Silencing the alarm an insect salivary enzyme closes plant stomata and inhibits volatile release

• Herbivore-induced plant volatiles (HIPVs) are widely recognized as an ecologically important defensive response of plants against herbivory. Although the induction of this ‘cry for help’ has been well documented, only a few studies have investigated the inhibition of HIPVs by herbivores and little...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 230; no. 2; pp. 793 - 803
Main Authors Lin, Po-An, Chen, Yintong, Chaverra-Rodriguez, Duverney, Heu, Chan Chin, Zainuddin, Nursyafiqi Bin, Sidhu, Jagdeep Singh, Peiffer, Michelle, Tan, Ching-Wen, Helms, Anjel, Kim, Donghun, Ali, Jared, Rasgon, Jason L., Lynch, Jonathan, Anderson, Charles T., Felton, Gary W.
Format Journal Article
LanguageEnglish
Published England Wiley 01.04.2021
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract • Herbivore-induced plant volatiles (HIPVs) are widely recognized as an ecologically important defensive response of plants against herbivory. Although the induction of this ‘cry for help’ has been well documented, only a few studies have investigated the inhibition of HIPVs by herbivores and little is known about whether herbivores have evolved mechanisms to inhibit the release of HIPVs. • To examine the role of herbivore effectors in modulating HIPVs and stomatal dynamics, we conducted series of experiments combining pharmacological, surgical, genetic (CRISPR-Cas9) and chemical (GC-MS analysis) approaches. • We show that the salivary enzyme, glucose oxidase (GOX), secreted by the caterpillar Helicoverpa zea on leaves, causes stomatal closure in tomato (Solanum lycopersicum) within 5 min, and in both tomato and soybean (Glycine max) for at least 48 h. GOX also inhibits the emission of several HIPVs during feeding by H. zea, including (Z)-3-hexenol, (Z)-jasmone and (Z)-3-hexenyl acetate, which are important airborne signals in plant defenses. • Our findings highlight a potential adaptive strategy where an insect herbivore inhibits plant airborne defenses during feeding by exploiting the association between stomatal dynamics and HIPV emission.
AbstractList Herbivore‐induced plant volatiles (HIPVs) are widely recognized as an ecologically important defensive response of plants against herbivory. Although the induction of this ‘cry for help’ has been well documented, only a few studies have investigated the inhibition of HIPVs by herbivores and little is known about whether herbivores have evolved mechanisms to inhibit the release of HIPVs. To examine the role of herbivore effectors in modulating HIPVs and stomatal dynamics, we conducted series of experiments combining pharmacological, surgical, genetic (CRISPR‐Cas9) and chemical (GC‐MS analysis) approaches. We show that the salivary enzyme, glucose oxidase (GOX), secreted by the caterpillar Helicoverpa zea on leaves, causes stomatal closure in tomato ( Solanum lycopersicum ) within 5 min, and in both tomato and soybean ( Glycine max ) for at least 48 h. GOX also inhibits the emission of several HIPVs during feeding by H. zea , including ( Z )‐3‐hexenol, ( Z )‐jasmone and ( Z )‐3‐hexenyl acetate, which are important airborne signals in plant defenses. Our findings highlight a potential adaptive strategy where an insect herbivore inhibits plant airborne defenses during feeding by exploiting the association between stomatal dynamics and HIPV emission.
Herbivore‐induced plant volatiles (HIPVs) are widely recognized as an ecologically important defensive response of plants against herbivory. Although the induction of this ‘cry for help’ has been well documented, only a few studies have investigated the inhibition of HIPVs by herbivores and little is known about whether herbivores have evolved mechanisms to inhibit the release of HIPVs. To examine the role of herbivore effectors in modulating HIPVs and stomatal dynamics, we conducted series of experiments combining pharmacological, surgical, genetic (CRISPR‐Cas9) and chemical (GC‐MS analysis) approaches. We show that the salivary enzyme, glucose oxidase (GOX), secreted by the caterpillar Helicoverpa zea on leaves, causes stomatal closure in tomato (Solanum lycopersicum) within 5 min, and in both tomato and soybean (Glycine max) for at least 48 h. GOX also inhibits the emission of several HIPVs during feeding by H. zea, including (Z)‐3‐hexenol, (Z)‐jasmone and (Z)‐3‐hexenyl acetate, which are important airborne signals in plant defenses. Our findings highlight a potential adaptive strategy where an insect herbivore inhibits plant airborne defenses during feeding by exploiting the association between stomatal dynamics and HIPV emission.
Summary Herbivore‐induced plant volatiles (HIPVs) are widely recognized as an ecologically important defensive response of plants against herbivory. Although the induction of this ‘cry for help’ has been well documented, only a few studies have investigated the inhibition of HIPVs by herbivores and little is known about whether herbivores have evolved mechanisms to inhibit the release of HIPVs. To examine the role of herbivore effectors in modulating HIPVs and stomatal dynamics, we conducted series of experiments combining pharmacological, surgical, genetic (CRISPR‐Cas9) and chemical (GC‐MS analysis) approaches. We show that the salivary enzyme, glucose oxidase (GOX), secreted by the caterpillar Helicoverpa zea on leaves, causes stomatal closure in tomato (Solanum lycopersicum) within 5 min, and in both tomato and soybean (Glycine max) for at least 48 h. GOX also inhibits the emission of several HIPVs during feeding by H. zea, including (Z)‐3‐hexenol, (Z)‐jasmone and (Z)‐3‐hexenyl acetate, which are important airborne signals in plant defenses. Our findings highlight a potential adaptive strategy where an insect herbivore inhibits plant airborne defenses during feeding by exploiting the association between stomatal dynamics and HIPV emission.
Herbivore-induced plant volatiles (HIPVs) are widely recognized as an ecologically important defensive response of plants against herbivory. Although the induction of this 'cry for help' has been well documented, only a few studies have investigated the inhibition of HIPVs by herbivores and little is known about whether herbivores have evolved mechanisms to inhibit the release of HIPVs. To examine the role of herbivore effectors in modulating HIPVs and stomatal dynamics, we conducted series of experiments combining pharmacological, surgical, genetic (CRISPR-Cas9) and chemical (GC-MS analysis) approaches. We show that the salivary enzyme, glucose oxidase (GOX), secreted by the caterpillar Helicoverpa zea on leaves, causes stomatal closure in tomato (Solanum lycopersicum) within 5 min, and in both tomato and soybean (Glycine max) for at least 48 h. GOX also inhibits the emission of several HIPVs during feeding by H. zea, including (Z)-3-hexenol, (Z)-jasmone and (Z)-3-hexenyl acetate, which are important airborne signals in plant defenses. Our findings highlight a potential adaptive strategy where an insect herbivore inhibits plant airborne defenses during feeding by exploiting the association between stomatal dynamics and HIPV emission.
• Herbivore-induced plant volatiles (HIPVs) are widely recognized as an ecologically important defensive response of plants against herbivory. Although the induction of this ‘cry for help’ has been well documented, only a few studies have investigated the inhibition of HIPVs by herbivores and little is known about whether herbivores have evolved mechanisms to inhibit the release of HIPVs. • To examine the role of herbivore effectors in modulating HIPVs and stomatal dynamics, we conducted series of experiments combining pharmacological, surgical, genetic (CRISPR-Cas9) and chemical (GC-MS analysis) approaches. • We show that the salivary enzyme, glucose oxidase (GOX), secreted by the caterpillar Helicoverpa zea on leaves, causes stomatal closure in tomato (Solanum lycopersicum) within 5 min, and in both tomato and soybean (Glycine max) for at least 48 h. GOX also inhibits the emission of several HIPVs during feeding by H. zea, including (Z)-3-hexenol, (Z)-jasmone and (Z)-3-hexenyl acetate, which are important airborne signals in plant defenses. • Our findings highlight a potential adaptive strategy where an insect herbivore inhibits plant airborne defenses during feeding by exploiting the association between stomatal dynamics and HIPV emission.
Herbivore-induced plant volatiles (HIPVs) are widely recognized as an ecologically important defensive response of plants against herbivory. Although the induction of this 'cry for help' has been well documented, only a few studies have investigated the inhibition of HIPVs by herbivores and little is known about whether herbivores have evolved mechanisms to inhibit the release of HIPVs. To examine the role of herbivore effectors in modulating HIPVs and stomatal dynamics, we conducted series of experiments combining pharmacological, surgical, genetic (CRISPR-Cas9) and chemical (GC-MS analysis) approaches. We show that the salivary enzyme, glucose oxidase (GOX), secreted by the caterpillar Helicoverpa zea on leaves, causes stomatal closure in tomato (Solanum lycopersicum) within 5 min, and in both tomato and soybean (Glycine max) for at least 48 h. GOX also inhibits the emission of several HIPVs during feeding by H. zea, including (Z)-3-hexenol, (Z)-jasmone and (Z)-3-hexenyl acetate, which are important airborne signals in plant defenses. Our findings highlight a potential adaptive strategy where an insect herbivore inhibits plant airborne defenses during feeding by exploiting the association between stomatal dynamics and HIPV emission.Herbivore-induced plant volatiles (HIPVs) are widely recognized as an ecologically important defensive response of plants against herbivory. Although the induction of this 'cry for help' has been well documented, only a few studies have investigated the inhibition of HIPVs by herbivores and little is known about whether herbivores have evolved mechanisms to inhibit the release of HIPVs. To examine the role of herbivore effectors in modulating HIPVs and stomatal dynamics, we conducted series of experiments combining pharmacological, surgical, genetic (CRISPR-Cas9) and chemical (GC-MS analysis) approaches. We show that the salivary enzyme, glucose oxidase (GOX), secreted by the caterpillar Helicoverpa zea on leaves, causes stomatal closure in tomato (Solanum lycopersicum) within 5 min, and in both tomato and soybean (Glycine max) for at least 48 h. GOX also inhibits the emission of several HIPVs during feeding by H. zea, including (Z)-3-hexenol, (Z)-jasmone and (Z)-3-hexenyl acetate, which are important airborne signals in plant defenses. Our findings highlight a potential adaptive strategy where an insect herbivore inhibits plant airborne defenses during feeding by exploiting the association between stomatal dynamics and HIPV emission.
Author Sidhu, Jagdeep Singh
Ali, Jared
Peiffer, Michelle
Lynch, Jonathan
Kim, Donghun
Anderson, Charles T.
Rasgon, Jason L.
Chen, Yintong
Zainuddin, Nursyafiqi Bin
Helms, Anjel
Felton, Gary W.
Heu, Chan Chin
Chaverra-Rodriguez, Duverney
Lin, Po-An
Tan, Ching-Wen
AuthorAffiliation 2 Department of Biology Pennsylvania State University 415 Life Sciences Building University Park PA 16802 USA
4 Department of Plant Protection Faculty of Agriculture Universiti Putra Malaysia Serdang Selangor 43400 UPM Malaysia
1 Department of Entomology Pennsylvania State University 501 ASI Building University Park PA 16802 USA
5 Department of Plant Science Pennsylvania State University 310 Tyson Building University Park PA 16802 USA
6 Department of Entomology 103DA Entomology Research Laboratory Texas A&M University College Station TX 77843 USA
3 Department of Cell and Developmental Biology University of California San Diego 9500 Gilman Drive #0335 La Jolla CA 92093 USA
7 Department of Applied Biology Kyungpook National University 80 Daehakro Bukgu, Daegu 41566 Korea
AuthorAffiliation_xml – name: 3 Department of Cell and Developmental Biology University of California San Diego 9500 Gilman Drive #0335 La Jolla CA 92093 USA
– name: 5 Department of Plant Science Pennsylvania State University 310 Tyson Building University Park PA 16802 USA
– name: 4 Department of Plant Protection Faculty of Agriculture Universiti Putra Malaysia Serdang Selangor 43400 UPM Malaysia
– name: 7 Department of Applied Biology Kyungpook National University 80 Daehakro Bukgu, Daegu 41566 Korea
– name: 2 Department of Biology Pennsylvania State University 415 Life Sciences Building University Park PA 16802 USA
– name: 6 Department of Entomology 103DA Entomology Research Laboratory Texas A&M University College Station TX 77843 USA
– name: 1 Department of Entomology Pennsylvania State University 501 ASI Building University Park PA 16802 USA
Author_xml – sequence: 1
  givenname: Po-An
  surname: Lin
  fullname: Lin, Po-An
– sequence: 2
  givenname: Yintong
  surname: Chen
  fullname: Chen, Yintong
– sequence: 3
  givenname: Duverney
  surname: Chaverra-Rodriguez
  fullname: Chaverra-Rodriguez, Duverney
– sequence: 4
  givenname: Chan Chin
  surname: Heu
  fullname: Heu, Chan Chin
– sequence: 5
  givenname: Nursyafiqi Bin
  surname: Zainuddin
  fullname: Zainuddin, Nursyafiqi Bin
– sequence: 6
  givenname: Jagdeep Singh
  surname: Sidhu
  fullname: Sidhu, Jagdeep Singh
– sequence: 7
  givenname: Michelle
  surname: Peiffer
  fullname: Peiffer, Michelle
– sequence: 8
  givenname: Ching-Wen
  surname: Tan
  fullname: Tan, Ching-Wen
– sequence: 9
  givenname: Anjel
  surname: Helms
  fullname: Helms, Anjel
– sequence: 10
  givenname: Donghun
  surname: Kim
  fullname: Kim, Donghun
– sequence: 11
  givenname: Jared
  surname: Ali
  fullname: Ali, Jared
– sequence: 12
  givenname: Jason L.
  surname: Rasgon
  fullname: Rasgon, Jason L.
– sequence: 13
  givenname: Jonathan
  surname: Lynch
  fullname: Lynch, Jonathan
– sequence: 14
  givenname: Charles T.
  surname: Anderson
  fullname: Anderson, Charles T.
– sequence: 15
  givenname: Gary W.
  surname: Felton
  fullname: Felton, Gary W.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33459359$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1LHDEYh0NRdP04lJ5bhF7sYTRfk3lzKRRpqyBWaIXeQibzrptlNlmT2Rb_-2bdXVFpaS455Pk9eZPfHtkKMSAhrxk9YWWdhvnkhDWcyVdkxKTSFTDRbJERpRwqJdXPXbKX85RSqmvFd8iuELLWotYj8ua77zE4H26Phgke2d6m2QHZHts-4-F63yc3Xz7_ODuvLr99vTj7dFk5qUFW2krosBYdtIpLVo8VjB1qyTQq1nFeQ9M6BORMtbTjDFC0bW2ppqpFB1rsk48r73zRzrBzGIZkezNPfmbTvYnWm-cnwU_MbfxlgEpQwIvgeC1I8W6BeTAznx32vQ0YF9nwWhaSSwr_R2UDTQMFLuj7F-g0LlIoP1GElAFIoZd3v3s6_OPUm68twOkKcCnmnHBsnB_s4OPyLb43jJpleaaUZx7KK4kPLxIb6d_Ytf136e_-36C5uj7fJN6uEtM8xPSY4A1lQjMh_gCEo69i
CitedBy_id crossref_primary_10_1111_nph_70014
crossref_primary_10_1016_j_isci_2024_110154
crossref_primary_10_1007_s10886_024_01520_y
crossref_primary_10_1186_s12870_021_03179_z
crossref_primary_10_3390_plants12193380
crossref_primary_10_1038_s41467_023_39353_0
crossref_primary_10_1007_s10886_023_01440_3
crossref_primary_10_1016_j_molp_2023_11_011
crossref_primary_10_1016_j_scitotenv_2022_155052
crossref_primary_10_1021_acs_jafc_3c06401
crossref_primary_10_1111_1365_2745_13987
crossref_primary_10_1111_jse_12851
crossref_primary_10_1007_s10340_024_01757_2
crossref_primary_10_1016_j_stress_2025_100738
crossref_primary_10_1146_annurev_arplant_040121_114908
crossref_primary_10_1093_plcell_koac009
crossref_primary_10_1111_nph_20391
crossref_primary_10_3389_fpls_2022_902342
crossref_primary_10_1080_17550874_2024_2364738
crossref_primary_10_1016_j_phytochem_2021_113008
crossref_primary_10_1016_j_tplants_2021_08_017
crossref_primary_10_1038_s41467_023_42226_1
crossref_primary_10_3389_fevo_2022_1033730
crossref_primary_10_1093_jxb_erae401
crossref_primary_10_3390_insects15070511
crossref_primary_10_1039_D2NP00061J
crossref_primary_10_1021_acs_jafc_4c09439
crossref_primary_10_1093_jxb_erae447
crossref_primary_10_1093_pcp_pcae059
crossref_primary_10_1111_nph_17411
crossref_primary_10_3389_fpls_2022_1031891
crossref_primary_10_1111_pce_14416
crossref_primary_10_1111_pce_14735
crossref_primary_10_1371_journal_pone_0265490
crossref_primary_10_1111_pce_14601
crossref_primary_10_1111_ppl_13547
crossref_primary_10_3390_ijms23169002
crossref_primary_10_1007_s11829_024_10123_z
crossref_primary_10_1111_pce_15355
crossref_primary_10_1002_ps_6417
crossref_primary_10_1111_pce_15353
crossref_primary_10_1093_plphys_kiae215
crossref_primary_10_1007_s10886_021_01314_6
crossref_primary_10_1111_plb_13709
crossref_primary_10_1016_j_jia_2024_05_018
crossref_primary_10_1042_EBC20210092
crossref_primary_10_1007_s11103_021_01203_2
crossref_primary_10_1111_nph_18507
Cites_doi 10.32614/CRAN.package.factoextra
10.1111/1365-2435.13297
10.1111/j.1469-8137.2008.02431.x
10.1093/aob/mcn127
10.1073/pnas.1320660111
10.1111/nph.12977
10.1073/pnas.1717934115
10.1111/j.2041-210X.2009.00001.x
10.1007/s11829-016-9416-1
10.1016/j.tplants.2009.12.006
10.3389/fmicb.2018.01683
10.1016/j.pbi.2015.05.029
10.1073/pnas.0804488105
10.1126/science.250.4985.1251
10.1111/pce.12347
10.1016/j.envexpbot.2005.06.021
10.1146/annurev.phyto.121107.104959
10.1007/s10886-010-9830-2
10.1073/pnas.1308867110
10.1007/s11829-020-09751-y
10.1105/tpc.18.00802
10.1007/978-94-007-6606-8_7
10.1046/j.1365-2311.1997.00042.x
10.1146/annurev.arplant.55.031903.141701
10.1146/annurev-ento-020117-043507
10.1073/pnas.0308037100
10.1371/journal.ppat.1002610
10.1007/s10886-019-01090-4
10.1002/(SICI)1520-6327(199909)42:1<99::AID-ARCH10>3.0.CO;2-B
10.1016/j.tplants.2004.08.009
10.4161/psb.1.5.3279
10.1126/science.221.4607.277
10.1016/j.tplants.2012.02.006
10.1111/nph.13804
10.1016/j.tplants.2004.02.006
10.1034/j.1399-3054.1998.1040204.x
10.1002/arch.20034
10.1016/j.atmosenv.2014.06.026
10.1073/pnas.96.11.6553
10.32614/CRAN.package.emmeans
10.1111/nph.14671
10.1093/ee/nvy191
10.1007/s10886-006-9049-4
10.1007/s11515-012-1193-3
10.1016/j.tplants.2009.12.002
10.1016/0003-2697(76)90527-3
10.1007/BF02751099
10.1163/156854288X00111
ContentType Journal Article
Copyright 2021 The Authors © 2021 New Phytologist Foundation
2021 The Authors. © 2021 New Phytologist Foundation
2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.
2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors © 2021 New Phytologist Foundation
– notice: 2021 The Authors. © 2021 New Phytologist Foundation
– notice: 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1111/nph.17214
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

MEDLINE

MEDLINE - Academic
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 803
ExternalDocumentID PMC8048682
33459359
10_1111_nph_17214
NPH17214
27013913
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: Agricultural Research Service
  funderid: 2017‐67013‐26596; PEN04576
– fundername: National Science Foundation
  funderid: IOS‐1645331; IOS‐1645548; MCB‐1616316
– fundername: ;
  grantid: 2017‐67013‐26596; PEN04576
– fundername: ;
  grantid: IOS‐1645331; IOS‐1645548; MCB‐1616316
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ACAHQ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASGY
AASVR
ABEFU
ABEML
ABXSQ
ACCFJ
ACHIC
ACQPF
ADULT
AEEZP
AEQDE
AEUQT
AFPWT
AHXOZ
AILXY
AIWBW
AJBDE
AQVQM
AS~
CAG
COF
DOOOF
EJD
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
LW6
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ABSQW
ADXHL
AGUYK
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c4984-9a48de53d8b62415f68fce9419e61d22587bce8e216b0d218e3bb5a0906bec893
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Thu Aug 21 14:26:35 EDT 2025
Fri Jul 11 18:37:28 EDT 2025
Fri Jul 11 09:11:48 EDT 2025
Fri Jul 25 10:42:34 EDT 2025
Mon Jul 21 06:01:47 EDT 2025
Thu Apr 24 23:06:18 EDT 2025
Tue Jul 01 02:28:37 EDT 2025
Wed Jan 22 16:29:31 EST 2025
Thu Jul 03 21:34:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords stomata
effector
plant defense
insect herbivore
HIPV
Language English
License Attribution-NonCommercial-NoDerivs
2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4984-9a48de53d8b62415f68fce9419e61d22587bce8e216b0d218e3bb5a0906bec893
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7265-9790
0000-0002-4672-3701
0000-0001-9870-0299
0000-0002-7430-5195
0000-0002-9312-0321
0000-0002-3290-1394
0000-0002-1076-1431
0000-0001-8068-7436
0000-0002-5235-288X
0000-0001-5518-6955
0000-0003-2136-8528
0000-0002-4050-8429
0000-0001-7481-3571
0000-0002-2219-3136
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17214
PMID 33459359
PQID 2501884392
PQPubID 2026848
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8048682
proquest_miscellaneous_2540482408
proquest_miscellaneous_2478778824
proquest_journals_2501884392
pubmed_primary_33459359
crossref_citationtrail_10_1111_nph_17214
crossref_primary_10_1111_nph_17214
wiley_primary_10_1111_nph_17214_NPH17214
jstor_primary_27013913
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
– name: Hoboken
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2021
Publisher Wiley
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2010; 15
2015; 38
2006; 32
2004; 9
1992; 18
2020; 14
1999; 42
2008; 105
2012; 17
1987; 38
2014; 204
2018; 9
1983; 221
2010; 1
1976; 72
1999; 96
2013; 110
2014; 95
1990; 250
2004; 101
2018; 220
2010; 36
1997; 22
2019; 33
2006; 58
2016; 10
2002; 2
2018; 63
2006; 1
2020; 32
2014; 111
2004; 55
2015; 26
2019; 45
2019; 48
2018; 115
2019
2018
2016; 210
2008; 46
2017
2016
1998; 104
2013
2008; 178
2012; 7
2009; 103
2012; 8
2005; 58
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Fox J (e_1_2_8_18_1) 2018
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
R Core Team (e_1_2_8_39_1) 2017
Ryan A (e_1_2_8_42_1) 2019
Liaw A (e_1_2_8_25_1) 2002; 2
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 204
  start-page: 297
  year: 2014
  end-page: 306
  article-title: Herbivore‐ induced plant volatiles: targets, perception and unanswered questions
  publication-title: New Phytologist
– volume: 7
  start-page: 96
  year: 2012
  end-page: 112
  article-title: The stomata frontline of plant interaction with the environment‐perspectives from hormone regulation
  publication-title: Frontiers in Biology
– volume: 178
  start-page: 703
  year: 2008
  end-page: 718
  article-title: Guard‐cell signalling for hydrogen peroxide and abscisic acid
  publication-title: New Phytologist
– volume: 63
  start-page: 433
  year: 2018
  end-page: 452
  article-title: Tritrophic interactions mediated by herbivore‐induced plant volatiles: mechanisms, ecological relevance, and application potential
  publication-title: Annual Review of Entomology
– volume: 46
  start-page: 101
  year: 2008
  end-page: 122
  article-title: Role of stomata in plant innate immunity and foliar bacterial diseases
  publication-title: Annual Review of Phytopathology
– volume: 17
  start-page: 293
  year: 2012
  end-page: 302
  article-title: Specialist versus generalist insect herbivores and plant defense
  publication-title: Trends in Plant Science
– volume: 95
  start-page: 105
  year: 2014
  end-page: 112
  article-title: Aqueous oxidation of green leaf volatiles by hydroxyl radical as a source of SOA: kinetics and SOA yields
  publication-title: Atmospheric Environment
– volume: 18
  start-page: 1743
  year: 1992
  end-page: 1753
  article-title: Orientation of (Hymenoptera: Braconidae) to green leaf volatiles: dose‐response curves
  publication-title: Journal of Chem Ecology
– year: 2018
– volume: 1
  start-page: 3
  year: 2010
  end-page: 14
  article-title: A protocol for data exploration to avoid common statistical problems
  publication-title: Methods in Ecology and Evolution
– volume: 58
  start-page: 106
  year: 2005
  end-page: 113
  article-title: The host plant as a factor in the synthesis and secretion of salivary glucose oxidase in larval
  publication-title: Archives of Insect Biochemistry and Physiology
– volume: 32
  start-page: 981
  year: 2006
  end-page: 992
  article-title: Ablation of caterpillar labial salivary glands: technique for determining the role of saliva in insect‐plant interactions
  publication-title: Journal of Chemical Ecology
– volume: 48
  start-page: 419
  year: 2019
  end-page: 425
  article-title: Herbivorous caterpillars can utilize three mechanisms to alter green leaf volatile emission
  publication-title: Environmental Entomology
– volume: 38
  start-page: 23
  year: 2015
  end-page: 34
  article-title: Emission of herbivore elicitor‐induced sesquiterpenes is regulated by stomatal aperture in maize ( ) seedlings
  publication-title: Plant, Cell & Environment
– volume: 111
  start-page: 7144
  year: 2014
  end-page: 7149
  article-title: Intake and transformation to a glycoside of (Z)‐3‐hexenol from infested neighbors reveals a mode of plant odor reception and defense
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 22
  start-page: 121
  year: 1997
  end-page: 123
  article-title: Feeding by lepidopteran larvae is dangerous
  publication-title: Ecological Entomology
– volume: 1
  start-page: 243
  year: 2006
  end-page: 250
  article-title: The role of insect‐derived cues in eliciting indirect plant defenses in tobacco,
  publication-title: Plant Signal & Behavior
– volume: 103
  start-page: 655
  year: 2009
  end-page: 663
  article-title: Indirect suppression of photosynthesis on individual leaves by arthropod herbivory
  publication-title: Annals of Botany
– volume: 32
  start-page: 2325
  year: 2020
  end-page: 2344
  article-title: Guard cell starch degradation yields glucose for rapid stomatal opening in
  publication-title: Plant Cell
– volume: 221
  start-page: 277
  year: 1983
  end-page: 279
  article-title: Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants
  publication-title: Science
– volume: 15
  start-page: 167
  year: 2010
  end-page: 175
  article-title: The evolutionary context for herbivore‐induced plant volatiles: beyond the 'cry for help'
  publication-title: Trends in Plant Science
– volume: 104
  start-page: 169
  year: 1998
  end-page: 174
  article-title: The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt‐tolerant relative
  publication-title: Physiologia Plantarum
– volume: 9
  start-page: 180
  year: 2004
  end-page: 186
  article-title: Physiological and physicochemical controls on foliar volatile organic compound emissions
  publication-title: Trends in Plant Science
– volume: 72
  start-page: 248
  year: 1976
  end-page: 254
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding
  publication-title: Analytical Biochemistry
– volume: 8
  year: 2012
  article-title: Induced release of a plant‐defense volatile 'deceptively' attracts insect vectors to plants infected with a bacterial pathogen
  publication-title: PLoS Pathogens
– volume: 26
  start-page: 80
  year: 2015
  end-page: 86
  article-title: Cues from chewing insects – the intersection of DAMPs, HAMPs, MAMPs and effectors
  publication-title: Current Opinion in Plant Biology
– volume: 36
  start-page: 885
  year: 2010
  end-page: 897
  article-title: Survey of a salivary effector in caterpillars: glucose oxidase variation and correlation with host range
  publication-title: Journal of Chemical Ecology
– volume: 210
  start-page: 284
  year: 2016
  end-page: 294
  article-title: Eco‐evolutionary factors drive induced plant volatiles: a meta‐analysis
  publication-title: New Phytologist
– volume: 15
  start-page: 154
  year: 2010
  end-page: 166
  article-title: Abiotic stresses and induced BVOCs
  publication-title: Trends in Plant Science
– volume: 38
  start-page: 148
  year: 1987
  end-page: 165
  article-title: How plants obtain predatory mites as bodyguards
  publication-title: Netherlands Journal of Zoology
– volume: 101
  start-page: 1781
  year: 2004
  end-page: 1785
  article-title: Airborne signals prime plants against insect herbivore attack
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 105
  start-page: 17430
  year: 2008
  end-page: 17435
  article-title: Isoprene interferes with the attraction of bodyguards by herbaceous plants
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 42
  start-page: 99
  year: 1999
  end-page: 109
  article-title: Salivary glucose oxidase: multifunctional roles for ?
  publication-title: Archives of Insect Biochemistry and Physiology
– volume: 220
  start-page: 666
  year: 2018
  end-page: 683
  article-title: Green leaf volatile production by plants: a meta‐analysis
  publication-title: New Phytologist
– volume: 10
  start-page: 143
  year: 2016
  end-page: 150
  article-title: Chew and spit: tree‐feeding notodontid caterpillars anoint girdles with saliva
  publication-title: Arthropod‐Plant Interactions
– volume: 9
  start-page: 490
  year: 2004
  end-page: 498
  article-title: Reactive oxygen gene network of plants
  publication-title: Trends in Plant Science
– volume: 250
  start-page: 1251
  year: 1990
  end-page: 1253
  article-title: Exploitation of herbivore‐induced plant odors by host‐seeking parasitic wasps
  publication-title: Science
– start-page: 181
  year: 2013
  end-page: 208
– year: 2016
– volume: 58
  start-page: 106
  year: 2006
  end-page: 113
  article-title: Differential sensitivity of C and C plants to water deficit stress: association with oxidative stress and antioxidants
  publication-title: Environmental and Experimental Botany
– volume: 14
  start-page: 317
  year: 2020
  end-page: 325
  article-title: Induction of defensive proteins in Solanaceae by salivary glucose oxidase of caterpillars and consequences for larval performance
  publication-title: Arthropod‐Plant Interactions
– volume: 45
  start-page: 693
  year: 2019
  end-page: 707
  article-title: Induced plant defenses against herbivory in cultivated and wild tomato
  publication-title: Journal of Chemical Ecology
– volume: 9
  start-page: 1683
  year: 2018
  article-title: Negative binomial mixed models for analyzing longitudinal microbiome data
  publication-title: Frontiers in Microbiology
– volume: 55
  start-page: 373
  year: 2004
  end-page: 399
  article-title: Reactive oxygen species: metabolism, oxidative stress, and signal transduction
  publication-title: Annual Review of Plant Biology
– volume: 33
  start-page: 798
  year: 2019
  end-page: 808
  article-title: Chemical cues linked to risk: cues from below‐ground natural enemies enhance plant defences and influence herbivore behaviour and performance
  publication-title: Functional Ecology
– start-page: 1
  year: 2019
  end-page: 16
  article-title: Ordered quantile normalization: a semiparametric transformation built for the cross‐validation era
  publication-title: Journal of Applied Statistics
– year: 2017
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  article-title: Classification and regression by RandomForest
  publication-title: R News
– volume: 96
  start-page: 6553
  year: 1999
  end-page: 6557
  article-title: Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 110
  start-page: 15728
  year: 2013
  end-page: 15733
  article-title: Herbivore exploits orally secreted bacteria to suppress plant defenses
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 115
  start-page: 5199
  year: 2018
  end-page: 5204
  article-title: Symbiotic polydnavirus of a parasite manipulates caterpillar and plant immunity
  publication-title: Proceedings of the National Academy of Sciences, USA
– ident: e_1_2_8_23_1
  doi: 10.32614/CRAN.package.factoextra
– ident: e_1_2_8_21_1
  doi: 10.1111/1365-2435.13297
– ident: e_1_2_8_49_1
  doi: 10.1111/j.1469-8137.2008.02431.x
– ident: e_1_2_8_33_1
  doi: 10.1093/aob/mcn127
– ident: e_1_2_8_45_1
  doi: 10.1073/pnas.1320660111
– ident: e_1_2_8_20_1
  doi: 10.1111/nph.12977
– ident: e_1_2_8_46_1
  doi: 10.1073/pnas.1717934115
– volume-title: An R companion to applied regression
  year: 2018
  ident: e_1_2_8_18_1
– ident: e_1_2_8_53_1
  doi: 10.1111/j.2041-210X.2009.00001.x
– ident: e_1_2_8_13_1
  doi: 10.1007/s11829-016-9416-1
– ident: e_1_2_8_28_1
  doi: 10.1016/j.tplants.2009.12.006
– ident: e_1_2_8_51_1
  doi: 10.3389/fmicb.2018.01683
– ident: e_1_2_8_2_1
  doi: 10.1016/j.pbi.2015.05.029
– ident: e_1_2_8_27_1
  doi: 10.1073/pnas.0804488105
– ident: e_1_2_8_48_1
  doi: 10.1126/science.250.4985.1251
– ident: e_1_2_8_43_1
  doi: 10.1111/pce.12347
– ident: e_1_2_8_34_1
  doi: 10.1016/j.envexpbot.2005.06.021
– start-page: 1
  year: 2019
  ident: e_1_2_8_42_1
  article-title: Ordered quantile normalization: a semiparametric transformation built for the cross‐validation era
  publication-title: Journal of Applied Statistics
– ident: e_1_2_8_30_1
  doi: 10.1146/annurev.phyto.121107.104959
– ident: e_1_2_8_15_1
  doi: 10.1007/s10886-010-9830-2
– volume-title: R: a language and environment for statistical computing
  year: 2017
  ident: e_1_2_8_39_1
– volume: 2
  start-page: 18
  year: 2002
  ident: e_1_2_8_25_1
  article-title: Classification and regression by RandomForest
  publication-title: R News
– ident: e_1_2_8_9_1
  doi: 10.1073/pnas.1308867110
– ident: e_1_2_8_26_1
  doi: 10.1007/s11829-020-09751-y
– ident: e_1_2_8_17_1
  doi: 10.1105/tpc.18.00802
– ident: e_1_2_8_19_1
  doi: 10.1007/978-94-007-6606-8_7
– ident: e_1_2_8_7_1
  doi: 10.1046/j.1365-2311.1997.00042.x
– ident: e_1_2_8_5_1
  doi: 10.1146/annurev.arplant.55.031903.141701
– ident: e_1_2_8_47_1
  doi: 10.1146/annurev-ento-020117-043507
– ident: e_1_2_8_16_1
  doi: 10.1073/pnas.0308037100
– ident: e_1_2_8_29_1
  doi: 10.1371/journal.ppat.1002610
– ident: e_1_2_8_37_1
  doi: 10.1007/s10886-019-01090-4
– ident: e_1_2_8_14_1
  doi: 10.1002/(SICI)1520-6327(199909)42:1<99::AID-ARCH10>3.0.CO;2-B
– ident: e_1_2_8_31_1
  doi: 10.1016/j.tplants.2004.08.009
– ident: e_1_2_8_10_1
  doi: 10.4161/psb.1.5.3279
– ident: e_1_2_8_6_1
  doi: 10.1126/science.221.4607.277
– ident: e_1_2_8_3_1
  doi: 10.1016/j.tplants.2012.02.006
– ident: e_1_2_8_41_1
  doi: 10.1111/nph.13804
– ident: e_1_2_8_35_1
  doi: 10.1016/j.tplants.2004.02.006
– ident: e_1_2_8_44_1
  doi: 10.1034/j.1399-3054.1998.1040204.x
– ident: e_1_2_8_38_1
  doi: 10.1002/arch.20034
– ident: e_1_2_8_40_1
  doi: 10.1016/j.atmosenv.2014.06.026
– ident: e_1_2_8_36_1
  doi: 10.1073/pnas.96.11.6553
– ident: e_1_2_8_24_1
  doi: 10.32614/CRAN.package.emmeans
– ident: e_1_2_8_4_1
  doi: 10.1111/nph.14671
– ident: e_1_2_8_22_1
  doi: 10.1093/ee/nvy191
– ident: e_1_2_8_32_1
  doi: 10.1007/s10886-006-9049-4
– ident: e_1_2_8_52_1
  doi: 10.1007/s11515-012-1193-3
– ident: e_1_2_8_11_1
  doi: 10.1016/j.tplants.2009.12.002
– ident: e_1_2_8_8_1
  doi: 10.1016/0003-2697(76)90527-3
– ident: e_1_2_8_50_1
  doi: 10.1007/BF02751099
– ident: e_1_2_8_12_1
  doi: 10.1163/156854288X00111
SSID ssj0009562
Score 2.541938
Snippet • Herbivore-induced plant volatiles (HIPVs) are widely recognized as an ecologically important defensive response of plants against herbivory. Although the...
Summary Herbivore‐induced plant volatiles (HIPVs) are widely recognized as an ecologically important defensive response of plants against herbivory. Although...
Herbivore‐induced plant volatiles (HIPVs) are widely recognized as an ecologically important defensive response of plants against herbivory. Although the...
Herbivore-induced plant volatiles (HIPVs) are widely recognized as an ecologically important defensive response of plants against herbivory. Although the...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 793
SubjectTerms Acetates
Acetic acid
Allelochemicals
Animals
CRISPR
CRISPR-Cas systems
Defensive behavior
Dynamics
effector
Emission
Emissions
Enzymes
Gene editing
Glucose oxidase
Glycine (amino acid)
Glycine max
Helicoverpa zea
Herbivores
Herbivory
HIPV
insect herbivore
Insecta
Insects
Moths
phytophagous insects
plant defense
Plant Stomata
Solanum lycopersicum
Soybeans
Stomata
stomatal movement
Tomatoes
Volatile compounds
Volatile Organic Compounds
Volatiles
Subtitle an insect salivary enzyme closes plant stomata and inhibits volatile release
Title Silencing the alarm
URI https://www.jstor.org/stable/27013913
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17214
https://www.ncbi.nlm.nih.gov/pubmed/33459359
https://www.proquest.com/docview/2501884392
https://www.proquest.com/docview/2478778824
https://www.proquest.com/docview/2540482408
https://pubmed.ncbi.nlm.nih.gov/PMC8048682
Volume 230
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NiQdeYPwYlI3JIB54SdUktmPDEyCmColpAib1ASmyY1eN1qXV0j50fz13zg-1MBDiLVK-SLF9d_6c3H0H8NqOUue1yCIrhY0w-lEj9ySOxNRo74RzcWja9-VMji_454mY7MG7rham0YfoP7iRZ4R4TQ5ubL3l5NVyNqTzC2mBUq4WEaKvyZbgrkw6BWbJ5aRVFaIsnv7Jnb2oSUe8jWj-ni-5zWPDRnT6AH50Q2jyTy6H65UdFje_qDv-5xgP4H5LUNn7xqIewp6vHsHdDwskkZvHYL6VVKWE-x1D5sgMnouv3jJTsbKqMXSy2tCvpesN89XN5sqzYr6ofc2Wc1xAhiNHfmwQ7hA_K225qhmGRzSOuWfUvQW31Cdwcfrp-8dx1HZpiAquFY-04cp5kTplJdGBqVTTwmseay9jh-FCZbbwyiextCOHjMKn1goz0iOJ9oN06RD2q0XlnwGjylgllROZ1twKbePCWum5U4ZKaJMBvOnWKy9aCXPqpDHPu6MMTlgeJmwAr3rostHtuA10GBa9RyQZMeI4HcBxZwV569N1npD2oUICh-_xsr-N3ki_WEzlF2vEkNZRhqcW_hcMkmSuSFpuAE8bw-pfIE25oFrpAWQ7JtcDSA18905VzoIquCLxxDBHwaL-POr87HwcLp7_O_QI7iWUzBNSlo5hf3W99i-Qja3sCdxJ-PlJcL6faoExiQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NgQQv43OQMcAgHnhJ1SSOYyNeADEV2CoEm9QXFNmxq0Z0abW0D91fz53TRC0MhHiLlIvkj7vz75y73wG8NP3EOpVmoRGpCdH7USP3OArTsVbOptZGvmnfyVAMzvinUTragTdtLUzDD9FduJFleH9NBk4X0htWXs0nPQpg-DW4Th29fUD1Nd6g3BVxy8EsuBiteYUoj6f7dOs0ahISr4Kav2dMbiJZfxQd3Ybv7SSaDJQfveXC9IrLX_gd_3eWd2BvjVHZ20ap7sKOq-7BjXczxJGr-6C_lVSohEceQ_DINIbG56-ZrlhZ1eg9Wa3p79LFirnqcnXuWDGd1a5m8ynuIcOpI0TWKG5RflKaclEz9JCoH1PHqIELnqoP4Ozow-n7Qbhu1BAWXEkeKs2ldWlipRGECMZCjguneKSciCx6DJmZwkkXR8L0LYIKlxiT6r7qC1QhREz7sFvNKvcIGBXHSiFtminFTapMVBgjHLdSUxVtHMCrdsPyYs1iTs00pnkbzeCC5X7BAnjRic4b6o6rhPb9rncScUagOEoCOGzVIF-bdZ3HRH8oEcPhOJ53r9Eg6S-LrtxsiTJEd5Rh4ML_IoM4mUtilwvgYaNZ3QCShKdULh1AtqVznQARgm-_qcqJJwaXxJ_o18ir1J9nnQ-_DPzDwb-LPoObg9OT4_z44_DzY7gVU26Pz2A6hN3FxdI9QXC2ME-9Df4EKcA0zQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWBSEuvBcCCxjEgUuqPGzHhhOwVOVVrYCVekCK7NhVI7pptWkP3V_PjPNQCwtC3CLlixTbM-PPycw3hDw3UWqd4lloBDchRD9s5J7EIZ9q5Sy3NvZN-z6PxeiEfZjwyR551dXCNPoQ_Qc39Awfr9HBl3a65eTVcjbA8wu7RC4zEUk06aMvyZbirkg6CWbBxKSVFcI0nv7Rnc2oyUe8iGn-njC5TWT9TjS8Qb53Y2gSUH4M1iszKM5_kXf8z0HeJNdbhkpfNyZ1i-y56ja58mYBLHJzh-ivJZYpwYZHgTpSDQfj05dUV7SsaoidtNb4b-lsQ111vjl1tJgvalfT5RxWkMLIgSBrgFvAz0pTrmoK8RGsY-4otm-BPfUuORm--_Z2FLZtGsKCKclCpZm0jqdWGoF8YCrktHCKxcqJ2EK8kJkpnHRJLExkgVK41BiuIxUJMCDgSwdkv1pU7j6hWBorhbQ8U4oZrkxcGCMcs1JjDW0SkBfdeuVFq2GOrTTmeXeWgQnL_YQF5FkPXTbCHReBDvyi94gkQ0ocpwE57Kwgb526zhMUP5TA4OA9nva3wR3xH4uu3GINGBQ7yuDYwv6CAZbMJGrLBeReY1j9C6Qp41gsHZBsx-R6AMqB796pypmXBZeonujnyFvUn0edj49H_uLBv0OfkKvHR8P80_vxx4fkWoKJPT596ZDsr87W7hEws5V57D3wJ4hRM4U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silencing+the+alarm%3A+an+insect+salivary+enzyme+closes+plant+stomata+and+inhibits+volatile+release&rft.jtitle=The+New+phytologist&rft.au=Lin%2C+Po%E2%80%90An&rft.au=Chen%2C+Yintong&rft.au=Chaverra%E2%80%90Rodriguez%2C+Duverney&rft.au=Heu%2C+Chan+Chin&rft.date=2021-04-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=230&rft.issue=2&rft.spage=793&rft.epage=803&rft_id=info:doi/10.1111%2Fnph.17214&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_nph_17214
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon