Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis
Glucose electrolysis offers a prospect of value-added glucaric acid synthesis and energy-saving hydrogen production from the biomass-based platform molecules. Here we report that nanostructured NiFe oxide (NiFeO x ) and nitride (NiFeN x ) catalysts, synthesized from NiFe layered double hydroxide nan...
Saved in:
Published in | Nature communications Vol. 11; no. 1; pp. 265 - 11 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.01.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Glucose electrolysis offers a prospect of value-added glucaric acid synthesis and energy-saving hydrogen production from the biomass-based platform molecules. Here we report that nanostructured NiFe oxide (NiFeO
x
) and nitride (NiFeN
x
) catalysts, synthesized from NiFe layered double hydroxide nanosheet arrays on three-dimensional Ni foams, demonstrate a high activity and selectivity towards anodic glucose oxidation. The electrolytic cell assembled with these two catalysts can deliver 100 mA cm
−2
at 1.39 V. A faradaic efficiency of 87% and glucaric acid yield of 83% are obtained from the glucose electrolysis, which takes place via a guluronic acid pathway evidenced by in-situ infrared spectroscopy. A rigorous process model combined with a techno-economic analysis shows that the electrochemical reduction of glucose produces glucaric acid at a 54% lower cost than the current chemical approach. This work suggests that glucose electrolysis is an energy-saving and cost-effective approach for H
2
production and biomass valorization.
Renewable biomass conversion may afford high-value products from common materials, but catalysts usually require expensive metals and exhibit poor selectivities. Here, authors employ nickel-iron oxide and nitride electrocatalysts to produce H
2
and to convert glucose to glucaric acid selectively. |
---|---|
AbstractList | Glucose electrolysis offers a prospect of value-added glucaric acid synthesis and energy-saving hydrogen production from the biomass-based platform molecules. Here we report that nanostructured NiFe oxide (NiFeO
x
) and nitride (NiFeN
x
) catalysts, synthesized from NiFe layered double hydroxide nanosheet arrays on three-dimensional Ni foams, demonstrate a high activity and selectivity towards anodic glucose oxidation. The electrolytic cell assembled with these two catalysts can deliver 100 mA cm
−2
at 1.39 V. A faradaic efficiency of 87% and glucaric acid yield of 83% are obtained from the glucose electrolysis, which takes place via a guluronic acid pathway evidenced by in-situ infrared spectroscopy. A rigorous process model combined with a techno-economic analysis shows that the electrochemical reduction of glucose produces glucaric acid at a 54% lower cost than the current chemical approach. This work suggests that glucose electrolysis is an energy-saving and cost-effective approach for H
2
production and biomass valorization.
Renewable biomass conversion may afford high-value products from common materials, but catalysts usually require expensive metals and exhibit poor selectivities. Here, authors employ nickel-iron oxide and nitride electrocatalysts to produce H
2
and to convert glucose to glucaric acid selectively. Renewable biomass conversion may afford high-value products from common materials, but catalysts usually require expensive metals and exhibit poor selectivities. Here, authors employ nickel-iron oxide and nitride electrocatalysts to produce H2 and to convert glucose to glucaric acid selectively. Glucose electrolysis offers a prospect of value-added glucaric acid synthesis and energy-saving hydrogen production from the biomass-based platform molecules. Here we report that nanostructured NiFe oxide (NiFeOx) and nitride (NiFeNx) catalysts, synthesized from NiFe layered double hydroxide nanosheet arrays on three-dimensional Ni foams, demonstrate a high activity and selectivity towards anodic glucose oxidation. The electrolytic cell assembled with these two catalysts can deliver 100 mA cm-2 at 1.39 V. A faradaic efficiency of 87% and glucaric acid yield of 83% are obtained from the glucose electrolysis, which takes place via a guluronic acid pathway evidenced by in-situ infrared spectroscopy. A rigorous process model combined with a techno-economic analysis shows that the electrochemical reduction of glucose produces glucaric acid at a 54% lower cost than the current chemical approach. This work suggests that glucose electrolysis is an energy-saving and cost-effective approach for H2 production and biomass valorization.Glucose electrolysis offers a prospect of value-added glucaric acid synthesis and energy-saving hydrogen production from the biomass-based platform molecules. Here we report that nanostructured NiFe oxide (NiFeOx) and nitride (NiFeNx) catalysts, synthesized from NiFe layered double hydroxide nanosheet arrays on three-dimensional Ni foams, demonstrate a high activity and selectivity towards anodic glucose oxidation. The electrolytic cell assembled with these two catalysts can deliver 100 mA cm-2 at 1.39 V. A faradaic efficiency of 87% and glucaric acid yield of 83% are obtained from the glucose electrolysis, which takes place via a guluronic acid pathway evidenced by in-situ infrared spectroscopy. A rigorous process model combined with a techno-economic analysis shows that the electrochemical reduction of glucose produces glucaric acid at a 54% lower cost than the current chemical approach. This work suggests that glucose electrolysis is an energy-saving and cost-effective approach for H2 production and biomass valorization. Glucose electrolysis offers a prospect of value-added glucaric acid synthesis and energy-saving hydrogen production from the biomass-based platform molecules. Here we report that nanostructured NiFe oxide (NiFeOx) and nitride (NiFeNx) catalysts, synthesized from NiFe layered double hydroxide nanosheet arrays on three-dimensional Ni foams, demonstrate a high activity and selectivity towards anodic glucose oxidation. The electrolytic cell assembled with these two catalysts can deliver 100 mA cm−2 at 1.39 V. A faradaic efficiency of 87% and glucaric acid yield of 83% are obtained from the glucose electrolysis, which takes place via a guluronic acid pathway evidenced by in-situ infrared spectroscopy. A rigorous process model combined with a techno-economic analysis shows that the electrochemical reduction of glucose produces glucaric acid at a 54% lower cost than the current chemical approach. This work suggests that glucose electrolysis is an energy-saving and cost-effective approach for H2 production and biomass valorization.Renewable biomass conversion may afford high-value products from common materials, but catalysts usually require expensive metals and exhibit poor selectivities. Here, authors employ nickel-iron oxide and nitride electrocatalysts to produce H2 and to convert glucose to glucaric acid selectively. Glucose electrolysis offers a prospect of value-added glucaric acid synthesis and energy-saving hydrogen production from the biomass-based platform molecules. Here we report that nanostructured NiFe oxide (NiFeO x ) and nitride (NiFeN x ) catalysts, synthesized from NiFe layered double hydroxide nanosheet arrays on three-dimensional Ni foams, demonstrate a high activity and selectivity towards anodic glucose oxidation. The electrolytic cell assembled with these two catalysts can deliver 100 mA cm −2 at 1.39 V. A faradaic efficiency of 87% and glucaric acid yield of 83% are obtained from the glucose electrolysis, which takes place via a guluronic acid pathway evidenced by in-situ infrared spectroscopy. A rigorous process model combined with a techno-economic analysis shows that the electrochemical reduction of glucose produces glucaric acid at a 54% lower cost than the current chemical approach. This work suggests that glucose electrolysis is an energy-saving and cost-effective approach for H 2 production and biomass valorization. |
ArticleNumber | 265 |
Author | Fan, Zhi-Yong Liu, Wu-Jun Xu, Zhuoran Li, Hong-Chao Huber, George W. Yu, Han-Qing Zhao, Dongting Jin, Song Pan, Xiao-Qiang Wang, Wei-Kang Hu, Xiao Zhao, Guo-Hua |
Author_xml | – sequence: 1 givenname: Wu-Jun orcidid: 0000-0002-5696-1180 surname: Liu fullname: Liu, Wu-Jun organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Department of Chemical and Biological Engineering, University of Wisconsin-Madison – sequence: 2 givenname: Zhuoran surname: Xu fullname: Xu, Zhuoran organization: Department of Chemical and Biological Engineering, University of Wisconsin-Madison – sequence: 3 givenname: Dongting surname: Zhao fullname: Zhao, Dongting organization: Department of Chemical and Biological Engineering, University of Wisconsin-Madison – sequence: 4 givenname: Xiao-Qiang surname: Pan fullname: Pan, Xiao-Qiang organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China – sequence: 5 givenname: Hong-Chao orcidid: 0000-0002-8081-0980 surname: Li fullname: Li, Hong-Chao organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China – sequence: 6 givenname: Xiao surname: Hu fullname: Hu, Xiao organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China – sequence: 7 givenname: Zhi-Yong orcidid: 0000-0001-6138-179X surname: Fan fullname: Fan, Zhi-Yong organization: School of Chemical Science and Engineering, Tongji University – sequence: 8 givenname: Wei-Kang orcidid: 0000-0003-0090-3122 surname: Wang fullname: Wang, Wei-Kang organization: School of Chemical Science and Engineering, Tongji University – sequence: 9 givenname: Guo-Hua surname: Zhao fullname: Zhao, Guo-Hua organization: School of Chemical Science and Engineering, Tongji University – sequence: 10 givenname: Song orcidid: 0000-0001-8693-7010 surname: Jin fullname: Jin, Song organization: Department of Chemistry, University of Wisconsin-Madison – sequence: 11 givenname: George W. orcidid: 0000-0002-7838-6893 surname: Huber fullname: Huber, George W. email: gwhuber@wisc.edu organization: Department of Chemical and Biological Engineering, University of Wisconsin-Madison – sequence: 12 givenname: Han-Qing orcidid: 0000-0001-5247-6244 surname: Yu fullname: Yu, Han-Qing email: hqyu@ustc.edu.cn organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China |
BookMark | eNp9Uktr3DAQNiWleTR_oCdDL7041ct6XAolpE0g0EtzFiN5vNGitbaSHci_r3Y3oU0O0UWD5ntIo--0OZrShE3ziZILSrj-WgQVUnWEmo4K2quOv2tOGBG0o4rxo__q4-a8lDWpixuqhfjQHHNquFKanzR3V-MYfMBpbjGin3Py97gJHmK7zWlY_BzS1KaxXcXFQw6-BR-GFqahvWbtQ4B9IxV8psfHEsrH5v0IseD5037W3P24-n153d3--nlz-f2288Jo3nmgzOlRghgMjgIJ7zmiAkoZk147lM4pJwlB7kbugPfgHNVegawYr_lZc3PQHRKs7TaHDeRHmyDY_UHKKwt5Dj6i1YYhM8QzRaWQA9YSyFDtGSUjkzutbwet7eI2OPg6kgzxhejLzhTu7So9WGl6w6mqAl-eBHL6s2CZ7SYUjzHChGkplnGujSFM8wr9_Aq6Tkue6qgqSrBeCS76itIHlM-plIyj9WGG3YdU_xAtJXYXBXuIgq1RsPso2J0Be0V9fsebJH4glQqeVpj_3eoN1l8a-Mb9 |
CitedBy_id | crossref_primary_10_1021_acssuschemeng_2c03407 crossref_primary_10_1021_acs_energyfuels_3c02539 crossref_primary_10_1002_anie_202219048 crossref_primary_10_1002_adma_202109321 crossref_primary_10_1016_j_enconman_2024_119227 crossref_primary_10_1016_j_jechem_2023_01_039 crossref_primary_10_1007_s10008_024_05925_3 crossref_primary_10_1039_D1GC00914A crossref_primary_10_1002_aesr_202300302 crossref_primary_10_1021_acsmaterialslett_3c01235 crossref_primary_10_1021_acsami_3c06783 crossref_primary_10_1073_pnas_2317174120 crossref_primary_10_1021_jacs_1c04626 crossref_primary_10_1039_D3GC01603J crossref_primary_10_1039_D4CC00140K crossref_primary_10_1021_acssuschemeng_1c07482 crossref_primary_10_1016_j_apsusc_2023_158847 crossref_primary_10_1021_acscatal_4c01275 crossref_primary_10_1007_s12274_023_5944_z crossref_primary_10_1021_acsmaterialslett_1c00074 crossref_primary_10_1016_j_jallcom_2022_167324 crossref_primary_10_1016_j_cej_2024_150342 crossref_primary_10_1016_j_cej_2021_128818 crossref_primary_10_1039_D4TA02268H crossref_primary_10_1016_j_gce_2022_11_001 crossref_primary_10_1016_j_mssp_2024_108838 crossref_primary_10_1002_smll_202500084 crossref_primary_10_1021_acsenergylett_2c01945 crossref_primary_10_1039_D3EY00147D crossref_primary_10_1016_j_jcis_2024_11_098 crossref_primary_10_1002_advs_202105135 crossref_primary_10_1016_S1872_2067_24_60098_7 crossref_primary_10_1002_ange_202015431 crossref_primary_10_1016_j_apcatb_2023_123214 crossref_primary_10_3866_PKU_WHXB202303050 crossref_primary_10_1021_acs_macromol_1c02447 crossref_primary_10_1016_j_enrev_2024_100105 crossref_primary_10_1039_D3TA01931D crossref_primary_10_1002_smll_202008148 crossref_primary_10_1021_acs_langmuir_4c02084 crossref_primary_10_1039_D4GC02100B crossref_primary_10_1038_s41467_021_25048_x crossref_primary_10_1002_cplu_202300711 crossref_primary_10_1039_D4NR04915B crossref_primary_10_1038_s41467_023_43649_6 crossref_primary_10_1039_D3EE02467A crossref_primary_10_1002_anie_202015431 crossref_primary_10_1002_adfm_202009580 crossref_primary_10_1016_j_fuel_2023_128728 crossref_primary_10_1039_D4SE01034E crossref_primary_10_1016_j_cej_2023_148187 crossref_primary_10_1016_j_cej_2025_160894 crossref_primary_10_1002_anie_202203929 crossref_primary_10_1021_acs_jpclett_1c03658 crossref_primary_10_1021_jacsau_2c00138 crossref_primary_10_1039_D3TA02930A crossref_primary_10_1016_j_biortech_2021_126467 crossref_primary_10_1142_S1793604721500065 crossref_primary_10_20517_cs_2023_28 crossref_primary_10_1002_smll_202104339 crossref_primary_10_1002_anie_202308800 crossref_primary_10_1002_advs_202205077 crossref_primary_10_1021_acssuschemeng_1c01867 crossref_primary_10_1016_j_apsusc_2025_162743 crossref_primary_10_1016_j_cej_2024_158011 crossref_primary_10_1038_s41467_023_35875_9 crossref_primary_10_1039_D3DT01773G crossref_primary_10_1016_j_renene_2020_12_004 crossref_primary_10_1016_j_cej_2024_152950 crossref_primary_10_3390_catal11010101 crossref_primary_10_1021_acsaem_1c01932 crossref_primary_10_3390_molecules29133062 crossref_primary_10_20517_cs_2023_41 crossref_primary_10_1002_adma_202309715 crossref_primary_10_1039_D2GC02426H crossref_primary_10_1016_j_enconman_2024_119443 crossref_primary_10_3390_catal15030227 crossref_primary_10_1007_s12598_021_01881_3 crossref_primary_10_1039_D1GC04206H crossref_primary_10_1007_s10854_023_11042_0 crossref_primary_10_1016_j_apsusc_2023_156602 crossref_primary_10_1039_D4GC04765F crossref_primary_10_1021_acs_energyfuels_3c02823 crossref_primary_10_1002_smll_202401146 crossref_primary_10_1016_j_cclet_2022_03_088 crossref_primary_10_1039_D2CC05132J crossref_primary_10_1039_D3EE00603D crossref_primary_10_1038_s41467_024_49931_5 crossref_primary_10_3390_en16134986 crossref_primary_10_1038_s41929_021_00721_y crossref_primary_10_1002_ange_202415044 crossref_primary_10_1039_D2GC04732B crossref_primary_10_1002_adfm_202401011 crossref_primary_10_1039_D1TA01226F crossref_primary_10_1002_adma_202306108 crossref_primary_10_1021_acsmaterialslett_4c01173 crossref_primary_10_1016_j_isci_2021_102109 crossref_primary_10_1021_acsomega_2c02965 crossref_primary_10_1039_D4TA04113E crossref_primary_10_1002_adfm_202301884 crossref_primary_10_1021_acs_chemrev_2c00602 crossref_primary_10_1016_j_jclepro_2023_136613 crossref_primary_10_1016_j_cej_2023_146742 crossref_primary_10_1016_j_jcis_2023_05_173 crossref_primary_10_1002_anie_202009854 crossref_primary_10_1021_acsenergylett_0c02692 crossref_primary_10_1039_D3NR02524A crossref_primary_10_1039_D0CS00177E crossref_primary_10_1002_adma_202418504 crossref_primary_10_1021_acsami_3c02591 crossref_primary_10_1038_s41467_021_24203_8 crossref_primary_10_1002_cssc_202400472 crossref_primary_10_1016_j_apcatb_2023_122559 crossref_primary_10_1039_D2GC04623G crossref_primary_10_1007_s12274_024_6887_8 crossref_primary_10_1016_j_cej_2025_160396 crossref_primary_10_1002_adfm_202212479 crossref_primary_10_1016_j_ijhydene_2024_05_215 crossref_primary_10_3390_en16135078 crossref_primary_10_1016_j_rser_2023_113337 crossref_primary_10_1016_j_jcis_2023_01_123 crossref_primary_10_1021_jacs_2c11861 crossref_primary_10_1039_D4GC05715E crossref_primary_10_1039_D3GC03554A crossref_primary_10_1016_j_apcatb_2022_122240 crossref_primary_10_1021_prechem_4c00025 crossref_primary_10_1016_j_checat_2022_09_023 crossref_primary_10_1002_ange_202219048 crossref_primary_10_1016_j_cclet_2022_03_042 crossref_primary_10_1039_D1GC03453G crossref_primary_10_1039_D1CC06254A crossref_primary_10_1039_D3GC03458E crossref_primary_10_1002_advs_202200957 crossref_primary_10_1016_j_est_2023_108186 crossref_primary_10_1002_adfm_202311655 crossref_primary_10_1002_ange_202308800 crossref_primary_10_1016_j_nanoen_2022_107875 crossref_primary_10_1002_anie_202213328 crossref_primary_10_1039_D4CY00907J crossref_primary_10_1007_s40843_022_2076_y crossref_primary_10_1016_j_scib_2023_05_016 crossref_primary_10_1039_D1RA09196D crossref_primary_10_1016_j_chempr_2022_07_010 crossref_primary_10_1002_cctc_202400338 crossref_primary_10_1002_anie_202316257 crossref_primary_10_1016_j_ccr_2024_216399 crossref_primary_10_1002_cctc_202401664 crossref_primary_10_1002_tcr_202400259 crossref_primary_10_1039_D3EE02767H crossref_primary_10_1016_j_jcis_2022_02_037 crossref_primary_10_1002_ange_202203929 crossref_primary_10_1016_j_ijhydene_2020_09_007 crossref_primary_10_1021_acsami_9b15039 crossref_primary_10_1021_acscatal_2c02923 crossref_primary_10_1021_acssuschemeng_0c03410 crossref_primary_10_1002_cjoc_202200527 crossref_primary_10_1016_j_biombioe_2024_107510 crossref_primary_10_1002_smll_202102375 crossref_primary_10_1016_j_mtphys_2024_101601 crossref_primary_10_1016_j_jechem_2024_02_053 crossref_primary_10_1002_smll_202300019 crossref_primary_10_1016_j_gee_2022_07_003 crossref_primary_10_1016_j_greenca_2024_10_004 crossref_primary_10_1039_D4TA04675G crossref_primary_10_1021_acs_jpcc_3c03055 crossref_primary_10_1016_j_biotechadv_2023_108157 crossref_primary_10_1002_sstr_202300576 crossref_primary_10_1039_D4EE01824A crossref_primary_10_1016_j_checat_2021_11_003 crossref_primary_10_1016_j_jechem_2024_01_062 crossref_primary_10_1016_j_matt_2023_06_036 crossref_primary_10_1002_advs_202204170 crossref_primary_10_1007_s12274_023_6190_0 crossref_primary_10_1021_acssuschemeng_0c04411 crossref_primary_10_1039_D4GC00227J crossref_primary_10_1038_s41467_023_41997_x crossref_primary_10_1039_D1TA01741A crossref_primary_10_1016_j_nanoen_2023_109183 crossref_primary_10_1039_D2CS00100D crossref_primary_10_1039_D3SE00847A crossref_primary_10_1039_D4TA06649A crossref_primary_10_1039_D3QI00277B crossref_primary_10_1038_s41467_022_32443_5 crossref_primary_10_1016_j_ijhydene_2022_10_004 crossref_primary_10_1002_smll_202406782 crossref_primary_10_1016_j_fuel_2022_126957 crossref_primary_10_1002_ange_202305843 crossref_primary_10_1016_j_matre_2020_12_001 crossref_primary_10_3389_fchem_2022_998812 crossref_primary_10_1039_D1TA04839B crossref_primary_10_1002_sstr_202100134 crossref_primary_10_1021_acsnano_2c02838 crossref_primary_10_1016_j_cej_2024_159165 crossref_primary_10_1002_ese3_1487 crossref_primary_10_1002_cctc_202400345 crossref_primary_10_1007_s12274_022_5085_9 crossref_primary_10_1016_j_chempr_2022_12_008 crossref_primary_10_1016_j_jcis_2024_12_082 crossref_primary_10_1021_acs_analchem_4c01445 crossref_primary_10_1016_j_cej_2024_155921 crossref_primary_10_1002_adma_202008631 crossref_primary_10_1002_ange_202306701 crossref_primary_10_1039_D4GC01860E crossref_primary_10_1016_j_surfin_2024_104283 crossref_primary_10_1002_smtd_202400786 crossref_primary_10_1038_s41467_023_36726_3 crossref_primary_10_1016_j_apcatb_2024_124042 crossref_primary_10_1002_adma_202104791 crossref_primary_10_1016_j_checat_2024_100963 crossref_primary_10_1038_s41467_023_41497_y crossref_primary_10_1016_j_jclepro_2021_127745 crossref_primary_10_1016_j_jcis_2021_06_001 crossref_primary_10_1002_smll_202405358 crossref_primary_10_1039_D0TA11850H crossref_primary_10_1002_aenm_202402429 crossref_primary_10_1002_adfm_202008812 crossref_primary_10_1016_j_jechem_2022_11_041 crossref_primary_10_1016_j_nanoen_2023_108714 crossref_primary_10_1007_s40843_023_2544_5 crossref_primary_10_1039_D4CC01960A crossref_primary_10_1002_advs_202300841 crossref_primary_10_1002_cctc_202301332 crossref_primary_10_1021_acssuschemeng_3c01799 crossref_primary_10_1021_acsaem_3c02956 crossref_primary_10_1016_j_cej_2024_157642 crossref_primary_10_1002_aesr_202200005 crossref_primary_10_1007_s40820_022_00993_4 crossref_primary_10_12677_japc_2024_133059 crossref_primary_10_1002_cssc_202400996 crossref_primary_10_1016_S1872_2067_23_64585_1 crossref_primary_10_1002_aenm_202101180 crossref_primary_10_1016_j_electacta_2024_144275 crossref_primary_10_1002_smll_202310087 crossref_primary_10_1007_s12274_023_6049_4 crossref_primary_10_1002_smll_202406107 crossref_primary_10_1016_j_carbon_2022_11_067 crossref_primary_10_1016_j_ccr_2023_215641 crossref_primary_10_1016_j_ijhydene_2020_09_265 crossref_primary_10_1021_acsami_4c02260 crossref_primary_10_1039_D4QI01789G crossref_primary_10_1016_j_gresc_2025_03_005 crossref_primary_10_1039_D3GC01487H crossref_primary_10_3390_molecules29122783 crossref_primary_10_1016_j_jcou_2021_101497 crossref_primary_10_1021_acs_energyfuels_3c03298 crossref_primary_10_1021_acs_chemrev_3c00332 crossref_primary_10_1016_j_apsusc_2022_152683 crossref_primary_10_1021_acscentsci_4c01085 crossref_primary_10_1016_j_electacta_2022_140023 crossref_primary_10_3390_reactions3040039 crossref_primary_10_1002_ange_202316257 crossref_primary_10_1016_j_nxnano_2024_100073 crossref_primary_10_1021_acsami_4c02392 crossref_primary_10_1016_j_chempr_2024_08_009 crossref_primary_10_1016_j_carbon_2025_120201 crossref_primary_10_1016_j_ijhydene_2024_08_245 crossref_primary_10_1002_ange_202009854 crossref_primary_10_1039_D4TA04241G crossref_primary_10_1039_D2CY01825J crossref_primary_10_1016_j_apsusc_2023_157046 crossref_primary_10_1016_j_jechem_2022_10_031 crossref_primary_10_1002_adma_202303719 crossref_primary_10_1016_j_enconman_2023_117885 crossref_primary_10_1002_aenm_202400696 crossref_primary_10_1021_acs_inorgchem_3c00074 crossref_primary_10_1039_D4GC03829K crossref_primary_10_1016_j_scib_2023_09_033 crossref_primary_10_1039_D4TA05597G crossref_primary_10_1016_j_jechem_2022_10_038 crossref_primary_10_1021_acs_nanolett_4c02315 crossref_primary_10_1063_5_0178109 crossref_primary_10_1002_ange_202213328 crossref_primary_10_3389_fchem_2023_1114454 crossref_primary_10_1016_j_ijhydene_2024_08_450 crossref_primary_10_1039_D0EE02607G crossref_primary_10_1007_s12274_023_5752_5 crossref_primary_10_1039_D4IM00163J crossref_primary_10_1016_j_apcatb_2022_121647 crossref_primary_10_1002_cplu_202400182 crossref_primary_10_1002_ange_202306640 crossref_primary_10_1002_aenm_202303614 crossref_primary_10_1088_2399_1984_ac1db9 crossref_primary_10_1021_acsanm_1c00339 crossref_primary_10_1016_j_coelec_2024_101625 crossref_primary_10_1021_acs_inorgchem_4c04195 crossref_primary_10_1016_j_apcata_2023_119341 crossref_primary_10_1016_j_jcis_2023_09_003 crossref_primary_10_1038_s41467_023_39848_w crossref_primary_10_1021_acs_chemrev_4c00261 crossref_primary_10_1016_j_energy_2021_121793 crossref_primary_10_1016_j_gee_2024_09_004 crossref_primary_10_1016_j_mcat_2024_114023 crossref_primary_10_1016_j_aca_2024_343525 crossref_primary_10_1002_adfm_202407601 crossref_primary_10_1007_s42114_022_00580_6 crossref_primary_10_1016_j_checat_2022_05_003 crossref_primary_10_1002_sstr_202100095 crossref_primary_10_1002_adma_202404806 crossref_primary_10_1002_ente_202201450 crossref_primary_10_1002_adma_202419058 crossref_primary_10_1016_j_checat_2022_11_007 crossref_primary_10_1039_D4CY00305E crossref_primary_10_1016_j_apcatb_2022_121608 crossref_primary_10_1016_j_apcatb_2022_121726 crossref_primary_10_1016_S1872_2067_23_64544_9 crossref_primary_10_1038_s41467_022_31484_0 crossref_primary_10_1039_D2CY00950A crossref_primary_10_1007_s40820_023_01150_1 crossref_primary_10_1021_acsaem_2c02227 crossref_primary_10_20517_microstructures_2024_38 crossref_primary_10_1002_adma_202401867 crossref_primary_10_1055_a_1894_8136 crossref_primary_10_1016_j_ccr_2024_215777 crossref_primary_10_1002_anie_202306640 crossref_primary_10_1016_j_foodres_2022_111739 crossref_primary_10_1016_j_electacta_2022_141736 crossref_primary_10_3390_s25041260 crossref_primary_10_1002_aenm_202304065 crossref_primary_10_1021_acsanm_3c03438 crossref_primary_10_1007_s40843_021_1809_5 crossref_primary_10_1021_acssuschemeng_3c08233 crossref_primary_10_3389_fenrg_2021_762346 crossref_primary_10_1016_j_renene_2022_04_105 crossref_primary_10_1016_j_jelechem_2022_116975 crossref_primary_10_1021_jacs_3c02570 crossref_primary_10_1016_j_nxener_2023_100037 crossref_primary_10_1002_adfm_202208212 crossref_primary_10_2174_0118756298267514240104101246 crossref_primary_10_1016_j_mtener_2022_100948 crossref_primary_10_1002_aenm_202203568 crossref_primary_10_1039_D2YA00311B crossref_primary_10_1007_s12678_022_00774_y crossref_primary_10_1039_D3CY00897E crossref_primary_10_1007_s13399_021_02296_x crossref_primary_10_1016_j_jechem_2024_12_015 crossref_primary_10_1039_D4EE02332C crossref_primary_10_1002_smll_202409331 crossref_primary_10_1021_acsaenm_4c00705 crossref_primary_10_1016_j_cej_2024_156011 crossref_primary_10_1039_D3RA05158G crossref_primary_10_1016_S1872_2067_23_64446_8 crossref_primary_10_1002_aenm_202201047 crossref_primary_10_1039_D3CC03838F crossref_primary_10_1021_acsami_2c13864 crossref_primary_10_1007_s12155_024_10797_6 crossref_primary_10_1016_j_apcatb_2023_123068 crossref_primary_10_1038_s41467_022_33435_1 crossref_primary_10_1016_j_nanoen_2020_105530 crossref_primary_10_1021_acsenergylett_4c00707 crossref_primary_10_1016_j_bioelechem_2024_108666 crossref_primary_10_1016_j_energy_2024_132277 crossref_primary_10_1002_adfm_202009032 crossref_primary_10_1021_acs_iecr_3c00118 crossref_primary_10_1016_j_xcrp_2023_101427 crossref_primary_10_1016_j_ensm_2025_104064 crossref_primary_10_1016_j_xcrp_2023_101546 crossref_primary_10_1039_D0GC02770G crossref_primary_10_1016_j_apcatb_2024_124526 crossref_primary_10_1016_j_jcat_2025_116002 crossref_primary_10_1002_advs_202412872 crossref_primary_10_1002_smll_202410478 crossref_primary_10_1021_acsanm_2c02478 crossref_primary_10_1002_adfm_202415058 crossref_primary_10_1016_j_aca_2021_339249 crossref_primary_10_1002_adfm_202315326 crossref_primary_10_1039_D0QI00289E crossref_primary_10_1016_j_mssp_2025_109319 crossref_primary_10_1016_j_cej_2024_149718 crossref_primary_10_1002_smll_202200242 crossref_primary_10_1016_j_mser_2024_100829 crossref_primary_10_1016_j_talanta_2024_126897 crossref_primary_10_1016_j_eehl_2024_01_010 crossref_primary_10_1002_adfm_202316718 crossref_primary_10_1039_D2CC05270A crossref_primary_10_1021_jacs_4c13368 crossref_primary_10_1021_acscatal_0c01498 crossref_primary_10_1002_cssc_202301078 crossref_primary_10_1039_D4CC02729A crossref_primary_10_1016_j_cej_2023_145292 crossref_primary_10_1039_D2CY01428A crossref_primary_10_1002_adsu_202000184 crossref_primary_10_1007_s12274_023_5431_6 crossref_primary_10_1039_D4NR04433A crossref_primary_10_1039_D3TA04856J crossref_primary_10_1002_anie_202306701 crossref_primary_10_1039_D4EE00221K crossref_primary_10_1002_adfm_202311063 crossref_primary_10_1002_anie_202415044 crossref_primary_10_1246_cl_220293 crossref_primary_10_1246_cl_220173 crossref_primary_10_1021_acs_inorgchem_3c01679 crossref_primary_10_1021_acs_energyfuels_3c03758 crossref_primary_10_1002_asia_202200138 crossref_primary_10_1016_j_matre_2022_100092 crossref_primary_10_1126_sciadv_adn9441 crossref_primary_10_1021_jacs_3c13155 crossref_primary_10_1016_j_jallcom_2020_156810 crossref_primary_10_1007_s10311_022_01454_5 crossref_primary_10_1002_anie_202305843 crossref_primary_10_1016_j_psep_2024_04_068 crossref_primary_10_1039_D2QI02526D crossref_primary_10_1016_j_jechem_2024_05_022 |
Cites_doi | 10.1016/j.enzmictec.2016.05.009 10.1016/j.apsusc.2007.09.063 10.1021/acs.iecr.5b04841 10.1021/acs.iecr.7b01571 10.1021/cm0111074 10.1021/acscatal.8b04143 10.1016/j.jelechem.2003.12.022 10.1016/j.nucmedbio.2017.12.006 10.1021/cs502093b 10.1002/cctc.201700089 10.1039/b615525c 10.1021/cr300182k 10.1021/jf60012a005 10.1021/acssuschemeng.7b00868 10.1039/C6GC00460A 10.1021/acscatal.9b00732 10.1126/science.1114736 10.1016/j.electacta.2009.11.041 10.1002/anie.201806298 10.1021/acs.chemrev.7b00395 10.1021/acscentsci.6b00164 10.1002/aenm.201803358 10.1021/cr4002269 10.1002/mrc.1173 10.1021/jacs.8b00752 10.1021/ie50531a019 10.1126/science.1191662 10.1021/acs.chemmater.6b02610 10.1021/cr900354u 10.1039/c4dt00717d 10.1021/acs.oprd.6b00095 10.1016/j.electacta.2010.04.069 10.1128/AEM.00973-08 10.1016/j.jcat.2015.05.018 10.1021/ac501289x 10.1002/adma.201800757 10.1088/0957-4484/17/9/043 10.1021/acscatal.8b01017 10.1039/an9941900855 10.1039/C7EE01571B 10.1021/acsenergylett.7b00679 10.1039/C7CS00213K 10.1021/acs.nanolett.6b03467 10.1039/B517632H 10.1002/sia.1984 10.1007/BF03214967 10.2174/2211555204666150402230538 10.1039/c3gc40973b 10.1039/C8EE00521D 10.1039/C3CS60414D 10.1021/acs.chemmater.8b01334 10.1016/j.ymben.2010.01.003 10.1021/acssuschemeng.7b00992 10.1016/j.electacta.2014.02.128 10.1002/adfm.201704169 10.1021/cr068360d 10.3109/07388551.2015.1060189 10.1016/j.fos.2015.11.013 10.1109/BioCAS.2014.6981763 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-019-14157-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Biological Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_892e290c271646de90ca0d2b8210f268 PMC6959317 10_1038_s41467_019_14157_3 |
GrantInformation_xml | – fundername: the National Natural Science Foundation of China (21590812, 51538011, 21607147 and 51821006) – fundername: ; |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c4983-ca12b8f6a4d9ef4e0353ee7a11226c8be6bb7b600e3bf3ba35abb18c7a6a11c83 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 00:42:15 EDT 2025 Thu Aug 21 13:44:08 EDT 2025 Fri Jul 11 00:50:10 EDT 2025 Wed Aug 13 05:11:20 EDT 2025 Thu Apr 24 22:59:47 EDT 2025 Tue Jul 01 04:08:49 EDT 2025 Fri Feb 21 02:39:56 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4983-ca12b8f6a4d9ef4e0353ee7a11226c8be6bb7b600e3bf3ba35abb18c7a6a11c83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0090-3122 0000-0002-5696-1180 0000-0001-6138-179X 0000-0002-8081-0980 0000-0001-8693-7010 0000-0002-7838-6893 0000-0001-5247-6244 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-019-14157-3 |
PMID | 31937783 |
PQID | 2342574345 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_892e290c271646de90ca0d2b8210f268 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6959317 proquest_miscellaneous_2338990283 proquest_journals_2342574345 crossref_citationtrail_10_1038_s41467_019_14157_3 crossref_primary_10_1038_s41467_019_14157_3 springer_journals_10_1038_s41467_019_14157_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200114 |
PublicationDateYYYYMMDD | 2020-01-14 |
PublicationDate_xml | – month: 1 year: 2020 text: 20200114 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Exner (CR51) 2019; 9 Liu, Wang, Karim, Sun, Wang (CR3) 2014; 43 Jiang (CR31) 2017; 5 CR34 van Putten (CR8) 2013; 113 Jian (CR39) 2017; 27 Jin (CR30) 2015; 330 Mika, Cséfalvay, Németh (CR2) 2017; 118 Sinch, Gupta (CR14) 2003; 16 Zakzeski, Bruijnincx, Jongerius, Weckhuysen (CR4) 2010; 110 Weber (CR32) 2019; 9 Liu (CR40) 2018; 8 Qi (CR29) 2015; 5 Yu (CR52) 2017; 10 Vogt, Schneider (CR33) 2014; 86 Solmi, Morreale, Ospitali, Agnoli, Cavani (CR26) 2017; 9 Lee, Saha, Vlachos (CR25) 2016; 18 Pasta, La Mantia, Cui (CR35) 2010; 55 Dang (CR43) 2018; 30 Zboril, Mashlan, Petridis (CR44) 2002; 14 Derrien (CR27) 2017; 56 Bozell (CR6) 2010; 329 Moon, Dueber, Shiue, Prather (CR20) 2010; 12 Liu (CR21) 2016; 91 Yamashita, Hayes (CR46) 2008; 254 Zhang (CR62) 2016; 28 Ragauskas (CR9) 2006; 311 Jin (CR28) 2016; 55 Cui, Ye, Liu, Zhang, Sheu (CR36) 2006; 17 Zhou (CR55) 2016; 16 Kim (CR63) 2017; 5 Lv, Yang, Chen, Wang, Xiong (CR50) 2019; 9 Iida (CR60) 2003; 41 Mehltretter, Rist (CR23) 1953; 1 Jin (CR49) 2017; 2 Khaw, Narula, Hartner (CR12) 2015; 4 CR18 Wang (CR54) 2018; 30 CR17 Ibert (CR42) 2010; 55 Barwe (CR59) 2018; 57 CR15 Besson, Gallezot, Pinel (CR1) 2014; 114 Lyons, Fitzgerald, Smyth (CR56) 1994; 119 Bin (CR41) 2014; 130 Aoun (CR58) 2004; 567 Zhang, Huber (CR7) 2018; 47 Houson, Nkepang, Hedrick, Awasthi (CR13) 2018; 59 Dong, Zhou, Yan, Li, Liu (CR61) 2007; 9 Mehtiö (CR11) 2016; 36 Grosvenor, Kobe, Biesinger, McIntyre (CR45) 2004; 36 Xie (CR47) 2013; 15 Pasta, Ruffo, Falletta, Mari, Della Pina (CR57) 2010; 43 Yu (CR38) 2018; 11 Moon, Yoon, Lanza, Roy-Mayhew, Prather (CR19) 2009; 75 CR22 Martínez-Huitle, Ferro (CR48) 2006; 35 Mangiameli, González, Bellú, Bertoni, Sala (CR10) 2014; 43 Mustakas, Slotter, Zipf (CR24) 1954; 46 Derrien, Marion, Pinel, Besson (CR16) 2016; 20 Dai (CR37) 2016; 2 Huber, Iborra, Corma (CR5) 2006; 106 Zhang (CR53) 2018; 140 M Ibert (14157_CR42) 2010; 55 GW Huber (14157_CR5) 2006; 106 R-J van Putten (14157_CR8) 2013; 113 J Sinch (14157_CR14) 2003; 16 Z-Y Yu (14157_CR38) 2018; 11 JJ Bozell (14157_CR6) 2010; 329 MF Mangiameli (14157_CR10) 2014; 43 TS Moon (14157_CR19) 2009; 75 A Grosvenor (14157_CR45) 2004; 36 C Liu (14157_CR3) 2014; 43 HA Houson (14157_CR13) 2018; 59 J Lee (14157_CR25) 2016; 18 M Pasta (14157_CR57) 2010; 43 LT Mika (14157_CR2) 2017; 118 ME Lyons (14157_CR56) 1994; 119 L Dai (14157_CR37) 2016; 2 T Yamashita (14157_CR46) 2008; 254 Z Zhang (14157_CR7) 2018; 47 G Mustakas (14157_CR24) 1954; 46 M Besson (14157_CR1) 2014; 114 14157_CR34 AJ Ragauskas (14157_CR9) 2006; 311 SB Aoun (14157_CR58) 2004; 567 Y Jiang (14157_CR31) 2017; 5 X Jin (14157_CR28) 2016; 55 W Dong (14157_CR61) 2007; 9 J Zhang (14157_CR53) 2018; 140 B Zhang (14157_CR62) 2016; 28 Y Liu (14157_CR21) 2016; 91 Z Jian (14157_CR39) 2017; 27 W-J Liu (14157_CR40) 2018; 8 H-F Cui (14157_CR36) 2006; 17 E Derrien (14157_CR16) 2016; 20 X Jin (14157_CR30) 2015; 330 B-A Khaw (14157_CR12) 2015; 4 14157_CR17 14157_CR18 14157_CR15 C Mehltretter (14157_CR23) 1953; 1 14157_CR22 S Vogt (14157_CR33) 2014; 86 D Bin (14157_CR41) 2014; 130 R Zboril (14157_CR44) 2002; 14 S Xie (14157_CR47) 2013; 15 E Derrien (14157_CR27) 2017; 56 S Barwe (14157_CR59) 2018; 57 L Dang (14157_CR43) 2018; 30 RS Weber (14157_CR32) 2019; 9 T Wang (14157_CR54) 2018; 30 P Qi (14157_CR29) 2015; 5 TS Moon (14157_CR20) 2010; 12 KS Exner (14157_CR51) 2019; 9 CA Martínez-Huitle (14157_CR48) 2006; 35 J Zakzeski (14157_CR4) 2010; 110 L Yu (14157_CR52) 2017; 10 HJ Kim (14157_CR63) 2017; 5 S Solmi (14157_CR26) 2017; 9 S Jin (14157_CR49) 2017; 2 H Zhou (14157_CR55) 2016; 16 L Lv (14157_CR50) 2019; 9 M Pasta (14157_CR35) 2010; 55 T Iida (14157_CR60) 2003; 41 T Mehtiö (14157_CR11) 2016; 36 |
References_xml | – ident: CR22 – volume: 91 start-page: 8 year: 2016 end-page: 16 ident: CR21 article-title: Production of glucaric acid from myo-inositol in engineered Pichia pastoris publication-title: Enzym. Microb. Technol. doi: 10.1016/j.enzmictec.2016.05.009 – volume: 254 start-page: 2441 year: 2008 end-page: 2449 ident: CR46 article-title: Analysis of XPS spectra of Fe and Fe ions in oxide materials publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2007.09.063 – volume: 55 start-page: 2932 year: 2016 end-page: 2945 ident: CR28 article-title: Synergistic effects of bimetallic PtPd/TiO nanocatalysts in oxidation of glucose to glucaric acid: structure dependent activity and selectivity publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b04841 – volume: 56 start-page: 13175 year: 2017 end-page: 13189 ident: CR27 article-title: Aerobic oxidation of glucose to glucaric acid under alkaline-free conditions: Au-based bimetallic catalysts and the effect of residues in a hemicellulose hydrolysate publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b01571 – volume: 14 start-page: 969 year: 2002 end-page: 982 ident: CR44 article-title: Iron (III) oxides from thermal processes synthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications publication-title: Chem. Mater. doi: 10.1021/cm0111074 – volume: 9 start-page: 946 year: 2019 end-page: 950 ident: CR32 article-title: Effective use of renewable electricity for making renewable fuels and chemicals publication-title: ACS Catal. doi: 10.1021/acscatal.8b04143 – volume: 567 start-page: 175 year: 2004 end-page: 183 ident: CR58 article-title: Effect of metal ad-layers on Au (1 1 1) electrodes on electrocatalytic oxidation of glucose in an alkaline solution publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2003.12.022 – volume: 59 start-page: 9 year: 2018 end-page: 15 ident: CR13 article-title: Imaging of isoproterenol-induced myocardial injury with 18F labeled fluoroglucaric acid in a rat model publication-title: Nucl. Med. Biol. doi: 10.1016/j.nucmedbio.2017.12.006 – volume: 5 start-page: 2659 year: 2015 end-page: 2670 ident: CR29 article-title: Catalysis and reactivation of ordered mesoporous carbon-supported gold nanoparticles for the base-free oxidation of glucose to gluconic acid publication-title: ACS Catal. doi: 10.1021/cs502093b – volume: 9 start-page: 2797 year: 2017 end-page: 2806 ident: CR26 article-title: Oxidation of d-glucose to glucaric acid using Au/C catalysts publication-title: ChemCatChem doi: 10.1002/cctc.201700089 – volume: 9 start-page: 1255 year: 2007 end-page: 1262 ident: CR61 article-title: pH-responsive self-assembly of carboxyl-terminated hyperbranched polymers publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b615525c – volume: 113 start-page: 1499 year: 2013 end-page: 1597 ident: CR8 article-title: Hydroxymethylfurfural, a versatile platform chemical made from renewable resources publication-title: Chem. Rev. doi: 10.1021/cr300182k – volume: 1 start-page: 779 year: 1953 end-page: 783 ident: CR23 article-title: Sugar oxidation, saccharic and oxalic acids by the nitric acid oxidation of dextrose publication-title: J. Agric. Food Chem. doi: 10.1021/jf60012a005 – volume: 5 start-page: 6626 year: 2017 end-page: 6634 ident: CR63 article-title: Coproducing value-added chemicals and hydrogen with electrocatalytic glycerol oxidation technology: experimental and techno-economic investigations publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b00868 – ident: CR15 – volume: 18 start-page: 3815 year: 2016 end-page: 3822 ident: CR25 article-title: Pt catalysts for efficient aerobic oxidation of glucose to glucaric acid in water publication-title: Green Chem. doi: 10.1039/C6GC00460A – volume: 9 start-page: 5320 year: 2019 end-page: 5329 ident: CR51 article-title: Is thermodynamics a good descriptor for the activity? Re-investigation of dabatier’s principle by the free energy diagram in electrocatalysis publication-title: ACS Catal. doi: 10.1021/acscatal.9b00732 – volume: 311 start-page: 484 year: 2006 end-page: 489 ident: CR9 article-title: The path forward for biofuels and biomaterials publication-title: Science doi: 10.1126/science.1114736 – volume: 55 start-page: 3589 year: 2010 end-page: 3594 ident: CR42 article-title: Improved preparative electrochemical oxidation of d-glucose to d-glucaric acid publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2009.11.041 – volume: 57 start-page: 11460 year: 2018 end-page: 11464 ident: CR59 article-title: Electrocatalytic oxidation of 5-(Hydroxymethyl)furfural using high-durface-area nickel boride publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201806298 – volume: 118 start-page: 505 year: 2017 end-page: 613 ident: CR2 article-title: Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00395 – volume: 2 start-page: 538 year: 2016 end-page: 544 ident: CR37 article-title: Electrochemical partial reforming of ethanol into ethyl acetate using ultrathin Co O nanosheets as a highly selective anode catalyst publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.6b00164 – volume: 9 start-page: 1803358 year: 2019 ident: CR50 article-title: 2D layered double hydroxides for oxygen evolution reaction: from fundamental design to application publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803358 – volume: 114 start-page: 1827 year: 2014 end-page: 1870 ident: CR1 article-title: Conversion of biomass into chemicals over metal catalysts publication-title: Chem. Rev. doi: 10.1021/cr4002269 – volume: 41 start-page: 260 year: 2003 end-page: 264 ident: CR60 article-title: 1H and 13C NMR signal assignments of carboxyl-linked glucosides of bile acids publication-title: Magn. Reson. Chem. doi: 10.1002/mrc.1173 – ident: CR18 – volume: 140 start-page: 3876 year: 2018 end-page: 3879 ident: CR53 article-title: Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00752 – volume: 46 start-page: 427 year: 1954 end-page: 434 ident: CR24 article-title: Pilot plant potassium acid saccharate by nitric acid oxidation of dextrose publication-title: Ind. Eng. Chem. doi: 10.1021/ie50531a019 – volume: 329 start-page: 522 year: 2010 end-page: 523 ident: CR6 article-title: Connecting biomass and petroleum processing with a chemical bridge publication-title: Science doi: 10.1126/science.1191662 – volume: 28 start-page: 6934 year: 2016 end-page: 6941 ident: CR62 article-title: Iron–nickel nitride nanostructures in situ grown on surface-redox-etching nickel foam: efficient and ultrasustainable electrocatalysts for overall water splitting publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b02610 – volume: 110 start-page: 3552 year: 2010 end-page: 3599 ident: CR4 article-title: The catalytic valorization of lignin for the production of renewable chemicals publication-title: Chem. Rev. doi: 10.1021/cr900354u – volume: 43 start-page: 9242 year: 2014 end-page: 9254 ident: CR10 article-title: Redox and complexation chemistry of the Cr VI/Cr V-d-glucaric acid system publication-title: Dalton Trans. doi: 10.1039/c4dt00717d – volume: 20 start-page: 1265 year: 2016 end-page: 1275 ident: CR16 article-title: Influence of residues contained in softwood hemicellulose hydrolysates on the catalytic oxidation of glucose to glucarate in alkaline aqueous solution publication-title: Org. Process Res. Dev. doi: 10.1021/acs.oprd.6b00095 – volume: 55 start-page: 5561 year: 2010 end-page: 5568 ident: CR35 article-title: Mechanism of glucose electrochemical oxidation on gold surface publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.04.069 – volume: 75 start-page: 589 year: 2009 end-page: 595 ident: CR19 article-title: Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00973-08 – volume: 330 start-page: 323 year: 2015 end-page: 329 ident: CR30 article-title: Exceptional performance of bimetallic Pt1Cu /TiO nanocatalysts for oxidation of gluconic acid and glucose with O2 to glucaric acid publication-title: J. Catal. doi: 10.1016/j.jcat.2015.05.018 – volume: 86 start-page: 7530 year: 2014 end-page: 7535 ident: CR33 article-title: Schäfer-Eberwein, H. & Nöll, G. Determination of the pH dependent redox potential of glucose oxidase by spectroelectrochemistry publication-title: Anal. Chem. doi: 10.1021/ac501289x – volume: 30 start-page: 1800757 year: 2018 ident: CR54 article-title: NiFe (Oxy) Hydroxides derived from NiFe disulfides as an efficient oxygen evolution catalyst for rechargeable Zn–Air batteries: the effect of surface S residues publication-title: Adv. Mater. doi: 10.1002/adma.201800757 – volume: 17 start-page: 2334 year: 2006 ident: CR36 article-title: Pt–Pb alloy nanoparticle/carbon nanotube nanocomposite: a strong electrocatalyst for glucose oxidation publication-title: Nanotechnology doi: 10.1088/0957-4484/17/9/043 – volume: 8 start-page: 5533 year: 2018 end-page: 5541 ident: CR40 article-title: Electrochemical oxidation of 5-hydroxymethylfurfural with NiFe layered double hydroxide (LDH) nanosheet Catalysts publication-title: ACS Catal. doi: 10.1021/acscatal.8b01017 – volume: 119 start-page: 855 year: 1994 end-page: 861 ident: CR56 article-title: Glucose oxidation at ruthenium dioxide based electrodes publication-title: Analyst doi: 10.1039/an9941900855 – volume: 10 start-page: 1820 year: 2017 end-page: 1827 ident: CR52 article-title: Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01571B – volume: 2 start-page: 1937 year: 2017 end-page: 1938 ident: CR49 article-title: Are Metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00679 – volume: 47 start-page: 1351 year: 2018 end-page: 1390 ident: CR7 article-title: Catalytic oxidation of carbohydrates into organic acids and furan chemicals publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00213K – ident: CR17 – volume: 16 start-page: 7604 year: 2016 end-page: 7609 ident: CR55 article-title: Highly efficient hydrogen evolution from edge-oriented WS Se particles on three-dimensional porous NiSe foam publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03467 – volume: 35 start-page: 1324 year: 2006 end-page: 1340 ident: CR48 article-title: Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes publication-title: Chem. Soc. Rev. doi: 10.1039/B517632H – volume: 36 start-page: 1564 year: 2004 end-page: 1574 ident: CR45 article-title: Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds publication-title: Surf. Interf. Anal. doi: 10.1002/sia.1984 – volume: 43 start-page: 57 year: 2010 end-page: 64 ident: CR57 article-title: Alkaline glucose oxidation on nanostructured gold electrodes publication-title: Gold. Bull. doi: 10.1007/BF03214967 – volume: 4 start-page: 20 year: 2015 end-page: 28 ident: CR12 article-title: Attenuation of microvascular injury in preconditioned ischemic myocardium: imaging with Tc-99m glucaric acid and In-111 human fibrinogen publication-title: Curr. Mol. Imag. doi: 10.2174/2211555204666150402230538 – ident: CR34 – volume: 15 start-page: 2434 year: 2013 end-page: 2440 ident: CR47 article-title: Hydrogen production from solar driven glucose oxidation over Ni (OH) functionalized electroreduced-TiO nanowire arrays publication-title: Green Chem. doi: 10.1039/c3gc40973b – volume: 11 start-page: 1890 year: 2018 end-page: 1897 ident: CR38 article-title: Ni-Mo-O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00521D – volume: 43 start-page: 7594 year: 2014 end-page: 7623 ident: CR3 article-title: Catalytic fast pyrolysis of lignocellulosic biomass publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60414D – volume: 16 start-page: 9 year: 2003 end-page: 16 ident: CR14 article-title: Calcium glucarate prevents tumor formation in mouse skin publication-title: Biomed. Environ. Sci. – volume: 30 start-page: 4321 year: 2018 end-page: 4330 ident: CR43 article-title: Direct synthesis and anion exchange of noncarbonate-intercalated NiFe-layered double hydroxides and the influence on electrocatalysis publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b01334 – volume: 12 start-page: 298 year: 2010 end-page: 305 ident: CR20 article-title: Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered publication-title: Metab. Eng. doi: 10.1016/j.ymben.2010.01.003 – volume: 5 start-page: 6116 year: 2017 end-page: 6123 ident: CR31 article-title: Gluconic acid production from potato waste by gluconobacter oxidans using sequential hydrolysis and fermentation publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b00992 – volume: 130 start-page: 170 year: 2014 end-page: 178 ident: CR41 article-title: Controllable oxidation of glucose to gluconic acid and glucaric acid using an electrocatalytic reactor publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.02.128 – volume: 27 start-page: 1704169 year: 2017 ident: CR39 article-title: Hierarchical porous NC@CuCo nitride nanosheet networks: Highly efficient bifunctional electrocatalyst for overall water splitting and selective electrooxidation of benzyl alcohol publication-title: Adv. Func. Mater. doi: 10.1002/adfm.201704169 – volume: 106 start-page: 4044 year: 2006 end-page: 4098 ident: CR5 article-title: Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering publication-title: Chem. Rev. doi: 10.1021/cr068360d – volume: 36 start-page: 904 year: 2016 end-page: 916 ident: CR11 article-title: Production and applications of carbohydrate-derived sugar acids as generic biobased chemicals publication-title: Crit. Rev. Biotechnol. doi: 10.3109/07388551.2015.1060189 – volume: 43 start-page: 7594 year: 2014 ident: 14157_CR3 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60414D – volume: 9 start-page: 5320 year: 2019 ident: 14157_CR51 publication-title: ACS Catal. doi: 10.1021/acscatal.9b00732 – volume: 43 start-page: 57 year: 2010 ident: 14157_CR57 publication-title: Gold. Bull. doi: 10.1007/BF03214967 – volume: 16 start-page: 9 year: 2003 ident: 14157_CR14 publication-title: Biomed. Environ. Sci. – volume: 57 start-page: 11460 year: 2018 ident: 14157_CR59 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201806298 – volume: 254 start-page: 2441 year: 2008 ident: 14157_CR46 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2007.09.063 – volume: 10 start-page: 1820 year: 2017 ident: 14157_CR52 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01571B – ident: 14157_CR17 – volume: 91 start-page: 8 year: 2016 ident: 14157_CR21 publication-title: Enzym. Microb. Technol. doi: 10.1016/j.enzmictec.2016.05.009 – volume: 2 start-page: 1937 year: 2017 ident: 14157_CR49 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00679 – volume: 14 start-page: 969 year: 2002 ident: 14157_CR44 publication-title: Chem. Mater. doi: 10.1021/cm0111074 – volume: 27 start-page: 1704169 year: 2017 ident: 14157_CR39 publication-title: Adv. Func. Mater. doi: 10.1002/adfm.201704169 – volume: 47 start-page: 1351 year: 2018 ident: 14157_CR7 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00213K – volume: 329 start-page: 522 year: 2010 ident: 14157_CR6 publication-title: Science doi: 10.1126/science.1191662 – ident: 14157_CR22 doi: 10.1016/j.fos.2015.11.013 – volume: 28 start-page: 6934 year: 2016 ident: 14157_CR62 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b02610 – volume: 2 start-page: 538 year: 2016 ident: 14157_CR37 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.6b00164 – volume: 1 start-page: 779 year: 1953 ident: 14157_CR23 publication-title: J. Agric. Food Chem. doi: 10.1021/jf60012a005 – volume: 35 start-page: 1324 year: 2006 ident: 14157_CR48 publication-title: Chem. Soc. Rev. doi: 10.1039/B517632H – volume: 12 start-page: 298 year: 2010 ident: 14157_CR20 publication-title: Metab. Eng. doi: 10.1016/j.ymben.2010.01.003 – volume: 5 start-page: 2659 year: 2015 ident: 14157_CR29 publication-title: ACS Catal. doi: 10.1021/cs502093b – volume: 330 start-page: 323 year: 2015 ident: 14157_CR30 publication-title: J. Catal. doi: 10.1016/j.jcat.2015.05.018 – volume: 130 start-page: 170 year: 2014 ident: 14157_CR41 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.02.128 – volume: 118 start-page: 505 year: 2017 ident: 14157_CR2 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00395 – volume: 43 start-page: 9242 year: 2014 ident: 14157_CR10 publication-title: Dalton Trans. doi: 10.1039/c4dt00717d – volume: 55 start-page: 5561 year: 2010 ident: 14157_CR35 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.04.069 – volume: 30 start-page: 1800757 year: 2018 ident: 14157_CR54 publication-title: Adv. Mater. doi: 10.1002/adma.201800757 – volume: 567 start-page: 175 year: 2004 ident: 14157_CR58 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2003.12.022 – volume: 30 start-page: 4321 year: 2018 ident: 14157_CR43 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b01334 – volume: 110 start-page: 3552 year: 2010 ident: 14157_CR4 publication-title: Chem. Rev. doi: 10.1021/cr900354u – volume: 9 start-page: 1255 year: 2007 ident: 14157_CR61 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b615525c – volume: 55 start-page: 2932 year: 2016 ident: 14157_CR28 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b04841 – volume: 59 start-page: 9 year: 2018 ident: 14157_CR13 publication-title: Nucl. Med. Biol. doi: 10.1016/j.nucmedbio.2017.12.006 – volume: 41 start-page: 260 year: 2003 ident: 14157_CR60 publication-title: Magn. Reson. Chem. doi: 10.1002/mrc.1173 – ident: 14157_CR15 – volume: 18 start-page: 3815 year: 2016 ident: 14157_CR25 publication-title: Green Chem. doi: 10.1039/C6GC00460A – volume: 46 start-page: 427 year: 1954 ident: 14157_CR24 publication-title: Ind. Eng. Chem. doi: 10.1021/ie50531a019 – volume: 4 start-page: 20 year: 2015 ident: 14157_CR12 publication-title: Curr. Mol. Imag. doi: 10.2174/2211555204666150402230538 – volume: 106 start-page: 4044 year: 2006 ident: 14157_CR5 publication-title: Chem. Rev. doi: 10.1021/cr068360d – volume: 9 start-page: 2797 year: 2017 ident: 14157_CR26 publication-title: ChemCatChem doi: 10.1002/cctc.201700089 – volume: 16 start-page: 7604 year: 2016 ident: 14157_CR55 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03467 – volume: 17 start-page: 2334 year: 2006 ident: 14157_CR36 publication-title: Nanotechnology doi: 10.1088/0957-4484/17/9/043 – volume: 8 start-page: 5533 year: 2018 ident: 14157_CR40 publication-title: ACS Catal. doi: 10.1021/acscatal.8b01017 – volume: 311 start-page: 484 year: 2006 ident: 14157_CR9 publication-title: Science doi: 10.1126/science.1114736 – volume: 36 start-page: 904 year: 2016 ident: 14157_CR11 publication-title: Crit. Rev. Biotechnol. doi: 10.3109/07388551.2015.1060189 – volume: 113 start-page: 1499 year: 2013 ident: 14157_CR8 publication-title: Chem. Rev. doi: 10.1021/cr300182k – volume: 140 start-page: 3876 year: 2018 ident: 14157_CR53 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00752 – volume: 114 start-page: 1827 year: 2014 ident: 14157_CR1 publication-title: Chem. Rev. doi: 10.1021/cr4002269 – volume: 9 start-page: 1803358 year: 2019 ident: 14157_CR50 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803358 – volume: 20 start-page: 1265 year: 2016 ident: 14157_CR16 publication-title: Org. Process Res. Dev. doi: 10.1021/acs.oprd.6b00095 – volume: 56 start-page: 13175 year: 2017 ident: 14157_CR27 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b01571 – volume: 86 start-page: 7530 year: 2014 ident: 14157_CR33 publication-title: Anal. Chem. doi: 10.1021/ac501289x – volume: 75 start-page: 589 year: 2009 ident: 14157_CR19 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00973-08 – ident: 14157_CR18 – volume: 5 start-page: 6116 year: 2017 ident: 14157_CR31 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b00992 – volume: 11 start-page: 1890 year: 2018 ident: 14157_CR38 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00521D – ident: 14157_CR34 doi: 10.1109/BioCAS.2014.6981763 – volume: 15 start-page: 2434 year: 2013 ident: 14157_CR47 publication-title: Green Chem. doi: 10.1039/c3gc40973b – volume: 36 start-page: 1564 year: 2004 ident: 14157_CR45 publication-title: Surf. Interf. Anal. doi: 10.1002/sia.1984 – volume: 55 start-page: 3589 year: 2010 ident: 14157_CR42 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2009.11.041 – volume: 5 start-page: 6626 year: 2017 ident: 14157_CR63 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b00868 – volume: 119 start-page: 855 year: 1994 ident: 14157_CR56 publication-title: Analyst doi: 10.1039/an9941900855 – volume: 9 start-page: 946 year: 2019 ident: 14157_CR32 publication-title: ACS Catal. doi: 10.1021/acscatal.8b04143 |
SSID | ssj0000391844 |
Score | 2.696894 |
Snippet | Glucose electrolysis offers a prospect of value-added glucaric acid synthesis and energy-saving hydrogen production from the biomass-based platform molecules.... Renewable biomass conversion may afford high-value products from common materials, but catalysts usually require expensive metals and exhibit poor... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 265 |
SubjectTerms | 140/146 140/58 147/135 147/143 639/301/299/886 639/638/224/909 639/638/675 Acids Anodizing Biomass Biomass energy production Catalysts Chemical reduction Chemical synthesis Economic analysis Economic models Electrocatalysts Electrochemistry Electrolysis Electrolytic cells Energy conservation Foams Glucaric acid Glucose Heavy metals Humanities and Social Sciences Hydrogen production Hydrogen-based energy Infrared analysis Infrared spectroscopy Intermetallic compounds Iron compounds Iron oxides multidisciplinary Nickel Nickel compounds Nickel ferrites Nitrides Organic chemistry Oxidation Science Science (multidisciplinary) Selectivity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KoNBLSNqGOI-iQm-NifWwLB-TkLAU2lMW9iYkWSILwRuSTSD_PiNZu1kH0l56M9bYlkYzmhlr9A3Aj0YIK1thStlaUYqurUojnC1DZ1TnjVCSxvPOv__IyVT8mtWzjVJfMSdsgAceGHeqWuZZWzkWHXvZebw0VceswlglMJmO-aLN2wim0hrMWwxdRD4lU3F1-iDSmoAeTUnRaKFmjSxRAuwfeZlvcyTfbJQm-3O1A9vZcSRnQ4d34YPvP8PHoZTk8xeYXiYsCHwNyZVtXIYCIHcDqCtOAFkEEnPUMT52xLh5R0zfkQkjT3NDcvL66vEEVfIVpleX1xeTMpdMKJ1oFS-dociaIA1y3QfhK15z7xuDXhWTTlkvrW0sOjme28Ct4bWxlirXGIk0TvE92OoXvd8HUlNnmJOch8YK6rq2rrwNTcAQRzBsKYCu2KddxhOPZS1uddrX5koPLNfIcp1YrnkBP9fP3A1oGn-lPo-zsqaMSNjpBsqHzvKh_yUfBRyt5lRn9XzQjMelSnBRF_B93YyKFXdLTO8Xj5EmQg9G96uAZiQLow6NW_r5TYLolhHvmTYFnKyk5vXj7w_44H8M-BA-sfhPoKIo6Eewtbx_9MfoOC3tt6QjL5yLE34 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96IvgifmL1lAi-abnmo0n6JCp3LII-ubBvIV_VBWn3bu8E_3tn0nSPHnhvpUnbdD6SmczkN4S801J61UlXq87LWsauqZ0Mvu6jMzE5aRTD887fvqvVWn7dtJuy4bYvaZXznJgn6jgG3CM_4QKlSwrZftyd11g1CqOrpYTGXXIPocswpUtv9GGPBdHPjZTlrEwjzMle5pkB7JqawdIF-rVYjzJs_8LWvJkpeSNcmlehs0fkYTEf6aeJ34_JnTQ8IfengpJ_n5L1aUaEgNfQUt8mFEAAupugXYENdOwpZqqDlxyoC9tI3RDpitM_W0dLCvv8eAYseUbWZ6c_vqzqUjihDrIzog6OcW965YD2qZepEa1ISTuwrbgKxiflvfZg6iThe-GdaJ33zATtFPQJRjwnR8M4pBeEtiw4HpQQvfaShdi1TfK97sHRkRxaKsJm8tlQUMWxuMVvm6PbwtiJ5BZIbjPJrajI-8MzuwlT49ben5Erh56Ih51vjBc_bVEvazqeeNcEju6figkuXROBCODR9lyZihzPPLVFSff2WqQq8vbQDOqFMRM3pPEK-yAAIRphFdELWVgMaNkybH9loG6FqM9MV-TDLDXXH___D7-8fayvyAOOPn_DQISPydHlxVV6DYbRpX-Tpf8fRr8MCQ priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEB_WFcGL-Il1V4ngTYtNMk3Toz52eQh68sHeQpIm-kD6lv0Q_O-dpOlbuqjgrTSTNp3MJDOdyW8A3nSITvVoa9U7rHHom9qid3UcrB6CRa14Ou_8-Ytab_DTWXt2AGI-C5OT9jOkZV6m5-yw95eYVZoMkprTnkOKcQfuJuj2JNUrtdr_V0mI5xqxnI9ppP5D18UelKH6F_bl7ezIWyHSvPOcPoQHxWRkH6ZBPoKDMD6Ge1MRyV9PYHOSUSDoMazUtPEFBICdT3CuxHq2iyxlp5Nn7Jn124HZcWBrwX5uLStp63P3DFLyFDanJ19X67oUS6g99lrW3nLhdFSW-B0ihka2MoTOkj0llNcuKOc6R-ZNkC5KZ2VrnePad1YRjdfyGRyOuzE8B9Zyb4VXUsbOIfdD3zbBxS6Sc4OCWirgM_uML0jiqaDFD5Mj2lKbieWGWG4yy42s4O2-z_mEo_FP6o9pVvaUCQM739hdfDNFJozuRRB940Vy-dQQ6NI2AzGBvNgolK7geJ5TUxTz0giZFimU2Fbwet9MKpXiJHYMu-tEk0AHk-FVQbeQhcWAli3j9nsG51YJ6Zl3Fbybpebm5X__4Bf_R34E90Xy-xtOIn0Mh1cX1-ElGUdX7lXWht_WQgnZ priority: 102 providerName: Springer Nature |
Title | Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis |
URI | https://link.springer.com/article/10.1038/s41467-019-14157-3 https://www.proquest.com/docview/2342574345 https://www.proquest.com/docview/2338990283 https://pubmed.ncbi.nlm.nih.gov/PMC6959317 https://doaj.org/article/892e290c271646de90ca0d2b8210f268 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_uA8EX8ROr5xLBN622SZqkDyJ7y67Lwh2iLuxbSdJUF47uuXcn3n_vJE1XepyCL23JV9vJTGYmH78BeCU5N6LkOhWl4SmvyyzV3Jq0qbWqneZK5P6888mpmC_5YlWs9qAPdxQJeHGra-fjSS23Z29__bj-gAL_vjsyrt5d8CDuaKykOeojFJp9OETNJL2gnkRzP4zMrESHxi8004znKepuFs_R3N7MQFcFSP-BHXpzF-WNpdSgoWb34V40Lcm444UHsOfah3CnCzZ5_QiW04AWgc2QGPvGRrAAct7BvmIXkU1D_C529KAt0XZdE93WZE7Jz7UmcXt7Xz2AmTyG5Wz6dTJPY1CF1PJSsdTqnBrVCI394hruMlYw56RGu4sKq4wTxkiDZpBjpmFGs0IbkysrtcAyVrEncNBuWvcUSJFbTa1grJGG57Yui8yZRjboBHGKOQnkPfkqGxHHfeCLsyqsfDNVdSSvkORVIHnFEni9q3Pe4W38s_Sx75VdSY-VHRI2229VFL1KldTRMrPUu4aidviosxqJgN5uQ4VK4Kjv06rnv4oyP5hxxosEXu6yUfT8eopu3ebKl_HghN5AS0AOeGHwQcOcdv09gHgLjwidywTe9Fzz5-V__-Fn_0We53CX-umBDHmdH8HB5fbKvUAb6tKMYF-uJF7V7OMIDsfjxZcF3o-np58-Y-pETEZhdmIUBOg3D5Ubng |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMEWjASnCBqYju2c6gqHq229HHqSnsztuPASihZui2of4rf2LGTbJVK9NZbFD_izMOescffALyTnFtRcpOK0vKUV2WWGu5sWldGVd5wJfJw3_noWEym_NusmK3Bv-EuTAirHObEOFFXrQt75FuUBenijBc7i99pyBoVTleHFBqdWBz4i7_osi23978if99Turd78mWS9lkFUsdLxVJncmpVLQwOzNfcZ6xg3kuDhgcVTlkvrJUW7QDPbM2sYYWxNldOGoF1nGLY7x24iwtvFjRKzuRqTyegrSvO-7s5GVNbSx5nIrSj0hyXStTn0foX0wSMbNvrkZnXjmfjqrf3CB725ir51MnXY1jzzRO41yWwvHgK092IQIHdkD6fjusBCMiig5JFtpO2JiEyHr1yR4ybV8Q0FZlQ8mduSB8yPzSPACnPYHorJH0O603b-BdAitwZ6gRjtbQ8d1VZZN7WskbHilMsSSAfyKddj2Iekmn80vE0nSndkVwjyXUkuWYJfFi1WXQYHjfW_hy4sqoZ8Lfji_b0h-7VWauSelpmjgZ3U1QeH01WIRHQg66pUAlsDDzV_aSw1FcinMDbVTGqczijMY1vz0OdAHgYjL4E5EgWRgMalzTznxEYXASU6Vwm8HGQmquP__-HX9481jdwf3JydKgP948PXsEDGvYbshzFeQPWz07P_SYaZWf2ddQEAt9vW_UuAanLSjI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIhAXxK8aKGAkOEG0ie3YzgEhoF1tKVQcWGlvxnYcWAklS7cF9dV4OsZOslUq0VtvUTx2nPGMPWOPvwF4ITm3ouQmFaXlKa_KLDXc2bSujKq84Urk4b7z5yMxm_OPi2KxBX-HuzAhrHKYE-NEXbUu7JFPKAvSxRkvJnUfFvFlb_p29SsNGaTCSeuQTqMTkUN_9gfdt_Wbgz0c65eUTve_fpilfYaB1PFSsdSZnFpVC4Od9DX3GSuY99KgEUKFU9YLa6VFm8AzWzNrWGGszZWTRiCNUwzbvQbXJSvyoGNyITf7OwF5XXHe39PJmJqseZyV0KZKc1w2UbdHa2FMGTCycy9GaV44qo0r4PQO3O5NV_Kuk7W7sOWbe3CjS2Z5dh_m-xGNApshfW4d14MRkFUHK4siQNqahCh59NAdMW5ZEdNUZEbJ76Uhffj8UD2CpTyA-ZWw9CFsN23jd4AUuTPUCcZqaXnuqrLIvK1ljU4Wp1iSQD6wT7se0Twk1vip48k6U7pjuUaW68hyzRJ4tamz6vA8LqV-H0ZlQxmwuOOL9vi77lVbq5J6WmaOBtdTVB4fTVYhE9CbrqlQCewOY6r7CWKtz8U5geebYlTtcF5jGt-eBpoAfhgMwATkSBZGHRqXNMsfESRcBMTpXCbwepCa84___4cfXd7XZ3ATlU5_Ojg6fAy3aNh6yHKU5l3YPjk-9U_QPjuxT6MiEPh21Zr3D_yITmg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+electrochemical+production+of+glucaric+acid+and+H2+via+glucose+electrolysis&rft.jtitle=Nature+communications&rft.au=Liu%2C+Wu-Jun&rft.au=Xu%2C+Zhuoran&rft.au=Zhao%2C+Dongting&rft.au=Pan%2C+Xiao-Qiang&rft.date=2020-01-14&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-019-14157-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_019_14157_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |