.issue=3&rft.spage=1171&rft.epage=1182&rft_id=info:doi/10.1111%2Fnph.17435&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_nph_17435
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon