Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions

Much of humanity relies on rice (Oryza sativa) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high temperatures. Under climate change, periods of reduced water availability and high temperature are expected to become more frequent, leading to detriment...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 221; no. 1; pp. 371 - 384
Main Authors Caine, Robert S., Yin, Xiaojia, Sloan, Jennifer, Harrison, Emily L., Mohammed, Umar, Fulton, Timothy, Biswal, Akshaya K., Dionora, Jacqueline, Chater, Caspar C., Coe, Robert A., Bandyopadhyay, Anindya, Murchie, Erik H., Swarup, Ranjan, Quick, W. Paul, Gray, Julie E.
Format Journal Article
LanguageEnglish
Published England New Phytologist Trust 01.01.2019
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Much of humanity relies on rice (Oryza sativa) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high temperatures. Under climate change, periods of reduced water availability and high temperature are expected to become more frequent, leading to detrimental effects on rice yields. We engineered the high-yielding rice cultivar ‘IR64’ to produce fewer stomata by manipulating the level of a developmental signal. We overexpressed the rice epidermal patterning factor OsEPF1, creating plants with substantially reduced stomatal density and correspondingly low stomatal conductance. Low stomatal density rice lines were more able to conserve water, using c. 60% of the normal amount between weeks 4 and 5 post germination. When grown at elevated atmospheric CO2, rice plants with low stomatal density were able to maintain their stomatal conductance and survive drought and high temperature (40°C) for longer than control plants. Low stomatal density rice gave equivalent or even improved yields, despite a reduced rate of photosynthesis in some conditions. Rice plants with fewer stomata are drought tolerant and more conservative in their water use, and they should perform better in the future when climate change is expected to threaten food security.
AbstractList Much of humanity relies on rice (Oryza sativa) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high temperatures. Under climate change, periods of reduced water availability and high temperature are expected to become more frequent, leading to detrimental effects on rice yields. We engineered the high-yielding rice cultivar 'IR64' to produce fewer stomata by manipulating the level of a developmental signal. We overexpressed the rice epidermal patterning factor OsEPF1, creating plants with substantially reduced stomatal density and correspondingly low stomatal conductance. Low stomatal density rice lines were more able to conserve water, using c. 60% of the normal amount between weeks 4 and 5 post germination. When grown at elevated atmospheric CO2 , rice plants with low stomatal density were able to maintain their stomatal conductance and survive drought and high temperature (40°C) for longer than control plants. Low stomatal density rice gave equivalent or even improved yields, despite a reduced rate of photosynthesis in some conditions. Rice plants with fewer stomata are drought tolerant and more conservative in their water use, and they should perform better in the future when climate change is expected to threaten food security.Much of humanity relies on rice (Oryza sativa) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high temperatures. Under climate change, periods of reduced water availability and high temperature are expected to become more frequent, leading to detrimental effects on rice yields. We engineered the high-yielding rice cultivar 'IR64' to produce fewer stomata by manipulating the level of a developmental signal. We overexpressed the rice epidermal patterning factor OsEPF1, creating plants with substantially reduced stomatal density and correspondingly low stomatal conductance. Low stomatal density rice lines were more able to conserve water, using c. 60% of the normal amount between weeks 4 and 5 post germination. When grown at elevated atmospheric CO2 , rice plants with low stomatal density were able to maintain their stomatal conductance and survive drought and high temperature (40°C) for longer than control plants. Low stomatal density rice gave equivalent or even improved yields, despite a reduced rate of photosynthesis in some conditions. Rice plants with fewer stomata are drought tolerant and more conservative in their water use, and they should perform better in the future when climate change is expected to threaten food security.
Much of humanity relies on rice ( Oryza sativa ) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high temperatures. Under climate change, periods of reduced water availability and high temperature are expected to become more frequent, leading to detrimental effects on rice yields. We engineered the high‐yielding rice cultivar ‘ IR 64’ to produce fewer stomata by manipulating the level of a developmental signal. We overexpressed the rice epidermal patterning factor Os EPF 1 , creating plants with substantially reduced stomatal density and correspondingly low stomatal conductance. Low stomatal density rice lines were more able to conserve water, using c . 60% of the normal amount between weeks 4 and 5 post germination. When grown at elevated atmospheric CO 2 , rice plants with low stomatal density were able to maintain their stomatal conductance and survive drought and high temperature (40°C) for longer than control plants. Low stomatal density rice gave equivalent or even improved yields, despite a reduced rate of photosynthesis in some conditions. Rice plants with fewer stomata are drought tolerant and more conservative in their water use, and they should perform better in the future when climate change is expected to threaten food security.
Much of humanity relies on rice (Oryza sativa) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high temperatures. Under climate change, periods of reduced water availability and high temperature are expected to become more frequent, leading to detrimental effects on rice yields. We engineered the high-yielding rice cultivar 'IR64' to produce fewer stomata by manipulating the level of a developmental signal. We overexpressed the rice epidermal patterning factor OsEPF1, creating plants with substantially reduced stomatal density and correspondingly low stomatal conductance. Low stomatal density rice lines were more able to conserve water, using c. 60% of the normal amount between weeks 4 and 5 post germination. When grown at elevated atmospheric CO , rice plants with low stomatal density were able to maintain their stomatal conductance and survive drought and high temperature (40°C) for longer than control plants. Low stomatal density rice gave equivalent or even improved yields, despite a reduced rate of photosynthesis in some conditions. Rice plants with fewer stomata are drought tolerant and more conservative in their water use, and they should perform better in the future when climate change is expected to threaten food security.
Much of humanity relies on rice (Oryza sativa) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high temperatures. Under climate change, periods of reduced water availability and high temperature are expected to become more frequent, leading to detrimental effects on rice yields. We engineered the high-yielding rice cultivar ‘IR64’ to produce fewer stomata by manipulating the level of a developmental signal. We overexpressed the rice epidermal patterning factor OsEPF1, creating plants with substantially reduced stomatal density and correspondingly low stomatal conductance. Low stomatal density rice lines were more able to conserve water, using c. 60% of the normal amount between weeks 4 and 5 post germination. When grown at elevated atmospheric CO2, rice plants with low stomatal density were able to maintain their stomatal conductance and survive drought and high temperature (40°C) for longer than control plants. Low stomatal density rice gave equivalent or even improved yields, despite a reduced rate of photosynthesis in some conditions. Rice plants with fewer stomata are drought tolerant and more conservative in their water use, and they should perform better in the future when climate change is expected to threaten food security.
Summary Much of humanity relies on rice (Oryza sativa) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high temperatures. Under climate change, periods of reduced water availability and high temperature are expected to become more frequent, leading to detrimental effects on rice yields. We engineered the high‐yielding rice cultivar ‘IR64’ to produce fewer stomata by manipulating the level of a developmental signal. We overexpressed the rice epidermal patterning factor OsEPF1, creating plants with substantially reduced stomatal density and correspondingly low stomatal conductance. Low stomatal density rice lines were more able to conserve water, using c. 60% of the normal amount between weeks 4 and 5 post germination. When grown at elevated atmospheric CO2, rice plants with low stomatal density were able to maintain their stomatal conductance and survive drought and high temperature (40°C) for longer than control plants. Low stomatal density rice gave equivalent or even improved yields, despite a reduced rate of photosynthesis in some conditions. Rice plants with fewer stomata are drought tolerant and more conservative in their water use, and they should perform better in the future when climate change is expected to threaten food security.
Much of humanity relies on rice (Oryza sativa) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high temperatures. Under climate change, periods of reduced water availability and high temperature are expected to become more frequent, leading to detrimental effects on rice yields. We engineered the high‐yielding rice cultivar ‘IR64’ to produce fewer stomata by manipulating the level of a developmental signal. We overexpressed the rice epidermal patterning factor OsEPF1, creating plants with substantially reduced stomatal density and correspondingly low stomatal conductance. Low stomatal density rice lines were more able to conserve water, using c. 60% of the normal amount between weeks 4 and 5 post germination. When grown at elevated atmospheric CO₂, rice plants with low stomatal density were able to maintain their stomatal conductance and survive drought and high temperature (40°C) for longer than control plants. Low stomatal density rice gave equivalent or even improved yields, despite a reduced rate of photosynthesis in some conditions. Rice plants with fewer stomata are drought tolerant and more conservative in their water use, and they should perform better in the future when climate change is expected to threaten food security.
Much of humanity relies on rice (Oryza sativa) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high temperatures. Under climate change, periods of reduced water availability and high temperature are expected to become more frequent, leading to detrimental effects on rice yields.We engineered the high‐yielding rice cultivar ‘IR64’ to produce fewer stomata by manipulating the level of a developmental signal. We overexpressed the rice epidermal patterning factor OsEPF1, creating plants with substantially reduced stomatal density and correspondingly low stomatal conductance.Low stomatal density rice lines were more able to conserve water, using c. 60% of the normal amount between weeks 4 and 5 post germination. When grown at elevated atmospheric CO2, rice plants with low stomatal density were able to maintain their stomatal conductance and survive drought and high temperature (40°C) for longer than control plants. Low stomatal density rice gave equivalent or even improved yields, despite a reduced rate of photosynthesis in some conditions.Rice plants with fewer stomata are drought tolerant and more conservative in their water use, and they should perform better in the future when climate change is expected to threaten food security.
Author Akshaya K. Biswal
W. Paul Quick
Emily L. Harrison
Robert S. Caine
Jennifer Sloan
Umar Mohammed
Ranjan Swarup
Jacqueline Dionora
Erik H. Murchie
Xiaojia Yin
Robert A. Coe
Julie E. Gray
Timothy Fulton
Caspar C. Chater
Anindya Bandyopadhyay
AuthorAffiliation 2 International Rice Research Institute DAPO 7777 Metro Manila Philippines
4 Department of Genetics University of Cambridge Cambridge CB2 3EH UK
1 Department of Molecular Biology and Biotechnology University of Sheffield Sheffield S10 2TN UK
5 Department of Biology University of North Carolina at Chapel Hill Chapel Hill NC 27599‐3280 USA
3 Division of Plant and Crop Science University of Nottingham, Sutton Bonington Campus Loughborough LE12 5RD UK
6 Departamento de Biología Molecular de Plantas Instituto de Biotecnología Universidad Nacional Autónoma de Mexico Cuernavaca 62210 Mexico
7 ARC Centre of Excellence for Translational Photosynthesis Australian National University Canberra ACT 2601 Australia
AuthorAffiliation_xml – name: 2 International Rice Research Institute DAPO 7777 Metro Manila Philippines
– name: 4 Department of Genetics University of Cambridge Cambridge CB2 3EH UK
– name: 3 Division of Plant and Crop Science University of Nottingham, Sutton Bonington Campus Loughborough LE12 5RD UK
– name: 6 Departamento de Biología Molecular de Plantas Instituto de Biotecnología Universidad Nacional Autónoma de Mexico Cuernavaca 62210 Mexico
– name: 5 Department of Biology University of North Carolina at Chapel Hill Chapel Hill NC 27599‐3280 USA
– name: 1 Department of Molecular Biology and Biotechnology University of Sheffield Sheffield S10 2TN UK
– name: 7 ARC Centre of Excellence for Translational Photosynthesis Australian National University Canberra ACT 2601 Australia
Author_xml – sequence: 1
  givenname: Robert S.
  orcidid: 0000-0002-6480-218X
  surname: Caine
  fullname: Caine, Robert S.
  organization: University of Sheffield
– sequence: 2
  givenname: Xiaojia
  surname: Yin
  fullname: Yin, Xiaojia
  organization: International Rice Research Institute
– sequence: 3
  givenname: Jennifer
  orcidid: 0000-0003-0334-3722
  surname: Sloan
  fullname: Sloan, Jennifer
  organization: University of Sheffield
– sequence: 4
  givenname: Emily L.
  surname: Harrison
  fullname: Harrison, Emily L.
  organization: University of Sheffield
– sequence: 5
  givenname: Umar
  surname: Mohammed
  fullname: Mohammed, Umar
  organization: University of Nottingham, Sutton Bonington Campus
– sequence: 6
  givenname: Timothy
  orcidid: 0000-0002-0386-1821
  surname: Fulton
  fullname: Fulton, Timothy
  organization: University of Cambridge
– sequence: 7
  givenname: Akshaya K.
  orcidid: 0000-0002-5652-6007
  surname: Biswal
  fullname: Biswal, Akshaya K.
  organization: University of North Carolina at Chapel Hill
– sequence: 8
  givenname: Jacqueline
  surname: Dionora
  fullname: Dionora, Jacqueline
  organization: International Rice Research Institute
– sequence: 9
  givenname: Caspar C.
  orcidid: 0000-0003-2058-2020
  surname: Chater
  fullname: Chater, Caspar C.
  organization: Universidad Nacional Autónoma de Mexico
– sequence: 10
  givenname: Robert A.
  surname: Coe
  fullname: Coe, Robert A.
  organization: Australian National University
– sequence: 11
  givenname: Anindya
  surname: Bandyopadhyay
  fullname: Bandyopadhyay, Anindya
  organization: International Rice Research Institute
– sequence: 12
  givenname: Erik H.
  orcidid: 0000-0002-7465-845X
  surname: Murchie
  fullname: Murchie, Erik H.
  organization: University of Nottingham, Sutton Bonington Campus
– sequence: 13
  givenname: Ranjan
  orcidid: 0000-0002-6438-9188
  surname: Swarup
  fullname: Swarup, Ranjan
  organization: University of Nottingham, Sutton Bonington Campus
– sequence: 14
  givenname: W. Paul
  surname: Quick
  fullname: Quick, W. Paul
  organization: International Rice Research Institute
– sequence: 15
  givenname: Julie E.
  orcidid: 0000-0001-9972-5156
  surname: Gray
  fullname: Gray, Julie E.
  email: j.e.gray@sheffield.ac.uk
  organization: University of Sheffield
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30043395$$D View this record in MEDLINE/PubMed
BookMark eNqFkk2LUzEUhoOMOJ3RhT9AueBGF3cmXzc32QgyqCMMKqLgLqTJ6TTlNqlJbkv_valtBx0UQyCLPO_DOck5QychBkDoKcEXpK7LsJpfkI5x_gBNCBeqlYT1J2iCMZWt4OL7KTrLeYExVp2gj9Apw5gzproJGr94C83Gl3mTwI0WXJNLXJpihsZByL5sGxtDhrSG3GxMgdSY4Jq5yY1frlJc14RLcbydl6bEAZIJVTgGV8HZWMYEjR18FcLO43zx1fYYPZyZIcOTw3mOvr17-_Xqur359P7D1Zub1nIleWsplq6jxsopAckV54oJKqaWSCeNY6rnZAqqkzNwHRBlOmm5tJQrA70ylJ2j13vvapwuwVkIJZlBr1ItKG11NF7_eRP8XN_GtRZcUUJYFbw8CFL8MUIueumzhWEwAeKYNSVSdaRu8X8U94LW8hmv6It76CKOKdSXqEKmMO67Xlbq-e_F31V9_LwKXO4Bm2LOCWba-mJ2D1x78YMmWO_GQ9fx0L_GoyZe3UscpX9jD_aNH2D7b1B__Hx9TDzbJxZ1hNJdovZDRa8E-wkMQ9UY
CitedBy_id crossref_primary_10_1016_j_envexpbot_2020_104342
crossref_primary_10_3389_fsufs_2021_685801
crossref_primary_10_1016_j_agwat_2023_108490
crossref_primary_10_3390_plants8030065
crossref_primary_10_1042_ETLS20180105
crossref_primary_10_3390_life12101589
crossref_primary_10_1093_jxb_erae354
crossref_primary_10_1186_s12918_019_0689_8
crossref_primary_10_1111_jipb_13890
crossref_primary_10_1002_pld3_498
crossref_primary_10_1093_jxb_erab090
crossref_primary_10_1093_lambio_ovac067
crossref_primary_10_1002_tpg2_20542
crossref_primary_10_1038_s41598_021_94705_4
crossref_primary_10_1007_s00425_021_03661_w
crossref_primary_10_1093_jxb_erad498
crossref_primary_10_1371_journal_pone_0266087
crossref_primary_10_1016_j_envexpbot_2021_104757
crossref_primary_10_1093_jxb_eraa303
crossref_primary_10_3390_ijms251910738
crossref_primary_10_3390_plants13212962
crossref_primary_10_1108_AGJSR_10_2022_0237
crossref_primary_10_1038_s41586_019_1679_0
crossref_primary_10_1016_j_scitotenv_2023_165832
crossref_primary_10_3389_fgene_2020_00611
crossref_primary_10_3390_ijms22147245
crossref_primary_10_1093_aobpla_plae031
crossref_primary_10_3390_ijms25021185
crossref_primary_10_1016_j_agrformet_2024_110238
crossref_primary_10_1002_ggn2_202100017
crossref_primary_10_1016_j_plaphy_2022_12_030
crossref_primary_10_1242_dev_199780
crossref_primary_10_1071_FP23151
crossref_primary_10_3390_horticulturae10111206
crossref_primary_10_1016_j_envexpbot_2020_104240
crossref_primary_10_1007_s11816_020_00598_6
crossref_primary_10_1016_j_scienta_2021_110089
crossref_primary_10_1016_j_scitotenv_2021_147757
crossref_primary_10_3390_ijpb15040080
crossref_primary_10_36899_JAPS_2022_3_0462
crossref_primary_10_1007_s11676_021_01390_0
crossref_primary_10_1016_j_scienta_2021_110758
crossref_primary_10_1111_pce_14892
crossref_primary_10_1080_14786419_2024_2324463
crossref_primary_10_3390_agronomy11050921
crossref_primary_10_3389_fpls_2020_00026
crossref_primary_10_48130_VR_2023_0020
crossref_primary_10_1111_tpj_14560
crossref_primary_10_1093_jxb_eraa321
crossref_primary_10_1093_aobpla_plad047
crossref_primary_10_1111_nph_16341
crossref_primary_10_1093_plphys_kiad485
crossref_primary_10_1101_cshperspect_a034660
crossref_primary_10_1093_jxb_erad393
crossref_primary_10_1186_s13007_024_01305_0
crossref_primary_10_3389_fpls_2022_894545
crossref_primary_10_1007_s11738_022_03511_6
crossref_primary_10_1098_rspb_2020_2154
crossref_primary_10_1002_pld3_581
crossref_primary_10_1111_pce_14663
crossref_primary_10_3389_fpls_2024_1351612
crossref_primary_10_3390_agronomy12020430
crossref_primary_10_1007_s00425_024_04508_w
crossref_primary_10_1093_plphys_kiac278
crossref_primary_10_3389_fpls_2021_751852
crossref_primary_10_1007_s42976_020_00097_y
crossref_primary_10_1016_j_fcr_2024_109275
crossref_primary_10_1016_j_plaphy_2024_109238
crossref_primary_10_3390_f11121359
crossref_primary_10_1016_j_envexpbot_2022_104786
crossref_primary_10_1093_pcp_pcac120
crossref_primary_10_1186_s12864_024_10425_9
crossref_primary_10_1093_jxb_erae271
crossref_primary_10_1007_s40415_021_00745_5
crossref_primary_10_1016_j_ocsci_2021_01_001
crossref_primary_10_1016_j_ocsci_2021_01_002
crossref_primary_10_3389_fpls_2022_1055529
crossref_primary_10_3390_plants9060721
crossref_primary_10_1016_j_scienta_2021_110736
crossref_primary_10_1016_j_envexpbot_2023_105486
crossref_primary_10_3390_plants12132415
crossref_primary_10_1111_ppl_14565
crossref_primary_10_1016_j_pbi_2019_12_002
crossref_primary_10_1093_jxb_erab552
crossref_primary_10_1186_s12870_023_04615_y
crossref_primary_10_1155_2021_3442277
crossref_primary_10_1093_plphys_kiad183
crossref_primary_10_3390_plants11111400
crossref_primary_10_1093_aob_mcab046
crossref_primary_10_1002_wer_10964
crossref_primary_10_1093_jxb_erad052
crossref_primary_10_3390_plants11091270
crossref_primary_10_1093_aobpla_plaa036
crossref_primary_10_1242_dev_202681
crossref_primary_10_1016_j_plantsci_2023_111624
crossref_primary_10_1016_j_agwat_2022_107744
crossref_primary_10_1016_j_cj_2020_10_016
crossref_primary_10_1016_j_plaphy_2021_06_022
crossref_primary_10_1016_j_hpj_2024_03_015
crossref_primary_10_1016_j_fcr_2024_109694
crossref_primary_10_1093_aob_mcab052
crossref_primary_10_1111_tpj_14552
crossref_primary_10_3389_fpls_2020_00114
crossref_primary_10_1016_j_indcrop_2022_114873
crossref_primary_10_1007_s10343_024_01103_7
crossref_primary_10_26685_urncst_360
crossref_primary_10_3390_cimb45050245
crossref_primary_10_1007_s11427_021_2024_0
crossref_primary_10_1007_s10341_021_00598_y
crossref_primary_10_1111_tpj_16944
crossref_primary_10_1093_plcell_koae132
crossref_primary_10_1007_s42729_021_00708_5
crossref_primary_10_1016_j_molp_2022_11_015
crossref_primary_10_1093_treephys_tpad066
crossref_primary_10_1007_s00271_025_01000_5
crossref_primary_10_1186_s12870_024_05262_7
crossref_primary_10_1111_1365_2745_14256
crossref_primary_10_1093_jxb_erz480
crossref_primary_10_1111_jac_12401
crossref_primary_10_1093_aob_mcad140
crossref_primary_10_1139_cjps_2023_0006
crossref_primary_10_3390_plants12010094
crossref_primary_10_1111_nph_19531
crossref_primary_10_1093_jxb_eraa002
crossref_primary_10_1093_jxb_erae289
crossref_primary_10_3389_fpls_2021_740492
crossref_primary_10_1093_pcp_pcac158
crossref_primary_10_1093_plphys_kiae377
crossref_primary_10_1016_j_scitotenv_2022_153342
crossref_primary_10_1093_jxb_erz248
crossref_primary_10_1002_fes3_369
crossref_primary_10_3389_fpls_2022_860229
crossref_primary_10_3390_plants11162170
crossref_primary_10_1007_s40502_020_00537_1
crossref_primary_10_1101_cshperspect_a041672
crossref_primary_10_1007_s00425_022_03982_4
crossref_primary_10_1093_treephys_tpae047
crossref_primary_10_1186_s12284_020_00417_0
crossref_primary_10_1093_treephys_tpaf012
crossref_primary_10_1101_cshperspect_a041676
crossref_primary_10_3390_ijms21072288
crossref_primary_10_1111_ppl_13943
crossref_primary_10_3390_agriculture13010119
crossref_primary_10_1111_jac_12750
crossref_primary_10_3390_plants12233948
crossref_primary_10_3389_fpls_2020_00333
crossref_primary_10_1007_s00425_022_03956_6
crossref_primary_10_1186_s12870_022_03689_4
crossref_primary_10_1007_s11248_021_00259_6
crossref_primary_10_3390_plants12030494
crossref_primary_10_1093_jxb_erab459
crossref_primary_10_1007_s11356_020_11792_y
crossref_primary_10_3390_agronomy14112490
crossref_primary_10_1016_j_cub_2023_10_028
crossref_primary_10_3390_plants12223912
crossref_primary_10_1111_tpj_15397
crossref_primary_10_3390_ijms252312819
crossref_primary_10_1016_j_xplc_2020_100030
crossref_primary_10_1002_jemt_24482
crossref_primary_10_1080_15592324_2024_2329842
crossref_primary_10_1002_fes3_237
crossref_primary_10_3390_agriculture14010109
crossref_primary_10_1111_tpj_15713
crossref_primary_10_1111_tpj_15955
crossref_primary_10_3390_plants12102019
crossref_primary_10_1080_15324982_2022_2086507
crossref_primary_10_1016_j_scienta_2025_114063
crossref_primary_10_3390_ijms21165639
crossref_primary_10_1111_pce_14395
crossref_primary_10_1093_hr_uhac278
crossref_primary_10_1016_j_fcr_2024_109521
crossref_primary_10_1007_s00344_022_10735_w
crossref_primary_10_3389_fpls_2023_1163939
crossref_primary_10_1016_j_pbi_2022_102310
crossref_primary_10_1093_jxb_eraa021
crossref_primary_10_1016_j_pbi_2021_102010
crossref_primary_10_1016_j_envexpbot_2024_105943
crossref_primary_10_3390_agronomy14122948
crossref_primary_10_1093_jxb_erab477
crossref_primary_10_3390_horticulturae10020123
crossref_primary_10_1007_s11104_025_07369_8
crossref_primary_10_1016_j_jplph_2023_154157
crossref_primary_10_1111_pce_13867
crossref_primary_10_1016_j_agrformet_2024_109892
crossref_primary_10_1016_j_ncrops_2024_100021
crossref_primary_10_1007_s40502_023_00743_7
crossref_primary_10_3390_j7020007
crossref_primary_10_1007_s00709_021_01614_4
crossref_primary_10_3389_fpls_2022_996514
crossref_primary_10_1016_j_cj_2021_03_005
crossref_primary_10_1038_s41598_019_41922_7
crossref_primary_10_1111_nph_18704
crossref_primary_10_3390_agriculture13091823
crossref_primary_10_3390_plants11081039
crossref_primary_10_3389_fpls_2024_1307653
crossref_primary_10_3390_land10111186
crossref_primary_10_3390_agriculture13122186
crossref_primary_10_1016_j_plaphy_2019_10_004
crossref_primary_10_1093_jxb_erad321
crossref_primary_10_1016_j_compag_2020_105751
crossref_primary_10_1051_e3sconf_202337303021
crossref_primary_10_32615_ps_2021_059
crossref_primary_10_1007_s42994_023_00099_4
crossref_primary_10_1111_nph_19347
crossref_primary_10_1111_tpj_16346
crossref_primary_10_3389_fpls_2022_878001
crossref_primary_10_1007_s10722_024_02254_2
crossref_primary_10_1111_pce_14927
crossref_primary_10_1016_j_agrformet_2023_109355
crossref_primary_10_1016_j_cj_2022_08_006
crossref_primary_10_3389_fpls_2022_801706
crossref_primary_10_1007_s00344_025_11645_3
crossref_primary_10_3390_genes15070912
crossref_primary_10_1111_pce_14015
crossref_primary_10_1007_s11676_023_01634_1
crossref_primary_10_32604_phyton_2024_048299
crossref_primary_10_3389_fpls_2020_00542
crossref_primary_10_3389_fpls_2020_589603
crossref_primary_10_3390_plants12152840
crossref_primary_10_1017_qpb_2021_19
crossref_primary_10_1016_j_envexpbot_2024_105984
crossref_primary_10_1016_j_pbi_2020_05_012
crossref_primary_10_1093_plphys_kiaf039
crossref_primary_10_3390_agriculture14112028
crossref_primary_10_3390_agronomy14122811
crossref_primary_10_1007_s11816_020_00627_4
crossref_primary_10_1016_j_plaphy_2024_108782
crossref_primary_10_3390_plants12223826
crossref_primary_10_1007_s11104_022_05664_2
crossref_primary_10_3390_ijms251810052
crossref_primary_10_3389_fpls_2019_01783
crossref_primary_10_1002_ird_3070
crossref_primary_10_7717_peerj_18792
crossref_primary_10_1111_pce_14821
crossref_primary_10_1134_S1021443722010095
crossref_primary_10_3390_plants12010066
crossref_primary_10_1371_journal_pone_0256342
crossref_primary_10_1080_15226514_2022_2110037
crossref_primary_10_1016_j_indcrop_2021_114516
crossref_primary_10_1016_j_crope_2022_09_001
crossref_primary_10_1093_plphys_kiab346
crossref_primary_10_3390_plants10050869
crossref_primary_10_1111_nph_16450
crossref_primary_10_7717_peerj_13377
crossref_primary_10_1186_s13578_021_00633_1
crossref_primary_10_1002_jpln_202000007
crossref_primary_10_1093_plphys_kiab174
crossref_primary_10_3389_fpls_2024_1442686
crossref_primary_10_3390_agriculture14030431
crossref_primary_10_1002_ajb2_1833
crossref_primary_10_1093_jxb_erab160
crossref_primary_10_3389_fpls_2021_677839
crossref_primary_10_1016_j_crope_2024_04_001
crossref_primary_10_3389_fgene_2024_1432376
crossref_primary_10_3389_fpls_2022_919299
crossref_primary_10_3390_agronomy13071941
crossref_primary_10_1016_j_ecoenv_2020_110336
crossref_primary_10_1111_ppl_13636
crossref_primary_10_1093_plphys_kiab299
crossref_primary_10_1016_j_plaphy_2021_03_041
crossref_primary_10_1111_pce_14592
crossref_primary_10_3389_fpls_2019_01300
crossref_primary_10_3389_fpls_2021_780180
crossref_primary_10_3389_fpls_2020_600021
crossref_primary_10_1111_jipb_13451
crossref_primary_10_3390_agronomy14081734
crossref_primary_10_1093_plphys_kiac252
crossref_primary_10_53941_plantecophys_2025_100001
crossref_primary_10_1002_ece3_11349
crossref_primary_10_1093_jxb_erae425
crossref_primary_10_1111_nph_17411
crossref_primary_10_1111_pce_14918
crossref_primary_10_1111_tpj_15004
crossref_primary_10_15406_ijh_2022_06_00323
crossref_primary_10_1093_treephys_tpab157
crossref_primary_10_1016_j_rsci_2021_04_003
crossref_primary_10_1242_dev_203011
crossref_primary_10_3390_plants8090336
crossref_primary_10_1186_s12284_024_00748_2
crossref_primary_10_3390_plants12213738
crossref_primary_10_47836_pjtas_46_2_05
crossref_primary_10_1002_fes3_70030
crossref_primary_10_3389_fpls_2019_00225
crossref_primary_10_3389_fpls_2019_00103
crossref_primary_10_1016_j_tplants_2020_02_014
crossref_primary_10_1038_s41477_020_0590_x
crossref_primary_10_1111_ppl_13520
crossref_primary_10_1016_j_plantsci_2020_110729
crossref_primary_10_1007_s40003_023_00679_2
crossref_primary_10_1093_jxb_erab502
crossref_primary_10_1016_j_scitotenv_2024_177962
crossref_primary_10_3390_agronomy11081670
crossref_primary_10_3390_ijms251910403
crossref_primary_10_3390_life13020290
crossref_primary_10_1007_s40502_019_00485_5
crossref_primary_10_1242_jcs_228551
crossref_primary_10_1111_tpj_16549
crossref_primary_10_1016_j_molp_2023_11_011
crossref_primary_10_3390_plants14071025
crossref_primary_10_1007_s11103_024_01456_7
crossref_primary_10_1038_s41598_022_10703_0
crossref_primary_10_1111_pce_15302
crossref_primary_10_1111_ppl_13416
crossref_primary_10_1111_pbi_14464
crossref_primary_10_1007_s00442_021_04857_3
crossref_primary_10_1007_s11103_022_01294_5
crossref_primary_10_1007_s42106_023_00278_9
crossref_primary_10_1007_s00122_024_04814_7
crossref_primary_10_1007_s11356_019_07080_z
crossref_primary_10_1093_jxb_erad477
crossref_primary_10_1111_tpj_15460
crossref_primary_10_3390_plants11192625
crossref_primary_10_1016_j_tplants_2023_06_002
crossref_primary_10_1093_plphys_kiad561
crossref_primary_10_3389_fpls_2022_879366
crossref_primary_10_1093_treephys_tpad116
crossref_primary_10_1016_j_cub_2022_05_042
crossref_primary_10_1111_nph_18162
crossref_primary_10_1016_j_rsci_2021_08_001
crossref_primary_10_1111_pce_14225
crossref_primary_10_1016_j_fcr_2022_108625
crossref_primary_10_1111_pce_14342
crossref_primary_10_1016_j_indcrop_2020_112477
crossref_primary_10_1093_plcell_koac239
crossref_primary_10_3390_plants13060828
crossref_primary_10_1007_s10722_024_02162_5
crossref_primary_10_1016_j_envpol_2021_118389
Cites_doi 10.1371/journal.pone.0169706
10.1016/j.tplants.2015.08.014
10.1042/BCJ20170413
10.1007/s11120-016-0326-y
10.1073/pnas.1606728113
10.1016/j.plantsci.2014.04.007
10.1038/nature12291
10.1093/jxb/erx052
10.1016/j.cub.2012.03.044
10.1111/j.1469-8137.2007.02351.x
10.1073/pnas.0604882103
10.1016/j.cub.2009.03.069
10.1073/pnas.0812721106
10.1038/srep12449
10.1038/nature14561
10.1088/1748-9326/8/2/024041
10.1111/j.1365-2486.2008.01594.x
10.1016/0012-1606(60)90050-6
10.1104/pp.15.01624
10.1016/j.pbi.2017.07.009
10.1038/srep14799
10.1007/s00299-017-2118-z
10.1093/bioinformatics/btp033
10.1111/nph.13598
10.1104/pp.125.2.935
10.1111/pce.12430
10.1016/j.wrr.2016.10.001
10.1038/514S50a
10.1093/nar/gku1039
10.1126/science.1185383
10.1242/dev.032938
10.1186/1471-2105-5-113
10.1111/nph.13347
10.1104/pp.011098
10.1016/j.molp.2015.12.007
10.1093/nar/gkr944
10.1111/j.1365-3040.2007.01710.x
10.1104/pp.16.01844
10.3389/fpls.2016.00657
10.1101/gad.1550707
10.1111/nph.12608
10.1111/nph.12832
10.1016/j.pbi.2012.09.013
10.1093/pcp/pcp068
10.1126/science.aal3254
ContentType Journal Article
Copyright 2018 New Phytologist Trust
2018 The Authors. New Phytologist © 2018 New Phytologist Trust
2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Copyright © 2018 New Phytologist Trust
Copyright_xml – notice: 2018 New Phytologist Trust
– notice: 2018 The Authors. New Phytologist © 2018 New Phytologist Trust
– notice: 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
– notice: Copyright © 2018 New Phytologist Trust
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1111/nph.15344
DatabaseName Wiley Online Library Open Access (Hollins)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE


AGRICOLA
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 384
ExternalDocumentID PMC6492113
30043395
10_1111_nph_15344
NPH15344
90026796
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: BBSRC Newton Fund
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACQPF
ADULT
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
LW6
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ADXHL
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c4984-c208d52ac8b1e8494493626bc18d8ad39741be958fed5e19a58c48c249ae79a23
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Thu Aug 21 17:49:08 EDT 2025
Fri Jul 11 18:23:43 EDT 2025
Fri Jul 11 16:28:48 EDT 2025
Fri Jul 25 10:26:59 EDT 2025
Thu Apr 03 06:59:17 EDT 2025
Thu Apr 24 23:11:00 EDT 2025
Tue Jul 01 03:09:28 EDT 2025
Wed Jan 22 16:49:20 EST 2025
Thu Jul 03 22:05:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords heat stress
stomata
drought
epidermal pattering factor
rice
water conservation
climate change
Language English
License Attribution
2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4984-c208d52ac8b1e8494493626bc18d8ad39741be958fed5e19a58c48c249ae79a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0334-3722
0000-0003-2058-2020
0000-0002-0386-1821
0000-0002-7465-845X
0000-0002-6480-218X
0000-0001-9972-5156
0000-0002-5652-6007
0000-0002-6438-9188
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.15344
PMID 30043395
PQID 2139007578
PQPubID 2026848
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6492113
proquest_miscellaneous_2189519516
proquest_miscellaneous_2076236234
proquest_journals_2139007578
pubmed_primary_30043395
crossref_citationtrail_10_1111_nph_15344
crossref_primary_10_1111_nph_15344
wiley_primary_10_1111_nph_15344_NPH15344
jstor_primary_90026796
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
– name: Hoboken
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2019
Publisher New Phytologist Trust
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2014; 514
2009; 25
2015; 38
2015; 5
2010; 327
2015; 522
2002; 130
1960; 2
2017; 68
2008; 14
2004; 5
2018; 41
2015; 208
2015; 207
2017; 174
2017; 131
2012; 15
2007; 30
2013; 8
2017; 355
2017; 9
2009; 136
2001; 125
2014; 226
2016; 7
2017; 36
2009; 50
2018; 475
2015; 43
2017; 12
2016; 21
2016; 113
1987
2013; 499
2009; 8
2014
2008; 178
2016; 170
2007; 21
2009; 19
2012; 23
2012; 22
2014; 203
2016; 9
2006; 103
2014; 201
2012; 40
2009; 106
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Bouman B (e_1_2_7_4_1) 2009
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_8_1
Redfern SK (e_1_2_7_40_1) 2012; 23
Zeiger E (e_1_2_7_50_1) 1987
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Porter JR (e_1_2_7_37_1) 2014
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 203
  start-page: 44
  year: 2014
  end-page: 62
  article-title: Closing gaps: linking elements that control stomatal movement
  publication-title: New Phytologist
– volume: 201
  start-page: 1218
  year: 2014
  end-page: 1226
  article-title: An integrated model of stomatal development and leaf physiology
  publication-title: New Phytologist
– volume: 9
  start-page: 12
  year: 2017
  end-page: 27
  article-title: Temperature and drought impacts on rice production: an agronomic perspective regarding short‐ and long‐term adaptation measures
  publication-title: Water Resources and Rural Development
– volume: 125
  start-page: 935
  year: 2001
  end-page: 942
  article-title: The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in
  publication-title: Plant Physiology
– volume: 15
  start-page: 585
  year: 2012
  end-page: 592
  article-title: Division polarity in developing stomata
  publication-title: Current Opinion in Plant Biology
– volume: 106
  start-page: 1704
  year: 2009
  end-page: 1709
  article-title: Irreversible climate change due to carbon dioxide emissions
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 23
  start-page: 295
  year: 2012
  article-title: Rice in Southeast Asia: facing risks and vulnerabilities to respond to climate change
  publication-title: Build Resilience Adapt Climate Change Agri Sector
– volume: 68
  start-page: 1757
  year: 2017
  end-page: 1767
  article-title: Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in and x
  publication-title: Journal of Experimental Botany
– volume: 2
  start-page: 477
  year: 1960
  end-page: 500
  article-title: Developmental studies of cell differentiation in the epidermis of monocotyledons: II. Cytological features of stomatal development in the Gramineae
  publication-title: Developmental Biology
– volume: 21
  start-page: 1720
  year: 2007
  end-page: 1725
  article-title: The secretory peptide gene enforces the stomatal one‐cell‐spacing rule
  publication-title: Genes & Development
– volume: 19
  start-page: 864
  year: 2009
  end-page: 869
  article-title: The signaling peptide EPF2 controls asymmetric cell divisions during stomatal development
  publication-title: Current Biology
– year: 2014
– volume: 136
  start-page: 2265
  year: 2009
  end-page: 2276
  article-title: Orthologs of stomatal bHLH genes and regulation of stomatal development in grasses
  publication-title: Development
– volume: 499
  start-page: 324
  year: 2013
  end-page: 327
  article-title: Increase in forest water‐use efficiency as atmospheric carbon dioxide concentrations rise
  publication-title: Nature
– volume: 208
  start-page: 336
  year: 2015
  end-page: 341
  article-title: Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake
  publication-title: New Phytologist
– volume: 514
  start-page: S50
  year: 2014
  end-page: S51
  article-title: Rice by the numbers: a good grain
  publication-title: Nature
– volume: 226
  start-page: 108
  year: 2014
  end-page: 119
  article-title: Opportunities for improving leaf water use efficiency under climate change conditions
  publication-title: Plant Science
– volume: 5
  start-page: e12449
  year: 2015
  article-title: Stomatal closure is induced by hydraulic signals and maintained by ABA in drought‐stressed grapevine
  publication-title: Scientific Reports
– volume: 207
  start-page: 188
  year: 2015
  end-page: 195
  article-title: Increasing water‐use efficiency directly through genetic manipulation of stomatal density
  publication-title: New Phytologist
– volume: 12
  start-page: e0169706
  year: 2017
  article-title: Atmospheric CO concentration effects on rice water use and biomass production
  publication-title: PLoS ONE
– volume: 131
  start-page: 333
  year: 2017
  end-page: 350
  article-title: Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean
  publication-title: Photosynthesis Research
– volume: 170
  start-page: 1655
  year: 2016
  end-page: 1674
  article-title: Combined chlorophyll fluorescence and transcriptomic analysis identifies the P3/P4 transition as a key stage in rice leaf photosynthetic development
  publication-title: Plant Physiology
– volume: 103
  start-page: 12987
  year: 2006
  end-page: 12992
  article-title: Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 9
  start-page: 417
  year: 2016
  end-page: 427
  article-title: Rice stomatal closure requires guard cell plasma membrane ATP‐binding cassette transporter RCN1/OsABCG5
  publication-title: Molecular Plant
– volume: 174
  start-page: 776
  year: 2017
  end-page: 787
  article-title: Reducing stomatal density in barley improves drought tolerance without impacting on yield
  publication-title: Plant Physiology
– start-page: 485
  year: 2014
  end-page: 533
– volume: 113
  start-page: 8326
  year: 2016
  end-page: 8331
  article-title: Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 36
  start-page: 745
  year: 2017
  end-page: 757
  article-title: CRISPR‐Cas9 and CRISPR‐Cpf1 mediated targeting of a stomatal developmental gene in rice
  publication-title: Plant Cell Reports
– volume: 30
  start-page: 1035
  year: 2007
  end-page: 1040
  article-title: Fitting photosynthetic carbon dioxide response curves for C leaves
  publication-title: Plant, Cell & Environment
– volume: 130
  start-page: 1999
  year: 2002
  end-page: 2010
  article-title: Acclimation of rice photosynthesis to irradiance under field conditions
  publication-title: Plant Physiology
– volume: 14
  start-page: 1642
  year: 2008
  end-page: 1650
  article-title: Rice production in a changing climate: a meta‐analysis of responses to elevated carbon dioxide and elevated ozone concentration
  publication-title: Global Change Biology
– volume: 8
  start-page: 024041
  year: 2013
  article-title: Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections
  publication-title: Environmental Research Letters
– volume: 50
  start-page: 1019
  year: 2009
  end-page: 1031
  article-title: Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves
  publication-title: Plant and Cell Physiology
– volume: 5
  start-page: e18
  year: 2015
  article-title: Drought susceptibility of modern rice varieties: an effect of linkage of drought tolerance with undesirable traits
  publication-title: Scientific Reports
– year: 1987
– volume: 355
  start-page: 1215
  year: 2017
  article-title: Mobile MUTE specifies subsidiary cells to build physiologically improved grass stomata
  publication-title: Science
– volume: 5
  start-page: e113
  year: 2004
  article-title: MUSCLE: a multiple sequence alignment method with reduced time and space complexity
  publication-title: BMC Bioinformatics
– volume: 41
  start-page: 1
  year: 2018
  end-page: 7
  article-title: Stomatal development: focusing on the grasses
  publication-title: Current Opinion in Plant Biology
– volume: 25
  start-page: 1189
  year: 2009
  end-page: 1191
  article-title: Jalview Version 2 – a multiple sequence alignment editor and analysis workbench
  publication-title: Bioinformatics
– volume: 327
  start-page: 812
  year: 2010
  end-page: 818
  article-title: Food security: the challenge of feeding 9 billion people
  publication-title: Science
– volume: 38
  start-page: 1686
  year: 2015
  end-page: 1698
  article-title: Rice responses to rising temperatures – challenges, perspectives and future directions
  publication-title: Plant, Cell and Environment
– volume: 21
  start-page: 16
  year: 2016
  end-page: 30
  article-title: CO sensing and CO peculation of stomatal conductance: advances and open questions
  publication-title: Trends in Plant Science
– volume: 22
  start-page: R396
  year: 2012
  end-page: R397
  article-title: High temperature exposure increases plant cooling capacity
  publication-title: Current Biology
– volume: 522
  start-page: 439
  year: 2015
  end-page: 443
  article-title: Competitive binding of antagonistic peptides fine‐tunes stomatal patterning
  publication-title: Nature
– volume: 7
  start-page: e657
  year: 2016
  article-title: Elevated‐CO response of stomata and its dependence on environmental factors
  publication-title: Frontiers in Plant Science
– volume: 8
  start-page: 28
  year: 2009
  end-page: 29
– volume: 43
  start-page: D1023
  issue: D1
  year: 2015
  end-page: D1027
  article-title: SNP‐Seek database of SNPs derived from 3000 rice genomes
  publication-title: Nucleic Acids Research
– volume: 475
  start-page: 441
  year: 2018
  article-title: Molecular control of stomatal development
  publication-title: Biochemical Journal
– volume: 178
  start-page: 9
  year: 2008
  end-page: 23
  article-title: Influence of environmental factors on stomatal development
  publication-title: New Phytologist
– volume: 40
  start-page: 1178
  year: 2012
  end-page: 1186
  article-title: Phytozome: a comparative platform for green plant genomics
  publication-title: Nucleic Acids Research
– ident: e_1_2_7_31_1
  doi: 10.1371/journal.pone.0169706
– ident: e_1_2_7_11_1
  doi: 10.1016/j.tplants.2015.08.014
– ident: e_1_2_7_51_1
  doi: 10.1042/BCJ20170413
– ident: e_1_2_7_27_1
  doi: 10.1007/s11120-016-0326-y
– ident: e_1_2_7_38_1
  doi: 10.1073/pnas.1606728113
– ident: e_1_2_7_15_1
  doi: 10.1016/j.plantsci.2014.04.007
– ident: e_1_2_7_28_1
  doi: 10.1038/nature12291
– ident: e_1_2_7_45_1
  doi: 10.1093/jxb/erx052
– ident: e_1_2_7_7_1
  doi: 10.1016/j.cub.2012.03.044
– ident: e_1_2_7_6_1
  doi: 10.1111/j.1469-8137.2007.02351.x
– volume-title: Stomatal function
  year: 1987
  ident: e_1_2_7_50_1
– ident: e_1_2_7_23_1
  doi: 10.1073/pnas.0604882103
– ident: e_1_2_7_25_1
  doi: 10.1016/j.cub.2009.03.069
– start-page: 28
  volume-title: Rice today
  year: 2009
  ident: e_1_2_7_4_1
– ident: e_1_2_7_35_1
– ident: e_1_2_7_42_1
  doi: 10.1073/pnas.0812721106
– ident: e_1_2_7_44_1
  doi: 10.1038/srep12449
– ident: e_1_2_7_32_1
  doi: 10.1038/nature14561
– ident: e_1_2_7_18_1
  doi: 10.1088/1748-9326/8/2/024041
– ident: e_1_2_7_2_1
  doi: 10.1111/j.1365-2486.2008.01594.x
– ident: e_1_2_7_43_1
  doi: 10.1016/0012-1606(60)90050-6
– ident: e_1_2_7_5_1
  doi: 10.1104/pp.15.01624
– ident: e_1_2_7_21_1
  doi: 10.1016/j.pbi.2017.07.009
– ident: e_1_2_7_46_1
  doi: 10.1038/srep14799
– ident: e_1_2_7_49_1
  doi: 10.1007/s00299-017-2118-z
– ident: e_1_2_7_47_1
  doi: 10.1093/bioinformatics/btp033
– ident: e_1_2_7_22_1
  doi: 10.1111/nph.13598
– ident: e_1_2_7_14_1
  doi: 10.1104/pp.125.2.935
– ident: e_1_2_7_26_1
  doi: 10.1111/pce.12430
– ident: e_1_2_7_30_1
  doi: 10.1016/j.wrr.2016.10.001
– ident: e_1_2_7_10_1
  doi: 10.1038/514S50a
– ident: e_1_2_7_3_1
  doi: 10.1093/nar/gku1039
– ident: e_1_2_7_16_1
  doi: 10.1126/science.1185383
– ident: e_1_2_7_33_1
  doi: 10.1242/dev.032938
– ident: e_1_2_7_9_1
  doi: 10.1186/1471-2105-5-113
– ident: e_1_2_7_13_1
  doi: 10.1111/nph.13347
– ident: e_1_2_7_36_1
  doi: 10.1104/pp.011098
– ident: e_1_2_7_34_1
  doi: 10.1016/j.molp.2015.12.007
– ident: e_1_2_7_17_1
  doi: 10.1093/nar/gkr944
– ident: e_1_2_7_41_1
  doi: 10.1111/j.1365-3040.2007.01710.x
– ident: e_1_2_7_24_1
  doi: 10.1104/pp.16.01844
– ident: e_1_2_7_48_1
  doi: 10.3389/fpls.2016.00657
– ident: e_1_2_7_19_1
  doi: 10.1101/gad.1550707
– ident: e_1_2_7_8_1
  doi: 10.1111/nph.12608
– ident: e_1_2_7_29_1
  doi: 10.1111/nph.12832
– ident: e_1_2_7_12_1
  doi: 10.1016/j.pbi.2012.09.013
– ident: e_1_2_7_20_1
  doi: 10.1093/pcp/pcp068
– start-page: 485
  volume-title: Climate change 2014: impacts, adaptation, and vulnerability, part A: global and sectoral aspects. Working Group II contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change
  year: 2014
  ident: e_1_2_7_37_1
– ident: e_1_2_7_39_1
  doi: 10.1126/science.aal3254
– volume: 23
  start-page: 295
  year: 2012
  ident: e_1_2_7_40_1
  article-title: Rice in Southeast Asia: facing risks and vulnerabilities to respond to climate change
  publication-title: Build Resilience Adapt Climate Change Agri Sector
SSID ssj0009562
Score 2.6757104
Snippet Much of humanity relies on rice (Oryza sativa) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high...
Summary Much of humanity relies on rice (Oryza sativa) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high...
Much of humanity relies on rice ( Oryza sativa ) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 371
SubjectTerms Arabidopsis - genetics
Arabidopsis Proteins - genetics
Carbon Dioxide
carbon dioxide enrichment
climate
Climate change
Climatic conditions
Conductance
Cultivars
Cultivation
DNA-Binding Proteins - genetics
Drought
Drought resistance
drought tolerance
Droughts
epidermal pattering factor
Food
Food security
Food sources
Gene Expression Regulation, Plant
Germination
grain yield
heat stress
High temperature
Oryza - cytology
Oryza - genetics
Oryza - physiology
Oryza sativa
Pattern formation
Photosynthesis
Plant Breeding
Plant Leaves - cytology
Plant Leaves - genetics
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Stomata - physiology
Plants, Genetically Modified
Resistance
Rice
Stomata
Stomatal conductance
Survival
Temperature
Transcription Factors - genetics
Water - metabolism
Water availability
Water conservation
Water use
Title Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions
URI https://www.jstor.org/stable/90026796
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.15344
https://www.ncbi.nlm.nih.gov/pubmed/30043395
https://www.proquest.com/docview/2139007578
https://www.proquest.com/docview/2076236234
https://www.proquest.com/docview/2189519516
https://pubmed.ncbi.nlm.nih.gov/PMC6492113
Volume 221
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4tKw5ceC8ElpVBHLikShwnscUJEKsKidVqxUo9IEV-rVpR0lWagpZfz4zzUAsLQtxaZZxm3Bn78-TzZ4CXOqBoR6R2Y2KRcRXjdxHrC5mYsiwRZdB-548nxfRcfJjlsz14PeyF6fQhxoIbZUYYrynBtVlvJXl9OZ9gugrSAiWuFgGiM74luFvwQYG5EMWsVxUiFs_Ycmcu6uiI1wHN3_mS2zg2TETHd-Dz4ELHP_ky2bRmYn_8ou74nz7ehds9QGVvuoi6B3u-vg83364QRF49gM0ZDiyMiresIdFX7xj685VqQMwRF769YpYI2s03v2bfEcg2TNeOzfWaLUL9Alu4cDRQy9rV0tO5Hp7RTraGdfomzC4XeENP93EdoewhnB-___RuGvcnN8RWKCliyxPpcq6tNKmXQgmhSPbG2FQ6qR1iIJEar3J54V3uU6VzaYW0uBTUvlSaZwewX69q_xiYVDguGG5cUmiRaq9N7tJMOK947hLFI3g1_IeV7WXN6XSNZTUsb7ATq9CJEbwYTS87LY_rjA5CIIwWipappSoiOBwio-rzfF1xBNCEukoZwfPxMmYovXbRtV9t0CbBCQfdz8RfbFKpSOcnxZ951AXb-ACkiZZlKo-g3AnD0YAUwnev1It5UAovhMIFfoZ9FKLsz15XJ6fT8OHJv5s-hVuIHlVXjzqE_bbZ-GeI0FpzBDe4OD0KCfkTT345ow
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VBQkuvAuGAgsCiYsje722dw8cgFKltI1Q1Uq5mX1ViQhOlThU4TfxV_hPzKwfSqAgLj1wS-SJ492dmf1mPPsNIS-UR9EWi9q1DnnCZAjfeahORaTzPAeUgeedDwdZ_4R_GKbDDfK9PQtT80N0CTe0DO-v0cAxIb1i5eXZqAf2ynlTUrnvlucQsM1f7-3A6r5kbPf98bt-2PQUCA2XgoeGRcKmTBmhYye45FwiIYs2sbBCWdideaydTMWps6mLpUqF4cJAkKJcLhXSHIDDv4IdxJGpf-eIrVD8ZqzlfM54Nmx4jLBuqHvUtd2vLoC8CNr-XqG5ipz91rd7k_xoJ62uePncW1S6Z779wif5v8zqLXKjweD0TW00t8mGK--Qq2-ngJOXd8niCHwnxfw0nSGvrbMUJvALprmoxXL_akkN1qDPvro5PQesPqOqtHSk5nTsUzTwC-u7H1W0mk4cti5xFA_rzWhN4ULNZAw3dHgfW9fM3SMnlzLkLbJZTkv3gFAhwfVppm2UKR4rp3Rq44RbJ1lqI8kC8qpVmsI0zO3YQGRStBEcLFrhFy0gzzvRs5qu5CKhLa95nYTESDyXWUC2W1UsGlc2LxjECAgscxGQZ91lcEL4ZkmVbroAmQj2VBh-wv8iEwuJVEYx_M39Wru7B0DatySRaUDyNb3vBJAEff1KOR55MvSMSxbHCcyRV-s_j7oYfOz7Dw__XfQpudY_PjwoDvYG-4_IdQDLsk6_bZPNarZwjwGQVvqJ9wOUfLpsE_kJY2eV6w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZWC0JcEK-FwAIGgcQlKHGcxD5wAJaqy0JVIVbqLfhVtVJJqzRl1d_En2TGeagVC-Kyt1aZvDwe-5vJ58-EvFQeRVsktWsd8oTJEP7zUE1FpPM8B5SB652_jLLhOf80SScH5Fe3FqbRh-gLbhgZfrzGAF_Z6U6Ql6vZGwhXzltG5ZnbXkC-tn57egLOfcXY4OO3D8Ow3VIgNFwKHhoWCZsyZYSOneCSc4l6LNrEwgplYXLmsXYyFVNnUxdLlQrDhYEcRblcKlQ5gPH-Gn5cRP4Y4-Mdhd-MdZLPGc8mrYwR0ob6R92b_Br-42XI9k-C5i5w9jPf4Da51UJW-q7pY3fIgSvvkuvvlwArt_fI5isMNRTLubRCGVhnKdzwB1aFqEV2fL2lBinb1U-3phcAbSuqSktnak3nvqIBZ1i_WVBN6-XC4U4fjuLatoo2iifULOZwQYfXsQ3F7D45v5KGPyKH5bJ0DwkVEkYKzbSNMsVj5ZRObZxw6yRLbSRZQF53jVyYVugc99tYFF3CA_4ovD8C8qI3XTXqHpcZHXlP9RYSE9dcZgE57lxXtJG_LhhAasRhuQjI8_4wxCx-iFGlW27AJoIpCF4_4f-wiYVE5Z8YbvOg6Q39A6BKWpLINCD5Xj_pDVAzfP9IOZ957fCMS0j5E2gj36P-_tbFaDz0Px79v-kzcmN8Mig-n47OHpObAC1lU6w6Jod1tXFPAL7V-qkPG0q-X3Wc_gZ8DVSi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rice+with+reduced+stomatal+density+conserves+water+and+has+improved+drought+tolerance+under+future+climate+conditions&rft.jtitle=The+New+phytologist&rft.au=Caine%2C+Robert+S.&rft.au=Yin%2C+Xiaojia&rft.au=Sloan%2C+Jennifer&rft.au=Harrison%2C+Emily+L.&rft.date=2019-01-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=221&rft.issue=1&rft.spage=371&rft.epage=384&rft_id=info:doi/10.1111%2Fnph.15344&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_nph_15344
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon