The human and murine hematopoietic stem cell niches: are they comparable?

Hematopoietic stem cells (HSCs) reside in specific niches that provide various instructive cues that regulate HSC self‐renewal and their development into all mature cells of the peripheral blood. Progress in this research field has largely been guided by mouse studies. However, parallel studies with...

Full description

Saved in:
Bibliographic Details
Published inAnnals of the New York Academy of Sciences Vol. 1370; no. 1; pp. 55 - 64
Main Authors van Pel, Melissa, Fibbe, Willem E., Schepers, Koen
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.04.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hematopoietic stem cells (HSCs) reside in specific niches that provide various instructive cues that regulate HSC self‐renewal and their development into all mature cells of the peripheral blood. Progress in this research field has largely been guided by mouse studies. However, parallel studies with human subjects, tissues, and cells, in combination with xenotransplantation experiments in immunodeficient mice, have contributed to our increased understanding of the human HSC niche. Here, we summarize our current knowledge of the various specialized subsets of both stromal and hematopoietic cells that support HSCs through cell–cell interactions and secreted factors, and the many parallels between the murine and human HSC niches. Furthermore, we discuss recent technological advances that are likely to improve our understanding of the human HSC niche, a better understanding of which may allow further identification of unique molecular and cellular pathways in the HSC niche. This information may help to further improve the outcome of HSC transplantation and refine the treatment of hematopoietic diseases.
AbstractList Hematopoietic stem cells (HSCs) reside in specific niches that provide various instructive cues that regulate HSC self-renewal and their development into all mature cells of the peripheral blood. Progress in this research field has largely been guided by mouse studies. However, parallel studies with human subjects, tissues, and cells, in combination with xenotransplantation experiments in immunodeficient mice, have contributed to our increased understanding of the human HSC niche. Here, we summarize our current knowledge of the various specialized subsets of both stromal and hematopoietic cells that support HSCs through cell-cell interactions and secreted factors, and the many parallels between the murine and human HSC niches. Furthermore, we discuss recent technological advances that are likely to improve our understanding of the human HSC niche, a better understanding of which may allow further identification of unique molecular and cellular pathways in the HSC niche. This information may help to further improve the outcome of HSC transplantation and refine the treatment of hematopoietic diseases.Hematopoietic stem cells (HSCs) reside in specific niches that provide various instructive cues that regulate HSC self-renewal and their development into all mature cells of the peripheral blood. Progress in this research field has largely been guided by mouse studies. However, parallel studies with human subjects, tissues, and cells, in combination with xenotransplantation experiments in immunodeficient mice, have contributed to our increased understanding of the human HSC niche. Here, we summarize our current knowledge of the various specialized subsets of both stromal and hematopoietic cells that support HSCs through cell-cell interactions and secreted factors, and the many parallels between the murine and human HSC niches. Furthermore, we discuss recent technological advances that are likely to improve our understanding of the human HSC niche, a better understanding of which may allow further identification of unique molecular and cellular pathways in the HSC niche. This information may help to further improve the outcome of HSC transplantation and refine the treatment of hematopoietic diseases.
Hematopoietic stem cells (HSCs) reside in specific niches that provide various instructive cues that regulate HSC self‐renewal and their development into all mature cells of the peripheral blood. Progress in this research field has largely been guided by mouse studies. However, parallel studies with human subjects, tissues, and cells, in combination with xenotransplantation experiments in immunodeficient mice, have contributed to our increased understanding of the human HSC niche. Here, we summarize our current knowledge of the various specialized subsets of both stromal and hematopoietic cells that support HSCs through cell–cell interactions and secreted factors, and the many parallels between the murine and human HSC niches. Furthermore, we discuss recent technological advances that are likely to improve our understanding of the human HSC niche, a better understanding of which may allow further identification of unique molecular and cellular pathways in the HSC niche. This information may help to further improve the outcome of HSC transplantation and refine the treatment of hematopoietic diseases.
Author Schepers, Koen
van Pel, Melissa
Fibbe, Willem E.
Author_xml – sequence: 1
  givenname: Melissa
  surname: van Pel
  fullname: van Pel, Melissa
  organization: Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
– sequence: 2
  givenname: Willem E.
  surname: Fibbe
  fullname: Fibbe, Willem E.
  organization: Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
– sequence: 3
  givenname: Koen
  surname: Schepers
  fullname: Schepers, Koen
  email: k.schepers@lumc.nl
  organization: Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26713726$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1rFDEUhoNU7LZ64w-QAW9EmJqvyYc3paxaC0sFrahXIZM5w6bOJGsyg-6_N-u2vSiiuQmE5znkvO8ROggxAEJPCT4h5bwKW5tPCNWaP0ALIrmuhWD0AC0wlrJWmrJDdJTzNcaEKi4foUMqJGGSigW6uFpDtZ5HGyobumqckw_lAUY7xU30MHlX5QnGysEwVMG7NeTXlU1QTWvYVi6OG5tsO8DpY_Swt0OGJzf3Mfr87u3V8n29-nB-sTxb1Y5rxWvuZKecti2zTYOFsLSDvqNtw4E1omU9cZb0mjqrWoI1baUDwZjoObVdozg7Ri_2czcp_pghT2b0efc7GyDO2RCFldAlAfJ_VOpGSSWlKOjze-h1nFMoi-yoEhXTVBXq2Q01tyN0ZpP8aNPW3OZZgJd7wKWYc4L-DiHY7Moyu7LMn7IKjO_Bzk928jFMyfrh7wrZKz_9ANt_DDeX384-3Tr13vGlyF93jk3fjZBMNubL5bnhjfz68Q1emhX7DUectEw
CODEN ANYAA9
CitedBy_id crossref_primary_10_1016_j_molmed_2020_01_016
crossref_primary_10_2147_JBM_S305319
crossref_primary_10_1016_j_isci_2019_08_006
crossref_primary_10_1016_j_bonr_2023_101669
crossref_primary_10_1038_s41598_018_33979_7
crossref_primary_10_1016_j_stem_2024_02_010
crossref_primary_10_3389_fcvm_2023_1261849
crossref_primary_10_1016_j_exphem_2018_05_002
crossref_primary_10_3390_ijms23073675
crossref_primary_10_1002_bies_202300142
crossref_primary_10_3390_ijms17071009
crossref_primary_10_1016_j_ejcb_2018_07_001
Cites_doi 10.1016/j.stemcr.2015.05.017
10.3324/haematol.13740
10.1080/146532402317381811
10.1038/nature12984
10.1038/ni1509
10.1038/nprot.2013.026
10.1155/2011/353878
10.1038/nature12612
10.1182/blood-2012-03-414920
10.1182/blood-2009-11-253534
10.1038/sj.leu.2402684
10.1111/j.1365-2141.1974.tb06671.x
10.1016/j.immuni.2006.10.016
10.7554/eLife.03696
10.4049/jimmunol.181.2.1232
10.1073/pnas.79.11.3608
10.1084/jem.20050967
10.1038/nature02041
10.1038/nature10783
10.1182/blood-2007-09-112052
10.1016/j.celrep.2013.03.041
10.1016/j.jcyt.2013.12.011
10.1016/j.stem.2012.01.003
10.1177/1535370215594583
10.1126/scitranslmed.3002191
10.1016/j.stem.2014.06.008
10.1038/nature11926
10.1016/j.scr.2009.12.004
10.1038/nature11885
10.1182/blood.V90.12.4779
10.1182/blood.V86.9.3353.bloodjournal8693353
10.1038/bmt.2011.217
10.1182/blood.V90.2.641
10.1016/j.stem.2007.10.008
10.1016/j.stem.2013.05.014
10.1016/j.stem.2013.09.006
10.1016/j.cell.2004.07.004
10.1182/blood.V92.8.2609
10.1016/j.immuni.2012.07.011
10.1016/j.celrep.2013.07.048
10.1016/j.stemcr.2014.09.018
10.1038/nm.3707
10.1053/bbmt.2002.v8.pm12171483
10.1111/j.1365-2559.2011.04104.x
10.1084/jem.20122252
10.1517/14712598.2014.902927
10.1016/j.it.2011.04.005
10.1016/j.cell.2007.08.025
10.1016/j.stem.2015.02.014
10.3324/haematol.2011.050500
10.1182/blood-2009-05-224857
10.1056/NEJMoa1207285
10.1016/j.stem.2007.06.001
10.1182/blood-2003-11-4011
10.1038/nature07639
10.1097/01.moh.0000133652.06863.47
10.1016/j.exphem.2015.04.011
10.1182/blood-2012-08-451864
10.1016/j.stem.2008.10.005
10.1182/blood-2010-08-304287
10.1002/stem.160007
10.1038/labinvest.2012.93
10.1038/nm.2969
10.1016/j.stem.2007.10.020
10.1182/blood.V74.5.1563.1563
10.1016/j.cell.2005.10.041
10.1182/blood-2009-07-233437
10.1016/j.bbrc.2014.10.095
10.1084/jem.20101688
10.1182/blood-2011-12-398115
10.1038/nature06685
10.1182/blood-2011-11-389957
10.1038/nature02040
10.1016/j.stem.2008.09.004
10.3324/haematol.2009.006072
10.1016/j.blre.2014.01.001
10.1038/nature09262
10.1182/blood-2005-06-2211
10.1016/j.stem.2008.01.017
10.1038/nm.3706
10.1182/blood-2014-03-565721
10.1038/bmt.2009.381
10.1080/14653240600855905
10.1111/j.1749-6632.2010.05390.x
10.1182/blood.V95.11.3289
10.1016/j.stem.2010.02.001
10.1084/jem.20041385
10.1002/jcp.1040910303
10.1016/j.exphem.2011.02.011
10.1016/j.immuni.2010.08.017
10.1038/leu.2011.236
10.1016/j.cell.2011.09.053
10.1016/j.bone.2008.08.128
10.1016/j.immuni.2012.05.014
10.1016/j.stem.2012.01.006
10.1182/blood-2007-10-120329
10.15252/msb.20145141
10.1038/nature15250
10.1182/blood.V93.1.107
10.1016/S0301-472X(02)00812-3
10.1182/blood.V78.1.55.55
10.3324/haematol.2009.010736
10.1172/JCI7615
10.1016/j.stem.2013.06.015
10.1182/blood.V97.10.3283
10.1126/science.1201219
ContentType Journal Article
Copyright 2015 New York Academy of Sciences.
2016 The New York Academy of Sciences
Copyright_xml – notice: 2015 New York Academy of Sciences.
– notice: 2016 The New York Academy of Sciences
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7ST
7T5
7T7
7TK
7TM
7TO
7U7
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
SOI
7X8
DOI 10.1111/nyas.12994
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
MEDLINE
Virology and AIDS Abstracts
Environment Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1749-6632
EndPage 64
ExternalDocumentID 4090498251
26713726
10_1111_nyas_12994
NYAS12994
ark_67375_WNG_457XRD0C_L
Genre article
Journal Article
Review
GroupedDBID ---
--Z
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1OB
1OC
23M
31~
33P
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
692
6J9
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAMDK
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOJD
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELAQ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFSWV
AFZJQ
AHBTC
AHEFC
AHMBA
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IH2
IX1
J0M
K48
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RAG
RIWAO
RJQFR
ROL
RX1
S10
SAMSI
SJN
SUPJJ
SV3
TEORI
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIK
WOHZO
WQJ
WRC
WUP
WVDHM
WXSBR
X7M
XG1
YBU
YOC
YSK
ZGI
ZKB
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
AHDLI
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7ST
7T5
7T7
7TK
7TM
7TO
7U7
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
K9.
M7N
P64
RC3
SOI
7X8
ID FETCH-LOGICAL-c4984-4c7d8c9ab3a55066a2defd2b54e356b3f1ca1f92ca8b1092b7ce6336f42ad5843
IEDL.DBID DR2
ISSN 0077-8923
1749-6632
IngestDate Fri Jul 11 10:50:27 EDT 2025
Thu Jul 10 18:03:14 EDT 2025
Fri Jul 25 10:22:20 EDT 2025
Thu Apr 03 07:02:36 EDT 2025
Thu Apr 24 22:57:35 EDT 2025
Tue Jul 01 04:00:50 EDT 2025
Wed Jan 22 17:04:01 EST 2025
Wed Oct 30 09:53:21 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords stem cell niche
xenograft model
coculture
mesenchymal stromal cell
hematopoietic stem cells
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 New York Academy of Sciences.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4984-4c7d8c9ab3a55066a2defd2b54e356b3f1ca1f92ca8b1092b7ce6336f42ad5843
Notes istex:BFE3E6CA384CBDD4DF40E886C70FCED10EFDBEA8
ArticleID:NYAS12994
ark:/67375/WNG-457XRD0C-L
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 26713726
PQID 1797263928
PQPubID 946344
PageCount 10
ParticipantIDs proquest_miscellaneous_1808696631
proquest_miscellaneous_1795878776
proquest_journals_1797263928
pubmed_primary_26713726
crossref_primary_10_1111_nyas_12994
crossref_citationtrail_10_1111_nyas_12994
wiley_primary_10_1111_nyas_12994_NYAS12994
istex_primary_ark_67375_WNG_457XRD0C_L
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2016
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: April 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Annals of the New York Academy of Sciences
PublicationTitleAlternate Ann. N.Y. Acad. Sci
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Hopman, R.K. & J.F. DiPersio. 2014. Advances in stem cell mobilization. Blood Rev. 28: 31-40.
Tormin, A. et al. 2011. CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization. Blood 117: 5067-5077.
Yoshihara, H. et al. 2007. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1: 685-697.
Jing, D. et al. 2010. CD49d blockade by natalizumab in patients with multiple sclerosis affects steady-state hematopoiesis and mobilizes progenitors with a distinct phenotype and function. Bone Marrow Transplant. 45: 1489-1496.
Kollet, O. et al. 2001. Rapid and efficient homing of human CD34(+)CD38(-/low)CXCR4(+) stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2m(null) mice. Blood 97: 3283-3291.
Haug, J.S. et al. 2008. N-cadherin expression level distinguishes reserved versus primed states of hematopoietic stem cells. Cell Stem Cell 2: 367-379.
Butler, J.M. et al. 2012. Development of a vascular niche platform for expansion of repopulating human cord blood stem and progenitor cells. Blood 120: 1344-1347.
Peled, A. et al. 2000. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95: 3289-3296.
Qiao, W. et al. 2014. Intercellular network structure and regulatory motifs in the human hematopoietic system. Mol. Syst. Biol. 10: 741.
Zhao, M. et al. 2014. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat. Med. 20: 1321-1326.
Bonig, H. et al. 2008. Increased numbers of circulating hematopoietic stem/progenitor cells are chronically maintained in patients treated with the CD49d blocking antibody natalizumab. Blood 111: 3439-3441.
Yamaguchi, M. et al. 2002. Ex vivo expansion of human UC blood primitive hematopoietic progenitors and transplantable stem cells using human primary BM stromal cells and human AB serum. Cytotherapy 4: 109-118.
Madelung, A. et al. 2012. A novel immunohistochemical sequential multi-labelling and erasing technique enables epitope characterization of bone marrow pericytes in primary myelofibrosis. Histopathology 60: 554-560.
Zhou, B.O. et al. 2014. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15: 154-168.
Schepers, K., T.B. Campbell & E. Passegue. 2015. Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell 16: 254-267.
Wein, F. et al. 2010. N-cadherin is expressed on human hematopoietic progenitor cells and mediates interaction with human mesenchymal stromal cells. Stem Cell Res. 4: 129-139.
Battula, V.L. et al. 2009. Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica 94: 173-184.
Xie, Y. et al. 2009. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457: 97-101.
Moore, K.A. 2004. Recent advances in defining the hematopoietic stem cell niche. Curr. Opin. Hematol. 11: 107-111.
Khorshed, R.A. et al. 2015. Automated identification and localization of hematopoietic stem cells in 3D intravital microscopy data. Stem Cell Rep. 5: 139-153.
Gan, O.I. et al. 1997. Differential maintenance of primitive human SCID-repopulating cells, clonogenic progenitors, and long-term culture-initiating cells after incubation on human bone marrow stromal cells. Blood 90: 641-650.
Winkler, I.G. et al. 2010. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116: 4815-4828.
Quirici, N. et al. 2002. Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp. Hematol. 30: 783-791.
Moreau, H.D. et al. 2012. Dynamic in situ cytometry uncovers T cell receptor signaling during immunological synapses and kinapses in vivo. Immunity 37: 351-363.
Chang, M.K. et al. 2008. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J. Immunol. 181: 1232-1244.
Simmons, P.J. & B. Torok-Storb. 1991. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78: 55-62.
Guezguez, B. et al. 2013. Regional localization within the bone marrow influences the functional capacity of human HSCs. Cell Stem Cell 13: 175-189.
Zhang, J. et al. 2003. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425: 836-841.
Doulatov, S. et al. 2012. Hematopoiesis: a human perspective. Cell Stem Cell 10: 120-136.
Flores-Figueroa, E. et al. 2012. Distinctive contact between CD34+ hematopoietic progenitors and CXCL12+ CD271+ mesenchymal stromal cells in benign and myelodysplastic bone marrow. Lab. Invest. 92: 1330-1341.
Hosokawa, K. et al. 2010. Knockdown of N-cadherin suppresses the long-term engraftment of hematopoietic stem cells. Blood 116: 554-563.
Kiel, M.J. et al. 2009. Hematopoietic stem cells do not depend on N-cadherin to regulate their maintenance. Cell Stem Cell 4: 170-179.
Pettit, A.R. et al. 2008. Osteal macrophages: a new twist on coupling during bone dynamics. Bone 43: 976-982.
Csaszar, E. et al. 2012. Rapid expansion of human hematopoietic stem cells by automated control of inhibitory feedback signaling. Cell Stem Cell 10: 218-229.
Ferraro, F. et al. 2011. Diabetes impairs hematopoietic stem cell mobilization by altering niche function. Sci. Transl. Med. 3: 104ra101.
Dexter, T.M., T.D. Allen & L.G. Lajtha. 1977. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J. Cell. Physiol. 91: 335-344.
de Lima, M. et al. 2012. Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N. Engl. J. Med. 367: 2305-2315.
Greenbaum, A. et al. 2013. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495: 227-230.
Li, T. & Y. Wu. 2011. Paracrine molecules of mesenchymal stem cells for hematopoietic stem cell niche. Bone Marrow Res. 2011: 353878.
Dexter, T.M. & L.G. Lajtha. 1974. Proliferation of haemopoietic stem cells in vitro. Br. J. Haematol. 28: 525-530.
Walenda, T. et al. 2011. Synergistic effects of growth factors and mesenchymal stromal cells for expansion of hematopoietic stem and progenitor cells. Exp. Hematol. 39: 617-628.
Kunisaki, Y. et al. 2013. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502: 637-643.
Harichandan, A., K. Sivasubramaniyan & H.J. Buhring. 2013. Prospective isolation and characterization of human bone marrow-derived MSCs. Adv. Biochem. Eng. Biotechnol. 129: 1-17.
Rafii, S. et al. 1995. Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors. Blood 86: 3353-3363.
Gerner, M.Y. et al. 2012. Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity 37: 364-376.
Bear, A.S. et al. 2014. Low rate of infusional toxicity after expanded cord blood transplantation. Cytotherapy 16: 1153-1157.
Sugiyama, T. et al. 2006. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25: 977-988.
Jantunen, E. & V. Varmavuo. 2014. Plerixafor for mobilization of blood stem cells in autologous transplantation: an update. Expert Opin. Biol. Ther. 14: 851-861.
Ritsma, L. et al. 2013. Surgical implantation of an abdominal imaging window for intravital microscopy. Nat. Protoc. 8: 583-594.
Morrison, S.J. & D.T. Scadden. 2014. The bone marrow niche for haematopoietic stem cells. Nature 505: 327-334.
Muguruma, Y. et al. 2006. Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood 107: 1878-1887.
Passegue, E. et al. 2005. Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J. Exp. Med. 202: 1599-1611.
Lucas, D. et al. 2008. Mobilized hematopoietic stem cell yield depends on species-specific circadian timing. Cell Stem Cell 3: 364-366.
Lapidot, T. & O. Kollet. 2002. The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m(null) mice. Leukemia 16: 1992-2003.
Sutherland, H.J. et al. 1989. Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood 74: 1563-1570.
Spiegel, A. et al. 2007. Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nat. Immunol. 8: 1123-1131.
Pineault, N. & A. Abu-Khader. 2015. Advances in umbilical cord blood stem cell expansion and clinical translation. Exp. Hematol. 43: 498-513.
Horwitz, M.E. et al. 2012. Preemptive dosing of plerixafor given to poor stem cell mobilizers on day 5 of G-CSF administration. Bone Marrow Transplant. 47: 1051-1055.
Omatsu, Y. et al. 2010. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33: 387-399.
Isern, J. et al. 2013. Self-renewing human bone marrow mesenspheres promote hematopoietic stem cell expansion. Cell Rep. 3: 1714-1724.
Verfaillie, C.M. 1998. Adhesion receptors as regulators of the hematopoietic process. Blood 92: 2609-2612.
Butler, J.M. et al. 2010. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6: 251-264.
Yamazaki, S. et al. 2011. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147: 1146-1158.
Shpall, E.J.
2002; 16
2012; 481
2012; 60
2012; 120
2013; 3
2013; 4
2011; 117
2010; 466
2013; 129
2000; 95
2012; 18
2008; 3
2013; 121
2014; 28
2012; 367
2008; 2
2013; 8
2012; 10
2012; 97
2014; 20
2014; 454
1998; 16
1997; 90
1989; 74
2011; 208
2014; 3
2010; 116
2013; 13
2009; 94
2006; 25
2015; 43
2007; 131
2007; 8
2014; 16
2014; 15
2014; 14
1998; 92
2011; 24
2012; 26
1999; 93
2007; 1
2008; 111
2010; 4
2010; 6
2001; 97
2014; 10
2006; 124
2014; 124
2015; 240
2010; 33
1982; 79
2011; 333
2015; 16
2015; 5
2004; 103
2002; 30
1991; 78
2013; 502
2002; 8
2006; 8
2002; 4
2011; 32
2015; 526
2012; 37
2011; 39
2011; 3
1999; 104
2009; 457
2008; 181
1995; 86
2010; 45
2004; 11
2011; 2011
2010; 1192
2011; 147
2012; 92
2014; 505
2003; 425
2005; 201
2005; 202
2013; 210
2008; 43
2013; 495
2009; 4
2012; 47
2008; 452
2004; 118
2006; 107
1977; 91
2010; 95
2012; 119
1974; 28
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_94_1
e_1_2_7_71_1
Pruijt J.F. (e_1_2_7_6_1) 1999; 93
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
Harichandan A. (e_1_2_7_91_1) 2013; 129
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_17_1
e_1_2_7_81_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
Gan O.I. (e_1_2_7_62_1) 1997; 90
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_72_1
e_1_2_7_95_1
Harichandan A. (e_1_2_7_90_1) 2011; 24
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_38_1
References_xml – reference: Hopman, R.K. & J.F. DiPersio. 2014. Advances in stem cell mobilization. Blood Rev. 28: 31-40.
– reference: Qiao, W. et al. 2014. Intercellular network structure and regulatory motifs in the human hematopoietic system. Mol. Syst. Biol. 10: 741.
– reference: Winkler, I.G. et al. 2010. Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches. Blood 116: 375-385.
– reference: Yamaguchi, M. et al. 2002. Ex vivo expansion of human UC blood primitive hematopoietic progenitors and transplantable stem cells using human primary BM stromal cells and human AB serum. Cytotherapy 4: 109-118.
– reference: Verfaillie, C.M. 1998. Adhesion receptors as regulators of the hematopoietic process. Blood 92: 2609-2612.
– reference: Sharma, M.B., L.S. Limaye & V.P. Kale. 2012. Mimicking the functional hematopoietic stem cell niche in vitro: recapitulation of marrow physiology by hydrogel-based three-dimensional cultures of mesenchymal stromal cells. Haematologica 97: 651-660.
– reference: Katayama, Y. et al. 2006. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124: 407-421.
– reference: Sugiyama, T. et al. 2006. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25: 977-988.
– reference: Nakamura-Ishizu, A. et al. 2014. Megakaryocytes are essential for HSC quiescence through the production of thrombopoietin. Biochem. Biophys. Res. Commun. 454: 353-357.
– reference: Omatsu, Y. et al. 2010. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33: 387-399.
– reference: Visnjic, D. et al. 2004. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103: 3258-3264.
– reference: Spiegel, A. et al. 2007. Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nat. Immunol. 8: 1123-1131.
– reference: Rafii, S. et al. 1995. Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors. Blood 86: 3353-3363.
– reference: Hosokawa, K. et al. 2010. Knockdown of N-cadherin suppresses the long-term engraftment of hematopoietic stem cells. Blood 116: 554-563.
– reference: Oguro, H., L. Ding & S.J. Morrison. 2013. SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 13: 102-116.
– reference: Schepers, K., T.B. Campbell & E. Passegue. 2015. Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell 16: 254-267.
– reference: Mendez-Ferrer, S. et al. 2008. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452: 442-447.
– reference: Pruijt, J.F. et al. 1999. Murine hematopoietic progenitor cells with colony-forming or radioprotective capacity lack expression of the beta 2-integrin LFA-1. Blood 93: 107-112.
– reference: Mendez-Ferrer, S., M. Battista & P.S. Frenette. 2010. Cooperation of beta(2)- and beta(3)-adrenergic receptors in hematopoietic progenitor cell mobilization. Ann. N. Y. Acad. Sci. 1192: 139-144.
– reference: Arai, F. et al. 2004. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118: 149-161.
– reference: Khorshed, R.A. et al. 2015. Automated identification and localization of hematopoietic stem cells in 3D intravital microscopy data. Stem Cell Rep. 5: 139-153.
– reference: Jing, D. et al. 2010. Hematopoietic stem cells in co-culture with mesenchymal stromal cells-modeling the niche compartments in vitro. Haematologica 95: 542-550.
– reference: Moore, K.A. 2004. Recent advances in defining the hematopoietic stem cell niche. Curr. Opin. Hematol. 11: 107-111.
– reference: Li, T. & Y. Wu. 2011. Paracrine molecules of mesenchymal stem cells for hematopoietic stem cell niche. Bone Marrow Res. 2011: 353878.
– reference: Whitlock, C.A. & O.N. Witte. 1982. Long-term culture of B lymphocytes and their precursors from murine bone marrow. Proc. Natl. Acad. Sci. U. S. A. 79: 3608-3612.
– reference: Peled, A. et al. 2000. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95: 3289-3296.
– reference: Peled, A. et al. 1999. The chemokine SDF-1 stimulates integrin-mediated arrest of CD34(+) cells on vascular endothelium under shear flow. J. Clin. Invest. 104: 1199-1211.
– reference: Shpall, E.J. et al. 2002. Transplantation of ex vivo expanded cord blood. Biol. Blood Marrow Transplant. 8: 368-376.
– reference: Kunisaki, Y. et al. 2013. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502: 637-643.
– reference: Dexter, T.M., T.D. Allen & L.G. Lajtha. 1977. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J. Cell. Physiol. 91: 335-344.
– reference: Zhao, M. et al. 2014. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat. Med. 20: 1321-1326.
– reference: Winkler, I.G. et al. 2010. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116: 4815-4828.
– reference: Ding, L. et al. 2012. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481: 457-462.
– reference: Calvi, L.M. et al. 2003. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425: 841-846.
– reference: Harichandan, A. & H.J. Buhring. 2011. Prospective isolation of human MSC. Best practice & research. Clin. Haematol. 24: 25-36.
– reference: Willinger, T. et al. 2011. Improving human hemato-lymphoid-system mice by cytokine knock-in gene replacement. Trends Immunol. 32: 321-327.
– reference: Xie, Y. et al. 2009. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457: 97-101.
– reference: Chen, Y. et al. 2012. Human extramedullary bone marrow in mice: a novel in vivo model of genetically controlled hematopoietic microenvironment. Blood 119: 4971-4980.
– reference: Pinho, S. et al. 2013. PDGFRalpha and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J. Exp. Med. 210: 1351-1367.
– reference: Dexter, T.M. & L.G. Lajtha. 1974. Proliferation of haemopoietic stem cells in vitro. Br. J. Haematol. 28: 525-530.
– reference: Chang, M.K. et al. 2008. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J. Immunol. 181: 1232-1244.
– reference: Doulatov, S. et al. 2012. Hematopoiesis: a human perspective. Cell Stem Cell 10: 120-136.
– reference: Sacchetti, B. et al. 2007. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131: 324-336.
– reference: Kiel, M.J., G.L. Radice & S.J. Morrison. 2007. Lack of evidence that hematopoietic stem cells depend on N-cadherin-mediated adhesion to osteoblasts for their maintenance. Cell Stem Cell 1: 204-217.
– reference: Zohren, F. et al. 2008. The monoclonal anti-VLA-4 antibody natalizumab mobilizes CD34+ hematopoietic progenitor cells in humans. Blood 111: 3893-3895.
– reference: Madelung, A. et al. 2012. A novel immunohistochemical sequential multi-labelling and erasing technique enables epitope characterization of bone marrow pericytes in primary myelofibrosis. Histopathology 60: 554-560.
– reference: Winkler, I.G. et al. 2012. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat. Med. 18: 1651-1657.
– reference: Li, G. et al. 2015. Three dimensional de novo micro bone marrow and its versatile application in drug screening and regenerative medicine. Exp. Biol. Med. 240: 1029-1038.
– reference: Dominici, M. et al. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8: 315-317.
– reference: de Lima, M. et al. 2012. Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N. Engl. J. Med. 367: 2305-2315.
– reference: Yamazaki, S. et al. 2011. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147: 1146-1158.
– reference: Walenda, T. et al. 2011. Synergistic effects of growth factors and mesenchymal stromal cells for expansion of hematopoietic stem and progenitor cells. Exp. Hematol. 39: 617-628.
– reference: Flores-Figueroa, E. et al. 2012. Distinctive contact between CD34+ hematopoietic progenitors and CXCL12+ CD271+ mesenchymal stromal cells in benign and myelodysplastic bone marrow. Lab. Invest. 92: 1330-1341.
– reference: Lapidot, T. & O. Kollet. 2002. The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m(null) mice. Leukemia 16: 1992-2003.
– reference: Li, H. et al. 2014. Low/negative expression of PDGFR-alpha identifies the candidate primary mesenchymal stromal cells in adult human bone marrow. Stem Cell Rep. 3: 965-974.
– reference: Gerner, M.Y. et al. 2012. Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity 37: 364-376.
– reference: Chitteti, B.R. et al. 2014. CD166 regulates human and murine hematopoietic stem cells and the hematopoietic niche. Blood 124: 519-529.
– reference: Pettit, A.R. et al. 2008. Osteal macrophages: a new twist on coupling during bone dynamics. Bone 43: 976-982.
– reference: Guezguez, B. et al. 2013. Regional localization within the bone marrow influences the functional capacity of human HSCs. Cell Stem Cell 13: 175-189.
– reference: Groen, R.W. et al. 2012. Reconstructing the human hematopoietic niche in immunodeficient mice: opportunities for studying primary multiple myeloma. Blood 120: e9-e16.
– reference: Poulos, M.G. et al. 2013. Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis. Cell Rep. 4: 1022-1034.
– reference: Kollet, O. et al. 2001. Rapid and efficient homing of human CD34(+)CD38(-/low)CXCR4(+) stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2m(null) mice. Blood 97: 3283-3291.
– reference: Notta, F. et al. 2011. Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 333: 218-221.
– reference: Acar, M. et al. 2015. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526: 126-130.
– reference: Craddock, C.F. et al. 1997. Antibodies to VLA4 integrin mobilize long-term repopulating cells and augment cytokine-induced mobilization in primates and mice. Blood 90: 4779-4788.
– reference: Battula, V.L. et al. 2009. Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica 94: 173-184.
– reference: Doan, P.L. & J.P. Chute. 2012. The vascular niche: home for normal and malignant hematopoietic stem cells. Leukemia 26: 54-62.
– reference: Butler, J.M. et al. 2010. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6: 251-264.
– reference: Lucas, D. et al. 2008. Mobilized hematopoietic stem cell yield depends on species-specific circadian timing. Cell Stem Cell 3: 364-366.
– reference: Ding, L. & S.J. Morrison. 2013. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495: 231-235.
– reference: Isern, J. et al. 2013. Self-renewing human bone marrow mesenspheres promote hematopoietic stem cell expansion. Cell Rep. 3: 1714-1724.
– reference: Bruns, I. et al. 2014. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat. Med. 20: 1315-1320.
– reference: Bear, A.S. et al. 2014. Low rate of infusional toxicity after expanded cord blood transplantation. Cytotherapy 16: 1153-1157.
– reference: Morrison, S.J. & D.T. Scadden. 2014. The bone marrow niche for haematopoietic stem cells. Nature 505: 327-334.
– reference: Isern, J. et al. 2014. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. Elife 3: e03696.
– reference: Qian, H. et al. 2007. Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell 1: 671-684.
– reference: Butler, J.M. et al. 2012. Development of a vascular niche platform for expansion of repopulating human cord blood stem and progenitor cells. Blood 120: 1344-1347.
– reference: Passegue, E. et al. 2005. Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J. Exp. Med. 202: 1599-1611.
– reference: Ritsma, L. et al. 2013. Surgical implantation of an abdominal imaging window for intravital microscopy. Nat. Protoc. 8: 583-594.
– reference: Kiel, M.J. et al. 2009. Hematopoietic stem cells do not depend on N-cadherin to regulate their maintenance. Cell Stem Cell 4: 170-179.
– reference: Moreau, H.D. et al. 2012. Dynamic in situ cytometry uncovers T cell receptor signaling during immunological synapses and kinapses in vivo. Immunity 37: 351-363.
– reference: Chow, A. et al. 2011. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J. Exp. Med. 208: 261-271.
– reference: Gan, O.I. et al. 1997. Differential maintenance of primitive human SCID-repopulating cells, clonogenic progenitors, and long-term culture-initiating cells after incubation on human bone marrow stromal cells. Blood 90: 641-650.
– reference: Jantunen, E. & V. Varmavuo. 2014. Plerixafor for mobilization of blood stem cells in autologous transplantation: an update. Expert Opin. Biol. Ther. 14: 851-861.
– reference: Pineault, N. & A. Abu-Khader. 2015. Advances in umbilical cord blood stem cell expansion and clinical translation. Exp. Hematol. 43: 498-513.
– reference: Csaszar, E. et al. 2012. Rapid expansion of human hematopoietic stem cells by automated control of inhibitory feedback signaling. Cell Stem Cell 10: 218-229.
– reference: Bonig, H. et al. 2008. Increased numbers of circulating hematopoietic stem/progenitor cells are chronically maintained in patients treated with the CD49d blocking antibody natalizumab. Blood 111: 3439-3441.
– reference: Bernardo, M.E. & W.E. Fibbe. 2013. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13: 392-402.
– reference: Jing, D. et al. 2010. CD49d blockade by natalizumab in patients with multiple sclerosis affects steady-state hematopoiesis and mobilizes progenitors with a distinct phenotype and function. Bone Marrow Transplant. 45: 1489-1496.
– reference: Ferraro, F. et al. 2011. Diabetes impairs hematopoietic stem cell mobilization by altering niche function. Sci. Transl. Med. 3: 104ra101.
– reference: Wein, F. et al. 2010. N-cadherin is expressed on human hematopoietic progenitor cells and mediates interaction with human mesenchymal stromal cells. Stem Cell Res. 4: 129-139.
– reference: Corselli, M. et al. 2013. Perivascular support of human hematopoietic stem/progenitor cells. Blood 121: 2891-2901.
– reference: Quirici, N. et al. 2002. Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp. Hematol. 30: 783-791.
– reference: Horwitz, M.E. et al. 2012. Preemptive dosing of plerixafor given to poor stem cell mobilizers on day 5 of G-CSF administration. Bone Marrow Transplant. 47: 1051-1055.
– reference: Sutherland, H.J. et al. 1989. Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood 74: 1563-1570.
– reference: Tormin, A. et al. 2011. CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization. Blood 117: 5067-5077.
– reference: Greenbaum, A. et al. 2013. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495: 227-230.
– reference: Taichman, R.S. & S.G. Emerson. 1998. The role of osteoblasts in the hematopoietic microenvironment. Stem Cells 16: 7-15.
– reference: Zhou, B.O. et al. 2014. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15: 154-168.
– reference: Mendez-Ferrer, S. et al. 2010. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466: 829-834.
– reference: Zhang, J. et al. 2003. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425: 836-841.
– reference: Muguruma, Y. et al. 2006. Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood 107: 1878-1887.
– reference: Broxmeyer, H.E. et al. 2005. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J. Exp. Med. 201: 1307-1318.
– reference: Schreiber, T.D. et al. 2009. The integrin alpha9beta1 on hematopoietic stem and progenitor cells: involvement in cell adhesion, proliferation and differentiation. Haematologica 94: 1493-1501.
– reference: Harichandan, A., K. Sivasubramaniyan & H.J. Buhring. 2013. Prospective isolation and characterization of human bone marrow-derived MSCs. Adv. Biochem. Eng. Biotechnol. 129: 1-17.
– reference: Yoshihara, H. et al. 2007. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1: 685-697.
– reference: Simmons, P.J. & B. Torok-Storb. 1991. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78: 55-62.
– reference: Haug, J.S. et al. 2008. N-cadherin expression level distinguishes reserved versus primed states of hematopoietic stem cells. Cell Stem Cell 2: 367-379.
– volume: 367
  start-page: 2305
  year: 2012
  end-page: 2315
  article-title: Cord‐blood engraftment with ex vivo mesenchymal‐cell coculture
  publication-title: N. Engl. J. Med
– volume: 107
  start-page: 1878
  year: 2006
  end-page: 1887
  article-title: Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment
  publication-title: Blood
– volume: 43
  start-page: 976
  year: 2008
  end-page: 982
  article-title: Osteal macrophages: a new twist on coupling during bone dynamics
  publication-title: Bone
– volume: 33
  start-page: 387
  year: 2010
  end-page: 399
  article-title: The essential functions of adipo‐osteogenic progenitors as the hematopoietic stem and progenitor cell niche
  publication-title: Immunity
– volume: 1192
  start-page: 139
  year: 2010
  end-page: 144
  article-title: Cooperation of beta(2)‐ and beta(3)‐adrenergic receptors in hematopoietic progenitor cell mobilization
  publication-title: Ann. N. Y. Acad. Sci
– volume: 4
  start-page: 1022
  year: 2013
  end-page: 1034
  article-title: Endothelial Jagged‐1 is necessary for homeostatic and regenerative hematopoiesis
  publication-title: Cell Rep
– volume: 28
  start-page: 31
  year: 2014
  end-page: 40
  article-title: Advances in stem cell mobilization
  publication-title: Blood Rev
– volume: 16
  start-page: 7
  year: 1998
  end-page: 15
  article-title: The role of osteoblasts in the hematopoietic microenvironment
  publication-title: Stem Cells
– volume: 131
  start-page: 324
  year: 2007
  end-page: 336
  article-title: Self‐renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment
  publication-title: Cell
– volume: 104
  start-page: 1199
  year: 1999
  end-page: 1211
  article-title: The chemokine SDF‐1 stimulates integrin‐mediated arrest of CD34(+) cells on vascular endothelium under shear flow
  publication-title: J. Clin. Invest
– volume: 119
  start-page: 4971
  year: 2012
  end-page: 4980
  article-title: Human extramedullary bone marrow in mice: a novel in vivo model of genetically controlled hematopoietic microenvironment
  publication-title: Blood
– volume: 3
  start-page: 364
  year: 2008
  end-page: 366
  article-title: Mobilized hematopoietic stem cell yield depends on species‐specific circadian timing
  publication-title: Cell Stem Cell
– volume: 526
  start-page: 126
  year: 2015
  end-page: 130
  article-title: Deep imaging of bone marrow shows non‐dividing stem cells are mainly perisinusoidal
  publication-title: Nature
– volume: 79
  start-page: 3608
  year: 1982
  end-page: 3612
  article-title: Long‐term culture of B lymphocytes and their precursors from murine bone marrow
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 95
  start-page: 542
  year: 2010
  end-page: 550
  article-title: Hematopoietic stem cells in co‐culture with mesenchymal stromal cells—modeling the niche compartments in vitro
  publication-title: Haematologica
– volume: 3
  start-page: 965
  year: 2014
  end-page: 974
  article-title: Low/negative expression of PDGFR‐alpha identifies the candidate primary mesenchymal stromal cells in adult human bone marrow
  publication-title: Stem Cell Rep
– volume: 30
  start-page: 783
  year: 2002
  end-page: 791
  article-title: Isolation of bone marrow mesenchymal stem cells by anti‐nerve growth factor receptor antibodies
  publication-title: Exp. Hematol
– volume: 129
  start-page: 1
  year: 2013
  end-page: 17
  article-title: Prospective isolation and characterization of human bone marrow‐derived MSCs
  publication-title: Adv. Biochem. Eng. Biotechnol
– volume: 1
  start-page: 685
  year: 2007
  end-page: 697
  article-title: Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche
  publication-title: Cell Stem Cell
– volume: 124
  start-page: 519
  year: 2014
  end-page: 529
  article-title: CD166 regulates human and murine hematopoietic stem cells and the hematopoietic niche
  publication-title: Blood
– volume: 11
  start-page: 107
  year: 2004
  end-page: 111
  article-title: Recent advances in defining the hematopoietic stem cell niche
  publication-title: Curr. Opin. Hematol
– volume: 14
  start-page: 851
  year: 2014
  end-page: 861
  article-title: Plerixafor for mobilization of blood stem cells in autologous transplantation: an update
  publication-title: Expert Opin. Biol. Ther
– volume: 120
  start-page: 1344
  year: 2012
  end-page: 1347
  article-title: Development of a vascular niche platform for expansion of repopulating human cord blood stem and progenitor cells
  publication-title: Blood
– volume: 97
  start-page: 651
  year: 2012
  end-page: 660
  article-title: Mimicking the functional hematopoietic stem cell niche in vitro: recapitulation of marrow physiology by hydrogel‐based three‐dimensional cultures of mesenchymal stromal cells
  publication-title: Haematologica
– volume: 481
  start-page: 457
  year: 2012
  end-page: 462
  article-title: Endothelial and perivascular cells maintain haematopoietic stem cells
  publication-title: Nature
– volume: 39
  start-page: 617
  year: 2011
  end-page: 628
  article-title: Synergistic effects of growth factors and mesenchymal stromal cells for expansion of hematopoietic stem and progenitor cells
  publication-title: Exp. Hematol
– volume: 4
  start-page: 129
  year: 2010
  end-page: 139
  article-title: N‐cadherin is expressed on human hematopoietic progenitor cells and mediates interaction with human mesenchymal stromal cells
  publication-title: Stem Cell Res
– volume: 8
  start-page: 583
  year: 2013
  end-page: 594
  article-title: Surgical implantation of an abdominal imaging window for intravital microscopy
  publication-title: Nat. Protoc
– volume: 74
  start-page: 1563
  year: 1989
  end-page: 1570
  article-title: Characterization and partial purification of human marrow cells capable of initiating long‐term hematopoiesis in vitro
  publication-title: Blood
– volume: 20
  start-page: 1315
  year: 2014
  end-page: 1320
  article-title: Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion
  publication-title: Nat. Med
– volume: 16
  start-page: 254
  year: 2015
  end-page: 267
  article-title: Normal and leukemic stem cell niches: insights and therapeutic opportunities
  publication-title: Cell Stem Cell
– volume: 25
  start-page: 977
  year: 2006
  end-page: 988
  article-title: Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches
  publication-title: Immunity
– volume: 13
  start-page: 102
  year: 2013
  end-page: 116
  article-title: SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors
  publication-title: Cell Stem Cell
– volume: 20
  start-page: 1321
  year: 2014
  end-page: 1326
  article-title: Megakaryocytes maintain homeostatic quiescence and promote post‐injury regeneration of hematopoietic stem cells
  publication-title: Nat. Med
– volume: 4
  start-page: 170
  year: 2009
  end-page: 179
  article-title: Hematopoietic stem cells do not depend on N‐cadherin to regulate their maintenance
  publication-title: Cell Stem Cell
– volume: 37
  start-page: 364
  year: 2012
  end-page: 376
  article-title: Histo‐cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes
  publication-title: Immunity
– volume: 2011
  start-page: 353878
  year: 2011
  article-title: Paracrine molecules of mesenchymal stem cells for hematopoietic stem cell niche
  publication-title: Bone Marrow Res
– volume: 454
  start-page: 353
  year: 2014
  end-page: 357
  article-title: Megakaryocytes are essential for HSC quiescence through the production of thrombopoietin
  publication-title: Biochem. Biophys. Res. Commun
– volume: 181
  start-page: 1232
  year: 2008
  end-page: 1244
  article-title: Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo
  publication-title: J. Immunol
– volume: 4
  start-page: 109
  year: 2002
  end-page: 118
  article-title: Ex vivo expansion of human UC blood primitive hematopoietic progenitors and transplantable stem cells using human primary BM stromal cells and human AB serum
  publication-title: Cytotherapy
– volume: 26
  start-page: 54
  year: 2012
  end-page: 62
  article-title: The vascular niche: home for normal and malignant hematopoietic stem cells
  publication-title: Leukemia
– volume: 147
  start-page: 1146
  year: 2011
  end-page: 1158
  article-title: Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche
  publication-title: Cell
– volume: 86
  start-page: 3353
  year: 1995
  end-page: 3363
  article-title: Human bone marrow microvascular endothelial cells support long‐term proliferation and differentiation of myeloid and megakaryocytic progenitors
  publication-title: Blood
– volume: 8
  start-page: 1123
  year: 2007
  end-page: 1131
  article-title: Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling
  publication-title: Nat. Immunol
– volume: 121
  start-page: 2891
  year: 2013
  end-page: 2901
  article-title: Perivascular support of human hematopoietic stem/progenitor cells
  publication-title: Blood
– volume: 13
  start-page: 175
  year: 2013
  end-page: 189
  article-title: Regional localization within the bone marrow influences the functional capacity of human HSCs
  publication-title: Cell Stem Cell
– volume: 118
  start-page: 149
  year: 2004
  end-page: 161
  article-title: Tie2/angiopoietin‐1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche
  publication-title: Cell
– volume: 103
  start-page: 3258
  year: 2004
  end-page: 3264
  article-title: Hematopoiesis is severely altered in mice with an induced osteoblast deficiency
  publication-title: Blood
– volume: 452
  start-page: 442
  year: 2008
  end-page: 447
  article-title: Haematopoietic stem cell release is regulated by circadian oscillations
  publication-title: Nature
– volume: 502
  start-page: 637
  year: 2013
  end-page: 643
  article-title: Arteriolar niches maintain haematopoietic stem cell quiescence
  publication-title: Nature
– volume: 111
  start-page: 3439
  year: 2008
  end-page: 3441
  article-title: Increased numbers of circulating hematopoietic stem/progenitor cells are chronically maintained in patients treated with the CD49d blocking antibody natalizumab
  publication-title: Blood
– volume: 495
  start-page: 227
  year: 2013
  end-page: 230
  article-title: CXCL12 in early mesenchymal progenitors is required for haematopoietic stem‐cell maintenance
  publication-title: Nature
– volume: 1
  start-page: 671
  year: 2007
  end-page: 684
  article-title: Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells
  publication-title: Cell Stem Cell
– volume: 95
  start-page: 3289
  year: 2000
  end-page: 3296
  article-title: The chemokine SDF‐1 activates the integrins LFA‐1, VLA‐4, and VLA‐5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice
  publication-title: Blood
– volume: 117
  start-page: 5067
  year: 2011
  end-page: 5077
  article-title: CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization
  publication-title: Blood
– volume: 124
  start-page: 407
  year: 2006
  end-page: 421
  article-title: Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow
  publication-title: Cell
– volume: 90
  start-page: 641
  year: 1997
  end-page: 650
  article-title: Differential maintenance of primitive human SCID‐repopulating cells, clonogenic progenitors, and long‐term culture‐initiating cells after incubation on human bone marrow stromal cells
  publication-title: Blood
– volume: 47
  start-page: 1051
  year: 2012
  end-page: 1055
  article-title: Preemptive dosing of plerixafor given to poor stem cell mobilizers on day 5 of G‐CSF administration
  publication-title: Bone Marrow Transplant
– volume: 18
  start-page: 1651
  year: 2012
  end-page: 1657
  article-title: Vascular niche E‐selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance
  publication-title: Nat. Med
– volume: 2
  start-page: 367
  year: 2008
  end-page: 379
  article-title: N‐cadherin expression level distinguishes reserved versus primed states of hematopoietic stem cells
  publication-title: Cell Stem Cell
– volume: 333
  start-page: 218
  year: 2011
  end-page: 221
  article-title: Isolation of single human hematopoietic stem cells capable of long‐term multilineage engraftment
  publication-title: Science
– volume: 93
  start-page: 107
  year: 1999
  end-page: 112
  article-title: Murine hematopoietic progenitor cells with colony‐forming or radioprotective capacity lack expression of the beta 2‐integrin LFA‐1
  publication-title: Blood
– volume: 210
  start-page: 1351
  year: 2013
  end-page: 1367
  article-title: PDGFRalpha and CD51 mark human nestin sphere‐forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion
  publication-title: J. Exp. Med
– volume: 8
  start-page: 368
  year: 2002
  end-page: 376
  article-title: Transplantation of ex vivo expanded cord blood
  publication-title: Biol. Blood Marrow Transplant
– volume: 15
  start-page: 154
  year: 2014
  end-page: 168
  article-title: Leptin‐receptor‐expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow
  publication-title: Cell Stem Cell
– volume: 94
  start-page: 173
  year: 2009
  end-page: 184
  article-title: Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen‐1
  publication-title: Haematologica
– volume: 1
  start-page: 204
  year: 2007
  end-page: 217
  article-title: Lack of evidence that hematopoietic stem cells depend on N‐cadherin‐mediated adhesion to osteoblasts for their maintenance
  publication-title: Cell Stem Cell
– volume: 111
  start-page: 3893
  year: 2008
  end-page: 3895
  article-title: The monoclonal anti‐VLA‐4 antibody natalizumab mobilizes CD34 hematopoietic progenitor cells in humans
  publication-title: Blood
– volume: 3
  start-page: e03696
  year: 2014
  article-title: The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function
  publication-title: Elife
– volume: 45
  start-page: 1489
  year: 2010
  end-page: 1496
  article-title: CD49d blockade by natalizumab in patients with multiple sclerosis affects steady‐state hematopoiesis and mobilizes progenitors with a distinct phenotype and function
  publication-title: Bone Marrow Transplant
– volume: 10
  start-page: 741
  year: 2014
  article-title: Intercellular network structure and regulatory motifs in the human hematopoietic system
  publication-title: Mol. Syst. Biol
– volume: 10
  start-page: 120
  year: 2012
  end-page: 136
  article-title: Hematopoiesis: a human perspective
  publication-title: Cell Stem Cell
– volume: 10
  start-page: 218
  year: 2012
  end-page: 229
  article-title: Rapid expansion of human hematopoietic stem cells by automated control of inhibitory feedback signaling
  publication-title: Cell Stem Cell
– volume: 116
  start-page: 554
  year: 2010
  end-page: 563
  article-title: Knockdown of N‐cadherin suppresses the long‐term engraftment of hematopoietic stem cells
  publication-title: Blood
– volume: 16
  start-page: 1992
  year: 2002
  end-page: 2003
  article-title: The essential roles of the chemokine SDF‐1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune‐deficient NOD/SCID and NOD/SCID/B2m(null) mice
  publication-title: Leukemia
– volume: 92
  start-page: 2609
  year: 1998
  end-page: 2612
  article-title: Adhesion receptors as regulators of the hematopoietic process
  publication-title: Blood
– volume: 60
  start-page: 554
  year: 2012
  end-page: 560
  article-title: A novel immunohistochemical sequential multi‐labelling and erasing technique enables epitope characterization of bone marrow pericytes in primary myelofibrosis
  publication-title: Histopathology
– volume: 425
  start-page: 841
  year: 2003
  end-page: 846
  article-title: Osteoblastic cells regulate the haematopoietic stem cell niche
  publication-title: Nature
– volume: 92
  start-page: 1330
  year: 2012
  end-page: 1341
  article-title: Distinctive contact between CD34 hematopoietic progenitors and CXCL12 CD271 mesenchymal stromal cells in benign and myelodysplastic bone marrow
  publication-title: Lab. Invest
– volume: 8
  start-page: 315
  year: 2006
  end-page: 317
  article-title: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement
  publication-title: Cytotherapy
– volume: 202
  start-page: 1599
  year: 2005
  end-page: 1611
  article-title: Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates
  publication-title: J. Exp. Med
– volume: 457
  start-page: 97
  year: 2009
  end-page: 101
  article-title: Detection of functional haematopoietic stem cell niche using real‐time imaging
  publication-title: Nature
– volume: 5
  start-page: 139
  year: 2015
  end-page: 153
  article-title: Automated identification and localization of hematopoietic stem cells in 3D intravital microscopy data
  publication-title: Stem Cell Rep
– volume: 120
  start-page: e9
  year: 2012
  end-page: e16
  article-title: Reconstructing the human hematopoietic niche in immunodeficient mice: opportunities for studying primary multiple myeloma
  publication-title: Blood
– volume: 91
  start-page: 335
  year: 1977
  end-page: 344
  article-title: Conditions controlling the proliferation of haemopoietic stem cells in vitro
  publication-title: J. Cell. Physiol
– volume: 201
  start-page: 1307
  year: 2005
  end-page: 1318
  article-title: Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist
  publication-title: J. Exp. Med
– volume: 97
  start-page: 3283
  year: 2001
  end-page: 3291
  article-title: Rapid and efficient homing of human CD34(+)CD38(‐/low)CXCR4(+) stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2m(null) mice
  publication-title: Blood
– volume: 13
  start-page: 392
  year: 2013
  end-page: 402
  article-title: Mesenchymal stromal cells: sensors and switchers of inflammation
  publication-title: Cell Stem Cell
– volume: 43
  start-page: 498
  year: 2015
  end-page: 513
  article-title: Advances in umbilical cord blood stem cell expansion and clinical translation
  publication-title: Exp. Hematol.
– volume: 3
  start-page: 1714
  year: 2013
  end-page: 1724
  article-title: Self‐renewing human bone marrow mesenspheres promote hematopoietic stem cell expansion
  publication-title: Cell Rep
– volume: 37
  start-page: 351
  year: 2012
  end-page: 363
  article-title: Dynamic in situ cytometry uncovers T cell receptor signaling during immunological synapses and kinapses in vivo
  publication-title: Immunity
– volume: 78
  start-page: 55
  year: 1991
  end-page: 62
  article-title: Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO‐1
  publication-title: Blood
– volume: 495
  start-page: 231
  year: 2013
  end-page: 235
  article-title: Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches
  publication-title: Nature
– volume: 94
  start-page: 1493
  year: 2009
  end-page: 1501
  article-title: The integrin alpha9beta1 on hematopoietic stem and progenitor cells: involvement in cell adhesion, proliferation and differentiation
  publication-title: Haematologica
– volume: 28
  start-page: 525
  year: 1974
  end-page: 530
  article-title: Proliferation of haemopoietic stem cells in vitro
  publication-title: Br. J. Haematol
– volume: 24
  start-page: 25
  year: 2011
  end-page: 36
  article-title: Prospective isolation of human MSC. Best practice & research
  publication-title: Clin. Haematol.
– volume: 90
  start-page: 4779
  year: 1997
  end-page: 4788
  article-title: Antibodies to VLA4 integrin mobilize long‐term repopulating cells and augment cytokine‐induced mobilization in primates and mice
  publication-title: Blood
– volume: 116
  start-page: 4815
  year: 2010
  end-page: 4828
  article-title: Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs
  publication-title: Blood
– volume: 3
  start-page: 104
  year: 2011
  article-title: Diabetes impairs hematopoietic stem cell mobilization by altering niche function
  publication-title: Sci. Transl. Med
– volume: 466
  start-page: 829
  year: 2010
  end-page: 834
  article-title: Mesenchymal and haematopoietic stem cells form a unique bone marrow niche
  publication-title: Nature
– volume: 425
  start-page: 836
  year: 2003
  end-page: 841
  article-title: Identification of the haematopoietic stem cell niche and control of the niche size
  publication-title: Nature
– volume: 505
  start-page: 327
  year: 2014
  end-page: 334
  article-title: The bone marrow niche for haematopoietic stem cells
  publication-title: Nature
– volume: 208
  start-page: 261
  year: 2011
  end-page: 271
  article-title: Bone marrow CD169 macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche
  publication-title: J. Exp. Med
– volume: 16
  start-page: 1153
  year: 2014
  end-page: 1157
  article-title: Low rate of infusional toxicity after expanded cord blood transplantation
  publication-title: Cytotherapy
– volume: 240
  start-page: 1029
  year: 2015
  end-page: 1038
  article-title: Three dimensional de novo micro bone marrow and its versatile application in drug screening and regenerative medicine
  publication-title: Exp. Biol. Med
– volume: 116
  start-page: 375
  year: 2010
  end-page: 385
  article-title: Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches
  publication-title: Blood
– volume: 32
  start-page: 321
  year: 2011
  end-page: 327
  article-title: Improving human hemato‐lymphoid‐system mice by cytokine knock‐in gene replacement
  publication-title: Trends Immunol
– volume: 6
  start-page: 251
  year: 2010
  end-page: 264
  article-title: Endothelial cells are essential for the self‐renewal and repopulation of Notch‐dependent hematopoietic stem cells
  publication-title: Cell Stem Cell
– ident: e_1_2_7_102_1
  doi: 10.1016/j.stemcr.2015.05.017
– ident: e_1_2_7_89_1
  doi: 10.3324/haematol.13740
– ident: e_1_2_7_64_1
  doi: 10.1080/146532402317381811
– ident: e_1_2_7_2_1
  doi: 10.1038/nature12984
– ident: e_1_2_7_49_1
  doi: 10.1038/ni1509
– ident: e_1_2_7_109_1
  doi: 10.1038/nprot.2013.026
– ident: e_1_2_7_68_1
  doi: 10.1155/2011/353878
– ident: e_1_2_7_19_1
  doi: 10.1038/nature12612
– ident: e_1_2_7_108_1
  doi: 10.1182/blood-2012-03-414920
– ident: e_1_2_7_40_1
  doi: 10.1182/blood-2009-11-253534
– ident: e_1_2_7_52_1
  doi: 10.1038/sj.leu.2402684
– ident: e_1_2_7_56_1
  doi: 10.1111/j.1365-2141.1974.tb06671.x
– ident: e_1_2_7_25_1
  doi: 10.1016/j.immuni.2006.10.016
– ident: e_1_2_7_15_1
  doi: 10.7554/eLife.03696
– ident: e_1_2_7_39_1
  doi: 10.4049/jimmunol.181.2.1232
– ident: e_1_2_7_60_1
  doi: 10.1073/pnas.79.11.3608
– ident: e_1_2_7_3_1
  doi: 10.1084/jem.20050967
– ident: e_1_2_7_38_1
  doi: 10.1038/nature02041
– ident: e_1_2_7_22_1
  doi: 10.1038/nature10783
– ident: e_1_2_7_79_1
  doi: 10.1182/blood-2007-09-112052
– ident: e_1_2_7_66_1
  doi: 10.1016/j.celrep.2013.03.041
– ident: e_1_2_7_99_1
  doi: 10.1016/j.jcyt.2013.12.011
– ident: e_1_2_7_73_1
  doi: 10.1016/j.stem.2012.01.003
– ident: e_1_2_7_105_1
  doi: 10.1177/1535370215594583
– ident: e_1_2_7_47_1
  doi: 10.1126/scitranslmed.3002191
– ident: e_1_2_7_21_1
  doi: 10.1016/j.stem.2014.06.008
– ident: e_1_2_7_28_1
  doi: 10.1038/nature11926
– ident: e_1_2_7_84_1
  doi: 10.1016/j.scr.2009.12.004
– ident: e_1_2_7_26_1
  doi: 10.1038/nature11885
– ident: e_1_2_7_7_1
  doi: 10.1182/blood.V90.12.4779
– ident: e_1_2_7_57_1
  doi: 10.1182/blood.V86.9.3353.bloodjournal8693353
– ident: e_1_2_7_97_1
  doi: 10.1038/bmt.2011.217
– volume: 90
  start-page: 641
  year: 1997
  ident: e_1_2_7_62_1
  article-title: Differential maintenance of primitive human SCID‐repopulating cells, clonogenic progenitors, and long‐term culture‐initiating cells after incubation on human bone marrow stromal cells
  publication-title: Blood
  doi: 10.1182/blood.V90.2.641
– ident: e_1_2_7_70_1
  doi: 10.1016/j.stem.2007.10.008
– volume: 129
  start-page: 1
  year: 2013
  ident: e_1_2_7_91_1
  article-title: Prospective isolation and characterization of human bone marrow‐derived MSCs
  publication-title: Adv. Biochem. Eng. Biotechnol
– ident: e_1_2_7_27_1
  doi: 10.1016/j.stem.2013.05.014
– ident: e_1_2_7_13_1
  doi: 10.1016/j.stem.2013.09.006
– ident: e_1_2_7_69_1
  doi: 10.1016/j.cell.2004.07.004
– ident: e_1_2_7_5_1
  doi: 10.1182/blood.V92.8.2609
– ident: e_1_2_7_100_1
  doi: 10.1016/j.immuni.2012.07.011
– ident: e_1_2_7_31_1
  doi: 10.1016/j.celrep.2013.07.048
– ident: e_1_2_7_95_1
  doi: 10.1016/j.stemcr.2014.09.018
– ident: e_1_2_7_33_1
  doi: 10.1038/nm.3707
– ident: e_1_2_7_98_1
  doi: 10.1053/bbmt.2002.v8.pm12171483
– ident: e_1_2_7_92_1
  doi: 10.1111/j.1365-2559.2011.04104.x
– ident: e_1_2_7_20_1
  doi: 10.1084/jem.20122252
– ident: e_1_2_7_96_1
  doi: 10.1517/14712598.2014.902927
– ident: e_1_2_7_106_1
  doi: 10.1016/j.it.2011.04.005
– ident: e_1_2_7_88_1
  doi: 10.1016/j.cell.2007.08.025
– ident: e_1_2_7_4_1
  doi: 10.1016/j.stem.2015.02.014
– ident: e_1_2_7_104_1
  doi: 10.3324/haematol.2011.050500
– ident: e_1_2_7_9_1
  doi: 10.1182/blood-2009-05-224857
– ident: e_1_2_7_65_1
  doi: 10.1056/NEJMoa1207285
– ident: e_1_2_7_11_1
  doi: 10.1016/j.stem.2007.06.001
– ident: e_1_2_7_37_1
  doi: 10.1182/blood-2003-11-4011
– ident: e_1_2_7_12_1
  doi: 10.1038/nature07639
– ident: e_1_2_7_51_1
  doi: 10.1097/01.moh.0000133652.06863.47
– ident: e_1_2_7_72_1
  doi: 10.1016/j.exphem.2015.04.011
– ident: e_1_2_7_94_1
  doi: 10.1182/blood-2012-08-451864
– ident: e_1_2_7_10_1
  doi: 10.1016/j.stem.2008.10.005
– ident: e_1_2_7_93_1
  doi: 10.1182/blood-2010-08-304287
– ident: e_1_2_7_59_1
  doi: 10.1002/stem.160007
– ident: e_1_2_7_87_1
  doi: 10.1038/labinvest.2012.93
– ident: e_1_2_7_32_1
  doi: 10.1038/nm.2969
– ident: e_1_2_7_71_1
  doi: 10.1016/j.stem.2007.10.020
– ident: e_1_2_7_58_1
  doi: 10.1182/blood.V74.5.1563.1563
– ident: e_1_2_7_42_1
  doi: 10.1016/j.cell.2005.10.041
– ident: e_1_2_7_23_1
  doi: 10.1182/blood-2009-07-233437
– ident: e_1_2_7_35_1
  doi: 10.1016/j.bbrc.2014.10.095
– ident: e_1_2_7_41_1
  doi: 10.1084/jem.20101688
– ident: e_1_2_7_61_1
  doi: 10.1182/blood-2011-12-398115
– ident: e_1_2_7_16_1
  doi: 10.1038/nature06685
– ident: e_1_2_7_107_1
  doi: 10.1182/blood-2011-11-389957
– ident: e_1_2_7_36_1
  doi: 10.1038/nature02040
– ident: e_1_2_7_48_1
  doi: 10.1016/j.stem.2008.09.004
– ident: e_1_2_7_77_1
  doi: 10.3324/haematol.2009.006072
– ident: e_1_2_7_53_1
  doi: 10.1016/j.blre.2014.01.001
– ident: e_1_2_7_18_1
  doi: 10.1038/nature09262
– ident: e_1_2_7_83_1
  doi: 10.1182/blood-2005-06-2211
– ident: e_1_2_7_8_1
  doi: 10.1016/j.stem.2008.01.017
– ident: e_1_2_7_34_1
  doi: 10.1038/nm.3706
– ident: e_1_2_7_82_1
  doi: 10.1182/blood-2014-03-565721
– ident: e_1_2_7_80_1
  doi: 10.1038/bmt.2009.381
– ident: e_1_2_7_14_1
  doi: 10.1080/14653240600855905
– ident: e_1_2_7_17_1
  doi: 10.1111/j.1749-6632.2010.05390.x
– ident: e_1_2_7_75_1
  doi: 10.1182/blood.V95.11.3289
– ident: e_1_2_7_30_1
  doi: 10.1016/j.stem.2010.02.001
– volume: 24
  start-page: 25
  year: 2011
  ident: e_1_2_7_90_1
  article-title: Prospective isolation of human MSC. Best practice & research
  publication-title: Clin. Haematol.
– ident: e_1_2_7_54_1
  doi: 10.1084/jem.20041385
– ident: e_1_2_7_55_1
  doi: 10.1002/jcp.1040910303
– ident: e_1_2_7_63_1
  doi: 10.1016/j.exphem.2011.02.011
– ident: e_1_2_7_24_1
  doi: 10.1016/j.immuni.2010.08.017
– ident: e_1_2_7_67_1
  doi: 10.1038/leu.2011.236
– ident: e_1_2_7_43_1
  doi: 10.1016/j.cell.2011.09.053
– ident: e_1_2_7_46_1
  doi: 10.1016/j.bone.2008.08.128
– ident: e_1_2_7_101_1
  doi: 10.1016/j.immuni.2012.05.014
– ident: e_1_2_7_50_1
  doi: 10.1016/j.stem.2012.01.006
– ident: e_1_2_7_81_1
  doi: 10.1182/blood-2007-10-120329
– ident: e_1_2_7_103_1
  doi: 10.15252/msb.20145141
– ident: e_1_2_7_29_1
  doi: 10.1038/nature15250
– volume: 93
  start-page: 107
  year: 1999
  ident: e_1_2_7_6_1
  article-title: Murine hematopoietic progenitor cells with colony‐forming or radioprotective capacity lack expression of the beta 2‐integrin LFA‐1
  publication-title: Blood
  doi: 10.1182/blood.V93.1.107
– ident: e_1_2_7_85_1
  doi: 10.1016/S0301-472X(02)00812-3
– ident: e_1_2_7_86_1
  doi: 10.1182/blood.V78.1.55.55
– ident: e_1_2_7_76_1
  doi: 10.3324/haematol.2009.010736
– ident: e_1_2_7_78_1
  doi: 10.1172/JCI7615
– ident: e_1_2_7_45_1
  doi: 10.1016/j.stem.2013.06.015
– ident: e_1_2_7_74_1
  doi: 10.1182/blood.V97.10.3283
– ident: e_1_2_7_44_1
  doi: 10.1126/science.1201219
SSID ssj0012847
Score 2.2952812
SecondaryResourceType review_article
Snippet Hematopoietic stem cells (HSCs) reside in specific niches that provide various instructive cues that regulate HSC self‐renewal and their development into all...
Hematopoietic stem cells (HSCs) reside in specific niches that provide various instructive cues that regulate HSC self-renewal and their development into all...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 55
SubjectTerms Animals
Cell Differentiation - physiology
coculture
Genes
Hematopoietic Stem Cell Transplantation
hematopoietic stem cells
Hematopoietic Stem Cells - cytology
Hematopoietic Stem Cells - metabolism
Humans
mesenchymal stromal cell
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - metabolism
Mice
Rodents
stem cell niche
Stem Cell Niche - physiology
Stem cells
xenograft model
Xenograft Model Antitumor Assays
Title The human and murine hematopoietic stem cell niches: are they comparable?
URI https://api.istex.fr/ark:/67375/WNG-457XRD0C-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnyas.12994
https://www.ncbi.nlm.nih.gov/pubmed/26713726
https://www.proquest.com/docview/1797263928
https://www.proquest.com/docview/1795878776
https://www.proquest.com/docview/1808696631
Volume 1370
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEB5KRfBFbb2lVllRxAo5JHtfEaRUaxU9D9Xi6YOE3U0C0ppTzgU8_np3NhetlIK-hWSS7E7mupn5FuAJRVCoUug0cyZLuXJZanGZwzhVcmfq0jvsd_44lgdH_P1ETNbgZd8L0-JDDAtuqBnRXqOCWzf_Q8mblZ2PgrcyCAaKxVoYER0O2FHR7kYzrIIZDmFMh02KZTy_bz3nja4gY39cFGqej1yj69m_AV_7QbcVJyej5cKN_M-_8Bz_d1Y34XoXk5LdVog2YK1qNuFqu0vlahM2Ov2fk2cdSPXOLXgX5IvEDf6IbUryHRftwwlEgJ2eTb9hayRBjGiCfwZIgwWn8xfEzioSIs4VaUvfsW3r1W042n_zee8g7bZlSD03mqfcq1J7Yx2zIb2R0tKyqkvqBK-YkI7Vubd5bai32uWZoU75SjIma05tkArO7sB6M22qe0Cor2tRZ9orlvPSeiOMdOgic-Ey7UQCO_3nKXyHWY5bZ5wWfe6C_CoivxJ4PNCetUgdF1I9jV95ILGzE6xtU6L4Mn5bcKEmh6-zveJDAtu9GBSdWodHKKNoiOmoTuDRcDkoJPLSNtV0GWmEDmZQyUtodMgkQ6LJ8gTutiI2DIhKlbPwlgSeR0G5ZDLF-Hj3Uzza-hfi-3AtqKhs64-2YX0xW1YPQmi1cA-jCv0C-LEddw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5BKwQvQMvRlAJGIESRskp8xrygqlC2sN2H0qrLU2Q7iYRastUeUpdfj8fJBoqqSvAWJZPD4zmd8TcAryiCQhUiixOrk5grm8QGlzm0VQW3uiqcxf3OB0PZP-afR2LU1ubgXpgGH6JbcEPNCPYaFRwXpP_Q8nphpj3vrjS_CavY0jtkVIcdelSwvMEQK2-IfSDTopNiIc_vey_5o1Vk7cVVwebl2DU4n717TYfVacAsxJqT0958Znvu51-Ijv89rvtwtw1LyU4jR2two6zX4VbTqHKxDmutCZiSNy1O9fYD2PciRkKPP2LqgvzAdXt_AkFgx-fj77g7kiBMNMGfA6TGmtPpO2ImJfFB54I01e-4c-v9Qzje-3i024_bzgyx4zrjMXeqyJw2lhmf4UhpaFFWBbWCl0xIy6rUmbTS1JnMpommVrlSMiYrTo0XDM4ewUo9rssNINRVlaiSzCmW8sI4LbS06CVTYZPMigi2l_OTuxa2HLtnnOXL9AX5lQd-RfCyoz1vwDqupHodprkjMZNTLG9TIj8Zfsq5UKPDD8luPohgaykHeavZ_hFKK-rDOppF8KK77HUSeWnqcjwPNCLzllDJa2gyn0z6XJOlETxuZKz7ICpVyvxbIngbJOWaweTDbztfw9HmvxA_h9v9o4NBPtgffnkCd7zGyqYcaQtWZpN5-dRHWjP7LOjTL70GIZI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9RAEB9qi-IXtfUVrbqiiBVyJJt9iiCl59lqPaRaPD9I2N0kINXccQ_w_Ovd2eSilVLQbyGZJLuTeW5mfgvwmCIoVMFVnFidxEzaJDa4zKGtLJjVVeEs9ju_G4r9Y_ZmxEdr8GLVC9PgQ3QLbqgZwV6jgk-K6g8lr5dm1vPeSrMLsMFEolCm-0cdeFQwvMEOS2-HfRzTgpNiHc_ve0-5ow3k7I-zYs3ToWvwPYOr8GU16qbk5KS3mNue-_kXoOP_TusaXGmDUrLbSNEmrJX1FlxstqlcbsFmawBm5GmLUr1zHQ68gJGwwx8xdUG-46q9P4EQsOPJ-Cv2RhIEiSb4a4DUWHE6e07MtCQ-5FySpvYd-7Ze3oDjwauPe_txuy9D7JhWLGZOFsppYzPj8xshDC3KqqCWszLjwmZV6kxaaeqMsmmiqZWuFFkmKkaNFwuW3YT1elyXt4FQV1W8SpSTWcoK4zTXwqKPTLlNlOUR7Kw-T-5a0HLcO-NbvkpekF954FcEjzraSQPVcSbVk_CVOxIzPcHiNsnzT8PXOeNydNRP9vLDCLZXYpC3eu0fIbWkPqijKoKH3WWvkchLU5fjRaDhyttBKc6hUT6V9JlmlkZwqxGxbkBUyDTzb4ngWRCUcyaTDz_vfghHd_6F-AFcet8f5IcHw7d34bJXV9HUIm3D-ny6KO_5MGtu7wdt-gVbiiBK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+human+and+murine+hematopoietic+stem+cell+niches%3A+are+they+comparable%3F&rft.jtitle=Annals+of+the+New+York+Academy+of+Sciences&rft.au=van+Pel%2C+Melissa&rft.au=Fibbe%2C+Willem+E.&rft.au=Schepers%2C+Koen&rft.date=2016-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0077-8923&rft.eissn=1749-6632&rft.volume=1370&rft.issue=1&rft.spage=55&rft.epage=64&rft_id=info:doi/10.1111%2Fnyas.12994&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_457XRD0C_L
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0077-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0077-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0077-8923&client=summon