Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis

Glucose electrolysis offers a prospect of value-added glucaric acid synthesis and energy-saving hydrogen production from the biomass-based platform molecules. Here we report that nanostructured NiFe oxide (NiFeO x ) and nitride (NiFeN x ) catalysts, synthesized from NiFe layered double hydroxide nan...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; pp. 265 - 11
Main Authors Liu, Wu-Jun, Xu, Zhuoran, Zhao, Dongting, Pan, Xiao-Qiang, Li, Hong-Chao, Hu, Xiao, Fan, Zhi-Yong, Wang, Wei-Kang, Zhao, Guo-Hua, Jin, Song, Huber, George W., Yu, Han-Qing
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 14.01.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Glucose electrolysis offers a prospect of value-added glucaric acid synthesis and energy-saving hydrogen production from the biomass-based platform molecules. Here we report that nanostructured NiFe oxide (NiFeO x ) and nitride (NiFeN x ) catalysts, synthesized from NiFe layered double hydroxide nanosheet arrays on three-dimensional Ni foams, demonstrate a high activity and selectivity towards anodic glucose oxidation. The electrolytic cell assembled with these two catalysts can deliver 100 mA cm −2 at 1.39 V. A faradaic efficiency of 87% and glucaric acid yield of 83% are obtained from the glucose electrolysis, which takes place via a guluronic acid pathway evidenced by in-situ infrared spectroscopy. A rigorous process model combined with a techno-economic analysis shows that the electrochemical reduction of glucose produces glucaric acid at a 54% lower cost than the current chemical approach. This work suggests that glucose electrolysis is an energy-saving and cost-effective approach for H 2 production and biomass valorization. Renewable biomass conversion may afford high-value products from common materials, but catalysts usually require expensive metals and exhibit poor selectivities. Here, authors employ nickel-iron oxide and nitride electrocatalysts to produce H 2 and to convert glucose to glucaric acid selectively.
AbstractList Glucose electrolysis offers a prospect of value-added glucaric acid synthesis and energy-saving hydrogen production from the biomass-based platform molecules. Here we report that nanostructured NiFe oxide (NiFeO x ) and nitride (NiFeN x ) catalysts, synthesized from NiFe layered double hydroxide nanosheet arrays on three-dimensional Ni foams, demonstrate a high activity and selectivity towards anodic glucose oxidation. The electrolytic cell assembled with these two catalysts can deliver 100 mA cm −2 at 1.39 V. A faradaic efficiency of 87% and glucaric acid yield of 83% are obtained from the glucose electrolysis, which takes place via a guluronic acid pathway evidenced by in-situ infrared spectroscopy. A rigorous process model combined with a techno-economic analysis shows that the electrochemical reduction of glucose produces glucaric acid at a 54% lower cost than the current chemical approach. This work suggests that glucose electrolysis is an energy-saving and cost-effective approach for H 2 production and biomass valorization. Renewable biomass conversion may afford high-value products from common materials, but catalysts usually require expensive metals and exhibit poor selectivities. Here, authors employ nickel-iron oxide and nitride electrocatalysts to produce H 2 and to convert glucose to glucaric acid selectively.
Renewable biomass conversion may afford high-value products from common materials, but catalysts usually require expensive metals and exhibit poor selectivities. Here, authors employ nickel-iron oxide and nitride electrocatalysts to produce H2 and to convert glucose to glucaric acid selectively.
Glucose electrolysis offers a prospect of value-added glucaric acid synthesis and energy-saving hydrogen production from the biomass-based platform molecules. Here we report that nanostructured NiFe oxide (NiFeOx) and nitride (NiFeNx) catalysts, synthesized from NiFe layered double hydroxide nanosheet arrays on three-dimensional Ni foams, demonstrate a high activity and selectivity towards anodic glucose oxidation. The electrolytic cell assembled with these two catalysts can deliver 100 mA cm-2 at 1.39 V. A faradaic efficiency of 87% and glucaric acid yield of 83% are obtained from the glucose electrolysis, which takes place via a guluronic acid pathway evidenced by in-situ infrared spectroscopy. A rigorous process model combined with a techno-economic analysis shows that the electrochemical reduction of glucose produces glucaric acid at a 54% lower cost than the current chemical approach. This work suggests that glucose electrolysis is an energy-saving and cost-effective approach for H2 production and biomass valorization.Glucose electrolysis offers a prospect of value-added glucaric acid synthesis and energy-saving hydrogen production from the biomass-based platform molecules. Here we report that nanostructured NiFe oxide (NiFeOx) and nitride (NiFeNx) catalysts, synthesized from NiFe layered double hydroxide nanosheet arrays on three-dimensional Ni foams, demonstrate a high activity and selectivity towards anodic glucose oxidation. The electrolytic cell assembled with these two catalysts can deliver 100 mA cm-2 at 1.39 V. A faradaic efficiency of 87% and glucaric acid yield of 83% are obtained from the glucose electrolysis, which takes place via a guluronic acid pathway evidenced by in-situ infrared spectroscopy. A rigorous process model combined with a techno-economic analysis shows that the electrochemical reduction of glucose produces glucaric acid at a 54% lower cost than the current chemical approach. This work suggests that glucose electrolysis is an energy-saving and cost-effective approach for H2 production and biomass valorization.
Glucose electrolysis offers a prospect of value-added glucaric acid synthesis and energy-saving hydrogen production from the biomass-based platform molecules. Here we report that nanostructured NiFe oxide (NiFeOx) and nitride (NiFeNx) catalysts, synthesized from NiFe layered double hydroxide nanosheet arrays on three-dimensional Ni foams, demonstrate a high activity and selectivity towards anodic glucose oxidation. The electrolytic cell assembled with these two catalysts can deliver 100 mA cm−2 at 1.39 V. A faradaic efficiency of 87% and glucaric acid yield of 83% are obtained from the glucose electrolysis, which takes place via a guluronic acid pathway evidenced by in-situ infrared spectroscopy. A rigorous process model combined with a techno-economic analysis shows that the electrochemical reduction of glucose produces glucaric acid at a 54% lower cost than the current chemical approach. This work suggests that glucose electrolysis is an energy-saving and cost-effective approach for H2 production and biomass valorization.Renewable biomass conversion may afford high-value products from common materials, but catalysts usually require expensive metals and exhibit poor selectivities. Here, authors employ nickel-iron oxide and nitride electrocatalysts to produce H2 and to convert glucose to glucaric acid selectively.
Glucose electrolysis offers a prospect of value-added glucaric acid synthesis and energy-saving hydrogen production from the biomass-based platform molecules. Here we report that nanostructured NiFe oxide (NiFeO x ) and nitride (NiFeN x ) catalysts, synthesized from NiFe layered double hydroxide nanosheet arrays on three-dimensional Ni foams, demonstrate a high activity and selectivity towards anodic glucose oxidation. The electrolytic cell assembled with these two catalysts can deliver 100 mA cm −2 at 1.39 V. A faradaic efficiency of 87% and glucaric acid yield of 83% are obtained from the glucose electrolysis, which takes place via a guluronic acid pathway evidenced by in-situ infrared spectroscopy. A rigorous process model combined with a techno-economic analysis shows that the electrochemical reduction of glucose produces glucaric acid at a 54% lower cost than the current chemical approach. This work suggests that glucose electrolysis is an energy-saving and cost-effective approach for H 2 production and biomass valorization.
ArticleNumber 265
Author Fan, Zhi-Yong
Liu, Wu-Jun
Xu, Zhuoran
Li, Hong-Chao
Huber, George W.
Yu, Han-Qing
Zhao, Dongting
Jin, Song
Pan, Xiao-Qiang
Wang, Wei-Kang
Hu, Xiao
Zhao, Guo-Hua
Author_xml – sequence: 1
  givenname: Wu-Jun
  orcidid: 0000-0002-5696-1180
  surname: Liu
  fullname: Liu, Wu-Jun
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Department of Chemical and Biological Engineering, University of Wisconsin-Madison
– sequence: 2
  givenname: Zhuoran
  surname: Xu
  fullname: Xu, Zhuoran
  organization: Department of Chemical and Biological Engineering, University of Wisconsin-Madison
– sequence: 3
  givenname: Dongting
  surname: Zhao
  fullname: Zhao, Dongting
  organization: Department of Chemical and Biological Engineering, University of Wisconsin-Madison
– sequence: 4
  givenname: Xiao-Qiang
  surname: Pan
  fullname: Pan, Xiao-Qiang
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China
– sequence: 5
  givenname: Hong-Chao
  orcidid: 0000-0002-8081-0980
  surname: Li
  fullname: Li, Hong-Chao
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China
– sequence: 6
  givenname: Xiao
  surname: Hu
  fullname: Hu, Xiao
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China
– sequence: 7
  givenname: Zhi-Yong
  orcidid: 0000-0001-6138-179X
  surname: Fan
  fullname: Fan, Zhi-Yong
  organization: School of Chemical Science and Engineering, Tongji University
– sequence: 8
  givenname: Wei-Kang
  orcidid: 0000-0003-0090-3122
  surname: Wang
  fullname: Wang, Wei-Kang
  organization: School of Chemical Science and Engineering, Tongji University
– sequence: 9
  givenname: Guo-Hua
  surname: Zhao
  fullname: Zhao, Guo-Hua
  organization: School of Chemical Science and Engineering, Tongji University
– sequence: 10
  givenname: Song
  orcidid: 0000-0001-8693-7010
  surname: Jin
  fullname: Jin, Song
  organization: Department of Chemistry, University of Wisconsin-Madison
– sequence: 11
  givenname: George W.
  orcidid: 0000-0002-7838-6893
  surname: Huber
  fullname: Huber, George W.
  email: gwhuber@wisc.edu
  organization: Department of Chemical and Biological Engineering, University of Wisconsin-Madison
– sequence: 12
  givenname: Han-Qing
  orcidid: 0000-0001-5247-6244
  surname: Yu
  fullname: Yu, Han-Qing
  email: hqyu@ustc.edu.cn
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China
BookMark eNp9Uktr3DAQNiWleTR_oCdDL7041ct6XAolpE0g0EtzFiN5vNGitbaSHci_r3Y3oU0O0UWD5ntIo--0OZrShE3ziZILSrj-WgQVUnWEmo4K2quOv2tOGBG0o4rxo__q4-a8lDWpixuqhfjQHHNquFKanzR3V-MYfMBpbjGin3Py97gJHmK7zWlY_BzS1KaxXcXFQw6-BR-GFqahvWbtQ4B9IxV8psfHEsrH5v0IseD5037W3P24-n153d3--nlz-f2288Jo3nmgzOlRghgMjgIJ7zmiAkoZk147lM4pJwlB7kbugPfgHNVegawYr_lZc3PQHRKs7TaHDeRHmyDY_UHKKwt5Dj6i1YYhM8QzRaWQA9YSyFDtGSUjkzutbwet7eI2OPg6kgzxhejLzhTu7So9WGl6w6mqAl-eBHL6s2CZ7SYUjzHChGkplnGujSFM8wr9_Aq6Tkue6qgqSrBeCS76itIHlM-plIyj9WGG3YdU_xAtJXYXBXuIgq1RsPso2J0Be0V9fsebJH4glQqeVpj_3eoN1l8a-Mb9
CitedBy_id crossref_primary_10_1021_acssuschemeng_2c03407
crossref_primary_10_1021_acs_energyfuels_3c02539
crossref_primary_10_1002_anie_202219048
crossref_primary_10_1002_adma_202109321
crossref_primary_10_1016_j_enconman_2024_119227
crossref_primary_10_1016_j_jechem_2023_01_039
crossref_primary_10_1007_s10008_024_05925_3
crossref_primary_10_1039_D1GC00914A
crossref_primary_10_1002_aesr_202300302
crossref_primary_10_1021_acsmaterialslett_3c01235
crossref_primary_10_1021_acsami_3c06783
crossref_primary_10_1073_pnas_2317174120
crossref_primary_10_1021_jacs_1c04626
crossref_primary_10_1039_D3GC01603J
crossref_primary_10_1039_D4CC00140K
crossref_primary_10_1021_acssuschemeng_1c07482
crossref_primary_10_1016_j_apsusc_2023_158847
crossref_primary_10_1021_acscatal_4c01275
crossref_primary_10_1007_s12274_023_5944_z
crossref_primary_10_1021_acsmaterialslett_1c00074
crossref_primary_10_1016_j_jallcom_2022_167324
crossref_primary_10_1016_j_cej_2024_150342
crossref_primary_10_1016_j_cej_2021_128818
crossref_primary_10_1039_D4TA02268H
crossref_primary_10_1016_j_gce_2022_11_001
crossref_primary_10_1016_j_mssp_2024_108838
crossref_primary_10_1002_smll_202500084
crossref_primary_10_1021_acsenergylett_2c01945
crossref_primary_10_1039_D3EY00147D
crossref_primary_10_1016_j_jcis_2024_11_098
crossref_primary_10_1002_advs_202105135
crossref_primary_10_1016_S1872_2067_24_60098_7
crossref_primary_10_1002_ange_202015431
crossref_primary_10_1016_j_apcatb_2023_123214
crossref_primary_10_3866_PKU_WHXB202303050
crossref_primary_10_1021_acs_macromol_1c02447
crossref_primary_10_1016_j_enrev_2024_100105
crossref_primary_10_1039_D3TA01931D
crossref_primary_10_1002_smll_202008148
crossref_primary_10_1021_acs_langmuir_4c02084
crossref_primary_10_1039_D4GC02100B
crossref_primary_10_1038_s41467_021_25048_x
crossref_primary_10_1002_cplu_202300711
crossref_primary_10_1039_D4NR04915B
crossref_primary_10_1038_s41467_023_43649_6
crossref_primary_10_1039_D3EE02467A
crossref_primary_10_1002_anie_202015431
crossref_primary_10_1002_adfm_202009580
crossref_primary_10_1016_j_fuel_2023_128728
crossref_primary_10_1039_D4SE01034E
crossref_primary_10_1016_j_cej_2023_148187
crossref_primary_10_1016_j_cej_2025_160894
crossref_primary_10_1002_anie_202203929
crossref_primary_10_1021_acs_jpclett_1c03658
crossref_primary_10_1021_jacsau_2c00138
crossref_primary_10_1039_D3TA02930A
crossref_primary_10_1016_j_biortech_2021_126467
crossref_primary_10_1142_S1793604721500065
crossref_primary_10_20517_cs_2023_28
crossref_primary_10_1002_smll_202104339
crossref_primary_10_1002_anie_202308800
crossref_primary_10_1002_advs_202205077
crossref_primary_10_1021_acssuschemeng_1c01867
crossref_primary_10_1016_j_apsusc_2025_162743
crossref_primary_10_1016_j_cej_2024_158011
crossref_primary_10_1038_s41467_023_35875_9
crossref_primary_10_1039_D3DT01773G
crossref_primary_10_1016_j_renene_2020_12_004
crossref_primary_10_1016_j_cej_2024_152950
crossref_primary_10_3390_catal11010101
crossref_primary_10_1021_acsaem_1c01932
crossref_primary_10_3390_molecules29133062
crossref_primary_10_20517_cs_2023_41
crossref_primary_10_1002_adma_202309715
crossref_primary_10_1039_D2GC02426H
crossref_primary_10_1016_j_enconman_2024_119443
crossref_primary_10_3390_catal15030227
crossref_primary_10_1007_s12598_021_01881_3
crossref_primary_10_1039_D1GC04206H
crossref_primary_10_1007_s10854_023_11042_0
crossref_primary_10_1016_j_apsusc_2023_156602
crossref_primary_10_1039_D4GC04765F
crossref_primary_10_1021_acs_energyfuels_3c02823
crossref_primary_10_1002_smll_202401146
crossref_primary_10_1016_j_cclet_2022_03_088
crossref_primary_10_1039_D2CC05132J
crossref_primary_10_1039_D3EE00603D
crossref_primary_10_1038_s41467_024_49931_5
crossref_primary_10_3390_en16134986
crossref_primary_10_1038_s41929_021_00721_y
crossref_primary_10_1002_ange_202415044
crossref_primary_10_1039_D2GC04732B
crossref_primary_10_1002_adfm_202401011
crossref_primary_10_1039_D1TA01226F
crossref_primary_10_1002_adma_202306108
crossref_primary_10_1021_acsmaterialslett_4c01173
crossref_primary_10_1016_j_isci_2021_102109
crossref_primary_10_1021_acsomega_2c02965
crossref_primary_10_1039_D4TA04113E
crossref_primary_10_1002_adfm_202301884
crossref_primary_10_1021_acs_chemrev_2c00602
crossref_primary_10_1016_j_jclepro_2023_136613
crossref_primary_10_1016_j_cej_2023_146742
crossref_primary_10_1016_j_jcis_2023_05_173
crossref_primary_10_1002_anie_202009854
crossref_primary_10_1021_acsenergylett_0c02692
crossref_primary_10_1039_D3NR02524A
crossref_primary_10_1039_D0CS00177E
crossref_primary_10_1002_adma_202418504
crossref_primary_10_1021_acsami_3c02591
crossref_primary_10_1038_s41467_021_24203_8
crossref_primary_10_1002_cssc_202400472
crossref_primary_10_1016_j_apcatb_2023_122559
crossref_primary_10_1039_D2GC04623G
crossref_primary_10_1007_s12274_024_6887_8
crossref_primary_10_1016_j_cej_2025_160396
crossref_primary_10_1002_adfm_202212479
crossref_primary_10_1016_j_ijhydene_2024_05_215
crossref_primary_10_3390_en16135078
crossref_primary_10_1016_j_rser_2023_113337
crossref_primary_10_1016_j_jcis_2023_01_123
crossref_primary_10_1021_jacs_2c11861
crossref_primary_10_1039_D4GC05715E
crossref_primary_10_1039_D3GC03554A
crossref_primary_10_1016_j_apcatb_2022_122240
crossref_primary_10_1021_prechem_4c00025
crossref_primary_10_1016_j_checat_2022_09_023
crossref_primary_10_1002_ange_202219048
crossref_primary_10_1016_j_cclet_2022_03_042
crossref_primary_10_1039_D1GC03453G
crossref_primary_10_1039_D1CC06254A
crossref_primary_10_1039_D3GC03458E
crossref_primary_10_1002_advs_202200957
crossref_primary_10_1016_j_est_2023_108186
crossref_primary_10_1002_adfm_202311655
crossref_primary_10_1002_ange_202308800
crossref_primary_10_1016_j_nanoen_2022_107875
crossref_primary_10_1002_anie_202213328
crossref_primary_10_1039_D4CY00907J
crossref_primary_10_1007_s40843_022_2076_y
crossref_primary_10_1016_j_scib_2023_05_016
crossref_primary_10_1039_D1RA09196D
crossref_primary_10_1016_j_chempr_2022_07_010
crossref_primary_10_1002_cctc_202400338
crossref_primary_10_1002_anie_202316257
crossref_primary_10_1016_j_ccr_2024_216399
crossref_primary_10_1002_cctc_202401664
crossref_primary_10_1002_tcr_202400259
crossref_primary_10_1039_D3EE02767H
crossref_primary_10_1016_j_jcis_2022_02_037
crossref_primary_10_1002_ange_202203929
crossref_primary_10_1016_j_ijhydene_2020_09_007
crossref_primary_10_1021_acsami_9b15039
crossref_primary_10_1021_acscatal_2c02923
crossref_primary_10_1021_acssuschemeng_0c03410
crossref_primary_10_1002_cjoc_202200527
crossref_primary_10_1016_j_biombioe_2024_107510
crossref_primary_10_1002_smll_202102375
crossref_primary_10_1016_j_mtphys_2024_101601
crossref_primary_10_1016_j_jechem_2024_02_053
crossref_primary_10_1002_smll_202300019
crossref_primary_10_1016_j_gee_2022_07_003
crossref_primary_10_1016_j_greenca_2024_10_004
crossref_primary_10_1039_D4TA04675G
crossref_primary_10_1021_acs_jpcc_3c03055
crossref_primary_10_1016_j_biotechadv_2023_108157
crossref_primary_10_1002_sstr_202300576
crossref_primary_10_1039_D4EE01824A
crossref_primary_10_1016_j_checat_2021_11_003
crossref_primary_10_1016_j_jechem_2024_01_062
crossref_primary_10_1016_j_matt_2023_06_036
crossref_primary_10_1002_advs_202204170
crossref_primary_10_1007_s12274_023_6190_0
crossref_primary_10_1021_acssuschemeng_0c04411
crossref_primary_10_1039_D4GC00227J
crossref_primary_10_1038_s41467_023_41997_x
crossref_primary_10_1039_D1TA01741A
crossref_primary_10_1016_j_nanoen_2023_109183
crossref_primary_10_1039_D2CS00100D
crossref_primary_10_1039_D3SE00847A
crossref_primary_10_1039_D4TA06649A
crossref_primary_10_1039_D3QI00277B
crossref_primary_10_1038_s41467_022_32443_5
crossref_primary_10_1016_j_ijhydene_2022_10_004
crossref_primary_10_1002_smll_202406782
crossref_primary_10_1016_j_fuel_2022_126957
crossref_primary_10_1002_ange_202305843
crossref_primary_10_1016_j_matre_2020_12_001
crossref_primary_10_3389_fchem_2022_998812
crossref_primary_10_1039_D1TA04839B
crossref_primary_10_1002_sstr_202100134
crossref_primary_10_1021_acsnano_2c02838
crossref_primary_10_1016_j_cej_2024_159165
crossref_primary_10_1002_ese3_1487
crossref_primary_10_1002_cctc_202400345
crossref_primary_10_1007_s12274_022_5085_9
crossref_primary_10_1016_j_chempr_2022_12_008
crossref_primary_10_1016_j_jcis_2024_12_082
crossref_primary_10_1021_acs_analchem_4c01445
crossref_primary_10_1016_j_cej_2024_155921
crossref_primary_10_1002_adma_202008631
crossref_primary_10_1002_ange_202306701
crossref_primary_10_1039_D4GC01860E
crossref_primary_10_1016_j_surfin_2024_104283
crossref_primary_10_1002_smtd_202400786
crossref_primary_10_1038_s41467_023_36726_3
crossref_primary_10_1016_j_apcatb_2024_124042
crossref_primary_10_1002_adma_202104791
crossref_primary_10_1016_j_checat_2024_100963
crossref_primary_10_1038_s41467_023_41497_y
crossref_primary_10_1016_j_jclepro_2021_127745
crossref_primary_10_1016_j_jcis_2021_06_001
crossref_primary_10_1002_smll_202405358
crossref_primary_10_1039_D0TA11850H
crossref_primary_10_1002_aenm_202402429
crossref_primary_10_1002_adfm_202008812
crossref_primary_10_1016_j_jechem_2022_11_041
crossref_primary_10_1016_j_nanoen_2023_108714
crossref_primary_10_1007_s40843_023_2544_5
crossref_primary_10_1039_D4CC01960A
crossref_primary_10_1002_advs_202300841
crossref_primary_10_1002_cctc_202301332
crossref_primary_10_1021_acssuschemeng_3c01799
crossref_primary_10_1021_acsaem_3c02956
crossref_primary_10_1016_j_cej_2024_157642
crossref_primary_10_1002_aesr_202200005
crossref_primary_10_1007_s40820_022_00993_4
crossref_primary_10_12677_japc_2024_133059
crossref_primary_10_1002_cssc_202400996
crossref_primary_10_1016_S1872_2067_23_64585_1
crossref_primary_10_1002_aenm_202101180
crossref_primary_10_1016_j_electacta_2024_144275
crossref_primary_10_1002_smll_202310087
crossref_primary_10_1007_s12274_023_6049_4
crossref_primary_10_1002_smll_202406107
crossref_primary_10_1016_j_carbon_2022_11_067
crossref_primary_10_1016_j_ccr_2023_215641
crossref_primary_10_1016_j_ijhydene_2020_09_265
crossref_primary_10_1021_acsami_4c02260
crossref_primary_10_1039_D4QI01789G
crossref_primary_10_1016_j_gresc_2025_03_005
crossref_primary_10_1039_D3GC01487H
crossref_primary_10_3390_molecules29122783
crossref_primary_10_1016_j_jcou_2021_101497
crossref_primary_10_1021_acs_energyfuels_3c03298
crossref_primary_10_1021_acs_chemrev_3c00332
crossref_primary_10_1016_j_apsusc_2022_152683
crossref_primary_10_1021_acscentsci_4c01085
crossref_primary_10_1016_j_electacta_2022_140023
crossref_primary_10_3390_reactions3040039
crossref_primary_10_1002_ange_202316257
crossref_primary_10_1016_j_nxnano_2024_100073
crossref_primary_10_1021_acsami_4c02392
crossref_primary_10_1016_j_chempr_2024_08_009
crossref_primary_10_1016_j_carbon_2025_120201
crossref_primary_10_1016_j_ijhydene_2024_08_245
crossref_primary_10_1002_ange_202009854
crossref_primary_10_1039_D4TA04241G
crossref_primary_10_1039_D2CY01825J
crossref_primary_10_1016_j_apsusc_2023_157046
crossref_primary_10_1016_j_jechem_2022_10_031
crossref_primary_10_1002_adma_202303719
crossref_primary_10_1016_j_enconman_2023_117885
crossref_primary_10_1002_aenm_202400696
crossref_primary_10_1021_acs_inorgchem_3c00074
crossref_primary_10_1039_D4GC03829K
crossref_primary_10_1016_j_scib_2023_09_033
crossref_primary_10_1039_D4TA05597G
crossref_primary_10_1016_j_jechem_2022_10_038
crossref_primary_10_1021_acs_nanolett_4c02315
crossref_primary_10_1063_5_0178109
crossref_primary_10_1002_ange_202213328
crossref_primary_10_3389_fchem_2023_1114454
crossref_primary_10_1016_j_ijhydene_2024_08_450
crossref_primary_10_1039_D0EE02607G
crossref_primary_10_1007_s12274_023_5752_5
crossref_primary_10_1039_D4IM00163J
crossref_primary_10_1016_j_apcatb_2022_121647
crossref_primary_10_1002_cplu_202400182
crossref_primary_10_1002_ange_202306640
crossref_primary_10_1002_aenm_202303614
crossref_primary_10_1088_2399_1984_ac1db9
crossref_primary_10_1021_acsanm_1c00339
crossref_primary_10_1016_j_coelec_2024_101625
crossref_primary_10_1021_acs_inorgchem_4c04195
crossref_primary_10_1016_j_apcata_2023_119341
crossref_primary_10_1016_j_jcis_2023_09_003
crossref_primary_10_1038_s41467_023_39848_w
crossref_primary_10_1021_acs_chemrev_4c00261
crossref_primary_10_1016_j_energy_2021_121793
crossref_primary_10_1016_j_gee_2024_09_004
crossref_primary_10_1016_j_mcat_2024_114023
crossref_primary_10_1016_j_aca_2024_343525
crossref_primary_10_1002_adfm_202407601
crossref_primary_10_1007_s42114_022_00580_6
crossref_primary_10_1016_j_checat_2022_05_003
crossref_primary_10_1002_sstr_202100095
crossref_primary_10_1002_adma_202404806
crossref_primary_10_1002_ente_202201450
crossref_primary_10_1002_adma_202419058
crossref_primary_10_1016_j_checat_2022_11_007
crossref_primary_10_1039_D4CY00305E
crossref_primary_10_1016_j_apcatb_2022_121608
crossref_primary_10_1016_j_apcatb_2022_121726
crossref_primary_10_1016_S1872_2067_23_64544_9
crossref_primary_10_1038_s41467_022_31484_0
crossref_primary_10_1039_D2CY00950A
crossref_primary_10_1007_s40820_023_01150_1
crossref_primary_10_1021_acsaem_2c02227
crossref_primary_10_20517_microstructures_2024_38
crossref_primary_10_1002_adma_202401867
crossref_primary_10_1055_a_1894_8136
crossref_primary_10_1016_j_ccr_2024_215777
crossref_primary_10_1002_anie_202306640
crossref_primary_10_1016_j_foodres_2022_111739
crossref_primary_10_1016_j_electacta_2022_141736
crossref_primary_10_3390_s25041260
crossref_primary_10_1002_aenm_202304065
crossref_primary_10_1021_acsanm_3c03438
crossref_primary_10_1007_s40843_021_1809_5
crossref_primary_10_1021_acssuschemeng_3c08233
crossref_primary_10_3389_fenrg_2021_762346
crossref_primary_10_1016_j_renene_2022_04_105
crossref_primary_10_1016_j_jelechem_2022_116975
crossref_primary_10_1021_jacs_3c02570
crossref_primary_10_1016_j_nxener_2023_100037
crossref_primary_10_1002_adfm_202208212
crossref_primary_10_2174_0118756298267514240104101246
crossref_primary_10_1016_j_mtener_2022_100948
crossref_primary_10_1002_aenm_202203568
crossref_primary_10_1039_D2YA00311B
crossref_primary_10_1007_s12678_022_00774_y
crossref_primary_10_1039_D3CY00897E
crossref_primary_10_1007_s13399_021_02296_x
crossref_primary_10_1016_j_jechem_2024_12_015
crossref_primary_10_1039_D4EE02332C
crossref_primary_10_1002_smll_202409331
crossref_primary_10_1021_acsaenm_4c00705
crossref_primary_10_1016_j_cej_2024_156011
crossref_primary_10_1039_D3RA05158G
crossref_primary_10_1016_S1872_2067_23_64446_8
crossref_primary_10_1002_aenm_202201047
crossref_primary_10_1039_D3CC03838F
crossref_primary_10_1021_acsami_2c13864
crossref_primary_10_1007_s12155_024_10797_6
crossref_primary_10_1016_j_apcatb_2023_123068
crossref_primary_10_1038_s41467_022_33435_1
crossref_primary_10_1016_j_nanoen_2020_105530
crossref_primary_10_1021_acsenergylett_4c00707
crossref_primary_10_1016_j_bioelechem_2024_108666
crossref_primary_10_1016_j_energy_2024_132277
crossref_primary_10_1002_adfm_202009032
crossref_primary_10_1021_acs_iecr_3c00118
crossref_primary_10_1016_j_xcrp_2023_101427
crossref_primary_10_1016_j_ensm_2025_104064
crossref_primary_10_1016_j_xcrp_2023_101546
crossref_primary_10_1039_D0GC02770G
crossref_primary_10_1016_j_apcatb_2024_124526
crossref_primary_10_1016_j_jcat_2025_116002
crossref_primary_10_1002_advs_202412872
crossref_primary_10_1002_smll_202410478
crossref_primary_10_1021_acsanm_2c02478
crossref_primary_10_1002_adfm_202415058
crossref_primary_10_1016_j_aca_2021_339249
crossref_primary_10_1002_adfm_202315326
crossref_primary_10_1039_D0QI00289E
crossref_primary_10_1016_j_mssp_2025_109319
crossref_primary_10_1016_j_cej_2024_149718
crossref_primary_10_1002_smll_202200242
crossref_primary_10_1016_j_mser_2024_100829
crossref_primary_10_1016_j_talanta_2024_126897
crossref_primary_10_1016_j_eehl_2024_01_010
crossref_primary_10_1002_adfm_202316718
crossref_primary_10_1039_D2CC05270A
crossref_primary_10_1021_jacs_4c13368
crossref_primary_10_1021_acscatal_0c01498
crossref_primary_10_1002_cssc_202301078
crossref_primary_10_1039_D4CC02729A
crossref_primary_10_1016_j_cej_2023_145292
crossref_primary_10_1039_D2CY01428A
crossref_primary_10_1002_adsu_202000184
crossref_primary_10_1007_s12274_023_5431_6
crossref_primary_10_1039_D4NR04433A
crossref_primary_10_1039_D3TA04856J
crossref_primary_10_1002_anie_202306701
crossref_primary_10_1039_D4EE00221K
crossref_primary_10_1002_adfm_202311063
crossref_primary_10_1002_anie_202415044
crossref_primary_10_1246_cl_220293
crossref_primary_10_1246_cl_220173
crossref_primary_10_1021_acs_inorgchem_3c01679
crossref_primary_10_1021_acs_energyfuels_3c03758
crossref_primary_10_1002_asia_202200138
crossref_primary_10_1016_j_matre_2022_100092
crossref_primary_10_1126_sciadv_adn9441
crossref_primary_10_1021_jacs_3c13155
crossref_primary_10_1016_j_jallcom_2020_156810
crossref_primary_10_1007_s10311_022_01454_5
crossref_primary_10_1002_anie_202305843
crossref_primary_10_1016_j_psep_2024_04_068
crossref_primary_10_1039_D2QI02526D
crossref_primary_10_1016_j_jechem_2024_05_022
Cites_doi 10.1016/j.enzmictec.2016.05.009
10.1016/j.apsusc.2007.09.063
10.1021/acs.iecr.5b04841
10.1021/acs.iecr.7b01571
10.1021/cm0111074
10.1021/acscatal.8b04143
10.1016/j.jelechem.2003.12.022
10.1016/j.nucmedbio.2017.12.006
10.1021/cs502093b
10.1002/cctc.201700089
10.1039/b615525c
10.1021/cr300182k
10.1021/jf60012a005
10.1021/acssuschemeng.7b00868
10.1039/C6GC00460A
10.1021/acscatal.9b00732
10.1126/science.1114736
10.1016/j.electacta.2009.11.041
10.1002/anie.201806298
10.1021/acs.chemrev.7b00395
10.1021/acscentsci.6b00164
10.1002/aenm.201803358
10.1021/cr4002269
10.1002/mrc.1173
10.1021/jacs.8b00752
10.1021/ie50531a019
10.1126/science.1191662
10.1021/acs.chemmater.6b02610
10.1021/cr900354u
10.1039/c4dt00717d
10.1021/acs.oprd.6b00095
10.1016/j.electacta.2010.04.069
10.1128/AEM.00973-08
10.1016/j.jcat.2015.05.018
10.1021/ac501289x
10.1002/adma.201800757
10.1088/0957-4484/17/9/043
10.1021/acscatal.8b01017
10.1039/an9941900855
10.1039/C7EE01571B
10.1021/acsenergylett.7b00679
10.1039/C7CS00213K
10.1021/acs.nanolett.6b03467
10.1039/B517632H
10.1002/sia.1984
10.1007/BF03214967
10.2174/2211555204666150402230538
10.1039/c3gc40973b
10.1039/C8EE00521D
10.1039/C3CS60414D
10.1021/acs.chemmater.8b01334
10.1016/j.ymben.2010.01.003
10.1021/acssuschemeng.7b00992
10.1016/j.electacta.2014.02.128
10.1002/adfm.201704169
10.1021/cr068360d
10.3109/07388551.2015.1060189
10.1016/j.fos.2015.11.013
10.1109/BioCAS.2014.6981763
ContentType Journal Article
Copyright The Author(s) 2020
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-019-14157-3
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_892e290c271646de90ca0d2b8210f268
PMC6959317
10_1038_s41467_019_14157_3
GrantInformation_xml – fundername: the National Natural Science Foundation of China (21590812, 51538011, 21607147 and 51821006)
– fundername: ;
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c4983-ca12b8f6a4d9ef4e0353ee7a11226c8be6bb7b600e3bf3ba35abb18c7a6a11c83
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 00:42:15 EDT 2025
Thu Aug 21 13:44:08 EDT 2025
Fri Jul 11 00:50:10 EDT 2025
Wed Aug 13 05:11:20 EDT 2025
Thu Apr 24 22:59:47 EDT 2025
Tue Jul 01 04:08:49 EDT 2025
Fri Feb 21 02:39:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4983-ca12b8f6a4d9ef4e0353ee7a11226c8be6bb7b600e3bf3ba35abb18c7a6a11c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0090-3122
0000-0002-5696-1180
0000-0001-6138-179X
0000-0002-8081-0980
0000-0001-8693-7010
0000-0002-7838-6893
0000-0001-5247-6244
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-019-14157-3
PMID 31937783
PQID 2342574345
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_892e290c271646de90ca0d2b8210f268
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6959317
proquest_miscellaneous_2338990283
proquest_journals_2342574345
crossref_citationtrail_10_1038_s41467_019_14157_3
crossref_primary_10_1038_s41467_019_14157_3
springer_journals_10_1038_s41467_019_14157_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200114
PublicationDateYYYYMMDD 2020-01-14
PublicationDate_xml – month: 1
  year: 2020
  text: 20200114
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Exner (CR51) 2019; 9
Liu, Wang, Karim, Sun, Wang (CR3) 2014; 43
Jiang (CR31) 2017; 5
CR34
van Putten (CR8) 2013; 113
Jian (CR39) 2017; 27
Jin (CR30) 2015; 330
Mika, Cséfalvay, Németh (CR2) 2017; 118
Sinch, Gupta (CR14) 2003; 16
Zakzeski, Bruijnincx, Jongerius, Weckhuysen (CR4) 2010; 110
Weber (CR32) 2019; 9
Liu (CR40) 2018; 8
Qi (CR29) 2015; 5
Yu (CR52) 2017; 10
Vogt, Schneider (CR33) 2014; 86
Solmi, Morreale, Ospitali, Agnoli, Cavani (CR26) 2017; 9
Lee, Saha, Vlachos (CR25) 2016; 18
Pasta, La Mantia, Cui (CR35) 2010; 55
Dang (CR43) 2018; 30
Zboril, Mashlan, Petridis (CR44) 2002; 14
Derrien (CR27) 2017; 56
Bozell (CR6) 2010; 329
Moon, Dueber, Shiue, Prather (CR20) 2010; 12
Liu (CR21) 2016; 91
Yamashita, Hayes (CR46) 2008; 254
Zhang (CR62) 2016; 28
Ragauskas (CR9) 2006; 311
Jin (CR28) 2016; 55
Cui, Ye, Liu, Zhang, Sheu (CR36) 2006; 17
Zhou (CR55) 2016; 16
Kim (CR63) 2017; 5
Lv, Yang, Chen, Wang, Xiong (CR50) 2019; 9
Iida (CR60) 2003; 41
Mehltretter, Rist (CR23) 1953; 1
Jin (CR49) 2017; 2
Khaw, Narula, Hartner (CR12) 2015; 4
CR18
Wang (CR54) 2018; 30
CR17
Ibert (CR42) 2010; 55
Barwe (CR59) 2018; 57
CR15
Besson, Gallezot, Pinel (CR1) 2014; 114
Lyons, Fitzgerald, Smyth (CR56) 1994; 119
Bin (CR41) 2014; 130
Aoun (CR58) 2004; 567
Zhang, Huber (CR7) 2018; 47
Houson, Nkepang, Hedrick, Awasthi (CR13) 2018; 59
Dong, Zhou, Yan, Li, Liu (CR61) 2007; 9
Mehtiö (CR11) 2016; 36
Grosvenor, Kobe, Biesinger, McIntyre (CR45) 2004; 36
Xie (CR47) 2013; 15
Pasta, Ruffo, Falletta, Mari, Della Pina (CR57) 2010; 43
Yu (CR38) 2018; 11
Moon, Yoon, Lanza, Roy-Mayhew, Prather (CR19) 2009; 75
CR22
Martínez-Huitle, Ferro (CR48) 2006; 35
Mangiameli, González, Bellú, Bertoni, Sala (CR10) 2014; 43
Mustakas, Slotter, Zipf (CR24) 1954; 46
Derrien, Marion, Pinel, Besson (CR16) 2016; 20
Dai (CR37) 2016; 2
Huber, Iborra, Corma (CR5) 2006; 106
Zhang (CR53) 2018; 140
M Ibert (14157_CR42) 2010; 55
GW Huber (14157_CR5) 2006; 106
R-J van Putten (14157_CR8) 2013; 113
J Sinch (14157_CR14) 2003; 16
Z-Y Yu (14157_CR38) 2018; 11
JJ Bozell (14157_CR6) 2010; 329
MF Mangiameli (14157_CR10) 2014; 43
TS Moon (14157_CR19) 2009; 75
A Grosvenor (14157_CR45) 2004; 36
C Liu (14157_CR3) 2014; 43
HA Houson (14157_CR13) 2018; 59
J Lee (14157_CR25) 2016; 18
M Pasta (14157_CR57) 2010; 43
LT Mika (14157_CR2) 2017; 118
ME Lyons (14157_CR56) 1994; 119
L Dai (14157_CR37) 2016; 2
T Yamashita (14157_CR46) 2008; 254
Z Zhang (14157_CR7) 2018; 47
G Mustakas (14157_CR24) 1954; 46
M Besson (14157_CR1) 2014; 114
14157_CR34
AJ Ragauskas (14157_CR9) 2006; 311
SB Aoun (14157_CR58) 2004; 567
Y Jiang (14157_CR31) 2017; 5
X Jin (14157_CR28) 2016; 55
W Dong (14157_CR61) 2007; 9
J Zhang (14157_CR53) 2018; 140
B Zhang (14157_CR62) 2016; 28
Y Liu (14157_CR21) 2016; 91
Z Jian (14157_CR39) 2017; 27
W-J Liu (14157_CR40) 2018; 8
H-F Cui (14157_CR36) 2006; 17
E Derrien (14157_CR16) 2016; 20
X Jin (14157_CR30) 2015; 330
B-A Khaw (14157_CR12) 2015; 4
14157_CR17
14157_CR18
14157_CR15
C Mehltretter (14157_CR23) 1953; 1
14157_CR22
S Vogt (14157_CR33) 2014; 86
D Bin (14157_CR41) 2014; 130
R Zboril (14157_CR44) 2002; 14
S Xie (14157_CR47) 2013; 15
E Derrien (14157_CR27) 2017; 56
S Barwe (14157_CR59) 2018; 57
L Dang (14157_CR43) 2018; 30
RS Weber (14157_CR32) 2019; 9
T Wang (14157_CR54) 2018; 30
P Qi (14157_CR29) 2015; 5
TS Moon (14157_CR20) 2010; 12
KS Exner (14157_CR51) 2019; 9
CA Martínez-Huitle (14157_CR48) 2006; 35
J Zakzeski (14157_CR4) 2010; 110
L Yu (14157_CR52) 2017; 10
HJ Kim (14157_CR63) 2017; 5
S Solmi (14157_CR26) 2017; 9
S Jin (14157_CR49) 2017; 2
H Zhou (14157_CR55) 2016; 16
L Lv (14157_CR50) 2019; 9
M Pasta (14157_CR35) 2010; 55
T Iida (14157_CR60) 2003; 41
T Mehtiö (14157_CR11) 2016; 36
References_xml – ident: CR22
– volume: 91
  start-page: 8
  year: 2016
  end-page: 16
  ident: CR21
  article-title: Production of glucaric acid from myo-inositol in engineered Pichia pastoris
  publication-title: Enzym. Microb. Technol.
  doi: 10.1016/j.enzmictec.2016.05.009
– volume: 254
  start-page: 2441
  year: 2008
  end-page: 2449
  ident: CR46
  article-title: Analysis of XPS spectra of Fe and Fe ions in oxide materials
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2007.09.063
– volume: 55
  start-page: 2932
  year: 2016
  end-page: 2945
  ident: CR28
  article-title: Synergistic effects of bimetallic PtPd/TiO nanocatalysts in oxidation of glucose to glucaric acid: structure dependent activity and selectivity
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b04841
– volume: 56
  start-page: 13175
  year: 2017
  end-page: 13189
  ident: CR27
  article-title: Aerobic oxidation of glucose to glucaric acid under alkaline-free conditions: Au-based bimetallic catalysts and the effect of residues in a hemicellulose hydrolysate
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b01571
– volume: 14
  start-page: 969
  year: 2002
  end-page: 982
  ident: CR44
  article-title: Iron (III) oxides from thermal processes synthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications
  publication-title: Chem. Mater.
  doi: 10.1021/cm0111074
– volume: 9
  start-page: 946
  year: 2019
  end-page: 950
  ident: CR32
  article-title: Effective use of renewable electricity for making renewable fuels and chemicals
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b04143
– volume: 567
  start-page: 175
  year: 2004
  end-page: 183
  ident: CR58
  article-title: Effect of metal ad-layers on Au (1 1 1) electrodes on electrocatalytic oxidation of glucose in an alkaline solution
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2003.12.022
– volume: 59
  start-page: 9
  year: 2018
  end-page: 15
  ident: CR13
  article-title: Imaging of isoproterenol-induced myocardial injury with 18F labeled fluoroglucaric acid in a rat model
  publication-title: Nucl. Med. Biol.
  doi: 10.1016/j.nucmedbio.2017.12.006
– volume: 5
  start-page: 2659
  year: 2015
  end-page: 2670
  ident: CR29
  article-title: Catalysis and reactivation of ordered mesoporous carbon-supported gold nanoparticles for the base-free oxidation of glucose to gluconic acid
  publication-title: ACS Catal.
  doi: 10.1021/cs502093b
– volume: 9
  start-page: 2797
  year: 2017
  end-page: 2806
  ident: CR26
  article-title: Oxidation of d-glucose to glucaric acid using Au/C catalysts
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201700089
– volume: 9
  start-page: 1255
  year: 2007
  end-page: 1262
  ident: CR61
  article-title: pH-responsive self-assembly of carboxyl-terminated hyperbranched polymers
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b615525c
– volume: 113
  start-page: 1499
  year: 2013
  end-page: 1597
  ident: CR8
  article-title: Hydroxymethylfurfural, a versatile platform chemical made from renewable resources
  publication-title: Chem. Rev.
  doi: 10.1021/cr300182k
– volume: 1
  start-page: 779
  year: 1953
  end-page: 783
  ident: CR23
  article-title: Sugar oxidation, saccharic and oxalic acids by the nitric acid oxidation of dextrose
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf60012a005
– volume: 5
  start-page: 6626
  year: 2017
  end-page: 6634
  ident: CR63
  article-title: Coproducing value-added chemicals and hydrogen with electrocatalytic glycerol oxidation technology: experimental and techno-economic investigations
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b00868
– ident: CR15
– volume: 18
  start-page: 3815
  year: 2016
  end-page: 3822
  ident: CR25
  article-title: Pt catalysts for efficient aerobic oxidation of glucose to glucaric acid in water
  publication-title: Green Chem.
  doi: 10.1039/C6GC00460A
– volume: 9
  start-page: 5320
  year: 2019
  end-page: 5329
  ident: CR51
  article-title: Is thermodynamics a good descriptor for the activity? Re-investigation of dabatier’s principle by the free energy diagram in electrocatalysis
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00732
– volume: 311
  start-page: 484
  year: 2006
  end-page: 489
  ident: CR9
  article-title: The path forward for biofuels and biomaterials
  publication-title: Science
  doi: 10.1126/science.1114736
– volume: 55
  start-page: 3589
  year: 2010
  end-page: 3594
  ident: CR42
  article-title: Improved preparative electrochemical oxidation of d-glucose to d-glucaric acid
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2009.11.041
– volume: 57
  start-page: 11460
  year: 2018
  end-page: 11464
  ident: CR59
  article-title: Electrocatalytic oxidation of 5-(Hydroxymethyl)furfural using high-durface-area nickel boride
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201806298
– volume: 118
  start-page: 505
  year: 2017
  end-page: 613
  ident: CR2
  article-title: Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00395
– volume: 2
  start-page: 538
  year: 2016
  end-page: 544
  ident: CR37
  article-title: Electrochemical partial reforming of ethanol into ethyl acetate using ultrathin Co O nanosheets as a highly selective anode catalyst
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.6b00164
– volume: 9
  start-page: 1803358
  year: 2019
  ident: CR50
  article-title: 2D layered double hydroxides for oxygen evolution reaction: from fundamental design to application
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803358
– volume: 114
  start-page: 1827
  year: 2014
  end-page: 1870
  ident: CR1
  article-title: Conversion of biomass into chemicals over metal catalysts
  publication-title: Chem. Rev.
  doi: 10.1021/cr4002269
– volume: 41
  start-page: 260
  year: 2003
  end-page: 264
  ident: CR60
  article-title: 1H and 13C NMR signal assignments of carboxyl-linked glucosides of bile acids
  publication-title: Magn. Reson. Chem.
  doi: 10.1002/mrc.1173
– ident: CR18
– volume: 140
  start-page: 3876
  year: 2018
  end-page: 3879
  ident: CR53
  article-title: Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00752
– volume: 46
  start-page: 427
  year: 1954
  end-page: 434
  ident: CR24
  article-title: Pilot plant potassium acid saccharate by nitric acid oxidation of dextrose
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50531a019
– volume: 329
  start-page: 522
  year: 2010
  end-page: 523
  ident: CR6
  article-title: Connecting biomass and petroleum processing with a chemical bridge
  publication-title: Science
  doi: 10.1126/science.1191662
– volume: 28
  start-page: 6934
  year: 2016
  end-page: 6941
  ident: CR62
  article-title: Iron–nickel nitride nanostructures in situ grown on surface-redox-etching nickel foam: efficient and ultrasustainable electrocatalysts for overall water splitting
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02610
– volume: 110
  start-page: 3552
  year: 2010
  end-page: 3599
  ident: CR4
  article-title: The catalytic valorization of lignin for the production of renewable chemicals
  publication-title: Chem. Rev.
  doi: 10.1021/cr900354u
– volume: 43
  start-page: 9242
  year: 2014
  end-page: 9254
  ident: CR10
  article-title: Redox and complexation chemistry of the Cr VI/Cr V-d-glucaric acid system
  publication-title: Dalton Trans.
  doi: 10.1039/c4dt00717d
– volume: 20
  start-page: 1265
  year: 2016
  end-page: 1275
  ident: CR16
  article-title: Influence of residues contained in softwood hemicellulose hydrolysates on the catalytic oxidation of glucose to glucarate in alkaline aqueous solution
  publication-title: Org. Process Res. Dev.
  doi: 10.1021/acs.oprd.6b00095
– volume: 55
  start-page: 5561
  year: 2010
  end-page: 5568
  ident: CR35
  article-title: Mechanism of glucose electrochemical oxidation on gold surface
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.04.069
– volume: 75
  start-page: 589
  year: 2009
  end-page: 595
  ident: CR19
  article-title: Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00973-08
– volume: 330
  start-page: 323
  year: 2015
  end-page: 329
  ident: CR30
  article-title: Exceptional performance of bimetallic Pt1Cu /TiO nanocatalysts for oxidation of gluconic acid and glucose with O2 to glucaric acid
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2015.05.018
– volume: 86
  start-page: 7530
  year: 2014
  end-page: 7535
  ident: CR33
  article-title: Schäfer-Eberwein, H. & Nöll, G. Determination of the pH dependent redox potential of glucose oxidase by spectroelectrochemistry
  publication-title: Anal. Chem.
  doi: 10.1021/ac501289x
– volume: 30
  start-page: 1800757
  year: 2018
  ident: CR54
  article-title: NiFe (Oxy) Hydroxides derived from NiFe disulfides as an efficient oxygen evolution catalyst for rechargeable Zn–Air batteries: the effect of surface S residues
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800757
– volume: 17
  start-page: 2334
  year: 2006
  ident: CR36
  article-title: Pt–Pb alloy nanoparticle/carbon nanotube nanocomposite: a strong electrocatalyst for glucose oxidation
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/17/9/043
– volume: 8
  start-page: 5533
  year: 2018
  end-page: 5541
  ident: CR40
  article-title: Electrochemical oxidation of 5-hydroxymethylfurfural with NiFe layered double hydroxide (LDH) nanosheet Catalysts
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01017
– volume: 119
  start-page: 855
  year: 1994
  end-page: 861
  ident: CR56
  article-title: Glucose oxidation at ruthenium dioxide based electrodes
  publication-title: Analyst
  doi: 10.1039/an9941900855
– volume: 10
  start-page: 1820
  year: 2017
  end-page: 1827
  ident: CR52
  article-title: Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE01571B
– volume: 2
  start-page: 1937
  year: 2017
  end-page: 1938
  ident: CR49
  article-title: Are Metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts?
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00679
– volume: 47
  start-page: 1351
  year: 2018
  end-page: 1390
  ident: CR7
  article-title: Catalytic oxidation of carbohydrates into organic acids and furan chemicals
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00213K
– ident: CR17
– volume: 16
  start-page: 7604
  year: 2016
  end-page: 7609
  ident: CR55
  article-title: Highly efficient hydrogen evolution from edge-oriented WS Se particles on three-dimensional porous NiSe foam
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03467
– volume: 35
  start-page: 1324
  year: 2006
  end-page: 1340
  ident: CR48
  article-title: Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B517632H
– volume: 36
  start-page: 1564
  year: 2004
  end-page: 1574
  ident: CR45
  article-title: Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds
  publication-title: Surf. Interf. Anal.
  doi: 10.1002/sia.1984
– volume: 43
  start-page: 57
  year: 2010
  end-page: 64
  ident: CR57
  article-title: Alkaline glucose oxidation on nanostructured gold electrodes
  publication-title: Gold. Bull.
  doi: 10.1007/BF03214967
– volume: 4
  start-page: 20
  year: 2015
  end-page: 28
  ident: CR12
  article-title: Attenuation of microvascular injury in preconditioned ischemic myocardium: imaging with Tc-99m glucaric acid and In-111 human fibrinogen
  publication-title: Curr. Mol. Imag.
  doi: 10.2174/2211555204666150402230538
– ident: CR34
– volume: 15
  start-page: 2434
  year: 2013
  end-page: 2440
  ident: CR47
  article-title: Hydrogen production from solar driven glucose oxidation over Ni (OH) functionalized electroreduced-TiO nanowire arrays
  publication-title: Green Chem.
  doi: 10.1039/c3gc40973b
– volume: 11
  start-page: 1890
  year: 2018
  end-page: 1897
  ident: CR38
  article-title: Ni-Mo-O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00521D
– volume: 43
  start-page: 7594
  year: 2014
  end-page: 7623
  ident: CR3
  article-title: Catalytic fast pyrolysis of lignocellulosic biomass
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60414D
– volume: 16
  start-page: 9
  year: 2003
  end-page: 16
  ident: CR14
  article-title: Calcium glucarate prevents tumor formation in mouse skin
  publication-title: Biomed. Environ. Sci.
– volume: 30
  start-page: 4321
  year: 2018
  end-page: 4330
  ident: CR43
  article-title: Direct synthesis and anion exchange of noncarbonate-intercalated NiFe-layered double hydroxides and the influence on electrocatalysis
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b01334
– volume: 12
  start-page: 298
  year: 2010
  end-page: 305
  ident: CR20
  article-title: Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2010.01.003
– volume: 5
  start-page: 6116
  year: 2017
  end-page: 6123
  ident: CR31
  article-title: Gluconic acid production from potato waste by gluconobacter oxidans using sequential hydrolysis and fermentation
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b00992
– volume: 130
  start-page: 170
  year: 2014
  end-page: 178
  ident: CR41
  article-title: Controllable oxidation of glucose to gluconic acid and glucaric acid using an electrocatalytic reactor
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.02.128
– volume: 27
  start-page: 1704169
  year: 2017
  ident: CR39
  article-title: Hierarchical porous NC@CuCo nitride nanosheet networks: Highly efficient bifunctional electrocatalyst for overall water splitting and selective electrooxidation of benzyl alcohol
  publication-title: Adv. Func. Mater.
  doi: 10.1002/adfm.201704169
– volume: 106
  start-page: 4044
  year: 2006
  end-page: 4098
  ident: CR5
  article-title: Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering
  publication-title: Chem. Rev.
  doi: 10.1021/cr068360d
– volume: 36
  start-page: 904
  year: 2016
  end-page: 916
  ident: CR11
  article-title: Production and applications of carbohydrate-derived sugar acids as generic biobased chemicals
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.3109/07388551.2015.1060189
– volume: 43
  start-page: 7594
  year: 2014
  ident: 14157_CR3
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60414D
– volume: 9
  start-page: 5320
  year: 2019
  ident: 14157_CR51
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00732
– volume: 43
  start-page: 57
  year: 2010
  ident: 14157_CR57
  publication-title: Gold. Bull.
  doi: 10.1007/BF03214967
– volume: 16
  start-page: 9
  year: 2003
  ident: 14157_CR14
  publication-title: Biomed. Environ. Sci.
– volume: 57
  start-page: 11460
  year: 2018
  ident: 14157_CR59
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201806298
– volume: 254
  start-page: 2441
  year: 2008
  ident: 14157_CR46
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2007.09.063
– volume: 10
  start-page: 1820
  year: 2017
  ident: 14157_CR52
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE01571B
– ident: 14157_CR17
– volume: 91
  start-page: 8
  year: 2016
  ident: 14157_CR21
  publication-title: Enzym. Microb. Technol.
  doi: 10.1016/j.enzmictec.2016.05.009
– volume: 2
  start-page: 1937
  year: 2017
  ident: 14157_CR49
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00679
– volume: 14
  start-page: 969
  year: 2002
  ident: 14157_CR44
  publication-title: Chem. Mater.
  doi: 10.1021/cm0111074
– volume: 27
  start-page: 1704169
  year: 2017
  ident: 14157_CR39
  publication-title: Adv. Func. Mater.
  doi: 10.1002/adfm.201704169
– volume: 47
  start-page: 1351
  year: 2018
  ident: 14157_CR7
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00213K
– volume: 329
  start-page: 522
  year: 2010
  ident: 14157_CR6
  publication-title: Science
  doi: 10.1126/science.1191662
– ident: 14157_CR22
  doi: 10.1016/j.fos.2015.11.013
– volume: 28
  start-page: 6934
  year: 2016
  ident: 14157_CR62
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02610
– volume: 2
  start-page: 538
  year: 2016
  ident: 14157_CR37
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.6b00164
– volume: 1
  start-page: 779
  year: 1953
  ident: 14157_CR23
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf60012a005
– volume: 35
  start-page: 1324
  year: 2006
  ident: 14157_CR48
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B517632H
– volume: 12
  start-page: 298
  year: 2010
  ident: 14157_CR20
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2010.01.003
– volume: 5
  start-page: 2659
  year: 2015
  ident: 14157_CR29
  publication-title: ACS Catal.
  doi: 10.1021/cs502093b
– volume: 330
  start-page: 323
  year: 2015
  ident: 14157_CR30
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2015.05.018
– volume: 130
  start-page: 170
  year: 2014
  ident: 14157_CR41
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.02.128
– volume: 118
  start-page: 505
  year: 2017
  ident: 14157_CR2
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00395
– volume: 43
  start-page: 9242
  year: 2014
  ident: 14157_CR10
  publication-title: Dalton Trans.
  doi: 10.1039/c4dt00717d
– volume: 55
  start-page: 5561
  year: 2010
  ident: 14157_CR35
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.04.069
– volume: 30
  start-page: 1800757
  year: 2018
  ident: 14157_CR54
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800757
– volume: 567
  start-page: 175
  year: 2004
  ident: 14157_CR58
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2003.12.022
– volume: 30
  start-page: 4321
  year: 2018
  ident: 14157_CR43
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b01334
– volume: 110
  start-page: 3552
  year: 2010
  ident: 14157_CR4
  publication-title: Chem. Rev.
  doi: 10.1021/cr900354u
– volume: 9
  start-page: 1255
  year: 2007
  ident: 14157_CR61
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b615525c
– volume: 55
  start-page: 2932
  year: 2016
  ident: 14157_CR28
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b04841
– volume: 59
  start-page: 9
  year: 2018
  ident: 14157_CR13
  publication-title: Nucl. Med. Biol.
  doi: 10.1016/j.nucmedbio.2017.12.006
– volume: 41
  start-page: 260
  year: 2003
  ident: 14157_CR60
  publication-title: Magn. Reson. Chem.
  doi: 10.1002/mrc.1173
– ident: 14157_CR15
– volume: 18
  start-page: 3815
  year: 2016
  ident: 14157_CR25
  publication-title: Green Chem.
  doi: 10.1039/C6GC00460A
– volume: 46
  start-page: 427
  year: 1954
  ident: 14157_CR24
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50531a019
– volume: 4
  start-page: 20
  year: 2015
  ident: 14157_CR12
  publication-title: Curr. Mol. Imag.
  doi: 10.2174/2211555204666150402230538
– volume: 106
  start-page: 4044
  year: 2006
  ident: 14157_CR5
  publication-title: Chem. Rev.
  doi: 10.1021/cr068360d
– volume: 9
  start-page: 2797
  year: 2017
  ident: 14157_CR26
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201700089
– volume: 16
  start-page: 7604
  year: 2016
  ident: 14157_CR55
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03467
– volume: 17
  start-page: 2334
  year: 2006
  ident: 14157_CR36
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/17/9/043
– volume: 8
  start-page: 5533
  year: 2018
  ident: 14157_CR40
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01017
– volume: 311
  start-page: 484
  year: 2006
  ident: 14157_CR9
  publication-title: Science
  doi: 10.1126/science.1114736
– volume: 36
  start-page: 904
  year: 2016
  ident: 14157_CR11
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.3109/07388551.2015.1060189
– volume: 113
  start-page: 1499
  year: 2013
  ident: 14157_CR8
  publication-title: Chem. Rev.
  doi: 10.1021/cr300182k
– volume: 140
  start-page: 3876
  year: 2018
  ident: 14157_CR53
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00752
– volume: 114
  start-page: 1827
  year: 2014
  ident: 14157_CR1
  publication-title: Chem. Rev.
  doi: 10.1021/cr4002269
– volume: 9
  start-page: 1803358
  year: 2019
  ident: 14157_CR50
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803358
– volume: 20
  start-page: 1265
  year: 2016
  ident: 14157_CR16
  publication-title: Org. Process Res. Dev.
  doi: 10.1021/acs.oprd.6b00095
– volume: 56
  start-page: 13175
  year: 2017
  ident: 14157_CR27
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b01571
– volume: 86
  start-page: 7530
  year: 2014
  ident: 14157_CR33
  publication-title: Anal. Chem.
  doi: 10.1021/ac501289x
– volume: 75
  start-page: 589
  year: 2009
  ident: 14157_CR19
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00973-08
– ident: 14157_CR18
– volume: 5
  start-page: 6116
  year: 2017
  ident: 14157_CR31
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b00992
– volume: 11
  start-page: 1890
  year: 2018
  ident: 14157_CR38
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00521D
– ident: 14157_CR34
  doi: 10.1109/BioCAS.2014.6981763
– volume: 15
  start-page: 2434
  year: 2013
  ident: 14157_CR47
  publication-title: Green Chem.
  doi: 10.1039/c3gc40973b
– volume: 36
  start-page: 1564
  year: 2004
  ident: 14157_CR45
  publication-title: Surf. Interf. Anal.
  doi: 10.1002/sia.1984
– volume: 55
  start-page: 3589
  year: 2010
  ident: 14157_CR42
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2009.11.041
– volume: 5
  start-page: 6626
  year: 2017
  ident: 14157_CR63
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b00868
– volume: 119
  start-page: 855
  year: 1994
  ident: 14157_CR56
  publication-title: Analyst
  doi: 10.1039/an9941900855
– volume: 9
  start-page: 946
  year: 2019
  ident: 14157_CR32
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b04143
SSID ssj0000391844
Score 2.696894
Snippet Glucose electrolysis offers a prospect of value-added glucaric acid synthesis and energy-saving hydrogen production from the biomass-based platform molecules....
Renewable biomass conversion may afford high-value products from common materials, but catalysts usually require expensive metals and exhibit poor...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 265
SubjectTerms 140/146
140/58
147/135
147/143
639/301/299/886
639/638/224/909
639/638/675
Acids
Anodizing
Biomass
Biomass energy production
Catalysts
Chemical reduction
Chemical synthesis
Economic analysis
Economic models
Electrocatalysts
Electrochemistry
Electrolysis
Electrolytic cells
Energy conservation
Foams
Glucaric acid
Glucose
Heavy metals
Humanities and Social Sciences
Hydrogen production
Hydrogen-based energy
Infrared analysis
Infrared spectroscopy
Intermetallic compounds
Iron compounds
Iron oxides
multidisciplinary
Nickel
Nickel compounds
Nickel ferrites
Nitrides
Organic chemistry
Oxidation
Science
Science (multidisciplinary)
Selectivity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KoNBLSNqGOI-iQm-NifWwLB-TkLAU2lMW9iYkWSILwRuSTSD_PiNZu1kH0l56M9bYlkYzmhlr9A3Aj0YIK1thStlaUYqurUojnC1DZ1TnjVCSxvPOv__IyVT8mtWzjVJfMSdsgAceGHeqWuZZWzkWHXvZebw0VceswlglMJmO-aLN2wim0hrMWwxdRD4lU3F1-iDSmoAeTUnRaKFmjSxRAuwfeZlvcyTfbJQm-3O1A9vZcSRnQ4d34YPvP8PHoZTk8xeYXiYsCHwNyZVtXIYCIHcDqCtOAFkEEnPUMT52xLh5R0zfkQkjT3NDcvL66vEEVfIVpleX1xeTMpdMKJ1oFS-dociaIA1y3QfhK15z7xuDXhWTTlkvrW0sOjme28Ct4bWxlirXGIk0TvE92OoXvd8HUlNnmJOch8YK6rq2rrwNTcAQRzBsKYCu2KddxhOPZS1uddrX5koPLNfIcp1YrnkBP9fP3A1oGn-lPo-zsqaMSNjpBsqHzvKh_yUfBRyt5lRn9XzQjMelSnBRF_B93YyKFXdLTO8Xj5EmQg9G96uAZiQLow6NW_r5TYLolhHvmTYFnKyk5vXj7w_44H8M-BA-sfhPoKIo6Eewtbx_9MfoOC3tt6QjL5yLE34
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96IvgifmL1lAi-abnmo0n6JCp3LII-ubBvIV_VBWn3bu8E_3tn0nSPHnhvpUnbdD6SmczkN4S801J61UlXq87LWsauqZ0Mvu6jMzE5aRTD887fvqvVWn7dtJuy4bYvaZXznJgn6jgG3CM_4QKlSwrZftyd11g1CqOrpYTGXXIPocswpUtv9GGPBdHPjZTlrEwjzMle5pkB7JqawdIF-rVYjzJs_8LWvJkpeSNcmlehs0fkYTEf6aeJ34_JnTQ8IfengpJ_n5L1aUaEgNfQUt8mFEAAupugXYENdOwpZqqDlxyoC9tI3RDpitM_W0dLCvv8eAYseUbWZ6c_vqzqUjihDrIzog6OcW965YD2qZepEa1ISTuwrbgKxiflvfZg6iThe-GdaJ33zATtFPQJRjwnR8M4pBeEtiw4HpQQvfaShdi1TfK97sHRkRxaKsJm8tlQUMWxuMVvm6PbwtiJ5BZIbjPJrajI-8MzuwlT49ben5Erh56Ih51vjBc_bVEvazqeeNcEju6figkuXROBCODR9lyZihzPPLVFSff2WqQq8vbQDOqFMRM3pPEK-yAAIRphFdELWVgMaNkybH9loG6FqM9MV-TDLDXXH___D7-8fayvyAOOPn_DQISPydHlxVV6DYbRpX-Tpf8fRr8MCQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEB_WFcGL-Il1V4ngTYtNMk3Toz52eQh68sHeQpIm-kD6lv0Q_O-dpOlbuqjgrTSTNp3MJDOdyW8A3nSITvVoa9U7rHHom9qid3UcrB6CRa14Ou_8-Ytab_DTWXt2AGI-C5OT9jOkZV6m5-yw95eYVZoMkprTnkOKcQfuJuj2JNUrtdr_V0mI5xqxnI9ppP5D18UelKH6F_bl7ezIWyHSvPOcPoQHxWRkH6ZBPoKDMD6Ge1MRyV9PYHOSUSDoMazUtPEFBICdT3CuxHq2iyxlp5Nn7Jn124HZcWBrwX5uLStp63P3DFLyFDanJ19X67oUS6g99lrW3nLhdFSW-B0ihka2MoTOkj0llNcuKOc6R-ZNkC5KZ2VrnePad1YRjdfyGRyOuzE8B9Zyb4VXUsbOIfdD3zbBxS6Sc4OCWirgM_uML0jiqaDFD5Mj2lKbieWGWG4yy42s4O2-z_mEo_FP6o9pVvaUCQM739hdfDNFJozuRRB940Vy-dQQ6NI2AzGBvNgolK7geJ5TUxTz0giZFimU2Fbwet9MKpXiJHYMu-tEk0AHk-FVQbeQhcWAli3j9nsG51YJ6Zl3Fbybpebm5X__4Bf_R34E90Xy-xtOIn0Mh1cX1-ElGUdX7lXWht_WQgnZ
  priority: 102
  providerName: Springer Nature
Title Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis
URI https://link.springer.com/article/10.1038/s41467-019-14157-3
https://www.proquest.com/docview/2342574345
https://www.proquest.com/docview/2338990283
https://pubmed.ncbi.nlm.nih.gov/PMC6959317
https://doaj.org/article/892e290c271646de90ca0d2b8210f268
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_uA8EX8ROr5xLBN622SZqkDyJ7y67Lwh2iLuxbSdJUF47uuXcn3n_vJE1XepyCL23JV9vJTGYmH78BeCU5N6LkOhWl4SmvyyzV3Jq0qbWqneZK5P6888mpmC_5YlWs9qAPdxQJeHGra-fjSS23Z29__bj-gAL_vjsyrt5d8CDuaKykOeojFJp9OETNJL2gnkRzP4zMrESHxi8004znKepuFs_R3N7MQFcFSP-BHXpzF-WNpdSgoWb34V40Lcm444UHsOfah3CnCzZ5_QiW04AWgc2QGPvGRrAAct7BvmIXkU1D_C529KAt0XZdE93WZE7Jz7UmcXt7Xz2AmTyG5Wz6dTJPY1CF1PJSsdTqnBrVCI394hruMlYw56RGu4sKq4wTxkiDZpBjpmFGs0IbkysrtcAyVrEncNBuWvcUSJFbTa1grJGG57Yui8yZRjboBHGKOQnkPfkqGxHHfeCLsyqsfDNVdSSvkORVIHnFEni9q3Pe4W38s_Sx75VdSY-VHRI2229VFL1KldTRMrPUu4aidviosxqJgN5uQ4VK4Kjv06rnv4oyP5hxxosEXu6yUfT8eopu3ebKl_HghN5AS0AOeGHwQcOcdv09gHgLjwidywTe9Fzz5-V__-Fn_0We53CX-umBDHmdH8HB5fbKvUAb6tKMYF-uJF7V7OMIDsfjxZcF3o-np58-Y-pETEZhdmIUBOg3D5Ubng
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMEWjASnCBqYju2c6gqHq229HHqSnsztuPASihZui2of4rf2LGTbJVK9NZbFD_izMOescffALyTnFtRcpOK0vKUV2WWGu5sWldGVd5wJfJw3_noWEym_NusmK3Bv-EuTAirHObEOFFXrQt75FuUBenijBc7i99pyBoVTleHFBqdWBz4i7_osi23978if99Turd78mWS9lkFUsdLxVJncmpVLQwOzNfcZ6xg3kuDhgcVTlkvrJUW7QDPbM2sYYWxNldOGoF1nGLY7x24iwtvFjRKzuRqTyegrSvO-7s5GVNbSx5nIrSj0hyXStTn0foX0wSMbNvrkZnXjmfjqrf3CB725ir51MnXY1jzzRO41yWwvHgK092IQIHdkD6fjusBCMiig5JFtpO2JiEyHr1yR4ybV8Q0FZlQ8mduSB8yPzSPACnPYHorJH0O603b-BdAitwZ6gRjtbQ8d1VZZN7WskbHilMsSSAfyKddj2Iekmn80vE0nSndkVwjyXUkuWYJfFi1WXQYHjfW_hy4sqoZ8Lfji_b0h-7VWauSelpmjgZ3U1QeH01WIRHQg66pUAlsDDzV_aSw1FcinMDbVTGqczijMY1vz0OdAHgYjL4E5EgWRgMalzTznxEYXASU6Vwm8HGQmquP__-HX9481jdwf3JydKgP948PXsEDGvYbshzFeQPWz07P_SYaZWf2ddQEAt9vW_UuAanLSjI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIhAXxK8aKGAkOEG0ie3YzgEhoF1tKVQcWGlvxnYcWAklS7cF9dV4OsZOslUq0VtvUTx2nPGMPWOPvwF4ITm3ouQmFaXlKa_KLDXc2bSujKq84Urk4b7z5yMxm_OPi2KxBX-HuzAhrHKYE-NEXbUu7JFPKAvSxRkvJnUfFvFlb_p29SsNGaTCSeuQTqMTkUN_9gfdt_Wbgz0c65eUTve_fpilfYaB1PFSsdSZnFpVC4Od9DX3GSuY99KgEUKFU9YLa6VFm8AzWzNrWGGszZWTRiCNUwzbvQbXJSvyoGNyITf7OwF5XXHe39PJmJqseZyV0KZKc1w2UbdHa2FMGTCycy9GaV44qo0r4PQO3O5NV_Kuk7W7sOWbe3CjS2Z5dh_m-xGNApshfW4d14MRkFUHK4siQNqahCh59NAdMW5ZEdNUZEbJ76Uhffj8UD2CpTyA-ZWw9CFsN23jd4AUuTPUCcZqaXnuqrLIvK1ljU4Wp1iSQD6wT7se0Twk1vip48k6U7pjuUaW68hyzRJ4tamz6vA8LqV-H0ZlQxmwuOOL9vi77lVbq5J6WmaOBtdTVB4fTVYhE9CbrqlQCewOY6r7CWKtz8U5geebYlTtcF5jGt-eBpoAfhgMwATkSBZGHRqXNMsfESRcBMTpXCbwepCa84___4cfXd7XZ3ATlU5_Ojg6fAy3aNh6yHKU5l3YPjk-9U_QPjuxT6MiEPh21Zr3D_yITmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+electrochemical+production+of+glucaric+acid+and+H2+via+glucose+electrolysis&rft.jtitle=Nature+communications&rft.au=Liu%2C+Wu-Jun&rft.au=Xu%2C+Zhuoran&rft.au=Zhao%2C+Dongting&rft.au=Pan%2C+Xiao-Qiang&rft.date=2020-01-14&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-019-14157-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_019_14157_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon