Prediction of fetal D status from maternal plasma: introduction of a new noninvasive fetal RHD genotyping service

BACKGROUND : Invasive procedures to obtain fetal DNA for prenatal blood grouping present a risk to the fetus. During pregnancy, cell‐free fetal DNA is present in maternal blood. The detection of RHD sequences in maternal plasma has been used to predict fetal D status, based on the assumption that RH...

Full description

Saved in:
Bibliographic Details
Published inTransfusion (Philadelphia, Pa.) Vol. 42; no. 8; pp. 1079 - 1085
Main Authors Finning, K.M., Martin, P.G., Soothill, P.W., Avent, N.D.
Format Journal Article
LanguageEnglish
Published Boston, MA, USA Blackwell Science Inc 01.08.2002
Blackwell Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract BACKGROUND : Invasive procedures to obtain fetal DNA for prenatal blood grouping present a risk to the fetus. During pregnancy, cell‐free fetal DNA is present in maternal blood. The detection of RHD sequences in maternal plasma has been used to predict fetal D status, based on the assumption that RHD is absent in D– genomes. STUDY DESIGN AND METHODS : Real‐time PCR assays were designed to distinguish RHD from RHD Ψ (possessed by the majority of D– black Africans). Plasma‐derived DNA from 137 D– women was subjected to real‐time PCR to detect fetal RHD and Y chromosome‐associated SRY sequences. The accuracy of RHD genotyping from maternal plasma was investigated by comparing results with those obtained by conventional RHD genotyping from fetal tissue or serologic tests on the infant's RBCs. The quantity of fetal DNA in maternal plasma was investigated in 94 pregnancies. RESULTS : Fetal D status was predicted with 100‐ percent accuracy from maternal plasma. The number of copies of fetal DNA in maternal plasma was found to increase with gestation. CONCLUSION : Combination of the sensitivity of real‐time PCR with an improved RHD typing assay to distinguish RHD from RHD Ψ enables highly accurate prediction of fetal D status from maternal plasma. This has resulted in the implementation of a clinical noninvasive fetal RHD genotyping service.
AbstractList Invasive procedures to obtain fetal DNA for prenatal blood grouping present a risk to the fetus. During pregnancy, cell-free fetal DNA is present in maternal blood. The detection of RHD sequences in maternal plasma has been used to predict fetal D status, based on the assumption that RHD is absent in D- genomes. Real-time PCR assays were designed to distinguish RHD from RHDpsi (possessed by the majority of D- black Africans). Plasma-derived DNA from 137 D- women was subjected to real-time PCR to detect fetal RHD and Y chromosome-associated SRY sequences. The accuracy of RHD genotyping from maternal plasma was investigated by comparing results with those obtained by conventional RHD genotyping from fetal tissue or serologic tests on the infant's RBCs. The quantity of fetal DNA in maternal plasma was investigated in 94 pregnancies. Fetal D status was predicted with 100-percent accuracy from maternal plasma. The number of copies of fetal DNA in maternal plasma was found to increase with gestation. Combination of the sensitivity of real-time PCR with an improved RHD typing assay to distinguish RHD from RHDpsi enables highly accurate prediction of fetal D status from maternal plasma. This has resulted in the implementation of a clinical noninvasive fetal RHD genotyping service.
BACKGROUND : Invasive procedures to obtain fetal DNA for prenatal blood grouping present a risk to the fetus. During pregnancy, cell‐free fetal DNA is present in maternal blood. The detection of RHD sequences in maternal plasma has been used to predict fetal D status, based on the assumption that RHD is absent in D– genomes. STUDY DESIGN AND METHODS : Real‐time PCR assays were designed to distinguish RHD from RHD Ψ (possessed by the majority of D– black Africans). Plasma‐derived DNA from 137 D– women was subjected to real‐time PCR to detect fetal RHD and Y chromosome‐associated SRY sequences. The accuracy of RHD genotyping from maternal plasma was investigated by comparing results with those obtained by conventional RHD genotyping from fetal tissue or serologic tests on the infant's RBCs. The quantity of fetal DNA in maternal plasma was investigated in 94 pregnancies. RESULTS : Fetal D status was predicted with 100‐ percent accuracy from maternal plasma. The number of copies of fetal DNA in maternal plasma was found to increase with gestation. CONCLUSION : Combination of the sensitivity of real‐time PCR with an improved RHD typing assay to distinguish RHD from RHD Ψ enables highly accurate prediction of fetal D status from maternal plasma. This has resulted in the implementation of a clinical noninvasive fetal RHD genotyping service.
BACKGROUND : Invasive procedures to obtain fetal DNA for prenatal blood grouping present a risk to the fetus. During pregnancy, cell‐free fetal DNA is present in maternal blood. The detection of RHD sequences in maternal plasma has been used to predict fetal D status, based on the assumption that RHD is absent in D– genomes. STUDY DESIGN AND METHODS : Real‐time PCR assays were designed to distinguish RHD from RHD Ψ (possessed by the majority of D– black Africans). Plasma‐derived DNA from 137 D– women was subjected to real‐time PCR to detect fetal RHD and Y chromosome‐associated SRY sequences. The accuracy of RHD genotyping from maternal plasma was investigated by comparing results with those obtained by conventional RHD genotyping from fetal tissue or serologic tests on the infant's RBCs. The quantity of fetal DNA in maternal plasma was investigated in 94 pregnancies. RESULTS : Fetal D status was predicted with 100‐ percent accuracy from maternal plasma. The number of copies of fetal DNA in maternal plasma was found to increase with gestation. CONCLUSION : Combination of the sensitivity of real‐time PCR with an improved RHD typing assay to distinguish RHD from RHD Ψ enables highly accurate prediction of fetal D status from maternal plasma. This has resulted in the implementation of a clinical noninvasive fetal RHD genotyping service.
BACKGROUNDInvasive procedures to obtain fetal DNA for prenatal blood grouping present a risk to the fetus. During pregnancy, cell-free fetal DNA is present in maternal blood. The detection of RHD sequences in maternal plasma has been used to predict fetal D status, based on the assumption that RHD is absent in D- genomes.STUDY DESIGN AND METHODSReal-time PCR assays were designed to distinguish RHD from RHDpsi (possessed by the majority of D- black Africans). Plasma-derived DNA from 137 D- women was subjected to real-time PCR to detect fetal RHD and Y chromosome-associated SRY sequences. The accuracy of RHD genotyping from maternal plasma was investigated by comparing results with those obtained by conventional RHD genotyping from fetal tissue or serologic tests on the infant's RBCs. The quantity of fetal DNA in maternal plasma was investigated in 94 pregnancies.RESULTSFetal D status was predicted with 100-percent accuracy from maternal plasma. The number of copies of fetal DNA in maternal plasma was found to increase with gestation.CONCLUSIONCombination of the sensitivity of real-time PCR with an improved RHD typing assay to distinguish RHD from RHDpsi enables highly accurate prediction of fetal D status from maternal plasma. This has resulted in the implementation of a clinical noninvasive fetal RHD genotyping service.
Author Finning, K.M.
Martin, P.G.
Soothill, P.W.
Avent, N.D.
Author_xml – sequence: 1
  givenname: K.M.
  surname: Finning
  fullname: Finning, K.M.
  organization: From the International Blood Group Reference Laboratory, National Blood Service
– sequence: 2
  givenname: P.G.
  surname: Martin
  fullname: Martin, P.G.
  organization: From the International Blood Group Reference Laboratory, National Blood Service
– sequence: 3
  givenname: P.W.
  surname: Soothill
  fullname: Soothill, P.W.
  organization: From the International Blood Group Reference Laboratory, National Blood Service
– sequence: 4
  givenname: N.D.
  surname: Avent
  fullname: Avent, N.D.
  organization: From the International Blood Group Reference Laboratory, National Blood Service
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13867687$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/12385421$$D View this record in MEDLINE/PubMed
BookMark eNqNkE9v0zAYhy00xLrBV0C-wC3BfxInQVxgZS3SBKgqYjfLdV5PLonT2U7XfnsSGnVXTrbs53n98-8KXbjOAUKYkpSSTHzYpjTnRcKqKk8ZISwlhIo8PbxAs_PFBZoRktGEUs4u0VUIWzKQFaGv0CVlvMwzRmfo8aeH2upoO4c7gw1E1eA5DlHFPmDjuxa3KoJ3w_GuUaFVH7F10Xd1f5YUdvCEh4jW7VWwe5jGrJZz_ACui8eddQ84gN9bDa_RS6OaAG-m9Rr9uv26vlkmdz8W324-3yU6q8o8oXUpNnUNRuRKsEJXhumabRSjRQ0Vp4zxXFVFCboafsNzvTGcEy0ogdLorODX6P1p7s53jz2EKFsbNDSNctD1QRaMlowyMYDlCdS-C8GDkTtvW-WPkhI51i23cmxVjq3KsW75r255GNS30xv9poX6WZz6HYB3E6CCVo3xymkbnjleikKUY9hPJ-7JNnD87wByvbodNoOenHQbIhzOuvJ_pCh4kcvf3xdyvVh9md8v7-Wa_wVzr61M
CODEN TRANAT
CitedBy_id crossref_primary_10_1016_j_gine_2011_09_006
crossref_primary_10_1111_vox_13172
crossref_primary_10_1111_j_1423_0410_2012_01620_x
crossref_primary_10_1016_j_tracli_2013_12_001
crossref_primary_10_1111_j_1537_2995_2005_00559_x
crossref_primary_10_1373_clinchem_2004_042119
crossref_primary_10_1111_j_1471_0528_2010_02518_x
crossref_primary_10_1080_00016340601159124
crossref_primary_10_1097_MOL_0000000000000907
crossref_primary_10_5734_JGM_2015_12_2_100
crossref_primary_10_1002_pd_1248
crossref_primary_10_1016_j_ajog_2006_07_033
crossref_primary_10_1002_pd_1804
crossref_primary_10_1586_erm_11_7
crossref_primary_10_1186_1471_2393_14_87
crossref_primary_10_1046_j_1423_0410_2003_00350_x
crossref_primary_10_1111_bjh_16500
crossref_primary_10_1002_uog_14746
crossref_primary_10_1002_pd_1591
crossref_primary_10_1002_pd_1476
crossref_primary_10_1016_j_placenta_2004_01_005
crossref_primary_10_1016_j_jogc_2017_03_110
crossref_primary_10_1111_tme_12099
crossref_primary_10_5005_jp_journals_10016_1038
crossref_primary_10_1016_j_pathol_2017_08_010
crossref_primary_10_5694_j_1326_5377_2009_tb02668_x
crossref_primary_10_1097_01_gco_0000192981_69352_dc
crossref_primary_10_1586_17474086_2014_970160
crossref_primary_10_1038_s41598_023_39367_0
crossref_primary_10_1002_pd_5943
crossref_primary_10_1586_14737159_8_6_727
crossref_primary_10_1002_pd_2551
crossref_primary_10_1002_uog_1881
crossref_primary_10_1111_j_1537_2995_2006_00916_x
crossref_primary_10_1586_erm_10_5
crossref_primary_10_1186_1471_2393_11_5
crossref_primary_10_7785_tcrt_2012_500328
crossref_primary_10_1111_apm_12405
crossref_primary_10_2174_1573402114666180516131832
crossref_primary_10_1080_14737159_2018_1461562
crossref_primary_10_1111_j_1751_2824_2007_00112_x
crossref_primary_10_1159_000504348
crossref_primary_10_1590_1678_4685_gmb_2017_0177
crossref_primary_10_1016_j_tracli_2010_10_002
crossref_primary_10_1111_j_1751_2824_2009_01282_x
crossref_primary_10_1016_j_tracli_2008_01_003
crossref_primary_10_1196_annals_1368_009
crossref_primary_10_1007_s00439_005_1330_z
crossref_primary_10_1007_s13167_011_0085_y
crossref_primary_10_1039_b926834k
crossref_primary_10_1111_j_1537_2995_2011_03544_x
crossref_primary_10_1111_j_1537_2995_2008_01832_x
crossref_primary_10_1002_pd_5006
crossref_primary_10_1002_pd_2652
crossref_primary_10_1159_000440821
crossref_primary_10_1002_pd_2770
crossref_primary_10_1002_pd_2892
crossref_primary_10_1002_pd_4035
crossref_primary_10_1111_j_1423_0410_2004_00569_x
crossref_primary_10_1097_01_AOG_0000179477_59385_93
crossref_primary_10_1016_j_ejogrb_2011_12_025
crossref_primary_10_1111_j_1537_2995_2007_01313_x
crossref_primary_10_1016_j_bbadis_2012_04_005
crossref_primary_10_1016_j_tracli_2006_02_010
crossref_primary_10_1111_j_1537_2995_2011_03156_x
crossref_primary_10_1016_j_csbj_2020_09_003
crossref_primary_10_1016_j_tracli_2006_02_011
crossref_primary_10_1021_acs_chemrev_6b00220
crossref_primary_10_1111_j_1537_2995_2009_02161_x
crossref_primary_10_1159_000370233
crossref_primary_10_2739_kurumemedj_MS662002
crossref_primary_10_1016_j_transci_2010_12_013
crossref_primary_10_1016_j_blre_2005_04_002
crossref_primary_10_1111_j_1537_2995_2008_01843_x
crossref_primary_10_1038_nrg1982
crossref_primary_10_1007_s40291_017_0312_x
crossref_primary_10_1111_j_1537_2995_2012_03860_x
crossref_primary_10_1016_j_transci_2014_02_008
crossref_primary_10_1111_j_1471_0528_2006_00813_x
crossref_primary_10_1016_j_ijgo_2013_03_031
crossref_primary_10_1111_voxs_12479
crossref_primary_10_1016_j_ajog_2004_10_632
crossref_primary_10_1186_s13104_016_2002_x
crossref_primary_10_1002_ajmg_c_30115
crossref_primary_10_1111_trf_17545
crossref_primary_10_1002_pd_4136
crossref_primary_10_1097_PAT_0b013e32834e8e29
crossref_primary_10_4161_chim_24248
crossref_primary_10_1002_pd_4253
crossref_primary_10_1002_pd_1783
crossref_primary_10_1369_jhc_4A6372_2005
crossref_primary_10_1111_1471_0528_13055
crossref_primary_10_1007_BF03061558
crossref_primary_10_1038_nrg_2016_97
crossref_primary_10_1111_j_0042_9007_2003_00371_x
crossref_primary_10_1016_S0368_2315_05_82852_2
crossref_primary_10_1016_S1473_3099_09_70149_5
crossref_primary_10_3390_biomedicines11102646
crossref_primary_10_1038_nm_2829
crossref_primary_10_1111_trf_15474
crossref_primary_10_1159_000346809
crossref_primary_10_1080_jmf_14_2_123_129
crossref_primary_10_1111_j_1537_2995_2008_01975_x
crossref_primary_10_4161_chim_1_1_12439
crossref_primary_10_1016_j_pog_2012_01_004
crossref_primary_10_1038_s10038_018_0489_9
crossref_primary_10_1016_j_tmrv_2021_02_001
crossref_primary_10_1159_000356078
crossref_primary_10_1016_j_earlhumdev_2006_11_001
crossref_primary_10_1517_14712598_2012_674509
crossref_primary_10_1111_vox_12923
crossref_primary_10_1111_voxs_12131
crossref_primary_10_1369_jhc_4R6362_2005
crossref_primary_10_1016_j_ajog_2005_04_052
crossref_primary_10_1111_j_1365_2362_2009_02148_x
crossref_primary_10_1111_vox_13348
crossref_primary_10_1016_S0246_0335_05_41333_2
crossref_primary_10_12968_bjom_2016_24_2_96
crossref_primary_10_1111_voxs_12148
crossref_primary_10_1002_pd_2172
crossref_primary_10_1097_01_AOG_0000103996_44503_F1
crossref_primary_10_1373_clinchem_2009_127480
crossref_primary_10_1159_000441542
crossref_primary_10_1373_clinchem_2004_038125
crossref_primary_10_1097_01_moh_0000245690_54956_f3
crossref_primary_10_1002_pd_1752
crossref_primary_10_1016_j_transci_2020_102946
crossref_primary_10_1080_20508549_2005_11877751
crossref_primary_10_1586_erm_09_86
crossref_primary_10_1159_000490156
crossref_primary_10_1111_j_1741_6892_2004_00454_x
crossref_primary_10_1196_annals_1448_029
crossref_primary_10_22391_fppc_418647
crossref_primary_10_1016_j_cca_2011_11_004
crossref_primary_10_1016_j_tracli_2007_04_011
crossref_primary_10_1042_BST0370460
crossref_primary_10_1111_j_1741_6892_2004_00481_x
crossref_primary_10_1016_j_clinbiochem_2009_07_001
crossref_primary_10_1016_j_siny_2015_10_006
crossref_primary_10_1007_s00404_005_0068_0
crossref_primary_10_1016_j_fertnstert_2017_12_019
crossref_primary_10_1556_OH_2012_29474
crossref_primary_10_1111_tme_12605
crossref_primary_10_1136_jcp_2007_048470
crossref_primary_10_1016_S0716_8640_14_70635_2
crossref_primary_10_1007_s40142_013_0016_4
crossref_primary_10_1073_pnas_0810373105
crossref_primary_10_1016_j_jogc_2016_12_006
crossref_primary_10_1111_j_1537_2995_2005_04470_x
crossref_primary_10_1111_j_1365_2141_2008_07285_x
crossref_primary_10_1016_j_tracli_2008_03_007
crossref_primary_10_1016_j_csbj_2014_09_009
crossref_primary_10_1111_j_1537_2995_2005_04199_x
crossref_primary_10_1556_oh_2007_27904
crossref_primary_10_1002_pd_4326
crossref_primary_10_1111_j_1471_0528_2011_03028_x
crossref_primary_10_1111_j_1537_2995_2006_01044_x
crossref_primary_10_1111_j_1537_2995_2007_01533_x
crossref_primary_10_1002_pd_2385
crossref_primary_10_1111_j_1471_0528_2004_00499_x
crossref_primary_10_1007_BF03260044
crossref_primary_10_1111_j_1741_6892_2004_00432_x
crossref_primary_10_1111_tme_12030
crossref_primary_10_1016_S0301_2115_03_00285_9
crossref_primary_10_1111_j_0042_9007_2003_364_10_x
crossref_primary_10_1016_j_emcgo_2005_04_003
crossref_primary_10_1093_humupd_dmh053
crossref_primary_10_1016_j_siny_2007_12_012
crossref_primary_10_1093_infdis_jiad248
crossref_primary_10_1002_pd_1284
crossref_primary_10_1097_AOG_0b013e31825d33d9
crossref_primary_10_1097_GCO_0b013e3283294798
crossref_primary_10_1196_annals_1368_011
crossref_primary_10_1196_annals_1368_010
crossref_primary_10_2478_immunohematology_2024_004
crossref_primary_10_1002_pd_2814
crossref_primary_10_1016_j_tmrv_2016_05_008
crossref_primary_10_1111_tme_12586
crossref_primary_10_1007_s15013_020_3995_8
crossref_primary_10_1002_pd_1605
crossref_primary_10_1111_j_1423_0410_2011_01533_x
crossref_primary_10_1111_trf_12701
crossref_primary_10_1111_j_1365_3148_2011_01129_x
crossref_primary_10_1016_j_jmoldx_2019_02_003
crossref_primary_10_1007_s00383_007_1896_8
crossref_primary_10_1111_j_1365_3148_2012_01143_x
crossref_primary_10_1373_49_6_981
crossref_primary_10_1111_trf_16868
crossref_primary_10_2165_00066982_200408010_00004
crossref_primary_10_1515_CCLM_2010_234
crossref_primary_10_1089_gtmb_2010_0263
crossref_primary_10_1159_000355693
crossref_primary_10_1586_ehm_09_45
crossref_primary_10_1111_vox_12615
crossref_primary_10_1016_j_ajog_2008_07_063
crossref_primary_10_1016_j_fsigss_2013_10_116
crossref_primary_10_1111_j_1537_2995_2012_03919_x
crossref_primary_10_1016_j_ejogrb_2008_10_010
crossref_primary_10_1146_annurev_genom_110821_113411
crossref_primary_10_1159_000345682
crossref_primary_10_1016_j_ajog_2004_06_098
crossref_primary_10_1016_j_jchromb_2010_05_007
crossref_primary_10_1196_annals_1368_038
crossref_primary_10_1002_jcla_22052
crossref_primary_10_1002_pd_1700
crossref_primary_10_1576_toag_8_2_091_27227
crossref_primary_10_1196_annals_1318_016
crossref_primary_10_1196_annals_1318_019
crossref_primary_10_1371_journal_pone_0076990
crossref_primary_10_4000_cdst_6542
crossref_primary_10_1002_jcla_20440
crossref_primary_10_1016_S1283_081X_05_44255_1
crossref_primary_10_1016_j_tig_2012_10_013
crossref_primary_10_1002_uog_14723
crossref_primary_10_1016_j_diapre_2012_02_002
crossref_primary_10_1016_j_siny_2007_12_006
crossref_primary_10_1016_j_cccn_2005_05_048
crossref_primary_10_1002_pd_1493
crossref_primary_10_1073_pnas_0403962101
crossref_primary_10_1111_j_1423_0410_2011_01543_x
Cites_doi 10.1182/blood.V89.7.2347
10.1046/j.1423-0410.2001.00019.x
10.1016/S0140-6736(05)60534-X
10.1111/j.1471-0528.2000.tb13338.x
10.1111/j.1365-2141.1994.tb08336.x
10.1086/301800
10.1056/NEJM199812103392402
10.1186/1471-2156-2-10
10.1111/j.1471-0528.1998.tb10039.x
10.1002/(SICI)1097-0223(199708)17:8<743::AID-PD144>3.0.CO;2-3
10.1097/00001703-200004000-00005
10.1182/blood.V88.11.4390.bloodjournal88114390
10.1086/514885
10.1046/j.1537-2995.1999.39299154731.x
10.1182/blood.V95.1.12
10.1111/j.1471-0528.1987.tb03145.x
10.1002/ajmg.1320160411
10.1046/j.1537-2995.1998.381098440860.x
10.1093/clinchem/47.9.1607
10.1182/blood.V95.2.375
10.1097/00043426-200108000-00018
ContentType Journal Article
Copyright 2002 INIST-CNRS
Copyright_xml – notice: 2002 INIST-CNRS
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1046/j.1537-2995.2002.00165.x
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1537-2995
EndPage 1085
ExternalDocumentID 10_1046_j_1537_2995_2002_00165_x
12385421
13867687
TRF165
ark_67375_WNG_TGRBDXHX_T
Genre article
Journal Article
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
123
1OB
1OC
29Q
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AAQQT
AASGY
AAVGM
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABLJU
ABPTK
ABPVW
ABQWH
ABWRO
ABXGK
ACAHQ
ACBNA
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADBTR
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEQTP
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHBTC
AHMBA
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EGARE
EJD
EMOBN
ESX
EX3
F00
F5P
FUBAC
G-S
G.N
GODZA
H.X
HF~
HZI
HZ~
H~9
IHE
IX1
J0M
J5H
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TEORI
TWZ
UB1
UCJ
V8K
V9Y
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WUP
WVDHM
WXI
WXSBR
X7M
XG1
YFH
YQI
YQJ
YUY
ZA5
ZGI
ZXP
ZZTAW
~IA
~WT
AITYG
HGLYW
OIG
08R
AAUGY
AKALU
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c4985-1d86bddef65a627c9f2cd2ba217de9312235a978ec912335cbf330c610e8fc473
IEDL.DBID DR2
ISSN 0041-1132
IngestDate Sat Aug 17 01:14:41 EDT 2024
Fri Aug 23 01:18:55 EDT 2024
Sat Sep 28 08:39:35 EDT 2024
Sun Oct 22 16:08:08 EDT 2023
Sat Aug 24 01:04:32 EDT 2024
Wed Jan 17 04:59:14 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Human
Sensitivity
Mother
DNA
Prediction
Fetus
Anti D globulin
Genome
Real time
Blood plasma
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4985-1d86bddef65a627c9f2cd2ba217de9312235a978ec912335cbf330c610e8fc473
Notes ArticleID:t08x
ark:/67375/WNG-TGRBDXHX-T
istex:AF454132C507C8083DA8B66CB5968D9568160022
Ct = cycle threshold; FAM = caroxyfluorescein; IBGRL = International Blood Group Reference Laboratory.
ABBREVIATIONS
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 12385421
PQID 72182126
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_72182126
crossref_primary_10_1046_j_1537_2995_2002_00165_x
pubmed_primary_12385421
pascalfrancis_primary_13867687
wiley_primary_10_1046_j_1537_2995_2002_00165_x_TRF165
istex_primary_ark_67375_WNG_TGRBDXHX_T
PublicationCentury 2000
PublicationDate August 2002
PublicationDateYYYYMMDD 2002-08-01
PublicationDate_xml – month: 08
  year: 2002
  text: August 2002
PublicationDecade 2000
PublicationPlace Boston, MA, USA
PublicationPlace_xml – name: Boston, MA, USA
– name: Oxford
– name: United States
PublicationTitle Transfusion (Philadelphia, Pa.)
PublicationTitleAlternate Transfusion
PublicationYear 2002
Publisher Blackwell Science Inc
Blackwell Publishing
Publisher_xml – name: Blackwell Science Inc
– name: Blackwell Publishing
References Faas BH, Beuling EA, Christiaens GC, Von Dem Borne AE, Van Der Schoot CE. Detection of fetal RHD-specific sequences in maternal plasma. Lancet 1998;352:1196.
Crowther CA, Keirse MJ. Anti-D administration in pregnancy for preventing rhesus alloimmunisation. Cochrane Database Syst Rev 2000;2:CD000020.
Daniels GL, Faas BH, Green CA, et al. The VS and V blood group polymorphisms in Africans: a serologic and molecular analysis. Transfusion 1998;38:951-58.
Avent ND, Finning KM, Martin PG, Soothill PW. Prenatal determination of fetal blood group status. Vox Sang 2000;78(Suppl):155-62.
Ulm B, Svolba G, Ulm MR, Bernaschek G, Panzer S. Male fetuses are particularly affected by maternal alloimmunization to D antigen. Transfusion 1999;39:169-73.
Avent ND. Molecular biology of the Rh blood group system. J Pediat Hematol Oncol 2001;23:394-402.
Bianchi DW, Williams JM, Sullivan LM, et al. PCR quantitation of fetal cells in maternal blood in normal and aneuploid pregnancies. Am J Hum Genet 1997;61:822-29.
Tabor A, Bang J, Norgaard-Pedersen B. Feto-maternal haemorrhage associated with genetic amniocentesis: results of a randomized trial. Br J Obstet Gynaecol 1987;94:528-34.
Murray JC, Karp LE, Williamson RA, Cheng EY, Luthy DA. Rh isoimmunization related to amniocentesis. Am J Med Genet 1983;16:527-34.
Lo YM, Lo ES, Watson N, et al. Two-way cell traffic between mother and fetus: biologic and clinical implications. Blood 1996;88:4390-95.
Lo YM, Noakes L, Bowell PJ, Fleming KA, Wainscoat JS. Detection of fetal RhD sequence from peripheral blood of sensitized RhD-negative pregnant women. Br J Haem 1994;87:658-60.
Singleton BK, Green CA, Avent ND, et al. The presence of an RHD pseudogene containing a 37 base pair duplication and a nonsense mutation in africans with the RhD-negative blood group phenotype. Blood 2000;95:12-18.
Avent ND, Reid ME. The Rh blood group system: a review. Blood 2000;95:375-87; erratum in Blood 2000;95:2197.
Robson SC, Lee D, Urbaniak S. Anti-D immunoglobin in RhD prophylaxis. Brit J Obstet Gynaecol 1998;105:129-34.
Lo YM, Tein MS, Lau TK, et al. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet 1998;62:768-75.
Nelson M, Eagle C, Langshaw M, et al. Genotyping fetal DNA by non-invasive means: extraction from maternal plasma. Vox Sang 2001;80:112-16.DOI: 10.1046/j.1423-0410.2001.00019.x
Wagner FF, Frohmajer A, Flegel WA. RHD positive haplotypes in D negative Europeans. BMC Genetics 2001;2:10.DOI: 10.1186/1471-2156-2-10
Little MT, Langlois S, Douglas Wilson R, Lansdorp P. Frequency of fetal cells in sorted subpopulations of nucleated erythroid and CD34+ hematopoietic progenitor cells from maternal peripheral blood. Blood 1997;89:2347-58.
Sohda S, Arinami T, Hamada H, et al. The proportion of fetal nucleated red blood cells in maternal blood: estimation by FACS analysis. Prenat Diagnos 1997;17:743-52.
Wilson RD. Amniocentesis and chorionic villus sampling. Curr Opin Obstet Gynecol 2000;12:81-86.DOI: 10.1097/00001703-200004000-00005
Lo YM, Magnus Hjelm N, Fidler C, et al. Prenatal diagnosis of fetal RhD status by molecular analysis of maternal plasma. N Engl J Med 1998;339:1734-38.
Rouillac C, Puillandre P, Colin Y, Le Van Kim C, Cartron JP. Fetal RHD typing using DNA from maternal plasma: a prediagnosis study on 182 cases (abstract). Vox Sang 2000;78(Suppl):0026.
Zhong XY, Holzgreve W, Hahn S. Detection of fetal Rhesus D and sex using fetal DNA from maternal plasma by multiplex polymerase chain reaction. Br J Obstet Gynaecol 2000;107:766-69.
Chiu RW, Poon LL, Lau TK, et al. Effects of blood- processing protocols on fetal and total DNA quantification in maternal plasma. Clin Chem 2001;47:1607-13.
2001; 80
1998; 38
1997; 61
1987; 94
2000; 12
2000; 78
1999; 39
2000; 107
1997; 89
1998; 339
2000; 95
1997; 17
2000; 2
2001; 2
1998; 105
1998; 62
1998; 352
2001; 23
1983; 16
2001; 47
1994; 87
1996; 88
e_1_2_6_20_2
Little MT (e_1_2_6_7_2) 1997; 89
Singleton BK (e_1_2_6_15_2) 2000; 95
Rouillac C (e_1_2_6_18_2) 2000; 78
e_1_2_6_8_2
Chiu RW (e_1_2_6_23_2) 2001; 47
Lo YM (e_1_2_6_5_2) 1996; 88
e_1_2_6_9_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
Avent ND (e_1_2_6_19_2) 2000; 95
e_1_2_6_12_2
e_1_2_6_24_2
e_1_2_6_13_2
e_1_2_6_2_2
e_1_2_6_10_2
e_1_2_6_22_2
e_1_2_6_21_2
Avent ND (e_1_2_6_11_2) 2000; 78
e_1_2_6_16_2
Crowther CA (e_1_2_6_25_2) 2000; 2
e_1_2_6_17_2
e_1_2_6_14_2
References_xml – volume: 23
  start-page: 394
  year: 2001
  end-page: 402
  article-title: Molecular biology of the Rh blood group system.
  publication-title: J Pediat Hematol Oncol
– volume: 78
  start-page: 0026
  issue: Suppl
  year: 2000
  article-title: Fetal RHD typing using DNA from maternal plasma: a prediagnosis study on 182 cases (abstract).
  publication-title: Vox Sang
– volume: 16
  start-page: 527
  year: 1983
  end-page: 34
  article-title: Rh isoimmunization related to amniocentesis.
  publication-title: Am J Med Genet
– volume: 89
  start-page: 2347
  year: 1997
  end-page: 58
  article-title: Frequency of fetal cells in sorted subpopulations of nucleated erythroid and CD34+ hematopoietic progenitor cells from maternal peripheral blood.
  publication-title: Blood
– volume: 95
  start-page: 12
  year: 2000
  end-page: 18
  article-title: The presence of an RHD pseudogene containing a 37 base pair duplication and a nonsense mutation in africans with the RhD‐negative blood group phenotype.
  publication-title: Blood
– volume: 38
  start-page: 951
  year: 1998
  end-page: 58
  article-title: The VS and V blood group polymorphisms in Africans: a serologic and molecular analysis.
  publication-title: Transfusion
– volume: 105
  start-page: 129
  year: 1998
  end-page: 34
  article-title: Anti‐D immunoglobin in RhD prophylaxis.
  publication-title: Brit J Obstet Gynaecol
– volume: 2
  start-page: CD000020
  year: 2000
  article-title: Anti‐D administration in pregnancy for preventing rhesus alloimmunisation.
  publication-title: Cochrane Database Syst Rev
– volume: 17
  start-page: 743
  year: 1997
  end-page: 52
  article-title: The proportion of fetal nucleated red blood cells in maternal blood: estimation by FACS analysis.
  publication-title: Prenat Diagnos
– volume: 352
  start-page: 1196
  year: 1998
  article-title: Detection of fetal ‐specific sequences in maternal plasma.
  publication-title: Lancet
– volume: 78
  start-page: 155
  issue: Suppl
  year: 2000
  end-page: 62
  article-title: Prenatal determination of fetal blood group status.
  publication-title: Vox Sang
– volume: 80
  start-page: 112
  year: 2001
  end-page: 16
  article-title: Genotyping fetal DNA by non‐invasive means: extraction from maternal plasma.
  publication-title: Vox Sang
– volume: 39
  start-page: 169
  year: 1999
  end-page: 73
  article-title: Male fetuses are particularly affected by maternal alloimmunization to D antigen.
  publication-title: Transfusion
– volume: 2
  start-page: 10
  year: 2001
  article-title: RHD positive haplotypes in D negative Europeans.
  publication-title: BMC Genetics
– volume: 12
  start-page: 81
  year: 2000
  end-page: 86
  article-title: Amniocentesis and chorionic villus sampling.
  publication-title: Curr Opin Obstet Gynecol
– volume: 87
  start-page: 658
  year: 1994
  end-page: 60
  article-title: Detection of fetal RhD sequence from peripheral blood of sensitized RhD‐negative pregnant women.
  publication-title: Br J Haem
– volume: 339
  start-page: 1734
  year: 1998
  end-page: 38
  article-title: Prenatal diagnosis of fetal RhD status by molecular analysis of maternal plasma.
  publication-title: N Engl J Med
– volume: 94
  start-page: 528
  year: 1987
  end-page: 34
  article-title: Feto‐maternal haemorrhage associated with genetic amniocentesis: results of a randomized trial.
  publication-title: Br J Obstet Gynaecol
– volume: 88
  start-page: 4390
  year: 1996
  end-page: 95
  article-title: Two‐way cell traffic between mother and fetus: biologic and clinical implications.
  publication-title: Blood
– volume: 61
  start-page: 822
  year: 1997
  end-page: 29
  article-title: PCR quantitation of fetal cells in maternal blood in normal and aneuploid pregnancies.
  publication-title: Am J Hum Genet
– volume: 107
  start-page: 766
  year: 2000
  end-page: 69
  article-title: Detection of fetal Rhesus D and sex using fetal DNA from maternal plasma by multiplex polymerase chain reaction.
  publication-title: Br J Obstet Gynaecol
– volume: 95
  start-page: 375
  year: 2000
  end-page: 87
  article-title: The Rh blood group system: a review.
  publication-title: Blood
– volume: 62
  start-page: 768
  year: 1998
  end-page: 75
  article-title: Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis.
  publication-title: Am J Hum Genet
– volume: 47
  start-page: 1607
  year: 2001
  end-page: 13
  article-title: Effects of blood‐ processing protocols on fetal and total DNA quantification in maternal plasma.
  publication-title: Clin Chem
– volume: 89
  start-page: 2347
  year: 1997
  ident: e_1_2_6_7_2
  article-title: Frequency of fetal cells in sorted subpopulations of nucleated erythroid and CD34+ hematopoietic progenitor cells from maternal peripheral blood.
  publication-title: Blood
  doi: 10.1182/blood.V89.7.2347
  contributor:
    fullname: Little MT
– ident: e_1_2_6_13_2
  doi: 10.1046/j.1423-0410.2001.00019.x
– volume: 78
  start-page: 155
  year: 2000
  ident: e_1_2_6_11_2
  article-title: Prenatal determination of fetal blood group status.
  publication-title: Vox Sang
  contributor:
    fullname: Avent ND
– ident: e_1_2_6_10_2
  doi: 10.1016/S0140-6736(05)60534-X
– ident: e_1_2_6_12_2
  doi: 10.1111/j.1471-0528.2000.tb13338.x
– ident: e_1_2_6_22_2
  doi: 10.1111/j.1365-2141.1994.tb08336.x
– ident: e_1_2_6_9_2
  doi: 10.1086/301800
– ident: e_1_2_6_14_2
  doi: 10.1056/NEJM199812103392402
– ident: e_1_2_6_21_2
  doi: 10.1186/1471-2156-2-10
– ident: e_1_2_6_24_2
  doi: 10.1111/j.1471-0528.1998.tb10039.x
– ident: e_1_2_6_8_2
  doi: 10.1002/(SICI)1097-0223(199708)17:8<743::AID-PD144>3.0.CO;2-3
– volume: 2
  start-page: CD000020
  year: 2000
  ident: e_1_2_6_25_2
  article-title: Anti‐D administration in pregnancy for preventing rhesus alloimmunisation.
  publication-title: Cochrane Database Syst Rev
  contributor:
    fullname: Crowther CA
– ident: e_1_2_6_2_2
  doi: 10.1097/00001703-200004000-00005
– volume: 88
  start-page: 4390
  year: 1996
  ident: e_1_2_6_5_2
  article-title: Two‐way cell traffic between mother and fetus: biologic and clinical implications.
  publication-title: Blood
  doi: 10.1182/blood.V88.11.4390.bloodjournal88114390
  contributor:
    fullname: Lo YM
– volume: 78
  start-page: 0026
  year: 2000
  ident: e_1_2_6_18_2
  article-title: Fetal RHD typing using DNA from maternal plasma: a prediagnosis study on 182 cases (abstract).
  publication-title: Vox Sang
  contributor:
    fullname: Rouillac C
– ident: e_1_2_6_6_2
  doi: 10.1086/514885
– ident: e_1_2_6_17_2
  doi: 10.1046/j.1537-2995.1999.39299154731.x
– volume: 95
  start-page: 12
  year: 2000
  ident: e_1_2_6_15_2
  article-title: The presence of an RHD pseudogene containing a 37 base pair duplication and a nonsense mutation in africans with the RhD‐negative blood group phenotype.
  publication-title: Blood
  doi: 10.1182/blood.V95.1.12
  contributor:
    fullname: Singleton BK
– ident: e_1_2_6_3_2
  doi: 10.1111/j.1471-0528.1987.tb03145.x
– ident: e_1_2_6_4_2
  doi: 10.1002/ajmg.1320160411
– ident: e_1_2_6_16_2
  doi: 10.1046/j.1537-2995.1998.381098440860.x
– volume: 47
  start-page: 1607
  year: 2001
  ident: e_1_2_6_23_2
  article-title: Effects of blood‐ processing protocols on fetal and total DNA quantification in maternal plasma.
  publication-title: Clin Chem
  doi: 10.1093/clinchem/47.9.1607
  contributor:
    fullname: Chiu RW
– volume: 95
  start-page: 375
  year: 2000
  ident: e_1_2_6_19_2
  article-title: The Rh blood group system: a review.
  publication-title: Blood
  doi: 10.1182/blood.V95.2.375
  contributor:
    fullname: Avent ND
– ident: e_1_2_6_20_2
  doi: 10.1097/00043426-200108000-00018
SSID ssj0002901
Score 2.2601578
Snippet BACKGROUND : Invasive procedures to obtain fetal DNA for prenatal blood grouping present a risk to the fetus. During pregnancy, cell‐free fetal DNA is present...
Invasive procedures to obtain fetal DNA for prenatal blood grouping present a risk to the fetus. During pregnancy, cell-free fetal DNA is present in maternal...
BACKGROUNDInvasive procedures to obtain fetal DNA for prenatal blood grouping present a risk to the fetus. During pregnancy, cell-free fetal DNA is present in...
SourceID proquest
crossref
pubmed
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1079
SubjectTerms Biological and medical sciences
DNA - blood
Female
Fetal Blood
Fetus - metabolism
Forecasting
Gene Dosage
Genotype
Humans
Immunological methods for diagnosis and exploration
Immunopathology
Male
Medical sciences
Other methods
Pregnancy - blood
Pregnancy, Multiple
Rho(D) Immune Globulin - blood
Rho(D) Immune Globulin - genetics
Sensitivity and Specificity
Sex Characteristics
Twins
Title Prediction of fetal D status from maternal plasma: introduction of a new noninvasive fetal RHD genotyping service
URI https://api.istex.fr/ark:/67375/WNG-TGRBDXHX-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1537-2995.2002.00165.x
https://www.ncbi.nlm.nih.gov/pubmed/12385421
https://search.proquest.com/docview/72182126
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxEB5VIFW9UPqAbmmpD6i3jbLr9T64QdMQVQKhKKi5WbbXllBEoEm2ovx6ZuxNolQcKtTbXryP8Yznm52ZbwCOal6mdVe72FbOYICi6lhXHM3doa811lRZSb3D5xf54Cr7MRbjtv6JemECP8TqhxtZhj-vycCVDlNIup7dFo1c8CLG41T4SgPKKeSiQ3iSePUIHw3XTFKULgzJ5iSm4eptUU-b4HzyRhueapuEfk-Vk2qOwnNh6sVTsHQT5Xo31X8Nk-UHhuqUSadZ6I55-Iv78f9IYBd2WjTLToL6vYEXdvoWXp63-fp38OtyRte0-ezWMWcR6rMeoy6mZs6otYUhYvY01OwOcfyNOmbXVDtfN6tFiiHyZ1P6bfxbUbF9e5vhoMeIYXbxh1q-2Dwceu_hqv999G0Qt0MeYpNVpYiTusw1nrEuFypPC1O51NSpVhgq1bbiCcIXoTDURbVBJ8uF0Y7zrkHUZ0tnsoLvwRa-gv0ADOOELk-VEtoWmeBWl-SMK24TQ0k7F0Gy3FB5F7g8pM_BZ9SvRrKUJEuazJlKL0t5H8FXv_OrBWo2oVq4QsifF2dydDY87Y0HYzmK4HBDNdZP4GWOMV0RwZelrkg0YcrLqKm9beayIBb9JM0j2A8qtF6LgEpkaRKB8Irwz68tR8M-Xnx85roDeOWn3vhCx0-wtZg19jOCr4U-9Gb1CPWVIF0
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hVgIuvCnm0e4BcXOIvV4_uLWE1EATocgVua1217sSKqQliVHpr-_M2kkU1ANC3HxZx5md2flmv3kAvK55Htd97UJbOIMBiqpDXXA0d4e-1lhTJDnVDo_GaXmafJqKaTcOiGph2v4Q6ws3sgx_XpOB04X0246WbK1c8CzE81T4VAMiFVLRQ0C5i9YvfHw12fSSIsKwpZujkMard2k9HcV545u2fNUuif2ScifVAsXn2rkXNwHTbZzrHdXwPnxf_cU2P-Ws1yx1z1z90f3xP8ngAdzrAC07bDXwIdyys0dwe9RR9o_h55c5PdP-s3PHnEW0zwaMCpmaBaPqFoag2XeiZhcI5X-od-wbpc_XzXqRYgj-2Yxujn8pyrfvXjMpB4yazC5_U9UXW7Tn3hM4HX6o3pdhN-chNEmRizCq81TjMetSodI4M4WLTR1rhdFSbQseIYIRCqNd1Bz0s1wY7TjvGwR-NncmyfhT2MFPsM-AYajQ57FSQtssEdzqnPxxwW1kiLdzAUSrHZUXbTsP6Wn4hErWSJaSZEnDOWPpZSkvA3jjt369QM3PKB0uE_Lr-FhWx5OjwbScyiqA_S3d2PwCz1MM67IADlbKItGKiZpRM3veLGRGjfSjOA1gr9WhzVrEVCKJowCE14S__mxZTYb48Pwf1x3AnbIanciTj-PPL-CuH4Lj8x5fws5y3thXiMWWet_b2DUS5iR_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6hXWnFhfcjPHZ9QNxSGjvOgxsQuuWx1arqit4sx7ElVNEtbYMWfj0zdtqqaA8IccvFeYxnPN9kvpkBeNGIgjf92sW2dAYDFN3EdSnQ3B36WmNNmRZUO3w2yoYX6cepnHb8J6qFCf0htj_cyDL8eU0Gvmjcqy4rGYxcijzG41R6pgHlFDLZQzx5mGaCk4ZX410rKcoXhmxzEtN09Y7V02U4r73Tnqs6JKlfEXVSr1B6Loy9uA6X7sNc76cGt2G2-cJAT5n12nXdM7_-aP74f0RwB251cJa9Cfp3F27Y-T04OusS9vfh-_mSrmn32aVjziLWZxWjMqZ2xai2hSFk9n2o2QKB_Df9mn0l8nzTbhdphtCfzem_8Q9NbPvuNuNhxajF7Pon1XyxVTj1HsDF4P3k3TDupjzEJi0LGSdNkdV4yLpM6oznpnTcNLzWGCs1thQJ4hepMdZFvUEvK6SpnRB9g7DPFs6kuXgIB_gK9jEwDBT6gmsta5unUti6IG9cCpsYytq5CJLNhqpFaOahfBI-pYI1kqUiWdJoTq68LNVVBC_9zm8X6OWMyHC5VF9Gp2pyOn5bTYdTNYngeE81dk8QRYZBXR7ByUZXFNowJWb03F62K5VTG_2EZxE8Ciq0W4uISqY8iUB6Rfjr11aT8QAvnvzjuhM4Oq8G6vOH0aencNNPwPGkx2dwsF629jkCsXV97C3sN3mYIy4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+fetal+D+status+from+maternal+plasma%3A+introduction+of+a+new+noninvasive+fetal+RHD+genotyping+service&rft.jtitle=Transfusion+%28Philadelphia%2C+Pa.%29&rft.au=Finning%2C+K.M.&rft.au=Martin%2C+P.G.&rft.au=Soothill%2C+P.W.&rft.au=Avent%2C+N.D.&rft.date=2002-08-01&rft.pub=Blackwell+Science+Inc&rft.issn=0041-1132&rft.eissn=1537-2995&rft.volume=42&rft.issue=8&rft.spage=1079&rft.epage=1085&rft_id=info:doi/10.1046%2Fj.1537-2995.2002.00165.x&rft.externalDBID=10.1046%252Fj.1537-2995.2002.00165.x&rft.externalDocID=TRF165
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0041-1132&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0041-1132&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0041-1132&client=summon