Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions
Much of humanity relies on rice (Oryza sativa) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high temperatures. Under climate change, periods of reduced water availability and high temperature are expected to become more frequent, leading to detriment...
Saved in:
Published in | The New phytologist Vol. 221; no. 1; pp. 371 - 384 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
New Phytologist Trust
01.01.2019
Wiley Subscription Services, Inc John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Much of humanity relies on rice (Oryza sativa) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high temperatures. Under climate change, periods of reduced water availability and high temperature are expected to become more frequent, leading to detrimental effects on rice yields.
We engineered the high-yielding rice cultivar ‘IR64’ to produce fewer stomata by manipulating the level of a developmental signal. We overexpressed the rice epidermal patterning factor OsEPF1, creating plants with substantially reduced stomatal density and correspondingly low stomatal conductance.
Low stomatal density rice lines were more able to conserve water, using c. 60% of the normal amount between weeks 4 and 5 post germination. When grown at elevated atmospheric CO2, rice plants with low stomatal density were able to maintain their stomatal conductance and survive drought and high temperature (40°C) for longer than control plants. Low stomatal density rice gave equivalent or even improved yields, despite a reduced rate of photosynthesis in some conditions.
Rice plants with fewer stomata are drought tolerant and more conservative in their water use, and they should perform better in the future when climate change is expected to threaten food security. |
---|---|
AbstractList | Much of humanity relies on rice (Oryza sativa) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high temperatures. Under climate change, periods of reduced water availability and high temperature are expected to become more frequent, leading to detrimental effects on rice yields. We engineered the high-yielding rice cultivar 'IR64' to produce fewer stomata by manipulating the level of a developmental signal. We overexpressed the rice epidermal patterning factor OsEPF1, creating plants with substantially reduced stomatal density and correspondingly low stomatal conductance. Low stomatal density rice lines were more able to conserve water, using c. 60% of the normal amount between weeks 4 and 5 post germination. When grown at elevated atmospheric CO2 , rice plants with low stomatal density were able to maintain their stomatal conductance and survive drought and high temperature (40°C) for longer than control plants. Low stomatal density rice gave equivalent or even improved yields, despite a reduced rate of photosynthesis in some conditions. Rice plants with fewer stomata are drought tolerant and more conservative in their water use, and they should perform better in the future when climate change is expected to threaten food security.Much of humanity relies on rice (Oryza sativa) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high temperatures. Under climate change, periods of reduced water availability and high temperature are expected to become more frequent, leading to detrimental effects on rice yields. We engineered the high-yielding rice cultivar 'IR64' to produce fewer stomata by manipulating the level of a developmental signal. We overexpressed the rice epidermal patterning factor OsEPF1, creating plants with substantially reduced stomatal density and correspondingly low stomatal conductance. Low stomatal density rice lines were more able to conserve water, using c. 60% of the normal amount between weeks 4 and 5 post germination. When grown at elevated atmospheric CO2 , rice plants with low stomatal density were able to maintain their stomatal conductance and survive drought and high temperature (40°C) for longer than control plants. Low stomatal density rice gave equivalent or even improved yields, despite a reduced rate of photosynthesis in some conditions. Rice plants with fewer stomata are drought tolerant and more conservative in their water use, and they should perform better in the future when climate change is expected to threaten food security. Much of humanity relies on rice ( Oryza sativa ) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high temperatures. Under climate change, periods of reduced water availability and high temperature are expected to become more frequent, leading to detrimental effects on rice yields. We engineered the high‐yielding rice cultivar ‘ IR 64’ to produce fewer stomata by manipulating the level of a developmental signal. We overexpressed the rice epidermal patterning factor Os EPF 1 , creating plants with substantially reduced stomatal density and correspondingly low stomatal conductance. Low stomatal density rice lines were more able to conserve water, using c . 60% of the normal amount between weeks 4 and 5 post germination. When grown at elevated atmospheric CO 2 , rice plants with low stomatal density were able to maintain their stomatal conductance and survive drought and high temperature (40°C) for longer than control plants. Low stomatal density rice gave equivalent or even improved yields, despite a reduced rate of photosynthesis in some conditions. Rice plants with fewer stomata are drought tolerant and more conservative in their water use, and they should perform better in the future when climate change is expected to threaten food security. Much of humanity relies on rice (Oryza sativa) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high temperatures. Under climate change, periods of reduced water availability and high temperature are expected to become more frequent, leading to detrimental effects on rice yields. We engineered the high-yielding rice cultivar 'IR64' to produce fewer stomata by manipulating the level of a developmental signal. We overexpressed the rice epidermal patterning factor OsEPF1, creating plants with substantially reduced stomatal density and correspondingly low stomatal conductance. Low stomatal density rice lines were more able to conserve water, using c. 60% of the normal amount between weeks 4 and 5 post germination. When grown at elevated atmospheric CO , rice plants with low stomatal density were able to maintain their stomatal conductance and survive drought and high temperature (40°C) for longer than control plants. Low stomatal density rice gave equivalent or even improved yields, despite a reduced rate of photosynthesis in some conditions. Rice plants with fewer stomata are drought tolerant and more conservative in their water use, and they should perform better in the future when climate change is expected to threaten food security. Much of humanity relies on rice (Oryza sativa) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high temperatures. Under climate change, periods of reduced water availability and high temperature are expected to become more frequent, leading to detrimental effects on rice yields. We engineered the high-yielding rice cultivar ‘IR64’ to produce fewer stomata by manipulating the level of a developmental signal. We overexpressed the rice epidermal patterning factor OsEPF1, creating plants with substantially reduced stomatal density and correspondingly low stomatal conductance. Low stomatal density rice lines were more able to conserve water, using c. 60% of the normal amount between weeks 4 and 5 post germination. When grown at elevated atmospheric CO2, rice plants with low stomatal density were able to maintain their stomatal conductance and survive drought and high temperature (40°C) for longer than control plants. Low stomatal density rice gave equivalent or even improved yields, despite a reduced rate of photosynthesis in some conditions. Rice plants with fewer stomata are drought tolerant and more conservative in their water use, and they should perform better in the future when climate change is expected to threaten food security. Summary Much of humanity relies on rice (Oryza sativa) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high temperatures. Under climate change, periods of reduced water availability and high temperature are expected to become more frequent, leading to detrimental effects on rice yields. We engineered the high‐yielding rice cultivar ‘IR64’ to produce fewer stomata by manipulating the level of a developmental signal. We overexpressed the rice epidermal patterning factor OsEPF1, creating plants with substantially reduced stomatal density and correspondingly low stomatal conductance. Low stomatal density rice lines were more able to conserve water, using c. 60% of the normal amount between weeks 4 and 5 post germination. When grown at elevated atmospheric CO2, rice plants with low stomatal density were able to maintain their stomatal conductance and survive drought and high temperature (40°C) for longer than control plants. Low stomatal density rice gave equivalent or even improved yields, despite a reduced rate of photosynthesis in some conditions. Rice plants with fewer stomata are drought tolerant and more conservative in their water use, and they should perform better in the future when climate change is expected to threaten food security. Much of humanity relies on rice (Oryza sativa) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high temperatures. Under climate change, periods of reduced water availability and high temperature are expected to become more frequent, leading to detrimental effects on rice yields. We engineered the high‐yielding rice cultivar ‘IR64’ to produce fewer stomata by manipulating the level of a developmental signal. We overexpressed the rice epidermal patterning factor OsEPF1, creating plants with substantially reduced stomatal density and correspondingly low stomatal conductance. Low stomatal density rice lines were more able to conserve water, using c. 60% of the normal amount between weeks 4 and 5 post germination. When grown at elevated atmospheric CO₂, rice plants with low stomatal density were able to maintain their stomatal conductance and survive drought and high temperature (40°C) for longer than control plants. Low stomatal density rice gave equivalent or even improved yields, despite a reduced rate of photosynthesis in some conditions. Rice plants with fewer stomata are drought tolerant and more conservative in their water use, and they should perform better in the future when climate change is expected to threaten food security. Much of humanity relies on rice (Oryza sativa) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high temperatures. Under climate change, periods of reduced water availability and high temperature are expected to become more frequent, leading to detrimental effects on rice yields.We engineered the high‐yielding rice cultivar ‘IR64’ to produce fewer stomata by manipulating the level of a developmental signal. We overexpressed the rice epidermal patterning factor OsEPF1, creating plants with substantially reduced stomatal density and correspondingly low stomatal conductance.Low stomatal density rice lines were more able to conserve water, using c. 60% of the normal amount between weeks 4 and 5 post germination. When grown at elevated atmospheric CO2, rice plants with low stomatal density were able to maintain their stomatal conductance and survive drought and high temperature (40°C) for longer than control plants. Low stomatal density rice gave equivalent or even improved yields, despite a reduced rate of photosynthesis in some conditions.Rice plants with fewer stomata are drought tolerant and more conservative in their water use, and they should perform better in the future when climate change is expected to threaten food security. |
Author | Akshaya K. Biswal W. Paul Quick Emily L. Harrison Robert S. Caine Jennifer Sloan Umar Mohammed Ranjan Swarup Jacqueline Dionora Erik H. Murchie Xiaojia Yin Robert A. Coe Julie E. Gray Timothy Fulton Caspar C. Chater Anindya Bandyopadhyay |
AuthorAffiliation | 2 International Rice Research Institute DAPO 7777 Metro Manila Philippines 4 Department of Genetics University of Cambridge Cambridge CB2 3EH UK 1 Department of Molecular Biology and Biotechnology University of Sheffield Sheffield S10 2TN UK 5 Department of Biology University of North Carolina at Chapel Hill Chapel Hill NC 27599‐3280 USA 3 Division of Plant and Crop Science University of Nottingham, Sutton Bonington Campus Loughborough LE12 5RD UK 6 Departamento de Biología Molecular de Plantas Instituto de Biotecnología Universidad Nacional Autónoma de Mexico Cuernavaca 62210 Mexico 7 ARC Centre of Excellence for Translational Photosynthesis Australian National University Canberra ACT 2601 Australia |
AuthorAffiliation_xml | – name: 2 International Rice Research Institute DAPO 7777 Metro Manila Philippines – name: 4 Department of Genetics University of Cambridge Cambridge CB2 3EH UK – name: 3 Division of Plant and Crop Science University of Nottingham, Sutton Bonington Campus Loughborough LE12 5RD UK – name: 6 Departamento de Biología Molecular de Plantas Instituto de Biotecnología Universidad Nacional Autónoma de Mexico Cuernavaca 62210 Mexico – name: 5 Department of Biology University of North Carolina at Chapel Hill Chapel Hill NC 27599‐3280 USA – name: 1 Department of Molecular Biology and Biotechnology University of Sheffield Sheffield S10 2TN UK – name: 7 ARC Centre of Excellence for Translational Photosynthesis Australian National University Canberra ACT 2601 Australia |
Author_xml | – sequence: 1 givenname: Robert S. orcidid: 0000-0002-6480-218X surname: Caine fullname: Caine, Robert S. organization: University of Sheffield – sequence: 2 givenname: Xiaojia surname: Yin fullname: Yin, Xiaojia organization: International Rice Research Institute – sequence: 3 givenname: Jennifer orcidid: 0000-0003-0334-3722 surname: Sloan fullname: Sloan, Jennifer organization: University of Sheffield – sequence: 4 givenname: Emily L. surname: Harrison fullname: Harrison, Emily L. organization: University of Sheffield – sequence: 5 givenname: Umar surname: Mohammed fullname: Mohammed, Umar organization: University of Nottingham, Sutton Bonington Campus – sequence: 6 givenname: Timothy orcidid: 0000-0002-0386-1821 surname: Fulton fullname: Fulton, Timothy organization: University of Cambridge – sequence: 7 givenname: Akshaya K. orcidid: 0000-0002-5652-6007 surname: Biswal fullname: Biswal, Akshaya K. organization: University of North Carolina at Chapel Hill – sequence: 8 givenname: Jacqueline surname: Dionora fullname: Dionora, Jacqueline organization: International Rice Research Institute – sequence: 9 givenname: Caspar C. orcidid: 0000-0003-2058-2020 surname: Chater fullname: Chater, Caspar C. organization: Universidad Nacional Autónoma de Mexico – sequence: 10 givenname: Robert A. surname: Coe fullname: Coe, Robert A. organization: Australian National University – sequence: 11 givenname: Anindya surname: Bandyopadhyay fullname: Bandyopadhyay, Anindya organization: International Rice Research Institute – sequence: 12 givenname: Erik H. orcidid: 0000-0002-7465-845X surname: Murchie fullname: Murchie, Erik H. organization: University of Nottingham, Sutton Bonington Campus – sequence: 13 givenname: Ranjan orcidid: 0000-0002-6438-9188 surname: Swarup fullname: Swarup, Ranjan organization: University of Nottingham, Sutton Bonington Campus – sequence: 14 givenname: W. Paul surname: Quick fullname: Quick, W. Paul organization: International Rice Research Institute – sequence: 15 givenname: Julie E. orcidid: 0000-0001-9972-5156 surname: Gray fullname: Gray, Julie E. email: j.e.gray@sheffield.ac.uk organization: University of Sheffield |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30043395$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk2LUzEUhoOMOJ3RhT9AueBGF3cmXzc32QgyqCMMKqLgLqTJ6TTlNqlJbkv_valtBx0UQyCLPO_DOck5QychBkDoKcEXpK7LsJpfkI5x_gBNCBeqlYT1J2iCMZWt4OL7KTrLeYExVp2gj9Apw5gzproJGr94C83Gl3mTwI0WXJNLXJpihsZByL5sGxtDhrSG3GxMgdSY4Jq5yY1frlJc14RLcbydl6bEAZIJVTgGV8HZWMYEjR18FcLO43zx1fYYPZyZIcOTw3mOvr17-_Xqur359P7D1Zub1nIleWsplq6jxsopAckV54oJKqaWSCeNY6rnZAqqkzNwHRBlOmm5tJQrA70ylJ2j13vvapwuwVkIJZlBr1ItKG11NF7_eRP8XN_GtRZcUUJYFbw8CFL8MUIueumzhWEwAeKYNSVSdaRu8X8U94LW8hmv6It76CKOKdSXqEKmMO67Xlbq-e_F31V9_LwKXO4Bm2LOCWba-mJ2D1x78YMmWO_GQ9fx0L_GoyZe3UscpX9jD_aNH2D7b1B__Hx9TDzbJxZ1hNJdovZDRa8E-wkMQ9UY |
CitedBy_id | crossref_primary_10_1016_j_envexpbot_2020_104342 crossref_primary_10_3389_fsufs_2021_685801 crossref_primary_10_1016_j_agwat_2023_108490 crossref_primary_10_3390_plants8030065 crossref_primary_10_1042_ETLS20180105 crossref_primary_10_3390_life12101589 crossref_primary_10_1093_jxb_erae354 crossref_primary_10_1186_s12918_019_0689_8 crossref_primary_10_1111_jipb_13890 crossref_primary_10_1002_pld3_498 crossref_primary_10_1093_jxb_erab090 crossref_primary_10_1093_lambio_ovac067 crossref_primary_10_1002_tpg2_20542 crossref_primary_10_1038_s41598_021_94705_4 crossref_primary_10_1007_s00425_021_03661_w crossref_primary_10_1093_jxb_erad498 crossref_primary_10_1371_journal_pone_0266087 crossref_primary_10_1016_j_envexpbot_2021_104757 crossref_primary_10_1093_jxb_eraa303 crossref_primary_10_3390_ijms251910738 crossref_primary_10_3390_plants13212962 crossref_primary_10_1108_AGJSR_10_2022_0237 crossref_primary_10_1038_s41586_019_1679_0 crossref_primary_10_1016_j_scitotenv_2023_165832 crossref_primary_10_3389_fgene_2020_00611 crossref_primary_10_3390_ijms22147245 crossref_primary_10_1093_aobpla_plae031 crossref_primary_10_3390_ijms25021185 crossref_primary_10_1016_j_agrformet_2024_110238 crossref_primary_10_1002_ggn2_202100017 crossref_primary_10_1016_j_plaphy_2022_12_030 crossref_primary_10_1242_dev_199780 crossref_primary_10_1071_FP23151 crossref_primary_10_3390_horticulturae10111206 crossref_primary_10_1016_j_envexpbot_2020_104240 crossref_primary_10_1007_s11816_020_00598_6 crossref_primary_10_1016_j_scienta_2021_110089 crossref_primary_10_1016_j_scitotenv_2021_147757 crossref_primary_10_3390_ijpb15040080 crossref_primary_10_36899_JAPS_2022_3_0462 crossref_primary_10_1007_s11676_021_01390_0 crossref_primary_10_1016_j_scienta_2021_110758 crossref_primary_10_1111_pce_14892 crossref_primary_10_1080_14786419_2024_2324463 crossref_primary_10_3390_agronomy11050921 crossref_primary_10_3389_fpls_2020_00026 crossref_primary_10_48130_VR_2023_0020 crossref_primary_10_1111_tpj_14560 crossref_primary_10_1093_jxb_eraa321 crossref_primary_10_1093_aobpla_plad047 crossref_primary_10_1111_nph_16341 crossref_primary_10_1093_plphys_kiad485 crossref_primary_10_1101_cshperspect_a034660 crossref_primary_10_1093_jxb_erad393 crossref_primary_10_1186_s13007_024_01305_0 crossref_primary_10_3389_fpls_2022_894545 crossref_primary_10_1007_s11738_022_03511_6 crossref_primary_10_1098_rspb_2020_2154 crossref_primary_10_1002_pld3_581 crossref_primary_10_1111_pce_14663 crossref_primary_10_3389_fpls_2024_1351612 crossref_primary_10_3390_agronomy12020430 crossref_primary_10_1007_s00425_024_04508_w crossref_primary_10_1093_plphys_kiac278 crossref_primary_10_3389_fpls_2021_751852 crossref_primary_10_1007_s42976_020_00097_y crossref_primary_10_1016_j_fcr_2024_109275 crossref_primary_10_1016_j_plaphy_2024_109238 crossref_primary_10_3390_f11121359 crossref_primary_10_1016_j_envexpbot_2022_104786 crossref_primary_10_1093_pcp_pcac120 crossref_primary_10_1186_s12864_024_10425_9 crossref_primary_10_1093_jxb_erae271 crossref_primary_10_1007_s40415_021_00745_5 crossref_primary_10_1016_j_ocsci_2021_01_001 crossref_primary_10_1016_j_ocsci_2021_01_002 crossref_primary_10_3389_fpls_2022_1055529 crossref_primary_10_3390_plants9060721 crossref_primary_10_1016_j_scienta_2021_110736 crossref_primary_10_1016_j_envexpbot_2023_105486 crossref_primary_10_3390_plants12132415 crossref_primary_10_1111_ppl_14565 crossref_primary_10_1016_j_pbi_2019_12_002 crossref_primary_10_1093_jxb_erab552 crossref_primary_10_1186_s12870_023_04615_y crossref_primary_10_1155_2021_3442277 crossref_primary_10_1093_plphys_kiad183 crossref_primary_10_3390_plants11111400 crossref_primary_10_1093_aob_mcab046 crossref_primary_10_1002_wer_10964 crossref_primary_10_1093_jxb_erad052 crossref_primary_10_3390_plants11091270 crossref_primary_10_1093_aobpla_plaa036 crossref_primary_10_1242_dev_202681 crossref_primary_10_1016_j_plantsci_2023_111624 crossref_primary_10_1016_j_agwat_2022_107744 crossref_primary_10_1016_j_cj_2020_10_016 crossref_primary_10_1016_j_plaphy_2021_06_022 crossref_primary_10_1016_j_hpj_2024_03_015 crossref_primary_10_1016_j_fcr_2024_109694 crossref_primary_10_1093_aob_mcab052 crossref_primary_10_1111_tpj_14552 crossref_primary_10_3389_fpls_2020_00114 crossref_primary_10_1016_j_indcrop_2022_114873 crossref_primary_10_1007_s10343_024_01103_7 crossref_primary_10_26685_urncst_360 crossref_primary_10_3390_cimb45050245 crossref_primary_10_1007_s11427_021_2024_0 crossref_primary_10_1007_s10341_021_00598_y crossref_primary_10_1111_tpj_16944 crossref_primary_10_1093_plcell_koae132 crossref_primary_10_1007_s42729_021_00708_5 crossref_primary_10_1016_j_molp_2022_11_015 crossref_primary_10_1093_treephys_tpad066 crossref_primary_10_1007_s00271_025_01000_5 crossref_primary_10_1186_s12870_024_05262_7 crossref_primary_10_1111_1365_2745_14256 crossref_primary_10_1093_jxb_erz480 crossref_primary_10_1111_jac_12401 crossref_primary_10_1093_aob_mcad140 crossref_primary_10_1139_cjps_2023_0006 crossref_primary_10_3390_plants12010094 crossref_primary_10_1111_nph_19531 crossref_primary_10_1093_jxb_eraa002 crossref_primary_10_1093_jxb_erae289 crossref_primary_10_3389_fpls_2021_740492 crossref_primary_10_1093_pcp_pcac158 crossref_primary_10_1093_plphys_kiae377 crossref_primary_10_1016_j_scitotenv_2022_153342 crossref_primary_10_1093_jxb_erz248 crossref_primary_10_1002_fes3_369 crossref_primary_10_3389_fpls_2022_860229 crossref_primary_10_3390_plants11162170 crossref_primary_10_1007_s40502_020_00537_1 crossref_primary_10_1101_cshperspect_a041672 crossref_primary_10_1007_s00425_022_03982_4 crossref_primary_10_1093_treephys_tpae047 crossref_primary_10_1186_s12284_020_00417_0 crossref_primary_10_1093_treephys_tpaf012 crossref_primary_10_1101_cshperspect_a041676 crossref_primary_10_3390_ijms21072288 crossref_primary_10_1111_ppl_13943 crossref_primary_10_3390_agriculture13010119 crossref_primary_10_1111_jac_12750 crossref_primary_10_3390_plants12233948 crossref_primary_10_3389_fpls_2020_00333 crossref_primary_10_1007_s00425_022_03956_6 crossref_primary_10_1186_s12870_022_03689_4 crossref_primary_10_1007_s11248_021_00259_6 crossref_primary_10_3390_plants12030494 crossref_primary_10_1093_jxb_erab459 crossref_primary_10_1007_s11356_020_11792_y crossref_primary_10_3390_agronomy14112490 crossref_primary_10_1016_j_cub_2023_10_028 crossref_primary_10_3390_plants12223912 crossref_primary_10_1111_tpj_15397 crossref_primary_10_3390_ijms252312819 crossref_primary_10_1016_j_xplc_2020_100030 crossref_primary_10_1002_jemt_24482 crossref_primary_10_1080_15592324_2024_2329842 crossref_primary_10_1002_fes3_237 crossref_primary_10_3390_agriculture14010109 crossref_primary_10_1111_tpj_15713 crossref_primary_10_1111_tpj_15955 crossref_primary_10_3390_plants12102019 crossref_primary_10_1080_15324982_2022_2086507 crossref_primary_10_1016_j_scienta_2025_114063 crossref_primary_10_3390_ijms21165639 crossref_primary_10_1111_pce_14395 crossref_primary_10_1093_hr_uhac278 crossref_primary_10_1016_j_fcr_2024_109521 crossref_primary_10_1007_s00344_022_10735_w crossref_primary_10_3389_fpls_2023_1163939 crossref_primary_10_1016_j_pbi_2022_102310 crossref_primary_10_1093_jxb_eraa021 crossref_primary_10_1016_j_pbi_2021_102010 crossref_primary_10_1016_j_envexpbot_2024_105943 crossref_primary_10_3390_agronomy14122948 crossref_primary_10_1093_jxb_erab477 crossref_primary_10_3390_horticulturae10020123 crossref_primary_10_1007_s11104_025_07369_8 crossref_primary_10_1016_j_jplph_2023_154157 crossref_primary_10_1111_pce_13867 crossref_primary_10_1016_j_agrformet_2024_109892 crossref_primary_10_1016_j_ncrops_2024_100021 crossref_primary_10_1007_s40502_023_00743_7 crossref_primary_10_3390_j7020007 crossref_primary_10_1007_s00709_021_01614_4 crossref_primary_10_3389_fpls_2022_996514 crossref_primary_10_1016_j_cj_2021_03_005 crossref_primary_10_1038_s41598_019_41922_7 crossref_primary_10_1111_nph_18704 crossref_primary_10_3390_agriculture13091823 crossref_primary_10_3390_plants11081039 crossref_primary_10_3389_fpls_2024_1307653 crossref_primary_10_3390_land10111186 crossref_primary_10_3390_agriculture13122186 crossref_primary_10_1016_j_plaphy_2019_10_004 crossref_primary_10_1093_jxb_erad321 crossref_primary_10_1016_j_compag_2020_105751 crossref_primary_10_1051_e3sconf_202337303021 crossref_primary_10_32615_ps_2021_059 crossref_primary_10_1007_s42994_023_00099_4 crossref_primary_10_1111_nph_19347 crossref_primary_10_1111_tpj_16346 crossref_primary_10_3389_fpls_2022_878001 crossref_primary_10_1007_s10722_024_02254_2 crossref_primary_10_1111_pce_14927 crossref_primary_10_1016_j_agrformet_2023_109355 crossref_primary_10_1016_j_cj_2022_08_006 crossref_primary_10_3389_fpls_2022_801706 crossref_primary_10_1007_s00344_025_11645_3 crossref_primary_10_3390_genes15070912 crossref_primary_10_1111_pce_14015 crossref_primary_10_1007_s11676_023_01634_1 crossref_primary_10_32604_phyton_2024_048299 crossref_primary_10_3389_fpls_2020_00542 crossref_primary_10_3389_fpls_2020_589603 crossref_primary_10_3390_plants12152840 crossref_primary_10_1017_qpb_2021_19 crossref_primary_10_1016_j_envexpbot_2024_105984 crossref_primary_10_1016_j_pbi_2020_05_012 crossref_primary_10_1093_plphys_kiaf039 crossref_primary_10_3390_agriculture14112028 crossref_primary_10_3390_agronomy14122811 crossref_primary_10_1007_s11816_020_00627_4 crossref_primary_10_1016_j_plaphy_2024_108782 crossref_primary_10_3390_plants12223826 crossref_primary_10_1007_s11104_022_05664_2 crossref_primary_10_3390_ijms251810052 crossref_primary_10_3389_fpls_2019_01783 crossref_primary_10_1002_ird_3070 crossref_primary_10_7717_peerj_18792 crossref_primary_10_1111_pce_14821 crossref_primary_10_1134_S1021443722010095 crossref_primary_10_3390_plants12010066 crossref_primary_10_1371_journal_pone_0256342 crossref_primary_10_1080_15226514_2022_2110037 crossref_primary_10_1016_j_indcrop_2021_114516 crossref_primary_10_1016_j_crope_2022_09_001 crossref_primary_10_1093_plphys_kiab346 crossref_primary_10_3390_plants10050869 crossref_primary_10_1111_nph_16450 crossref_primary_10_7717_peerj_13377 crossref_primary_10_1186_s13578_021_00633_1 crossref_primary_10_1002_jpln_202000007 crossref_primary_10_1093_plphys_kiab174 crossref_primary_10_3389_fpls_2024_1442686 crossref_primary_10_3390_agriculture14030431 crossref_primary_10_1002_ajb2_1833 crossref_primary_10_1093_jxb_erab160 crossref_primary_10_3389_fpls_2021_677839 crossref_primary_10_1016_j_crope_2024_04_001 crossref_primary_10_3389_fgene_2024_1432376 crossref_primary_10_3389_fpls_2022_919299 crossref_primary_10_3390_agronomy13071941 crossref_primary_10_1016_j_ecoenv_2020_110336 crossref_primary_10_1111_ppl_13636 crossref_primary_10_1093_plphys_kiab299 crossref_primary_10_1016_j_plaphy_2021_03_041 crossref_primary_10_1111_pce_14592 crossref_primary_10_3389_fpls_2019_01300 crossref_primary_10_3389_fpls_2021_780180 crossref_primary_10_3389_fpls_2020_600021 crossref_primary_10_1111_jipb_13451 crossref_primary_10_3390_agronomy14081734 crossref_primary_10_1093_plphys_kiac252 crossref_primary_10_53941_plantecophys_2025_100001 crossref_primary_10_1002_ece3_11349 crossref_primary_10_1093_jxb_erae425 crossref_primary_10_1111_nph_17411 crossref_primary_10_1111_pce_14918 crossref_primary_10_1111_tpj_15004 crossref_primary_10_15406_ijh_2022_06_00323 crossref_primary_10_1093_treephys_tpab157 crossref_primary_10_1016_j_rsci_2021_04_003 crossref_primary_10_1242_dev_203011 crossref_primary_10_3390_plants8090336 crossref_primary_10_1186_s12284_024_00748_2 crossref_primary_10_3390_plants12213738 crossref_primary_10_47836_pjtas_46_2_05 crossref_primary_10_1002_fes3_70030 crossref_primary_10_3389_fpls_2019_00225 crossref_primary_10_3389_fpls_2019_00103 crossref_primary_10_1016_j_tplants_2020_02_014 crossref_primary_10_1038_s41477_020_0590_x crossref_primary_10_1111_ppl_13520 crossref_primary_10_1016_j_plantsci_2020_110729 crossref_primary_10_1007_s40003_023_00679_2 crossref_primary_10_1093_jxb_erab502 crossref_primary_10_1016_j_scitotenv_2024_177962 crossref_primary_10_3390_agronomy11081670 crossref_primary_10_3390_ijms251910403 crossref_primary_10_3390_life13020290 crossref_primary_10_1007_s40502_019_00485_5 crossref_primary_10_1242_jcs_228551 crossref_primary_10_1111_tpj_16549 crossref_primary_10_1016_j_molp_2023_11_011 crossref_primary_10_3390_plants14071025 crossref_primary_10_1007_s11103_024_01456_7 crossref_primary_10_1038_s41598_022_10703_0 crossref_primary_10_1111_pce_15302 crossref_primary_10_1111_ppl_13416 crossref_primary_10_1111_pbi_14464 crossref_primary_10_1007_s00442_021_04857_3 crossref_primary_10_1007_s11103_022_01294_5 crossref_primary_10_1007_s42106_023_00278_9 crossref_primary_10_1007_s00122_024_04814_7 crossref_primary_10_1007_s11356_019_07080_z crossref_primary_10_1093_jxb_erad477 crossref_primary_10_1111_tpj_15460 crossref_primary_10_3390_plants11192625 crossref_primary_10_1016_j_tplants_2023_06_002 crossref_primary_10_1093_plphys_kiad561 crossref_primary_10_3389_fpls_2022_879366 crossref_primary_10_1093_treephys_tpad116 crossref_primary_10_1016_j_cub_2022_05_042 crossref_primary_10_1111_nph_18162 crossref_primary_10_1016_j_rsci_2021_08_001 crossref_primary_10_1111_pce_14225 crossref_primary_10_1016_j_fcr_2022_108625 crossref_primary_10_1111_pce_14342 crossref_primary_10_1016_j_indcrop_2020_112477 crossref_primary_10_1093_plcell_koac239 crossref_primary_10_3390_plants13060828 crossref_primary_10_1007_s10722_024_02162_5 crossref_primary_10_1016_j_envpol_2021_118389 |
Cites_doi | 10.1371/journal.pone.0169706 10.1016/j.tplants.2015.08.014 10.1042/BCJ20170413 10.1007/s11120-016-0326-y 10.1073/pnas.1606728113 10.1016/j.plantsci.2014.04.007 10.1038/nature12291 10.1093/jxb/erx052 10.1016/j.cub.2012.03.044 10.1111/j.1469-8137.2007.02351.x 10.1073/pnas.0604882103 10.1016/j.cub.2009.03.069 10.1073/pnas.0812721106 10.1038/srep12449 10.1038/nature14561 10.1088/1748-9326/8/2/024041 10.1111/j.1365-2486.2008.01594.x 10.1016/0012-1606(60)90050-6 10.1104/pp.15.01624 10.1016/j.pbi.2017.07.009 10.1038/srep14799 10.1007/s00299-017-2118-z 10.1093/bioinformatics/btp033 10.1111/nph.13598 10.1104/pp.125.2.935 10.1111/pce.12430 10.1016/j.wrr.2016.10.001 10.1038/514S50a 10.1093/nar/gku1039 10.1126/science.1185383 10.1242/dev.032938 10.1186/1471-2105-5-113 10.1111/nph.13347 10.1104/pp.011098 10.1016/j.molp.2015.12.007 10.1093/nar/gkr944 10.1111/j.1365-3040.2007.01710.x 10.1104/pp.16.01844 10.3389/fpls.2016.00657 10.1101/gad.1550707 10.1111/nph.12608 10.1111/nph.12832 10.1016/j.pbi.2012.09.013 10.1093/pcp/pcp068 10.1126/science.aal3254 |
ContentType | Journal Article |
Copyright | 2018 New Phytologist Trust 2018 The Authors. New Phytologist © 2018 New Phytologist Trust 2018 The Authors. New Phytologist © 2018 New Phytologist Trust. Copyright © 2018 New Phytologist Trust |
Copyright_xml | – notice: 2018 New Phytologist Trust – notice: 2018 The Authors. New Phytologist © 2018 New Phytologist Trust – notice: 2018 The Authors. New Phytologist © 2018 New Phytologist Trust. – notice: Copyright © 2018 New Phytologist Trust |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1111/nph.15344 |
DatabaseName | Wiley Online Library Open Access (Hollins) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 384 |
ExternalDocumentID | PMC6492113 30043395 10_1111_nph_15344 NPH15344 90026796 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: BBSRC Newton Fund |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGUYK AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASVR ABEFU ABEML ACCFJ ACQPF ADULT AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU LW6 MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ADXHL CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c4984-c208d52ac8b1e8494493626bc18d8ad39741be958fed5e19a58c48c249ae79a23 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Thu Aug 21 17:49:08 EDT 2025 Fri Jul 11 18:23:43 EDT 2025 Fri Jul 11 16:28:48 EDT 2025 Fri Jul 25 10:26:59 EDT 2025 Thu Apr 03 06:59:17 EDT 2025 Thu Apr 24 23:11:00 EDT 2025 Tue Jul 01 03:09:28 EDT 2025 Wed Jan 22 16:49:20 EST 2025 Thu Jul 03 22:05:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | heat stress stomata drought epidermal pattering factor rice water conservation climate change |
Language | English |
License | Attribution 2018 The Authors. New Phytologist © 2018 New Phytologist Trust. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4984-c208d52ac8b1e8494493626bc18d8ad39741be958fed5e19a58c48c249ae79a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0334-3722 0000-0003-2058-2020 0000-0002-0386-1821 0000-0002-7465-845X 0000-0002-6480-218X 0000-0001-9972-5156 0000-0002-5652-6007 0000-0002-6438-9188 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.15344 |
PMID | 30043395 |
PQID | 2139007578 |
PQPubID | 2026848 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6492113 proquest_miscellaneous_2189519516 proquest_miscellaneous_2076236234 proquest_journals_2139007578 pubmed_primary_30043395 crossref_citationtrail_10_1111_nph_15344 crossref_primary_10_1111_nph_15344 wiley_primary_10_1111_nph_15344_NPH15344 jstor_primary_90026796 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2019 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster – name: Hoboken |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2019 |
Publisher | New Phytologist Trust Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: New Phytologist Trust – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2014; 514 2009; 25 2015; 38 2015; 5 2010; 327 2015; 522 2002; 130 1960; 2 2017; 68 2008; 14 2004; 5 2018; 41 2015; 208 2015; 207 2017; 174 2017; 131 2012; 15 2007; 30 2013; 8 2017; 355 2017; 9 2009; 136 2001; 125 2014; 226 2016; 7 2017; 36 2009; 50 2018; 475 2015; 43 2017; 12 2016; 21 2016; 113 1987 2013; 499 2009; 8 2014 2008; 178 2016; 170 2007; 21 2009; 19 2012; 23 2012; 22 2014; 203 2016; 9 2006; 103 2014; 201 2012; 40 2009; 106 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Bouman B (e_1_2_7_4_1) 2009 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_8_1 Redfern SK (e_1_2_7_40_1) 2012; 23 Zeiger E (e_1_2_7_50_1) 1987 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Porter JR (e_1_2_7_37_1) 2014 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 203 start-page: 44 year: 2014 end-page: 62 article-title: Closing gaps: linking elements that control stomatal movement publication-title: New Phytologist – volume: 201 start-page: 1218 year: 2014 end-page: 1226 article-title: An integrated model of stomatal development and leaf physiology publication-title: New Phytologist – volume: 9 start-page: 12 year: 2017 end-page: 27 article-title: Temperature and drought impacts on rice production: an agronomic perspective regarding short‐ and long‐term adaptation measures publication-title: Water Resources and Rural Development – volume: 125 start-page: 935 year: 2001 end-page: 942 article-title: The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in publication-title: Plant Physiology – volume: 15 start-page: 585 year: 2012 end-page: 592 article-title: Division polarity in developing stomata publication-title: Current Opinion in Plant Biology – volume: 106 start-page: 1704 year: 2009 end-page: 1709 article-title: Irreversible climate change due to carbon dioxide emissions publication-title: Proceedings of the National Academy of Sciences, USA – volume: 23 start-page: 295 year: 2012 article-title: Rice in Southeast Asia: facing risks and vulnerabilities to respond to climate change publication-title: Build Resilience Adapt Climate Change Agri Sector – volume: 68 start-page: 1757 year: 2017 end-page: 1767 article-title: Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in and x publication-title: Journal of Experimental Botany – volume: 2 start-page: 477 year: 1960 end-page: 500 article-title: Developmental studies of cell differentiation in the epidermis of monocotyledons: II. Cytological features of stomatal development in the Gramineae publication-title: Developmental Biology – volume: 21 start-page: 1720 year: 2007 end-page: 1725 article-title: The secretory peptide gene enforces the stomatal one‐cell‐spacing rule publication-title: Genes & Development – volume: 19 start-page: 864 year: 2009 end-page: 869 article-title: The signaling peptide EPF2 controls asymmetric cell divisions during stomatal development publication-title: Current Biology – year: 2014 – volume: 136 start-page: 2265 year: 2009 end-page: 2276 article-title: Orthologs of stomatal bHLH genes and regulation of stomatal development in grasses publication-title: Development – volume: 499 start-page: 324 year: 2013 end-page: 327 article-title: Increase in forest water‐use efficiency as atmospheric carbon dioxide concentrations rise publication-title: Nature – volume: 208 start-page: 336 year: 2015 end-page: 341 article-title: Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake publication-title: New Phytologist – volume: 514 start-page: S50 year: 2014 end-page: S51 article-title: Rice by the numbers: a good grain publication-title: Nature – volume: 226 start-page: 108 year: 2014 end-page: 119 article-title: Opportunities for improving leaf water use efficiency under climate change conditions publication-title: Plant Science – volume: 5 start-page: e12449 year: 2015 article-title: Stomatal closure is induced by hydraulic signals and maintained by ABA in drought‐stressed grapevine publication-title: Scientific Reports – volume: 207 start-page: 188 year: 2015 end-page: 195 article-title: Increasing water‐use efficiency directly through genetic manipulation of stomatal density publication-title: New Phytologist – volume: 12 start-page: e0169706 year: 2017 article-title: Atmospheric CO concentration effects on rice water use and biomass production publication-title: PLoS ONE – volume: 131 start-page: 333 year: 2017 end-page: 350 article-title: Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean publication-title: Photosynthesis Research – volume: 170 start-page: 1655 year: 2016 end-page: 1674 article-title: Combined chlorophyll fluorescence and transcriptomic analysis identifies the P3/P4 transition as a key stage in rice leaf photosynthetic development publication-title: Plant Physiology – volume: 103 start-page: 12987 year: 2006 end-page: 12992 article-title: Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice publication-title: Proceedings of the National Academy of Sciences, USA – volume: 9 start-page: 417 year: 2016 end-page: 427 article-title: Rice stomatal closure requires guard cell plasma membrane ATP‐binding cassette transporter RCN1/OsABCG5 publication-title: Molecular Plant – volume: 174 start-page: 776 year: 2017 end-page: 787 article-title: Reducing stomatal density in barley improves drought tolerance without impacting on yield publication-title: Plant Physiology – start-page: 485 year: 2014 end-page: 533 – volume: 113 start-page: 8326 year: 2016 end-page: 8331 article-title: Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity publication-title: Proceedings of the National Academy of Sciences, USA – volume: 36 start-page: 745 year: 2017 end-page: 757 article-title: CRISPR‐Cas9 and CRISPR‐Cpf1 mediated targeting of a stomatal developmental gene in rice publication-title: Plant Cell Reports – volume: 30 start-page: 1035 year: 2007 end-page: 1040 article-title: Fitting photosynthetic carbon dioxide response curves for C leaves publication-title: Plant, Cell & Environment – volume: 130 start-page: 1999 year: 2002 end-page: 2010 article-title: Acclimation of rice photosynthesis to irradiance under field conditions publication-title: Plant Physiology – volume: 14 start-page: 1642 year: 2008 end-page: 1650 article-title: Rice production in a changing climate: a meta‐analysis of responses to elevated carbon dioxide and elevated ozone concentration publication-title: Global Change Biology – volume: 8 start-page: 024041 year: 2013 article-title: Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections publication-title: Environmental Research Letters – volume: 50 start-page: 1019 year: 2009 end-page: 1031 article-title: Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves publication-title: Plant and Cell Physiology – volume: 5 start-page: e18 year: 2015 article-title: Drought susceptibility of modern rice varieties: an effect of linkage of drought tolerance with undesirable traits publication-title: Scientific Reports – year: 1987 – volume: 355 start-page: 1215 year: 2017 article-title: Mobile MUTE specifies subsidiary cells to build physiologically improved grass stomata publication-title: Science – volume: 5 start-page: e113 year: 2004 article-title: MUSCLE: a multiple sequence alignment method with reduced time and space complexity publication-title: BMC Bioinformatics – volume: 41 start-page: 1 year: 2018 end-page: 7 article-title: Stomatal development: focusing on the grasses publication-title: Current Opinion in Plant Biology – volume: 25 start-page: 1189 year: 2009 end-page: 1191 article-title: Jalview Version 2 – a multiple sequence alignment editor and analysis workbench publication-title: Bioinformatics – volume: 327 start-page: 812 year: 2010 end-page: 818 article-title: Food security: the challenge of feeding 9 billion people publication-title: Science – volume: 38 start-page: 1686 year: 2015 end-page: 1698 article-title: Rice responses to rising temperatures – challenges, perspectives and future directions publication-title: Plant, Cell and Environment – volume: 21 start-page: 16 year: 2016 end-page: 30 article-title: CO sensing and CO peculation of stomatal conductance: advances and open questions publication-title: Trends in Plant Science – volume: 22 start-page: R396 year: 2012 end-page: R397 article-title: High temperature exposure increases plant cooling capacity publication-title: Current Biology – volume: 522 start-page: 439 year: 2015 end-page: 443 article-title: Competitive binding of antagonistic peptides fine‐tunes stomatal patterning publication-title: Nature – volume: 7 start-page: e657 year: 2016 article-title: Elevated‐CO response of stomata and its dependence on environmental factors publication-title: Frontiers in Plant Science – volume: 8 start-page: 28 year: 2009 end-page: 29 – volume: 43 start-page: D1023 issue: D1 year: 2015 end-page: D1027 article-title: SNP‐Seek database of SNPs derived from 3000 rice genomes publication-title: Nucleic Acids Research – volume: 475 start-page: 441 year: 2018 article-title: Molecular control of stomatal development publication-title: Biochemical Journal – volume: 178 start-page: 9 year: 2008 end-page: 23 article-title: Influence of environmental factors on stomatal development publication-title: New Phytologist – volume: 40 start-page: 1178 year: 2012 end-page: 1186 article-title: Phytozome: a comparative platform for green plant genomics publication-title: Nucleic Acids Research – ident: e_1_2_7_31_1 doi: 10.1371/journal.pone.0169706 – ident: e_1_2_7_11_1 doi: 10.1016/j.tplants.2015.08.014 – ident: e_1_2_7_51_1 doi: 10.1042/BCJ20170413 – ident: e_1_2_7_27_1 doi: 10.1007/s11120-016-0326-y – ident: e_1_2_7_38_1 doi: 10.1073/pnas.1606728113 – ident: e_1_2_7_15_1 doi: 10.1016/j.plantsci.2014.04.007 – ident: e_1_2_7_28_1 doi: 10.1038/nature12291 – ident: e_1_2_7_45_1 doi: 10.1093/jxb/erx052 – ident: e_1_2_7_7_1 doi: 10.1016/j.cub.2012.03.044 – ident: e_1_2_7_6_1 doi: 10.1111/j.1469-8137.2007.02351.x – volume-title: Stomatal function year: 1987 ident: e_1_2_7_50_1 – ident: e_1_2_7_23_1 doi: 10.1073/pnas.0604882103 – ident: e_1_2_7_25_1 doi: 10.1016/j.cub.2009.03.069 – start-page: 28 volume-title: Rice today year: 2009 ident: e_1_2_7_4_1 – ident: e_1_2_7_35_1 – ident: e_1_2_7_42_1 doi: 10.1073/pnas.0812721106 – ident: e_1_2_7_44_1 doi: 10.1038/srep12449 – ident: e_1_2_7_32_1 doi: 10.1038/nature14561 – ident: e_1_2_7_18_1 doi: 10.1088/1748-9326/8/2/024041 – ident: e_1_2_7_2_1 doi: 10.1111/j.1365-2486.2008.01594.x – ident: e_1_2_7_43_1 doi: 10.1016/0012-1606(60)90050-6 – ident: e_1_2_7_5_1 doi: 10.1104/pp.15.01624 – ident: e_1_2_7_21_1 doi: 10.1016/j.pbi.2017.07.009 – ident: e_1_2_7_46_1 doi: 10.1038/srep14799 – ident: e_1_2_7_49_1 doi: 10.1007/s00299-017-2118-z – ident: e_1_2_7_47_1 doi: 10.1093/bioinformatics/btp033 – ident: e_1_2_7_22_1 doi: 10.1111/nph.13598 – ident: e_1_2_7_14_1 doi: 10.1104/pp.125.2.935 – ident: e_1_2_7_26_1 doi: 10.1111/pce.12430 – ident: e_1_2_7_30_1 doi: 10.1016/j.wrr.2016.10.001 – ident: e_1_2_7_10_1 doi: 10.1038/514S50a – ident: e_1_2_7_3_1 doi: 10.1093/nar/gku1039 – ident: e_1_2_7_16_1 doi: 10.1126/science.1185383 – ident: e_1_2_7_33_1 doi: 10.1242/dev.032938 – ident: e_1_2_7_9_1 doi: 10.1186/1471-2105-5-113 – ident: e_1_2_7_13_1 doi: 10.1111/nph.13347 – ident: e_1_2_7_36_1 doi: 10.1104/pp.011098 – ident: e_1_2_7_34_1 doi: 10.1016/j.molp.2015.12.007 – ident: e_1_2_7_17_1 doi: 10.1093/nar/gkr944 – ident: e_1_2_7_41_1 doi: 10.1111/j.1365-3040.2007.01710.x – ident: e_1_2_7_24_1 doi: 10.1104/pp.16.01844 – ident: e_1_2_7_48_1 doi: 10.3389/fpls.2016.00657 – ident: e_1_2_7_19_1 doi: 10.1101/gad.1550707 – ident: e_1_2_7_8_1 doi: 10.1111/nph.12608 – ident: e_1_2_7_29_1 doi: 10.1111/nph.12832 – ident: e_1_2_7_12_1 doi: 10.1016/j.pbi.2012.09.013 – ident: e_1_2_7_20_1 doi: 10.1093/pcp/pcp068 – start-page: 485 volume-title: Climate change 2014: impacts, adaptation, and vulnerability, part A: global and sectoral aspects. Working Group II contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change year: 2014 ident: e_1_2_7_37_1 – ident: e_1_2_7_39_1 doi: 10.1126/science.aal3254 – volume: 23 start-page: 295 year: 2012 ident: e_1_2_7_40_1 article-title: Rice in Southeast Asia: facing risks and vulnerabilities to respond to climate change publication-title: Build Resilience Adapt Climate Change Agri Sector |
SSID | ssj0009562 |
Score | 2.6757104 |
Snippet | Much of humanity relies on rice (Oryza sativa) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high... Summary Much of humanity relies on rice (Oryza sativa) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high... Much of humanity relies on rice ( Oryza sativa ) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high... |
SourceID | pubmedcentral proquest pubmed crossref wiley jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 371 |
SubjectTerms | Arabidopsis - genetics Arabidopsis Proteins - genetics Carbon Dioxide carbon dioxide enrichment climate Climate change Climatic conditions Conductance Cultivars Cultivation DNA-Binding Proteins - genetics Drought Drought resistance drought tolerance Droughts epidermal pattering factor Food Food security Food sources Gene Expression Regulation, Plant Germination grain yield heat stress High temperature Oryza - cytology Oryza - genetics Oryza - physiology Oryza sativa Pattern formation Photosynthesis Plant Breeding Plant Leaves - cytology Plant Leaves - genetics Plant Proteins - genetics Plant Proteins - metabolism Plant Stomata - physiology Plants, Genetically Modified Resistance Rice Stomata Stomatal conductance Survival Temperature Transcription Factors - genetics Water - metabolism Water availability Water conservation Water use |
Title | Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions |
URI | https://www.jstor.org/stable/90026796 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.15344 https://www.ncbi.nlm.nih.gov/pubmed/30043395 https://www.proquest.com/docview/2139007578 https://www.proquest.com/docview/2076236234 https://www.proquest.com/docview/2189519516 https://pubmed.ncbi.nlm.nih.gov/PMC6492113 |
Volume | 221 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4tKw5ceC8ElpVBHLikShwnscUJEKsKidVqxUo9IEV-rVpR0lWagpZfz4zzUAsLQtxaZZxm3Bn78-TzZ4CXOqBoR6R2Y2KRcRXjdxHrC5mYsiwRZdB-548nxfRcfJjlsz14PeyF6fQhxoIbZUYYrynBtVlvJXl9OZ9gugrSAiWuFgGiM74luFvwQYG5EMWsVxUiFs_Ycmcu6uiI1wHN3_mS2zg2TETHd-Dz4ELHP_ky2bRmYn_8ou74nz7ehds9QGVvuoi6B3u-vg83364QRF49gM0ZDiyMiresIdFX7xj685VqQMwRF769YpYI2s03v2bfEcg2TNeOzfWaLUL9Alu4cDRQy9rV0tO5Hp7RTraGdfomzC4XeENP93EdoewhnB-___RuGvcnN8RWKCliyxPpcq6tNKmXQgmhSPbG2FQ6qR1iIJEar3J54V3uU6VzaYW0uBTUvlSaZwewX69q_xiYVDguGG5cUmiRaq9N7tJMOK947hLFI3g1_IeV7WXN6XSNZTUsb7ATq9CJEbwYTS87LY_rjA5CIIwWipappSoiOBwio-rzfF1xBNCEukoZwfPxMmYovXbRtV9t0CbBCQfdz8RfbFKpSOcnxZ951AXb-ACkiZZlKo-g3AnD0YAUwnev1It5UAovhMIFfoZ9FKLsz15XJ6fT8OHJv5s-hVuIHlVXjzqE_bbZ-GeI0FpzBDe4OD0KCfkTT345ow |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VBQkuvAuGAgsCiYsje722dw8cgFKltI1Q1Uq5mX1ViQhOlThU4TfxV_hPzKwfSqAgLj1wS-SJ492dmf1mPPsNIS-UR9EWi9q1DnnCZAjfeahORaTzPAeUgeedDwdZ_4R_GKbDDfK9PQtT80N0CTe0DO-v0cAxIb1i5eXZqAf2ynlTUrnvlucQsM1f7-3A6r5kbPf98bt-2PQUCA2XgoeGRcKmTBmhYye45FwiIYs2sbBCWdideaydTMWps6mLpUqF4cJAkKJcLhXSHIDDv4IdxJGpf-eIrVD8ZqzlfM54Nmx4jLBuqHvUtd2vLoC8CNr-XqG5ipz91rd7k_xoJ62uePncW1S6Z779wif5v8zqLXKjweD0TW00t8mGK--Qq2-ngJOXd8niCHwnxfw0nSGvrbMUJvALprmoxXL_akkN1qDPvro5PQesPqOqtHSk5nTsUzTwC-u7H1W0mk4cti5xFA_rzWhN4ULNZAw3dHgfW9fM3SMnlzLkLbJZTkv3gFAhwfVppm2UKR4rp3Rq44RbJ1lqI8kC8qpVmsI0zO3YQGRStBEcLFrhFy0gzzvRs5qu5CKhLa95nYTESDyXWUC2W1UsGlc2LxjECAgscxGQZ91lcEL4ZkmVbroAmQj2VBh-wv8iEwuJVEYx_M39Wru7B0DatySRaUDyNb3vBJAEff1KOR55MvSMSxbHCcyRV-s_j7oYfOz7Dw__XfQpudY_PjwoDvYG-4_IdQDLsk6_bZPNarZwjwGQVvqJ9wOUfLpsE_kJY2eV6w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZWC0JcEK-FwAIGgcQlKHGcxD5wAJaqy0JVIVbqLfhVtVJJqzRl1d_En2TGeagVC-Kyt1aZvDwe-5vJ58-EvFQeRVsktWsd8oTJEP7zUE1FpPM8B5SB652_jLLhOf80SScH5Fe3FqbRh-gLbhgZfrzGAF_Z6U6Ql6vZGwhXzltG5ZnbXkC-tn57egLOfcXY4OO3D8Ow3VIgNFwKHhoWCZsyZYSOneCSc4l6LNrEwgplYXLmsXYyFVNnUxdLlQrDhYEcRblcKlQ5gPH-Gn5cRP4Y4-Mdhd-MdZLPGc8mrYwR0ob6R92b_Br-42XI9k-C5i5w9jPf4Da51UJW-q7pY3fIgSvvkuvvlwArt_fI5isMNRTLubRCGVhnKdzwB1aFqEV2fL2lBinb1U-3phcAbSuqSktnak3nvqIBZ1i_WVBN6-XC4U4fjuLatoo2iifULOZwQYfXsQ3F7D45v5KGPyKH5bJ0DwkVEkYKzbSNMsVj5ZRObZxw6yRLbSRZQF53jVyYVugc99tYFF3CA_4ovD8C8qI3XTXqHpcZHXlP9RYSE9dcZgE57lxXtJG_LhhAasRhuQjI8_4wxCx-iFGlW27AJoIpCF4_4f-wiYVE5Z8YbvOg6Q39A6BKWpLINCD5Xj_pDVAzfP9IOZ957fCMS0j5E2gj36P-_tbFaDz0Px79v-kzcmN8Mig-n47OHpObAC1lU6w6Jod1tXFPAL7V-qkPG0q-X3Wc_gZ8DVSi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rice+with+reduced+stomatal+density+conserves+water+and+has+improved+drought+tolerance+under+future+climate+conditions&rft.jtitle=The+New+phytologist&rft.au=Caine%2C+Robert+S.&rft.au=Yin%2C+Xiaojia&rft.au=Sloan%2C+Jennifer&rft.au=Harrison%2C+Emily+L.&rft.date=2019-01-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=221&rft.issue=1&rft.spage=371&rft.epage=384&rft_id=info:doi/10.1111%2Fnph.15344&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_nph_15344 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |