The human and murine hematopoietic stem cell niches: are they comparable?
Hematopoietic stem cells (HSCs) reside in specific niches that provide various instructive cues that regulate HSC self‐renewal and their development into all mature cells of the peripheral blood. Progress in this research field has largely been guided by mouse studies. However, parallel studies with...
Saved in:
Published in | Annals of the New York Academy of Sciences Vol. 1370; no. 1; pp. 55 - 64 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.04.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hematopoietic stem cells (HSCs) reside in specific niches that provide various instructive cues that regulate HSC self‐renewal and their development into all mature cells of the peripheral blood. Progress in this research field has largely been guided by mouse studies. However, parallel studies with human subjects, tissues, and cells, in combination with xenotransplantation experiments in immunodeficient mice, have contributed to our increased understanding of the human HSC niche. Here, we summarize our current knowledge of the various specialized subsets of both stromal and hematopoietic cells that support HSCs through cell–cell interactions and secreted factors, and the many parallels between the murine and human HSC niches. Furthermore, we discuss recent technological advances that are likely to improve our understanding of the human HSC niche, a better understanding of which may allow further identification of unique molecular and cellular pathways in the HSC niche. This information may help to further improve the outcome of HSC transplantation and refine the treatment of hematopoietic diseases. |
---|---|
AbstractList | Hematopoietic stem cells (HSCs) reside in specific niches that provide various instructive cues that regulate HSC self-renewal and their development into all mature cells of the peripheral blood. Progress in this research field has largely been guided by mouse studies. However, parallel studies with human subjects, tissues, and cells, in combination with xenotransplantation experiments in immunodeficient mice, have contributed to our increased understanding of the human HSC niche. Here, we summarize our current knowledge of the various specialized subsets of both stromal and hematopoietic cells that support HSCs through cell-cell interactions and secreted factors, and the many parallels between the murine and human HSC niches. Furthermore, we discuss recent technological advances that are likely to improve our understanding of the human HSC niche, a better understanding of which may allow further identification of unique molecular and cellular pathways in the HSC niche. This information may help to further improve the outcome of HSC transplantation and refine the treatment of hematopoietic diseases.Hematopoietic stem cells (HSCs) reside in specific niches that provide various instructive cues that regulate HSC self-renewal and their development into all mature cells of the peripheral blood. Progress in this research field has largely been guided by mouse studies. However, parallel studies with human subjects, tissues, and cells, in combination with xenotransplantation experiments in immunodeficient mice, have contributed to our increased understanding of the human HSC niche. Here, we summarize our current knowledge of the various specialized subsets of both stromal and hematopoietic cells that support HSCs through cell-cell interactions and secreted factors, and the many parallels between the murine and human HSC niches. Furthermore, we discuss recent technological advances that are likely to improve our understanding of the human HSC niche, a better understanding of which may allow further identification of unique molecular and cellular pathways in the HSC niche. This information may help to further improve the outcome of HSC transplantation and refine the treatment of hematopoietic diseases. Hematopoietic stem cells (HSCs) reside in specific niches that provide various instructive cues that regulate HSC self‐renewal and their development into all mature cells of the peripheral blood. Progress in this research field has largely been guided by mouse studies. However, parallel studies with human subjects, tissues, and cells, in combination with xenotransplantation experiments in immunodeficient mice, have contributed to our increased understanding of the human HSC niche. Here, we summarize our current knowledge of the various specialized subsets of both stromal and hematopoietic cells that support HSCs through cell–cell interactions and secreted factors, and the many parallels between the murine and human HSC niches. Furthermore, we discuss recent technological advances that are likely to improve our understanding of the human HSC niche, a better understanding of which may allow further identification of unique molecular and cellular pathways in the HSC niche. This information may help to further improve the outcome of HSC transplantation and refine the treatment of hematopoietic diseases. |
Author | Schepers, Koen van Pel, Melissa Fibbe, Willem E. |
Author_xml | – sequence: 1 givenname: Melissa surname: van Pel fullname: van Pel, Melissa organization: Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands – sequence: 2 givenname: Willem E. surname: Fibbe fullname: Fibbe, Willem E. organization: Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands – sequence: 3 givenname: Koen surname: Schepers fullname: Schepers, Koen email: k.schepers@lumc.nl organization: Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26713726$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1rFDEUhoNU7LZ64w-QAW9EmJqvyYc3paxaC0sFrahXIZM5w6bOJGsyg-6_N-u2vSiiuQmE5znkvO8ROggxAEJPCT4h5bwKW5tPCNWaP0ALIrmuhWD0AC0wlrJWmrJDdJTzNcaEKi4foUMqJGGSigW6uFpDtZ5HGyobumqckw_lAUY7xU30MHlX5QnGysEwVMG7NeTXlU1QTWvYVi6OG5tsO8DpY_Swt0OGJzf3Mfr87u3V8n29-nB-sTxb1Y5rxWvuZKecti2zTYOFsLSDvqNtw4E1omU9cZb0mjqrWoI1baUDwZjoObVdozg7Ri_2czcp_pghT2b0efc7GyDO2RCFldAlAfJ_VOpGSSWlKOjze-h1nFMoi-yoEhXTVBXq2Q01tyN0ZpP8aNPW3OZZgJd7wKWYc4L-DiHY7Moyu7LMn7IKjO_Bzk928jFMyfrh7wrZKz_9ANt_DDeX384-3Tr13vGlyF93jk3fjZBMNubL5bnhjfz68Q1emhX7DUectEw |
CODEN | ANYAA9 |
CitedBy_id | crossref_primary_10_1016_j_molmed_2020_01_016 crossref_primary_10_2147_JBM_S305319 crossref_primary_10_1016_j_isci_2019_08_006 crossref_primary_10_1016_j_bonr_2023_101669 crossref_primary_10_1038_s41598_018_33979_7 crossref_primary_10_1016_j_stem_2024_02_010 crossref_primary_10_3389_fcvm_2023_1261849 crossref_primary_10_1016_j_exphem_2018_05_002 crossref_primary_10_3390_ijms23073675 crossref_primary_10_1002_bies_202300142 crossref_primary_10_3390_ijms17071009 crossref_primary_10_1016_j_ejcb_2018_07_001 |
Cites_doi | 10.1016/j.stemcr.2015.05.017 10.3324/haematol.13740 10.1080/146532402317381811 10.1038/nature12984 10.1038/ni1509 10.1038/nprot.2013.026 10.1155/2011/353878 10.1038/nature12612 10.1182/blood-2012-03-414920 10.1182/blood-2009-11-253534 10.1038/sj.leu.2402684 10.1111/j.1365-2141.1974.tb06671.x 10.1016/j.immuni.2006.10.016 10.7554/eLife.03696 10.4049/jimmunol.181.2.1232 10.1073/pnas.79.11.3608 10.1084/jem.20050967 10.1038/nature02041 10.1038/nature10783 10.1182/blood-2007-09-112052 10.1016/j.celrep.2013.03.041 10.1016/j.jcyt.2013.12.011 10.1016/j.stem.2012.01.003 10.1177/1535370215594583 10.1126/scitranslmed.3002191 10.1016/j.stem.2014.06.008 10.1038/nature11926 10.1016/j.scr.2009.12.004 10.1038/nature11885 10.1182/blood.V90.12.4779 10.1182/blood.V86.9.3353.bloodjournal8693353 10.1038/bmt.2011.217 10.1182/blood.V90.2.641 10.1016/j.stem.2007.10.008 10.1016/j.stem.2013.05.014 10.1016/j.stem.2013.09.006 10.1016/j.cell.2004.07.004 10.1182/blood.V92.8.2609 10.1016/j.immuni.2012.07.011 10.1016/j.celrep.2013.07.048 10.1016/j.stemcr.2014.09.018 10.1038/nm.3707 10.1053/bbmt.2002.v8.pm12171483 10.1111/j.1365-2559.2011.04104.x 10.1084/jem.20122252 10.1517/14712598.2014.902927 10.1016/j.it.2011.04.005 10.1016/j.cell.2007.08.025 10.1016/j.stem.2015.02.014 10.3324/haematol.2011.050500 10.1182/blood-2009-05-224857 10.1056/NEJMoa1207285 10.1016/j.stem.2007.06.001 10.1182/blood-2003-11-4011 10.1038/nature07639 10.1097/01.moh.0000133652.06863.47 10.1016/j.exphem.2015.04.011 10.1182/blood-2012-08-451864 10.1016/j.stem.2008.10.005 10.1182/blood-2010-08-304287 10.1002/stem.160007 10.1038/labinvest.2012.93 10.1038/nm.2969 10.1016/j.stem.2007.10.020 10.1182/blood.V74.5.1563.1563 10.1016/j.cell.2005.10.041 10.1182/blood-2009-07-233437 10.1016/j.bbrc.2014.10.095 10.1084/jem.20101688 10.1182/blood-2011-12-398115 10.1038/nature06685 10.1182/blood-2011-11-389957 10.1038/nature02040 10.1016/j.stem.2008.09.004 10.3324/haematol.2009.006072 10.1016/j.blre.2014.01.001 10.1038/nature09262 10.1182/blood-2005-06-2211 10.1016/j.stem.2008.01.017 10.1038/nm.3706 10.1182/blood-2014-03-565721 10.1038/bmt.2009.381 10.1080/14653240600855905 10.1111/j.1749-6632.2010.05390.x 10.1182/blood.V95.11.3289 10.1016/j.stem.2010.02.001 10.1084/jem.20041385 10.1002/jcp.1040910303 10.1016/j.exphem.2011.02.011 10.1016/j.immuni.2010.08.017 10.1038/leu.2011.236 10.1016/j.cell.2011.09.053 10.1016/j.bone.2008.08.128 10.1016/j.immuni.2012.05.014 10.1016/j.stem.2012.01.006 10.1182/blood-2007-10-120329 10.15252/msb.20145141 10.1038/nature15250 10.1182/blood.V93.1.107 10.1016/S0301-472X(02)00812-3 10.1182/blood.V78.1.55.55 10.3324/haematol.2009.010736 10.1172/JCI7615 10.1016/j.stem.2013.06.015 10.1182/blood.V97.10.3283 10.1126/science.1201219 |
ContentType | Journal Article |
Copyright | 2015 New York Academy of Sciences. 2016 The New York Academy of Sciences |
Copyright_xml | – notice: 2015 New York Academy of Sciences. – notice: 2016 The New York Academy of Sciences |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7ST 7T5 7T7 7TK 7TM 7TO 7U7 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 SOI 7X8 |
DOI | 10.1111/nyas.12994 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Toxicology Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Toxicology Abstracts Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Virology and AIDS Abstracts Environment Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1749-6632 |
EndPage | 64 |
ExternalDocumentID | 4090498251 26713726 10_1111_nyas_12994 NYAS12994 ark_67375_WNG_457XRD0C_L |
Genre | article Journal Article Review |
GroupedDBID | --- --Z -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1CY 1OB 1OC 23M 31~ 33P 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 692 6J9 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAMDK AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOJD ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AELAQ AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFSWV AFZJQ AHBTC AHEFC AHMBA AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG CO8 COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD EMOBN ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IH2 IX1 J0M K48 L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OHT OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RAG RIWAO RJQFR ROL RX1 S10 SAMSI SJN SUPJJ SV3 TEORI TUS UB1 UPT V8K VH1 W8V W99 WBKPD WH7 WHWMO WIH WIK WOHZO WQJ WRC WUP WVDHM WXSBR X7M XG1 YBU YOC YSK ZGI ZKB ZXP ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADXHL AEYWJ AGHNM AGQPQ AGYGG AHDLI CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7ST 7T5 7T7 7TK 7TM 7TO 7U7 7U9 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 K9. M7N P64 RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c4984-4c7d8c9ab3a55066a2defd2b54e356b3f1ca1f92ca8b1092b7ce6336f42ad5843 |
IEDL.DBID | DR2 |
ISSN | 0077-8923 1749-6632 |
IngestDate | Fri Jul 11 10:50:27 EDT 2025 Thu Jul 10 18:03:14 EDT 2025 Fri Jul 25 10:22:20 EDT 2025 Thu Apr 03 07:02:36 EDT 2025 Thu Apr 24 22:57:35 EDT 2025 Tue Jul 01 04:00:50 EDT 2025 Wed Jan 22 17:04:01 EST 2025 Wed Oct 30 09:53:21 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | stem cell niche xenograft model coculture mesenchymal stromal cell hematopoietic stem cells |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 New York Academy of Sciences. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4984-4c7d8c9ab3a55066a2defd2b54e356b3f1ca1f92ca8b1092b7ce6336f42ad5843 |
Notes | istex:BFE3E6CA384CBDD4DF40E886C70FCED10EFDBEA8 ArticleID:NYAS12994 ark:/67375/WNG-457XRD0C-L ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 26713726 |
PQID | 1797263928 |
PQPubID | 946344 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1808696631 proquest_miscellaneous_1795878776 proquest_journals_1797263928 pubmed_primary_26713726 crossref_primary_10_1111_nyas_12994 crossref_citationtrail_10_1111_nyas_12994 wiley_primary_10_1111_nyas_12994_NYAS12994 istex_primary_ark_67375_WNG_457XRD0C_L |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2016 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: April 2016 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Annals of the New York Academy of Sciences |
PublicationTitleAlternate | Ann. N.Y. Acad. Sci |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Hopman, R.K. & J.F. DiPersio. 2014. Advances in stem cell mobilization. Blood Rev. 28: 31-40. Tormin, A. et al. 2011. CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization. Blood 117: 5067-5077. Yoshihara, H. et al. 2007. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1: 685-697. Jing, D. et al. 2010. CD49d blockade by natalizumab in patients with multiple sclerosis affects steady-state hematopoiesis and mobilizes progenitors with a distinct phenotype and function. Bone Marrow Transplant. 45: 1489-1496. Kollet, O. et al. 2001. Rapid and efficient homing of human CD34(+)CD38(-/low)CXCR4(+) stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2m(null) mice. Blood 97: 3283-3291. Haug, J.S. et al. 2008. N-cadherin expression level distinguishes reserved versus primed states of hematopoietic stem cells. Cell Stem Cell 2: 367-379. Butler, J.M. et al. 2012. Development of a vascular niche platform for expansion of repopulating human cord blood stem and progenitor cells. Blood 120: 1344-1347. Peled, A. et al. 2000. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95: 3289-3296. Qiao, W. et al. 2014. Intercellular network structure and regulatory motifs in the human hematopoietic system. Mol. Syst. Biol. 10: 741. Zhao, M. et al. 2014. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat. Med. 20: 1321-1326. Bonig, H. et al. 2008. Increased numbers of circulating hematopoietic stem/progenitor cells are chronically maintained in patients treated with the CD49d blocking antibody natalizumab. Blood 111: 3439-3441. Yamaguchi, M. et al. 2002. Ex vivo expansion of human UC blood primitive hematopoietic progenitors and transplantable stem cells using human primary BM stromal cells and human AB serum. Cytotherapy 4: 109-118. Madelung, A. et al. 2012. A novel immunohistochemical sequential multi-labelling and erasing technique enables epitope characterization of bone marrow pericytes in primary myelofibrosis. Histopathology 60: 554-560. Zhou, B.O. et al. 2014. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15: 154-168. Schepers, K., T.B. Campbell & E. Passegue. 2015. Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell 16: 254-267. Wein, F. et al. 2010. N-cadherin is expressed on human hematopoietic progenitor cells and mediates interaction with human mesenchymal stromal cells. Stem Cell Res. 4: 129-139. Battula, V.L. et al. 2009. Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica 94: 173-184. Xie, Y. et al. 2009. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457: 97-101. Moore, K.A. 2004. Recent advances in defining the hematopoietic stem cell niche. Curr. Opin. Hematol. 11: 107-111. Khorshed, R.A. et al. 2015. Automated identification and localization of hematopoietic stem cells in 3D intravital microscopy data. Stem Cell Rep. 5: 139-153. Gan, O.I. et al. 1997. Differential maintenance of primitive human SCID-repopulating cells, clonogenic progenitors, and long-term culture-initiating cells after incubation on human bone marrow stromal cells. Blood 90: 641-650. Winkler, I.G. et al. 2010. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116: 4815-4828. Quirici, N. et al. 2002. Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp. Hematol. 30: 783-791. Moreau, H.D. et al. 2012. Dynamic in situ cytometry uncovers T cell receptor signaling during immunological synapses and kinapses in vivo. Immunity 37: 351-363. Chang, M.K. et al. 2008. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J. Immunol. 181: 1232-1244. Simmons, P.J. & B. Torok-Storb. 1991. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78: 55-62. Guezguez, B. et al. 2013. Regional localization within the bone marrow influences the functional capacity of human HSCs. Cell Stem Cell 13: 175-189. Zhang, J. et al. 2003. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425: 836-841. Doulatov, S. et al. 2012. Hematopoiesis: a human perspective. Cell Stem Cell 10: 120-136. Flores-Figueroa, E. et al. 2012. Distinctive contact between CD34+ hematopoietic progenitors and CXCL12+ CD271+ mesenchymal stromal cells in benign and myelodysplastic bone marrow. Lab. Invest. 92: 1330-1341. Hosokawa, K. et al. 2010. Knockdown of N-cadherin suppresses the long-term engraftment of hematopoietic stem cells. Blood 116: 554-563. Kiel, M.J. et al. 2009. Hematopoietic stem cells do not depend on N-cadherin to regulate their maintenance. Cell Stem Cell 4: 170-179. Pettit, A.R. et al. 2008. Osteal macrophages: a new twist on coupling during bone dynamics. Bone 43: 976-982. Csaszar, E. et al. 2012. Rapid expansion of human hematopoietic stem cells by automated control of inhibitory feedback signaling. Cell Stem Cell 10: 218-229. Ferraro, F. et al. 2011. Diabetes impairs hematopoietic stem cell mobilization by altering niche function. Sci. Transl. Med. 3: 104ra101. Dexter, T.M., T.D. Allen & L.G. Lajtha. 1977. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J. Cell. Physiol. 91: 335-344. de Lima, M. et al. 2012. Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N. Engl. J. Med. 367: 2305-2315. Greenbaum, A. et al. 2013. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495: 227-230. Li, T. & Y. Wu. 2011. Paracrine molecules of mesenchymal stem cells for hematopoietic stem cell niche. Bone Marrow Res. 2011: 353878. Dexter, T.M. & L.G. Lajtha. 1974. Proliferation of haemopoietic stem cells in vitro. Br. J. Haematol. 28: 525-530. Walenda, T. et al. 2011. Synergistic effects of growth factors and mesenchymal stromal cells for expansion of hematopoietic stem and progenitor cells. Exp. Hematol. 39: 617-628. Kunisaki, Y. et al. 2013. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502: 637-643. Harichandan, A., K. Sivasubramaniyan & H.J. Buhring. 2013. Prospective isolation and characterization of human bone marrow-derived MSCs. Adv. Biochem. Eng. Biotechnol. 129: 1-17. Rafii, S. et al. 1995. Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors. Blood 86: 3353-3363. Gerner, M.Y. et al. 2012. Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity 37: 364-376. Bear, A.S. et al. 2014. Low rate of infusional toxicity after expanded cord blood transplantation. Cytotherapy 16: 1153-1157. Sugiyama, T. et al. 2006. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25: 977-988. Jantunen, E. & V. Varmavuo. 2014. Plerixafor for mobilization of blood stem cells in autologous transplantation: an update. Expert Opin. Biol. Ther. 14: 851-861. Ritsma, L. et al. 2013. Surgical implantation of an abdominal imaging window for intravital microscopy. Nat. Protoc. 8: 583-594. Morrison, S.J. & D.T. Scadden. 2014. The bone marrow niche for haematopoietic stem cells. Nature 505: 327-334. Muguruma, Y. et al. 2006. Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood 107: 1878-1887. Passegue, E. et al. 2005. Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J. Exp. Med. 202: 1599-1611. Lucas, D. et al. 2008. Mobilized hematopoietic stem cell yield depends on species-specific circadian timing. Cell Stem Cell 3: 364-366. Lapidot, T. & O. Kollet. 2002. The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m(null) mice. Leukemia 16: 1992-2003. Sutherland, H.J. et al. 1989. Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood 74: 1563-1570. Spiegel, A. et al. 2007. Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nat. Immunol. 8: 1123-1131. Pineault, N. & A. Abu-Khader. 2015. Advances in umbilical cord blood stem cell expansion and clinical translation. Exp. Hematol. 43: 498-513. Horwitz, M.E. et al. 2012. Preemptive dosing of plerixafor given to poor stem cell mobilizers on day 5 of G-CSF administration. Bone Marrow Transplant. 47: 1051-1055. Omatsu, Y. et al. 2010. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33: 387-399. Isern, J. et al. 2013. Self-renewing human bone marrow mesenspheres promote hematopoietic stem cell expansion. Cell Rep. 3: 1714-1724. Verfaillie, C.M. 1998. Adhesion receptors as regulators of the hematopoietic process. Blood 92: 2609-2612. Butler, J.M. et al. 2010. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6: 251-264. Yamazaki, S. et al. 2011. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147: 1146-1158. Shpall, E.J. 2002; 16 2012; 481 2012; 60 2012; 120 2013; 3 2013; 4 2011; 117 2010; 466 2013; 129 2000; 95 2012; 18 2008; 3 2013; 121 2014; 28 2012; 367 2008; 2 2013; 8 2012; 10 2012; 97 2014; 20 2014; 454 1998; 16 1997; 90 1989; 74 2011; 208 2014; 3 2010; 116 2013; 13 2009; 94 2006; 25 2015; 43 2007; 131 2007; 8 2014; 16 2014; 15 2014; 14 1998; 92 2011; 24 2012; 26 1999; 93 2007; 1 2008; 111 2010; 4 2010; 6 2001; 97 2014; 10 2006; 124 2014; 124 2015; 240 2010; 33 1982; 79 2011; 333 2015; 16 2015; 5 2004; 103 2002; 30 1991; 78 2013; 502 2002; 8 2006; 8 2002; 4 2011; 32 2015; 526 2012; 37 2011; 39 2011; 3 1999; 104 2009; 457 2008; 181 1995; 86 2010; 45 2004; 11 2011; 2011 2010; 1192 2011; 147 2012; 92 2014; 505 2003; 425 2005; 201 2005; 202 2013; 210 2008; 43 2013; 495 2009; 4 2012; 47 2008; 452 2004; 118 2006; 107 1977; 91 2010; 95 2012; 119 1974; 28 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_94_1 e_1_2_7_71_1 Pruijt J.F. (e_1_2_7_6_1) 1999; 93 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 Harichandan A. (e_1_2_7_91_1) 2013; 129 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_17_1 e_1_2_7_81_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 Gan O.I. (e_1_2_7_62_1) 1997; 90 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_72_1 e_1_2_7_95_1 Harichandan A. (e_1_2_7_90_1) 2011; 24 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_38_1 |
References_xml | – reference: Hopman, R.K. & J.F. DiPersio. 2014. Advances in stem cell mobilization. Blood Rev. 28: 31-40. – reference: Qiao, W. et al. 2014. Intercellular network structure and regulatory motifs in the human hematopoietic system. Mol. Syst. Biol. 10: 741. – reference: Winkler, I.G. et al. 2010. Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches. Blood 116: 375-385. – reference: Yamaguchi, M. et al. 2002. Ex vivo expansion of human UC blood primitive hematopoietic progenitors and transplantable stem cells using human primary BM stromal cells and human AB serum. Cytotherapy 4: 109-118. – reference: Verfaillie, C.M. 1998. Adhesion receptors as regulators of the hematopoietic process. Blood 92: 2609-2612. – reference: Sharma, M.B., L.S. Limaye & V.P. Kale. 2012. Mimicking the functional hematopoietic stem cell niche in vitro: recapitulation of marrow physiology by hydrogel-based three-dimensional cultures of mesenchymal stromal cells. Haematologica 97: 651-660. – reference: Katayama, Y. et al. 2006. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124: 407-421. – reference: Sugiyama, T. et al. 2006. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25: 977-988. – reference: Nakamura-Ishizu, A. et al. 2014. Megakaryocytes are essential for HSC quiescence through the production of thrombopoietin. Biochem. Biophys. Res. Commun. 454: 353-357. – reference: Omatsu, Y. et al. 2010. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33: 387-399. – reference: Visnjic, D. et al. 2004. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103: 3258-3264. – reference: Spiegel, A. et al. 2007. Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nat. Immunol. 8: 1123-1131. – reference: Rafii, S. et al. 1995. Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors. Blood 86: 3353-3363. – reference: Hosokawa, K. et al. 2010. Knockdown of N-cadherin suppresses the long-term engraftment of hematopoietic stem cells. Blood 116: 554-563. – reference: Oguro, H., L. Ding & S.J. Morrison. 2013. SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 13: 102-116. – reference: Schepers, K., T.B. Campbell & E. Passegue. 2015. Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell 16: 254-267. – reference: Mendez-Ferrer, S. et al. 2008. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452: 442-447. – reference: Pruijt, J.F. et al. 1999. Murine hematopoietic progenitor cells with colony-forming or radioprotective capacity lack expression of the beta 2-integrin LFA-1. Blood 93: 107-112. – reference: Mendez-Ferrer, S., M. Battista & P.S. Frenette. 2010. Cooperation of beta(2)- and beta(3)-adrenergic receptors in hematopoietic progenitor cell mobilization. Ann. N. Y. Acad. Sci. 1192: 139-144. – reference: Arai, F. et al. 2004. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118: 149-161. – reference: Khorshed, R.A. et al. 2015. Automated identification and localization of hematopoietic stem cells in 3D intravital microscopy data. Stem Cell Rep. 5: 139-153. – reference: Jing, D. et al. 2010. Hematopoietic stem cells in co-culture with mesenchymal stromal cells-modeling the niche compartments in vitro. Haematologica 95: 542-550. – reference: Moore, K.A. 2004. Recent advances in defining the hematopoietic stem cell niche. Curr. Opin. Hematol. 11: 107-111. – reference: Li, T. & Y. Wu. 2011. Paracrine molecules of mesenchymal stem cells for hematopoietic stem cell niche. Bone Marrow Res. 2011: 353878. – reference: Whitlock, C.A. & O.N. Witte. 1982. Long-term culture of B lymphocytes and their precursors from murine bone marrow. Proc. Natl. Acad. Sci. U. S. A. 79: 3608-3612. – reference: Peled, A. et al. 2000. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95: 3289-3296. – reference: Peled, A. et al. 1999. The chemokine SDF-1 stimulates integrin-mediated arrest of CD34(+) cells on vascular endothelium under shear flow. J. Clin. Invest. 104: 1199-1211. – reference: Shpall, E.J. et al. 2002. Transplantation of ex vivo expanded cord blood. Biol. Blood Marrow Transplant. 8: 368-376. – reference: Kunisaki, Y. et al. 2013. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502: 637-643. – reference: Dexter, T.M., T.D. Allen & L.G. Lajtha. 1977. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J. Cell. Physiol. 91: 335-344. – reference: Zhao, M. et al. 2014. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat. Med. 20: 1321-1326. – reference: Winkler, I.G. et al. 2010. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116: 4815-4828. – reference: Ding, L. et al. 2012. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481: 457-462. – reference: Calvi, L.M. et al. 2003. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425: 841-846. – reference: Harichandan, A. & H.J. Buhring. 2011. Prospective isolation of human MSC. Best practice & research. Clin. Haematol. 24: 25-36. – reference: Willinger, T. et al. 2011. Improving human hemato-lymphoid-system mice by cytokine knock-in gene replacement. Trends Immunol. 32: 321-327. – reference: Xie, Y. et al. 2009. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457: 97-101. – reference: Chen, Y. et al. 2012. Human extramedullary bone marrow in mice: a novel in vivo model of genetically controlled hematopoietic microenvironment. Blood 119: 4971-4980. – reference: Pinho, S. et al. 2013. PDGFRalpha and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J. Exp. Med. 210: 1351-1367. – reference: Dexter, T.M. & L.G. Lajtha. 1974. Proliferation of haemopoietic stem cells in vitro. Br. J. Haematol. 28: 525-530. – reference: Chang, M.K. et al. 2008. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J. Immunol. 181: 1232-1244. – reference: Doulatov, S. et al. 2012. Hematopoiesis: a human perspective. Cell Stem Cell 10: 120-136. – reference: Sacchetti, B. et al. 2007. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131: 324-336. – reference: Kiel, M.J., G.L. Radice & S.J. Morrison. 2007. Lack of evidence that hematopoietic stem cells depend on N-cadherin-mediated adhesion to osteoblasts for their maintenance. Cell Stem Cell 1: 204-217. – reference: Zohren, F. et al. 2008. The monoclonal anti-VLA-4 antibody natalizumab mobilizes CD34+ hematopoietic progenitor cells in humans. Blood 111: 3893-3895. – reference: Madelung, A. et al. 2012. A novel immunohistochemical sequential multi-labelling and erasing technique enables epitope characterization of bone marrow pericytes in primary myelofibrosis. Histopathology 60: 554-560. – reference: Winkler, I.G. et al. 2012. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat. Med. 18: 1651-1657. – reference: Li, G. et al. 2015. Three dimensional de novo micro bone marrow and its versatile application in drug screening and regenerative medicine. Exp. Biol. Med. 240: 1029-1038. – reference: Dominici, M. et al. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8: 315-317. – reference: de Lima, M. et al. 2012. Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N. Engl. J. Med. 367: 2305-2315. – reference: Yamazaki, S. et al. 2011. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147: 1146-1158. – reference: Walenda, T. et al. 2011. Synergistic effects of growth factors and mesenchymal stromal cells for expansion of hematopoietic stem and progenitor cells. Exp. Hematol. 39: 617-628. – reference: Flores-Figueroa, E. et al. 2012. Distinctive contact between CD34+ hematopoietic progenitors and CXCL12+ CD271+ mesenchymal stromal cells in benign and myelodysplastic bone marrow. Lab. Invest. 92: 1330-1341. – reference: Lapidot, T. & O. Kollet. 2002. The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m(null) mice. Leukemia 16: 1992-2003. – reference: Li, H. et al. 2014. Low/negative expression of PDGFR-alpha identifies the candidate primary mesenchymal stromal cells in adult human bone marrow. Stem Cell Rep. 3: 965-974. – reference: Gerner, M.Y. et al. 2012. Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity 37: 364-376. – reference: Chitteti, B.R. et al. 2014. CD166 regulates human and murine hematopoietic stem cells and the hematopoietic niche. Blood 124: 519-529. – reference: Pettit, A.R. et al. 2008. Osteal macrophages: a new twist on coupling during bone dynamics. Bone 43: 976-982. – reference: Guezguez, B. et al. 2013. Regional localization within the bone marrow influences the functional capacity of human HSCs. Cell Stem Cell 13: 175-189. – reference: Groen, R.W. et al. 2012. Reconstructing the human hematopoietic niche in immunodeficient mice: opportunities for studying primary multiple myeloma. Blood 120: e9-e16. – reference: Poulos, M.G. et al. 2013. Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis. Cell Rep. 4: 1022-1034. – reference: Kollet, O. et al. 2001. Rapid and efficient homing of human CD34(+)CD38(-/low)CXCR4(+) stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2m(null) mice. Blood 97: 3283-3291. – reference: Notta, F. et al. 2011. Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 333: 218-221. – reference: Acar, M. et al. 2015. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526: 126-130. – reference: Craddock, C.F. et al. 1997. Antibodies to VLA4 integrin mobilize long-term repopulating cells and augment cytokine-induced mobilization in primates and mice. Blood 90: 4779-4788. – reference: Battula, V.L. et al. 2009. Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica 94: 173-184. – reference: Doan, P.L. & J.P. Chute. 2012. The vascular niche: home for normal and malignant hematopoietic stem cells. Leukemia 26: 54-62. – reference: Butler, J.M. et al. 2010. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6: 251-264. – reference: Lucas, D. et al. 2008. Mobilized hematopoietic stem cell yield depends on species-specific circadian timing. Cell Stem Cell 3: 364-366. – reference: Ding, L. & S.J. Morrison. 2013. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495: 231-235. – reference: Isern, J. et al. 2013. Self-renewing human bone marrow mesenspheres promote hematopoietic stem cell expansion. Cell Rep. 3: 1714-1724. – reference: Bruns, I. et al. 2014. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat. Med. 20: 1315-1320. – reference: Bear, A.S. et al. 2014. Low rate of infusional toxicity after expanded cord blood transplantation. Cytotherapy 16: 1153-1157. – reference: Morrison, S.J. & D.T. Scadden. 2014. The bone marrow niche for haematopoietic stem cells. Nature 505: 327-334. – reference: Isern, J. et al. 2014. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. Elife 3: e03696. – reference: Qian, H. et al. 2007. Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell 1: 671-684. – reference: Butler, J.M. et al. 2012. Development of a vascular niche platform for expansion of repopulating human cord blood stem and progenitor cells. Blood 120: 1344-1347. – reference: Passegue, E. et al. 2005. Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J. Exp. Med. 202: 1599-1611. – reference: Ritsma, L. et al. 2013. Surgical implantation of an abdominal imaging window for intravital microscopy. Nat. Protoc. 8: 583-594. – reference: Kiel, M.J. et al. 2009. Hematopoietic stem cells do not depend on N-cadherin to regulate their maintenance. Cell Stem Cell 4: 170-179. – reference: Moreau, H.D. et al. 2012. Dynamic in situ cytometry uncovers T cell receptor signaling during immunological synapses and kinapses in vivo. Immunity 37: 351-363. – reference: Chow, A. et al. 2011. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J. Exp. Med. 208: 261-271. – reference: Gan, O.I. et al. 1997. Differential maintenance of primitive human SCID-repopulating cells, clonogenic progenitors, and long-term culture-initiating cells after incubation on human bone marrow stromal cells. Blood 90: 641-650. – reference: Jantunen, E. & V. Varmavuo. 2014. Plerixafor for mobilization of blood stem cells in autologous transplantation: an update. Expert Opin. Biol. Ther. 14: 851-861. – reference: Pineault, N. & A. Abu-Khader. 2015. Advances in umbilical cord blood stem cell expansion and clinical translation. Exp. Hematol. 43: 498-513. – reference: Csaszar, E. et al. 2012. Rapid expansion of human hematopoietic stem cells by automated control of inhibitory feedback signaling. Cell Stem Cell 10: 218-229. – reference: Bonig, H. et al. 2008. Increased numbers of circulating hematopoietic stem/progenitor cells are chronically maintained in patients treated with the CD49d blocking antibody natalizumab. Blood 111: 3439-3441. – reference: Bernardo, M.E. & W.E. Fibbe. 2013. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13: 392-402. – reference: Jing, D. et al. 2010. CD49d blockade by natalizumab in patients with multiple sclerosis affects steady-state hematopoiesis and mobilizes progenitors with a distinct phenotype and function. Bone Marrow Transplant. 45: 1489-1496. – reference: Ferraro, F. et al. 2011. Diabetes impairs hematopoietic stem cell mobilization by altering niche function. Sci. Transl. Med. 3: 104ra101. – reference: Wein, F. et al. 2010. N-cadherin is expressed on human hematopoietic progenitor cells and mediates interaction with human mesenchymal stromal cells. Stem Cell Res. 4: 129-139. – reference: Corselli, M. et al. 2013. Perivascular support of human hematopoietic stem/progenitor cells. Blood 121: 2891-2901. – reference: Quirici, N. et al. 2002. Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp. Hematol. 30: 783-791. – reference: Horwitz, M.E. et al. 2012. Preemptive dosing of plerixafor given to poor stem cell mobilizers on day 5 of G-CSF administration. Bone Marrow Transplant. 47: 1051-1055. – reference: Sutherland, H.J. et al. 1989. Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood 74: 1563-1570. – reference: Tormin, A. et al. 2011. CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization. Blood 117: 5067-5077. – reference: Greenbaum, A. et al. 2013. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495: 227-230. – reference: Taichman, R.S. & S.G. Emerson. 1998. The role of osteoblasts in the hematopoietic microenvironment. Stem Cells 16: 7-15. – reference: Zhou, B.O. et al. 2014. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15: 154-168. – reference: Mendez-Ferrer, S. et al. 2010. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466: 829-834. – reference: Zhang, J. et al. 2003. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425: 836-841. – reference: Muguruma, Y. et al. 2006. Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood 107: 1878-1887. – reference: Broxmeyer, H.E. et al. 2005. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J. Exp. Med. 201: 1307-1318. – reference: Schreiber, T.D. et al. 2009. The integrin alpha9beta1 on hematopoietic stem and progenitor cells: involvement in cell adhesion, proliferation and differentiation. Haematologica 94: 1493-1501. – reference: Harichandan, A., K. Sivasubramaniyan & H.J. Buhring. 2013. Prospective isolation and characterization of human bone marrow-derived MSCs. Adv. Biochem. Eng. Biotechnol. 129: 1-17. – reference: Yoshihara, H. et al. 2007. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1: 685-697. – reference: Simmons, P.J. & B. Torok-Storb. 1991. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78: 55-62. – reference: Haug, J.S. et al. 2008. N-cadherin expression level distinguishes reserved versus primed states of hematopoietic stem cells. Cell Stem Cell 2: 367-379. – volume: 367 start-page: 2305 year: 2012 end-page: 2315 article-title: Cord‐blood engraftment with ex vivo mesenchymal‐cell coculture publication-title: N. Engl. J. Med – volume: 107 start-page: 1878 year: 2006 end-page: 1887 article-title: Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment publication-title: Blood – volume: 43 start-page: 976 year: 2008 end-page: 982 article-title: Osteal macrophages: a new twist on coupling during bone dynamics publication-title: Bone – volume: 33 start-page: 387 year: 2010 end-page: 399 article-title: The essential functions of adipo‐osteogenic progenitors as the hematopoietic stem and progenitor cell niche publication-title: Immunity – volume: 1192 start-page: 139 year: 2010 end-page: 144 article-title: Cooperation of beta(2)‐ and beta(3)‐adrenergic receptors in hematopoietic progenitor cell mobilization publication-title: Ann. N. Y. Acad. Sci – volume: 4 start-page: 1022 year: 2013 end-page: 1034 article-title: Endothelial Jagged‐1 is necessary for homeostatic and regenerative hematopoiesis publication-title: Cell Rep – volume: 28 start-page: 31 year: 2014 end-page: 40 article-title: Advances in stem cell mobilization publication-title: Blood Rev – volume: 16 start-page: 7 year: 1998 end-page: 15 article-title: The role of osteoblasts in the hematopoietic microenvironment publication-title: Stem Cells – volume: 131 start-page: 324 year: 2007 end-page: 336 article-title: Self‐renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment publication-title: Cell – volume: 104 start-page: 1199 year: 1999 end-page: 1211 article-title: The chemokine SDF‐1 stimulates integrin‐mediated arrest of CD34(+) cells on vascular endothelium under shear flow publication-title: J. Clin. Invest – volume: 119 start-page: 4971 year: 2012 end-page: 4980 article-title: Human extramedullary bone marrow in mice: a novel in vivo model of genetically controlled hematopoietic microenvironment publication-title: Blood – volume: 3 start-page: 364 year: 2008 end-page: 366 article-title: Mobilized hematopoietic stem cell yield depends on species‐specific circadian timing publication-title: Cell Stem Cell – volume: 526 start-page: 126 year: 2015 end-page: 130 article-title: Deep imaging of bone marrow shows non‐dividing stem cells are mainly perisinusoidal publication-title: Nature – volume: 79 start-page: 3608 year: 1982 end-page: 3612 article-title: Long‐term culture of B lymphocytes and their precursors from murine bone marrow publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 95 start-page: 542 year: 2010 end-page: 550 article-title: Hematopoietic stem cells in co‐culture with mesenchymal stromal cells—modeling the niche compartments in vitro publication-title: Haematologica – volume: 3 start-page: 965 year: 2014 end-page: 974 article-title: Low/negative expression of PDGFR‐alpha identifies the candidate primary mesenchymal stromal cells in adult human bone marrow publication-title: Stem Cell Rep – volume: 30 start-page: 783 year: 2002 end-page: 791 article-title: Isolation of bone marrow mesenchymal stem cells by anti‐nerve growth factor receptor antibodies publication-title: Exp. Hematol – volume: 129 start-page: 1 year: 2013 end-page: 17 article-title: Prospective isolation and characterization of human bone marrow‐derived MSCs publication-title: Adv. Biochem. Eng. Biotechnol – volume: 1 start-page: 685 year: 2007 end-page: 697 article-title: Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche publication-title: Cell Stem Cell – volume: 124 start-page: 519 year: 2014 end-page: 529 article-title: CD166 regulates human and murine hematopoietic stem cells and the hematopoietic niche publication-title: Blood – volume: 11 start-page: 107 year: 2004 end-page: 111 article-title: Recent advances in defining the hematopoietic stem cell niche publication-title: Curr. Opin. Hematol – volume: 14 start-page: 851 year: 2014 end-page: 861 article-title: Plerixafor for mobilization of blood stem cells in autologous transplantation: an update publication-title: Expert Opin. Biol. Ther – volume: 120 start-page: 1344 year: 2012 end-page: 1347 article-title: Development of a vascular niche platform for expansion of repopulating human cord blood stem and progenitor cells publication-title: Blood – volume: 97 start-page: 651 year: 2012 end-page: 660 article-title: Mimicking the functional hematopoietic stem cell niche in vitro: recapitulation of marrow physiology by hydrogel‐based three‐dimensional cultures of mesenchymal stromal cells publication-title: Haematologica – volume: 481 start-page: 457 year: 2012 end-page: 462 article-title: Endothelial and perivascular cells maintain haematopoietic stem cells publication-title: Nature – volume: 39 start-page: 617 year: 2011 end-page: 628 article-title: Synergistic effects of growth factors and mesenchymal stromal cells for expansion of hematopoietic stem and progenitor cells publication-title: Exp. Hematol – volume: 4 start-page: 129 year: 2010 end-page: 139 article-title: N‐cadherin is expressed on human hematopoietic progenitor cells and mediates interaction with human mesenchymal stromal cells publication-title: Stem Cell Res – volume: 8 start-page: 583 year: 2013 end-page: 594 article-title: Surgical implantation of an abdominal imaging window for intravital microscopy publication-title: Nat. Protoc – volume: 74 start-page: 1563 year: 1989 end-page: 1570 article-title: Characterization and partial purification of human marrow cells capable of initiating long‐term hematopoiesis in vitro publication-title: Blood – volume: 20 start-page: 1315 year: 2014 end-page: 1320 article-title: Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion publication-title: Nat. Med – volume: 16 start-page: 254 year: 2015 end-page: 267 article-title: Normal and leukemic stem cell niches: insights and therapeutic opportunities publication-title: Cell Stem Cell – volume: 25 start-page: 977 year: 2006 end-page: 988 article-title: Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches publication-title: Immunity – volume: 13 start-page: 102 year: 2013 end-page: 116 article-title: SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors publication-title: Cell Stem Cell – volume: 20 start-page: 1321 year: 2014 end-page: 1326 article-title: Megakaryocytes maintain homeostatic quiescence and promote post‐injury regeneration of hematopoietic stem cells publication-title: Nat. Med – volume: 4 start-page: 170 year: 2009 end-page: 179 article-title: Hematopoietic stem cells do not depend on N‐cadherin to regulate their maintenance publication-title: Cell Stem Cell – volume: 37 start-page: 364 year: 2012 end-page: 376 article-title: Histo‐cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes publication-title: Immunity – volume: 2011 start-page: 353878 year: 2011 article-title: Paracrine molecules of mesenchymal stem cells for hematopoietic stem cell niche publication-title: Bone Marrow Res – volume: 454 start-page: 353 year: 2014 end-page: 357 article-title: Megakaryocytes are essential for HSC quiescence through the production of thrombopoietin publication-title: Biochem. Biophys. Res. Commun – volume: 181 start-page: 1232 year: 2008 end-page: 1244 article-title: Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo publication-title: J. Immunol – volume: 4 start-page: 109 year: 2002 end-page: 118 article-title: Ex vivo expansion of human UC blood primitive hematopoietic progenitors and transplantable stem cells using human primary BM stromal cells and human AB serum publication-title: Cytotherapy – volume: 26 start-page: 54 year: 2012 end-page: 62 article-title: The vascular niche: home for normal and malignant hematopoietic stem cells publication-title: Leukemia – volume: 147 start-page: 1146 year: 2011 end-page: 1158 article-title: Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche publication-title: Cell – volume: 86 start-page: 3353 year: 1995 end-page: 3363 article-title: Human bone marrow microvascular endothelial cells support long‐term proliferation and differentiation of myeloid and megakaryocytic progenitors publication-title: Blood – volume: 8 start-page: 1123 year: 2007 end-page: 1131 article-title: Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling publication-title: Nat. Immunol – volume: 121 start-page: 2891 year: 2013 end-page: 2901 article-title: Perivascular support of human hematopoietic stem/progenitor cells publication-title: Blood – volume: 13 start-page: 175 year: 2013 end-page: 189 article-title: Regional localization within the bone marrow influences the functional capacity of human HSCs publication-title: Cell Stem Cell – volume: 118 start-page: 149 year: 2004 end-page: 161 article-title: Tie2/angiopoietin‐1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche publication-title: Cell – volume: 103 start-page: 3258 year: 2004 end-page: 3264 article-title: Hematopoiesis is severely altered in mice with an induced osteoblast deficiency publication-title: Blood – volume: 452 start-page: 442 year: 2008 end-page: 447 article-title: Haematopoietic stem cell release is regulated by circadian oscillations publication-title: Nature – volume: 502 start-page: 637 year: 2013 end-page: 643 article-title: Arteriolar niches maintain haematopoietic stem cell quiescence publication-title: Nature – volume: 111 start-page: 3439 year: 2008 end-page: 3441 article-title: Increased numbers of circulating hematopoietic stem/progenitor cells are chronically maintained in patients treated with the CD49d blocking antibody natalizumab publication-title: Blood – volume: 495 start-page: 227 year: 2013 end-page: 230 article-title: CXCL12 in early mesenchymal progenitors is required for haematopoietic stem‐cell maintenance publication-title: Nature – volume: 1 start-page: 671 year: 2007 end-page: 684 article-title: Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells publication-title: Cell Stem Cell – volume: 95 start-page: 3289 year: 2000 end-page: 3296 article-title: The chemokine SDF‐1 activates the integrins LFA‐1, VLA‐4, and VLA‐5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice publication-title: Blood – volume: 117 start-page: 5067 year: 2011 end-page: 5077 article-title: CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization publication-title: Blood – volume: 124 start-page: 407 year: 2006 end-page: 421 article-title: Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow publication-title: Cell – volume: 90 start-page: 641 year: 1997 end-page: 650 article-title: Differential maintenance of primitive human SCID‐repopulating cells, clonogenic progenitors, and long‐term culture‐initiating cells after incubation on human bone marrow stromal cells publication-title: Blood – volume: 47 start-page: 1051 year: 2012 end-page: 1055 article-title: Preemptive dosing of plerixafor given to poor stem cell mobilizers on day 5 of G‐CSF administration publication-title: Bone Marrow Transplant – volume: 18 start-page: 1651 year: 2012 end-page: 1657 article-title: Vascular niche E‐selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance publication-title: Nat. Med – volume: 2 start-page: 367 year: 2008 end-page: 379 article-title: N‐cadherin expression level distinguishes reserved versus primed states of hematopoietic stem cells publication-title: Cell Stem Cell – volume: 333 start-page: 218 year: 2011 end-page: 221 article-title: Isolation of single human hematopoietic stem cells capable of long‐term multilineage engraftment publication-title: Science – volume: 93 start-page: 107 year: 1999 end-page: 112 article-title: Murine hematopoietic progenitor cells with colony‐forming or radioprotective capacity lack expression of the beta 2‐integrin LFA‐1 publication-title: Blood – volume: 210 start-page: 1351 year: 2013 end-page: 1367 article-title: PDGFRalpha and CD51 mark human nestin sphere‐forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion publication-title: J. Exp. Med – volume: 8 start-page: 368 year: 2002 end-page: 376 article-title: Transplantation of ex vivo expanded cord blood publication-title: Biol. Blood Marrow Transplant – volume: 15 start-page: 154 year: 2014 end-page: 168 article-title: Leptin‐receptor‐expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow publication-title: Cell Stem Cell – volume: 94 start-page: 173 year: 2009 end-page: 184 article-title: Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen‐1 publication-title: Haematologica – volume: 1 start-page: 204 year: 2007 end-page: 217 article-title: Lack of evidence that hematopoietic stem cells depend on N‐cadherin‐mediated adhesion to osteoblasts for their maintenance publication-title: Cell Stem Cell – volume: 111 start-page: 3893 year: 2008 end-page: 3895 article-title: The monoclonal anti‐VLA‐4 antibody natalizumab mobilizes CD34 hematopoietic progenitor cells in humans publication-title: Blood – volume: 3 start-page: e03696 year: 2014 article-title: The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function publication-title: Elife – volume: 45 start-page: 1489 year: 2010 end-page: 1496 article-title: CD49d blockade by natalizumab in patients with multiple sclerosis affects steady‐state hematopoiesis and mobilizes progenitors with a distinct phenotype and function publication-title: Bone Marrow Transplant – volume: 10 start-page: 741 year: 2014 article-title: Intercellular network structure and regulatory motifs in the human hematopoietic system publication-title: Mol. Syst. Biol – volume: 10 start-page: 120 year: 2012 end-page: 136 article-title: Hematopoiesis: a human perspective publication-title: Cell Stem Cell – volume: 10 start-page: 218 year: 2012 end-page: 229 article-title: Rapid expansion of human hematopoietic stem cells by automated control of inhibitory feedback signaling publication-title: Cell Stem Cell – volume: 116 start-page: 554 year: 2010 end-page: 563 article-title: Knockdown of N‐cadherin suppresses the long‐term engraftment of hematopoietic stem cells publication-title: Blood – volume: 16 start-page: 1992 year: 2002 end-page: 2003 article-title: The essential roles of the chemokine SDF‐1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune‐deficient NOD/SCID and NOD/SCID/B2m(null) mice publication-title: Leukemia – volume: 92 start-page: 2609 year: 1998 end-page: 2612 article-title: Adhesion receptors as regulators of the hematopoietic process publication-title: Blood – volume: 60 start-page: 554 year: 2012 end-page: 560 article-title: A novel immunohistochemical sequential multi‐labelling and erasing technique enables epitope characterization of bone marrow pericytes in primary myelofibrosis publication-title: Histopathology – volume: 425 start-page: 841 year: 2003 end-page: 846 article-title: Osteoblastic cells regulate the haematopoietic stem cell niche publication-title: Nature – volume: 92 start-page: 1330 year: 2012 end-page: 1341 article-title: Distinctive contact between CD34 hematopoietic progenitors and CXCL12 CD271 mesenchymal stromal cells in benign and myelodysplastic bone marrow publication-title: Lab. Invest – volume: 8 start-page: 315 year: 2006 end-page: 317 article-title: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement publication-title: Cytotherapy – volume: 202 start-page: 1599 year: 2005 end-page: 1611 article-title: Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates publication-title: J. Exp. Med – volume: 457 start-page: 97 year: 2009 end-page: 101 article-title: Detection of functional haematopoietic stem cell niche using real‐time imaging publication-title: Nature – volume: 5 start-page: 139 year: 2015 end-page: 153 article-title: Automated identification and localization of hematopoietic stem cells in 3D intravital microscopy data publication-title: Stem Cell Rep – volume: 120 start-page: e9 year: 2012 end-page: e16 article-title: Reconstructing the human hematopoietic niche in immunodeficient mice: opportunities for studying primary multiple myeloma publication-title: Blood – volume: 91 start-page: 335 year: 1977 end-page: 344 article-title: Conditions controlling the proliferation of haemopoietic stem cells in vitro publication-title: J. Cell. Physiol – volume: 201 start-page: 1307 year: 2005 end-page: 1318 article-title: Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist publication-title: J. Exp. Med – volume: 97 start-page: 3283 year: 2001 end-page: 3291 article-title: Rapid and efficient homing of human CD34(+)CD38(‐/low)CXCR4(+) stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2m(null) mice publication-title: Blood – volume: 13 start-page: 392 year: 2013 end-page: 402 article-title: Mesenchymal stromal cells: sensors and switchers of inflammation publication-title: Cell Stem Cell – volume: 43 start-page: 498 year: 2015 end-page: 513 article-title: Advances in umbilical cord blood stem cell expansion and clinical translation publication-title: Exp. Hematol. – volume: 3 start-page: 1714 year: 2013 end-page: 1724 article-title: Self‐renewing human bone marrow mesenspheres promote hematopoietic stem cell expansion publication-title: Cell Rep – volume: 37 start-page: 351 year: 2012 end-page: 363 article-title: Dynamic in situ cytometry uncovers T cell receptor signaling during immunological synapses and kinapses in vivo publication-title: Immunity – volume: 78 start-page: 55 year: 1991 end-page: 62 article-title: Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO‐1 publication-title: Blood – volume: 495 start-page: 231 year: 2013 end-page: 235 article-title: Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches publication-title: Nature – volume: 94 start-page: 1493 year: 2009 end-page: 1501 article-title: The integrin alpha9beta1 on hematopoietic stem and progenitor cells: involvement in cell adhesion, proliferation and differentiation publication-title: Haematologica – volume: 28 start-page: 525 year: 1974 end-page: 530 article-title: Proliferation of haemopoietic stem cells in vitro publication-title: Br. J. Haematol – volume: 24 start-page: 25 year: 2011 end-page: 36 article-title: Prospective isolation of human MSC. Best practice & research publication-title: Clin. Haematol. – volume: 90 start-page: 4779 year: 1997 end-page: 4788 article-title: Antibodies to VLA4 integrin mobilize long‐term repopulating cells and augment cytokine‐induced mobilization in primates and mice publication-title: Blood – volume: 116 start-page: 4815 year: 2010 end-page: 4828 article-title: Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs publication-title: Blood – volume: 3 start-page: 104 year: 2011 article-title: Diabetes impairs hematopoietic stem cell mobilization by altering niche function publication-title: Sci. Transl. Med – volume: 466 start-page: 829 year: 2010 end-page: 834 article-title: Mesenchymal and haematopoietic stem cells form a unique bone marrow niche publication-title: Nature – volume: 425 start-page: 836 year: 2003 end-page: 841 article-title: Identification of the haematopoietic stem cell niche and control of the niche size publication-title: Nature – volume: 505 start-page: 327 year: 2014 end-page: 334 article-title: The bone marrow niche for haematopoietic stem cells publication-title: Nature – volume: 208 start-page: 261 year: 2011 end-page: 271 article-title: Bone marrow CD169 macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche publication-title: J. Exp. Med – volume: 16 start-page: 1153 year: 2014 end-page: 1157 article-title: Low rate of infusional toxicity after expanded cord blood transplantation publication-title: Cytotherapy – volume: 240 start-page: 1029 year: 2015 end-page: 1038 article-title: Three dimensional de novo micro bone marrow and its versatile application in drug screening and regenerative medicine publication-title: Exp. Biol. Med – volume: 116 start-page: 375 year: 2010 end-page: 385 article-title: Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches publication-title: Blood – volume: 32 start-page: 321 year: 2011 end-page: 327 article-title: Improving human hemato‐lymphoid‐system mice by cytokine knock‐in gene replacement publication-title: Trends Immunol – volume: 6 start-page: 251 year: 2010 end-page: 264 article-title: Endothelial cells are essential for the self‐renewal and repopulation of Notch‐dependent hematopoietic stem cells publication-title: Cell Stem Cell – ident: e_1_2_7_102_1 doi: 10.1016/j.stemcr.2015.05.017 – ident: e_1_2_7_89_1 doi: 10.3324/haematol.13740 – ident: e_1_2_7_64_1 doi: 10.1080/146532402317381811 – ident: e_1_2_7_2_1 doi: 10.1038/nature12984 – ident: e_1_2_7_49_1 doi: 10.1038/ni1509 – ident: e_1_2_7_109_1 doi: 10.1038/nprot.2013.026 – ident: e_1_2_7_68_1 doi: 10.1155/2011/353878 – ident: e_1_2_7_19_1 doi: 10.1038/nature12612 – ident: e_1_2_7_108_1 doi: 10.1182/blood-2012-03-414920 – ident: e_1_2_7_40_1 doi: 10.1182/blood-2009-11-253534 – ident: e_1_2_7_52_1 doi: 10.1038/sj.leu.2402684 – ident: e_1_2_7_56_1 doi: 10.1111/j.1365-2141.1974.tb06671.x – ident: e_1_2_7_25_1 doi: 10.1016/j.immuni.2006.10.016 – ident: e_1_2_7_15_1 doi: 10.7554/eLife.03696 – ident: e_1_2_7_39_1 doi: 10.4049/jimmunol.181.2.1232 – ident: e_1_2_7_60_1 doi: 10.1073/pnas.79.11.3608 – ident: e_1_2_7_3_1 doi: 10.1084/jem.20050967 – ident: e_1_2_7_38_1 doi: 10.1038/nature02041 – ident: e_1_2_7_22_1 doi: 10.1038/nature10783 – ident: e_1_2_7_79_1 doi: 10.1182/blood-2007-09-112052 – ident: e_1_2_7_66_1 doi: 10.1016/j.celrep.2013.03.041 – ident: e_1_2_7_99_1 doi: 10.1016/j.jcyt.2013.12.011 – ident: e_1_2_7_73_1 doi: 10.1016/j.stem.2012.01.003 – ident: e_1_2_7_105_1 doi: 10.1177/1535370215594583 – ident: e_1_2_7_47_1 doi: 10.1126/scitranslmed.3002191 – ident: e_1_2_7_21_1 doi: 10.1016/j.stem.2014.06.008 – ident: e_1_2_7_28_1 doi: 10.1038/nature11926 – ident: e_1_2_7_84_1 doi: 10.1016/j.scr.2009.12.004 – ident: e_1_2_7_26_1 doi: 10.1038/nature11885 – ident: e_1_2_7_7_1 doi: 10.1182/blood.V90.12.4779 – ident: e_1_2_7_57_1 doi: 10.1182/blood.V86.9.3353.bloodjournal8693353 – ident: e_1_2_7_97_1 doi: 10.1038/bmt.2011.217 – volume: 90 start-page: 641 year: 1997 ident: e_1_2_7_62_1 article-title: Differential maintenance of primitive human SCID‐repopulating cells, clonogenic progenitors, and long‐term culture‐initiating cells after incubation on human bone marrow stromal cells publication-title: Blood doi: 10.1182/blood.V90.2.641 – ident: e_1_2_7_70_1 doi: 10.1016/j.stem.2007.10.008 – volume: 129 start-page: 1 year: 2013 ident: e_1_2_7_91_1 article-title: Prospective isolation and characterization of human bone marrow‐derived MSCs publication-title: Adv. Biochem. Eng. Biotechnol – ident: e_1_2_7_27_1 doi: 10.1016/j.stem.2013.05.014 – ident: e_1_2_7_13_1 doi: 10.1016/j.stem.2013.09.006 – ident: e_1_2_7_69_1 doi: 10.1016/j.cell.2004.07.004 – ident: e_1_2_7_5_1 doi: 10.1182/blood.V92.8.2609 – ident: e_1_2_7_100_1 doi: 10.1016/j.immuni.2012.07.011 – ident: e_1_2_7_31_1 doi: 10.1016/j.celrep.2013.07.048 – ident: e_1_2_7_95_1 doi: 10.1016/j.stemcr.2014.09.018 – ident: e_1_2_7_33_1 doi: 10.1038/nm.3707 – ident: e_1_2_7_98_1 doi: 10.1053/bbmt.2002.v8.pm12171483 – ident: e_1_2_7_92_1 doi: 10.1111/j.1365-2559.2011.04104.x – ident: e_1_2_7_20_1 doi: 10.1084/jem.20122252 – ident: e_1_2_7_96_1 doi: 10.1517/14712598.2014.902927 – ident: e_1_2_7_106_1 doi: 10.1016/j.it.2011.04.005 – ident: e_1_2_7_88_1 doi: 10.1016/j.cell.2007.08.025 – ident: e_1_2_7_4_1 doi: 10.1016/j.stem.2015.02.014 – ident: e_1_2_7_104_1 doi: 10.3324/haematol.2011.050500 – ident: e_1_2_7_9_1 doi: 10.1182/blood-2009-05-224857 – ident: e_1_2_7_65_1 doi: 10.1056/NEJMoa1207285 – ident: e_1_2_7_11_1 doi: 10.1016/j.stem.2007.06.001 – ident: e_1_2_7_37_1 doi: 10.1182/blood-2003-11-4011 – ident: e_1_2_7_12_1 doi: 10.1038/nature07639 – ident: e_1_2_7_51_1 doi: 10.1097/01.moh.0000133652.06863.47 – ident: e_1_2_7_72_1 doi: 10.1016/j.exphem.2015.04.011 – ident: e_1_2_7_94_1 doi: 10.1182/blood-2012-08-451864 – ident: e_1_2_7_10_1 doi: 10.1016/j.stem.2008.10.005 – ident: e_1_2_7_93_1 doi: 10.1182/blood-2010-08-304287 – ident: e_1_2_7_59_1 doi: 10.1002/stem.160007 – ident: e_1_2_7_87_1 doi: 10.1038/labinvest.2012.93 – ident: e_1_2_7_32_1 doi: 10.1038/nm.2969 – ident: e_1_2_7_71_1 doi: 10.1016/j.stem.2007.10.020 – ident: e_1_2_7_58_1 doi: 10.1182/blood.V74.5.1563.1563 – ident: e_1_2_7_42_1 doi: 10.1016/j.cell.2005.10.041 – ident: e_1_2_7_23_1 doi: 10.1182/blood-2009-07-233437 – ident: e_1_2_7_35_1 doi: 10.1016/j.bbrc.2014.10.095 – ident: e_1_2_7_41_1 doi: 10.1084/jem.20101688 – ident: e_1_2_7_61_1 doi: 10.1182/blood-2011-12-398115 – ident: e_1_2_7_16_1 doi: 10.1038/nature06685 – ident: e_1_2_7_107_1 doi: 10.1182/blood-2011-11-389957 – ident: e_1_2_7_36_1 doi: 10.1038/nature02040 – ident: e_1_2_7_48_1 doi: 10.1016/j.stem.2008.09.004 – ident: e_1_2_7_77_1 doi: 10.3324/haematol.2009.006072 – ident: e_1_2_7_53_1 doi: 10.1016/j.blre.2014.01.001 – ident: e_1_2_7_18_1 doi: 10.1038/nature09262 – ident: e_1_2_7_83_1 doi: 10.1182/blood-2005-06-2211 – ident: e_1_2_7_8_1 doi: 10.1016/j.stem.2008.01.017 – ident: e_1_2_7_34_1 doi: 10.1038/nm.3706 – ident: e_1_2_7_82_1 doi: 10.1182/blood-2014-03-565721 – ident: e_1_2_7_80_1 doi: 10.1038/bmt.2009.381 – ident: e_1_2_7_14_1 doi: 10.1080/14653240600855905 – ident: e_1_2_7_17_1 doi: 10.1111/j.1749-6632.2010.05390.x – ident: e_1_2_7_75_1 doi: 10.1182/blood.V95.11.3289 – ident: e_1_2_7_30_1 doi: 10.1016/j.stem.2010.02.001 – volume: 24 start-page: 25 year: 2011 ident: e_1_2_7_90_1 article-title: Prospective isolation of human MSC. Best practice & research publication-title: Clin. Haematol. – ident: e_1_2_7_54_1 doi: 10.1084/jem.20041385 – ident: e_1_2_7_55_1 doi: 10.1002/jcp.1040910303 – ident: e_1_2_7_63_1 doi: 10.1016/j.exphem.2011.02.011 – ident: e_1_2_7_24_1 doi: 10.1016/j.immuni.2010.08.017 – ident: e_1_2_7_67_1 doi: 10.1038/leu.2011.236 – ident: e_1_2_7_43_1 doi: 10.1016/j.cell.2011.09.053 – ident: e_1_2_7_46_1 doi: 10.1016/j.bone.2008.08.128 – ident: e_1_2_7_101_1 doi: 10.1016/j.immuni.2012.05.014 – ident: e_1_2_7_50_1 doi: 10.1016/j.stem.2012.01.006 – ident: e_1_2_7_81_1 doi: 10.1182/blood-2007-10-120329 – ident: e_1_2_7_103_1 doi: 10.15252/msb.20145141 – ident: e_1_2_7_29_1 doi: 10.1038/nature15250 – volume: 93 start-page: 107 year: 1999 ident: e_1_2_7_6_1 article-title: Murine hematopoietic progenitor cells with colony‐forming or radioprotective capacity lack expression of the beta 2‐integrin LFA‐1 publication-title: Blood doi: 10.1182/blood.V93.1.107 – ident: e_1_2_7_85_1 doi: 10.1016/S0301-472X(02)00812-3 – ident: e_1_2_7_86_1 doi: 10.1182/blood.V78.1.55.55 – ident: e_1_2_7_76_1 doi: 10.3324/haematol.2009.010736 – ident: e_1_2_7_78_1 doi: 10.1172/JCI7615 – ident: e_1_2_7_45_1 doi: 10.1016/j.stem.2013.06.015 – ident: e_1_2_7_74_1 doi: 10.1182/blood.V97.10.3283 – ident: e_1_2_7_44_1 doi: 10.1126/science.1201219 |
SSID | ssj0012847 |
Score | 2.2952812 |
SecondaryResourceType | review_article |
Snippet | Hematopoietic stem cells (HSCs) reside in specific niches that provide various instructive cues that regulate HSC self‐renewal and their development into all... Hematopoietic stem cells (HSCs) reside in specific niches that provide various instructive cues that regulate HSC self-renewal and their development into all... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 55 |
SubjectTerms | Animals Cell Differentiation - physiology coculture Genes Hematopoietic Stem Cell Transplantation hematopoietic stem cells Hematopoietic Stem Cells - cytology Hematopoietic Stem Cells - metabolism Humans mesenchymal stromal cell Mesenchymal Stromal Cells - cytology Mesenchymal Stromal Cells - metabolism Mice Rodents stem cell niche Stem Cell Niche - physiology Stem cells xenograft model Xenograft Model Antitumor Assays |
Title | The human and murine hematopoietic stem cell niches: are they comparable? |
URI | https://api.istex.fr/ark:/67375/WNG-457XRD0C-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnyas.12994 https://www.ncbi.nlm.nih.gov/pubmed/26713726 https://www.proquest.com/docview/1797263928 https://www.proquest.com/docview/1795878776 https://www.proquest.com/docview/1808696631 |
Volume | 1370 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEB5KRfBFbb2lVllRxAo5JHtfEaRUaxU9D9Xi6YOE3U0C0ppTzgU8_np3NhetlIK-hWSS7E7mupn5FuAJRVCoUug0cyZLuXJZanGZwzhVcmfq0jvsd_44lgdH_P1ETNbgZd8L0-JDDAtuqBnRXqOCWzf_Q8mblZ2PgrcyCAaKxVoYER0O2FHR7kYzrIIZDmFMh02KZTy_bz3nja4gY39cFGqej1yj69m_AV_7QbcVJyej5cKN_M-_8Bz_d1Y34XoXk5LdVog2YK1qNuFqu0vlahM2Ov2fk2cdSPXOLXgX5IvEDf6IbUryHRftwwlEgJ2eTb9hayRBjGiCfwZIgwWn8xfEzioSIs4VaUvfsW3r1W042n_zee8g7bZlSD03mqfcq1J7Yx2zIb2R0tKyqkvqBK-YkI7Vubd5bai32uWZoU75SjIma05tkArO7sB6M22qe0Cor2tRZ9orlvPSeiOMdOgic-Ey7UQCO_3nKXyHWY5bZ5wWfe6C_CoivxJ4PNCetUgdF1I9jV95ILGzE6xtU6L4Mn5bcKEmh6-zveJDAtu9GBSdWodHKKNoiOmoTuDRcDkoJPLSNtV0GWmEDmZQyUtodMgkQ6LJ8gTutiI2DIhKlbPwlgSeR0G5ZDLF-Hj3Uzza-hfi-3AtqKhs64-2YX0xW1YPQmi1cA-jCv0C-LEddw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5BKwQvQMvRlAJGIESRskp8xrygqlC2sN2H0qrLU2Q7iYRastUeUpdfj8fJBoqqSvAWJZPD4zmd8TcAryiCQhUiixOrk5grm8QGlzm0VQW3uiqcxf3OB0PZP-afR2LU1ubgXpgGH6JbcEPNCPYaFRwXpP_Q8nphpj3vrjS_CavY0jtkVIcdelSwvMEQK2-IfSDTopNiIc_vey_5o1Vk7cVVwebl2DU4n717TYfVacAsxJqT0958Znvu51-Ijv89rvtwtw1LyU4jR2two6zX4VbTqHKxDmutCZiSNy1O9fYD2PciRkKPP2LqgvzAdXt_AkFgx-fj77g7kiBMNMGfA6TGmtPpO2ImJfFB54I01e-4c-v9Qzje-3i024_bzgyx4zrjMXeqyJw2lhmf4UhpaFFWBbWCl0xIy6rUmbTS1JnMpommVrlSMiYrTo0XDM4ewUo9rssNINRVlaiSzCmW8sI4LbS06CVTYZPMigi2l_OTuxa2HLtnnOXL9AX5lQd-RfCyoz1vwDqupHodprkjMZNTLG9TIj8Zfsq5UKPDD8luPohgaykHeavZ_hFKK-rDOppF8KK77HUSeWnqcjwPNCLzllDJa2gyn0z6XJOlETxuZKz7ICpVyvxbIngbJOWaweTDbztfw9HmvxA_h9v9o4NBPtgffnkCd7zGyqYcaQtWZpN5-dRHWjP7LOjTL70GIZI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9RAEB9qi-IXtfUVrbqiiBVyJJt9iiCl59lqPaRaPD9I2N0kINXccQ_w_Ovd2eSilVLQbyGZJLuTeW5mfgvwmCIoVMFVnFidxEzaJDa4zKGtLJjVVeEs9ju_G4r9Y_ZmxEdr8GLVC9PgQ3QLbqgZwV6jgk-K6g8lr5dm1vPeSrMLsMFEolCm-0cdeFQwvMEOS2-HfRzTgpNiHc_ve0-5ow3k7I-zYs3ToWvwPYOr8GU16qbk5KS3mNue-_kXoOP_TusaXGmDUrLbSNEmrJX1FlxstqlcbsFmawBm5GmLUr1zHQ68gJGwwx8xdUG-46q9P4EQsOPJ-Cv2RhIEiSb4a4DUWHE6e07MtCQ-5FySpvYd-7Ze3oDjwauPe_txuy9D7JhWLGZOFsppYzPj8xshDC3KqqCWszLjwmZV6kxaaeqMsmmiqZWuFFkmKkaNFwuW3YT1elyXt4FQV1W8SpSTWcoK4zTXwqKPTLlNlOUR7Kw-T-5a0HLcO-NbvkpekF954FcEjzraSQPVcSbVk_CVOxIzPcHiNsnzT8PXOeNydNRP9vLDCLZXYpC3eu0fIbWkPqijKoKH3WWvkchLU5fjRaDhyttBKc6hUT6V9JlmlkZwqxGxbkBUyDTzb4ngWRCUcyaTDz_vfghHd_6F-AFcet8f5IcHw7d34bJXV9HUIm3D-ny6KO_5MGtu7wdt-gVbiiBK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+human+and+murine+hematopoietic+stem+cell+niches%3A+are+they+comparable%3F&rft.jtitle=Annals+of+the+New+York+Academy+of+Sciences&rft.au=van+Pel%2C+Melissa&rft.au=Fibbe%2C+Willem+E.&rft.au=Schepers%2C+Koen&rft.date=2016-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0077-8923&rft.eissn=1749-6632&rft.volume=1370&rft.issue=1&rft.spage=55&rft.epage=64&rft_id=info:doi/10.1111%2Fnyas.12994&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_457XRD0C_L |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0077-8923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0077-8923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0077-8923&client=summon |