Adenosine enhances acetylcholine receptor channel openings and intracellular calcium 'spiking' in mouse skeletal myotubes
Aims The autocrine activity of the embryonic isoform of the nicotinic acetylcholine receptor is crucial for the correct differentiation and trophism of skeletal muscle cells before innervation. The functional activity of extracellular adenosine and adenosine receptor subtypes expressed in differenti...
Saved in:
Published in | Acta Physiologica Vol. 214; no. 4; pp. 467 - 480 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.08.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aims
The autocrine activity of the embryonic isoform of the nicotinic acetylcholine receptor is crucial for the correct differentiation and trophism of skeletal muscle cells before innervation. The functional activity of extracellular adenosine and adenosine receptor subtypes expressed in differentiating myotubes is still unknown. In this study, we performed a detailed analysis of the role of adenosine receptor‐mediated effects on the autocrine‐mediated nicotinic acetylcholine receptor channel openings and the associated spontaneous intracellular calcium ‘spikes’ generated in differentiating mouse myotubes in vitro.
Methods
Cell‐attached patch‐clamp recordings and intracellular calcium imaging experiments were performed in contracting myotubes derived from mouse satellite cells.
Results
The endogenous extracellular adenosine and the adenosine receptor‐mediated activity modulated the properties of the embryonic isoform of the nicotinic acetylcholine receptor in myotubes in vitro, by increasing the mean open time and the open probability of the ion channel, and sustaining nicotinic acetylcholine receptor‐driven intracellular [Ca2+]i ‘spikes’. The pharmacological characterization of the adenosine receptor‐mediated effects suggested a prevalent involvement of the A2B adenosine receptor subtype.
Conclusion
We propose that the interplay between endogenous adenosine and nicotinic acetylcholine receptors represents a potential novel strategy to improve differentiation/regeneration of skeletal muscle. |
---|---|
AbstractList | AIMSThe autocrine activity of the embryonic isoform of the nicotinic acetylcholine receptor is crucial for the correct differentiation and trophism of skeletal muscle cells before innervation. The functional activity of extracellular adenosine and adenosine receptor subtypes expressed in differentiating myotubes is still unknown. In this study, we performed a detailed analysis of the role of adenosine receptor-mediated effects on the autocrine-mediated nicotinic acetylcholine receptor channel openings and the associated spontaneous intracellular calcium 'spikes' generated in differentiating mouse myotubes in vitro.METHODSCell-attached patch-clamp recordings and intracellular calcium imaging experiments were performed in contracting myotubes derived from mouse satellite cells.RESULTSThe endogenous extracellular adenosine and the adenosine receptor-mediated activity modulated the properties of the embryonic isoform of the nicotinic acetylcholine receptor in myotubes in vitro, by increasing the mean open time and the open probability of the ion channel, and sustaining nicotinic acetylcholine receptor-driven intracellular [Ca(2+) ]i 'spikes'. The pharmacological characterization of the adenosine receptor-mediated effects suggested a prevalent involvement of the A2B adenosine receptor subtype.CONCLUSIONWe propose that the interplay between endogenous adenosine and nicotinic acetylcholine receptors represents a potential novel strategy to improve differentiation/regeneration of skeletal muscle. Aims The autocrine activity of the embryonic isoform of the nicotinic acetylcholine receptor is crucial for the correct differentiation and trophism of skeletal muscle cells before innervation. The functional activity of extracellular adenosine and adenosine receptor subtypes expressed in differentiating myotubes is still unknown. In this study, we performed a detailed analysis of the role of adenosine receptor‐mediated effects on the autocrine‐mediated nicotinic acetylcholine receptor channel openings and the associated spontaneous intracellular calcium ‘spikes’ generated in differentiating mouse myotubes in vitro. Methods Cell‐attached patch‐clamp recordings and intracellular calcium imaging experiments were performed in contracting myotubes derived from mouse satellite cells. Results The endogenous extracellular adenosine and the adenosine receptor‐mediated activity modulated the properties of the embryonic isoform of the nicotinic acetylcholine receptor in myotubes in vitro, by increasing the mean open time and the open probability of the ion channel, and sustaining nicotinic acetylcholine receptor‐driven intracellular [Ca2+]i ‘spikes’. The pharmacological characterization of the adenosine receptor‐mediated effects suggested a prevalent involvement of the A2B adenosine receptor subtype. Conclusion We propose that the interplay between endogenous adenosine and nicotinic acetylcholine receptors represents a potential novel strategy to improve differentiation/regeneration of skeletal muscle. Aims The autocrine activity of the embryonic isoform of the nicotinic acetylcholine receptor is crucial for the correct differentiation and trophism of skeletal muscle cells before innervation. The functional activity of extracellular adenosine and adenosine receptor subtypes expressed in differentiating myotubes is still unknown. In this study, we performed a detailed analysis of the role of adenosine receptor-mediated effects on the autocrine-mediated nicotinic acetylcholine receptor channel openings and the associated spontaneous intracellular calcium 'spikes' generated in differentiating mouse myotubes in vitro. Methods Cell-attached patch-clamp recordings and intracellular calcium imaging experiments were performed in contracting myotubes derived from mouse satellite cells. Results The endogenous extracellular adenosine and the adenosine receptor-mediated activity modulated the properties of the embryonic isoform of the nicotinic acetylcholine receptor in myotubes in vitro, by increasing the mean open time and the open probability of the ion channel, and sustaining nicotinic acetylcholine receptor-driven intracellular [Ca2+]i 'spikes'. The pharmacological characterization of the adenosine receptor-mediated effects suggested a prevalent involvement of the A2B adenosine receptor subtype. Conclusion We propose that the interplay between endogenous adenosine and nicotinic acetylcholine receptors represents a potential novel strategy to improve differentiation/regeneration of skeletal muscle. Aims The autocrine activity of the embryonic isoform of the nicotinic acetylcholine receptor is crucial for the correct differentiation and trophism of skeletal muscle cells before innervation. The functional activity of extracellular adenosine and adenosine receptor subtypes expressed in differentiating myotubes is still unknown. In this study, we performed a detailed analysis of the role of adenosine receptor-mediated effects on the autocrine-mediated nicotinic acetylcholine receptor channel openings and the associated spontaneous intracellular calcium 'spikes' generated in differentiating mouse myotubes in vitro. Methods Cell-attached patch-clamp recordings and intracellular calcium imaging experiments were performed in contracting myotubes derived from mouse satellite cells. Results The endogenous extracellular adenosine and the adenosine receptor-mediated activity modulated the properties of the embryonic isoform of the nicotinic acetylcholine receptor in myotubes in vitro, by increasing the mean open time and the open probability of the ion channel, and sustaining nicotinic acetylcholine receptor-driven intracellular [Ca super(2+)] sub(i) 'spikes'. The pharmacological characterization of the adenosine receptor-mediated effects suggested a prevalent involvement of the A sub(2B) adenosine receptor subtype. Conclusion We propose that the interplay between endogenous adenosine and nicotinic acetylcholine receptors represents a potential novel strategy to improve differentiation/regeneration of skeletal muscle. The autocrine activity of the embryonic isoform of the nicotinic acetylcholine receptor is crucial for the correct differentiation and trophism of skeletal muscle cells before innervation. The functional activity of extracellular adenosine and adenosine receptor subtypes expressed in differentiating myotubes is still unknown. In this study, we performed a detailed analysis of the role of adenosine receptor-mediated effects on the autocrine-mediated nicotinic acetylcholine receptor channel openings and the associated spontaneous intracellular calcium 'spikes' generated in differentiating mouse myotubes in vitro. Cell-attached patch-clamp recordings and intracellular calcium imaging experiments were performed in contracting myotubes derived from mouse satellite cells. The endogenous extracellular adenosine and the adenosine receptor-mediated activity modulated the properties of the embryonic isoform of the nicotinic acetylcholine receptor in myotubes in vitro, by increasing the mean open time and the open probability of the ion channel, and sustaining nicotinic acetylcholine receptor-driven intracellular [Ca(2+) ]i 'spikes'. The pharmacological characterization of the adenosine receptor-mediated effects suggested a prevalent involvement of the A2B adenosine receptor subtype. We propose that the interplay between endogenous adenosine and nicotinic acetylcholine receptors represents a potential novel strategy to improve differentiation/regeneration of skeletal muscle. |
Author | Bernareggi, A. Parato, G. Lorenzon, P. Luin, E. Urbani, R. Pavan, B. Sciancalepore, M. |
Author_xml | – sequence: 1 givenname: A. surname: Bernareggi fullname: Bernareggi, A. email: abernareggi@units.it organization: Department of Life Sciences, University of Trieste, via A. Fleming 22, I-34127, Trieste, Italy – sequence: 2 givenname: E. surname: Luin fullname: Luin, E. organization: Department of Life Sciences, University of Trieste, via A. Fleming 22, I-34127, Trieste, Italy – sequence: 3 givenname: B. surname: Pavan fullname: Pavan, B. organization: Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, I-44121, Ferrara, Italy – sequence: 4 givenname: G. surname: Parato fullname: Parato, G. organization: Department of Life Sciences, University of Trieste, via A. Fleming 22, I-34127, Trieste, Italy – sequence: 5 givenname: M. surname: Sciancalepore fullname: Sciancalepore, M. organization: Department of Life Sciences, University of Trieste, via A. Fleming 22, I-34127, Trieste, Italy – sequence: 6 givenname: R. surname: Urbani fullname: Urbani, R. organization: Department of Life Sciences, University of Trieste, via A. Fleming 22, I-34127, Trieste, Italy – sequence: 7 givenname: P. surname: Lorenzon fullname: Lorenzon, P. organization: Department of Life Sciences, University of Trieste, via A. Fleming 22, I-34127, Trieste, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25683861$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c1u1DAQAGALFdFSeuEBUCQORUgp_otjH1cV20ValUqAOFqOM8um69ipnQjy9njZdg8cwBdbnm9GY89LdOKDB4ReE3xF8vpghq25IpTX7Bk6IzWXJamJODmesTxFFyndY4wJJYxT-gKd0kpIJgU5Q_OiBR9S56EAvzXeQiqMhXF2dhvc_jqChWEMsbA57MEVYQDf-R_Z-bbo_Bizd25yJhPjbDf1xWUaul02lzle9GFKUKQdOBiNK_o5jFMD6RV6vjEuwcXjfo6-LT9-vV6V6883n64X69JyJVlpGmMYrZViLVMtNs0GGgvGSlVzDpUUFluoTE2MFYQDbRvOK44ll6YRbbNh5-jdoe4Qw8MEadR9l_YdGw-5M52_iHApKsH-T4WqKVYKy0zf_kXvwxR9fsheCUwVrVRW7w_KxpBShI0eYtebOGuC9X58ej8-_Wd8Gb95LDk1PbRH-jSsDMgB_OwczP8opRd3q8VT0fKQ06URfh1zTNxpUbO60t9vb7RcfrlbL9mtXrHfpxe3gQ |
CitedBy_id | crossref_primary_10_1111_apha_12542 crossref_primary_10_3390_ijms21145070 crossref_primary_10_1016_j_ceca_2016_01_006 crossref_primary_10_3390_biology12070968 crossref_primary_10_1016_j_neuroscience_2019_05_020 crossref_primary_10_1016_j_neuroscience_2018_04_044 |
Cites_doi | 10.1038/363076a0 10.1016/j.neuroscience.2013.05.065 10.1002/mus.23284 10.1016/j.ejphar.2013.10.009 10.1074/jbc.M708657200 10.1083/jcb.106.5.1693 10.1016/S0079-6123(08)62107-X 10.1111/j.1469-7793.1999.255ad.x 10.1152/ajpheart.00082.2010 10.1097/00000542-199003000-00018 10.1113/jphysiol.2012.240762 10.1007/BF00167456 10.1016/0304-3940(92)90556-M 10.1016/S0006-291X(03)01125-2 10.1038/sj.bjp.0701881 10.1016/S1566-0702(00)00277-0 10.1007/s00109-013-1101-6 10.1113/jphysiol.1988.sp017327 10.1113/jphysiol.1995.sp021092 10.1046/j.1365-201x.2000.00742.x 10.1113/jphysiol.2005.091439 10.1523/JNEUROSCI.12-11-04540.1992 10.1002/jnr.21742 10.1007/s11010-011-0726-4 10.1073/pnas.88.22.10213 10.1073/pnas.90.23.10909 10.1111/j.1469-7793.1999.0761p.x 10.1111/j.1749-6632.1990.tb37685.x 10.1083/jcb.106.5.1703 10.1113/jphysiol.1995.sp021091 10.1111/joa.12188 10.1111/j.1469-7793.2001.00597.x 10.1113/jphysiol.1991.sp018388 10.2174/157015909789152128 10.1006/excr.2002.5562 10.1242/dev.038711 10.1111/bph.12262 10.1111/j.1469-7793.1997.695bd.x 10.1016/j.bbamem.2005.12.001 10.1002/mus.22001 10.1038/sj.bjp.0707648 10.1016/j.ejphar.2006.02.046 10.1124/jpet.111.181792 10.1113/jphysiol.1972.sp009916 10.1038/335066a0 10.1111/j.1748-1716.2010.02115.x 10.1113/jphysiol.1996.sp021348 10.1016/j.brainresrev.2004.06.003 10.1016/j.jchromb.2012.02.005 10.1074/jbc.M109.057315 10.1046/j.1471-4159.2003.02220.x 10.1523/JNEUROSCI.08-09-03405.1988 10.1021/jm990421v 10.1113/jphysiol.1997.sp022057 10.1124/pr.110.003285 10.1113/jphysiol.1988.sp016962 10.1385/JMN:30:1:205 10.1016/j.bbrc.2006.09.015 10.1016/j.freeradbiomed.2012.08.002 10.1152/japplphysiol.00185.2003 10.1113/jphysiol.2011.207282 10.1007/s11302-012-9321-8 |
ContentType | Journal Article |
Copyright | 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd. Copyright © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd |
Copyright_xml | – notice: 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd – notice: 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd. – notice: Copyright © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TK 7TS 7X8 |
DOI | 10.1111/apha.12473 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Neurosciences Abstracts Physical Education Index MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Neurosciences Abstracts Physical Education Index MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Neurosciences Abstracts Neurosciences Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1748-1716 |
EndPage | 480 |
ExternalDocumentID | 3742472921 10_1111_apha_12473 25683861 APHA12473 ark_67375_WNG_8FSPLF3N_H |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: University of Trieste funderid: FRA2013 – fundername: Fondazione Beneficentia Stiftung (Liechtenstein) – fundername: Fondazione Benefica Kathleen Foreman‐Casali (Italy) |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OC 23M 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGOF ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DXH EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC G-S GODZA HF~ HGLYW HVGLF HZI HZ~ IHE IX1 K48 KBYEO L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A O66 O9- OHT OIG OVD P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WXI WXSBR WYISQ XG1 ~IA ~KM ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TK 7TS 7X8 |
ID | FETCH-LOGICAL-c4983-abaa327993d39d0abfebceac89744e586c0ce5a71ac614e2db44540848ab6dbf3 |
IEDL.DBID | DR2 |
ISSN | 1748-1708 |
IngestDate | Fri Aug 16 22:20:22 EDT 2024 Fri Aug 16 05:47:31 EDT 2024 Thu Oct 10 17:41:21 EDT 2024 Fri Aug 23 02:55:45 EDT 2024 Sat Sep 28 08:03:52 EDT 2024 Sat Aug 24 01:17:35 EDT 2024 Wed Oct 30 09:55:34 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | adenosine acetylcholine receptor myotubes patch clamp skeletal muscle |
Language | English |
License | 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4983-abaa327993d39d0abfebceac89744e586c0ce5a71ac614e2db44540848ab6dbf3 |
Notes | istex:56BC8430BFF5C34547B785929AE6047F42DAE0C1 Fondazione Benefica Kathleen Foreman-Casali (Italy) ark:/67375/WNG-8FSPLF3N-H Figure S1. Effect of specific P1-receptor agonists on the mean open time and open probability (Po) of autocrine ACh channels observed in cells pre-incubated with ADA (5 U mL-1, 60 min, at RT). In ADA, the values were 3.95 ± 0.65 ms (n = 20) and 0.0054 ± 0.0018 (n = 24) respectively. In the presence of ADA + CPA (10 nM, at least 30 minutes at RT), a specific agonist for the A1 receptor subtype, no significant effects were observed on the mean open time (6.67 ± 1.72 ms) and Po (0.0045 ± 0.0019, n = 5). Similar results were found in cells pretreated with ADA + the A2AR agonist CGS 21680 (100 nM, at least 30 minutes at RT) or ADA + the A3R agonist AB-MECA (10 nM, at least 30 minutes at RT). In the first case, the mean open time was 5.82 ± 0.84 ms and the Po 0.009 ± 0.0035 (n = 5); in the latter case, the values were 5.84 ± 0.26 (n = 9) and 0.0025 ± 0.0009 (n = 10). Fondazione Beneficentia Stiftung (Liechtenstein) University of Trieste - No. FRA2013 ArticleID:APHA12473 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25683861 |
PQID | 1696029259 |
PQPubID | 1036382 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1701486563 proquest_miscellaneous_1697209908 proquest_journals_1696029259 crossref_primary_10_1111_apha_12473 pubmed_primary_25683861 wiley_primary_10_1111_apha_12473_APHA12473 istex_primary_ark_67375_WNG_8FSPLF3N_H |
PublicationCentury | 2000 |
PublicationDate | August 2015 |
PublicationDateYYYYMMDD | 2015-08-01 |
PublicationDate_xml | – month: 08 year: 2015 text: August 2015 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Stockholm |
PublicationTitle | Acta Physiologica |
PublicationTitleAlternate | Acta Physiol |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Sciancalepore, M., Luin, E., Parato, G., Ren, E., Giniatullin, R., Fabbretti, E. & Lorenzon, P. 2012. Reactive oxygen species contribute to the promotion of the ATP-mediated proliferation of mouse skeletal myoblasts. Free Radic Biol Med 53, 1392-1398. Wu, H., Xiong, W.C. & Mei, L. 2010. To build a synapse: signaling pathways in neuromuscular junction assembly. Development 137, 1017-1033. Buvinic, S., Almarza, G., Bustamante, M., Casas, M., López, J., Riquelme, M., Sáez, J.C., Huidobro-Toro, J.P. & Jaimovich, E. 2009. ATP released by electrical stimuli elicits calcium transients and gene expression in skeletal muscle. J Biol Chem 284, 34490-34505. Pavan, B., Frigato, E., Pozzati, S., Prasad, P.D., Bertolucci, C. & Biondi, C. 2006. Circadian clocks regulate adenylyl cyclase activity rhythms in human RPE cells. Biochem Biophys Res Commun 35, 169-173. Smith, D.O. 1991. Sources of adenosine released during neuromuscular transmission in the rat. J Physiol 432, 343-354. Entwistle, A., Zalin, R.J., Warner, A.E. & Bevan, S. 1988b. A role for acetylcholine receptors in the fusion of chick myoblasts. J Cell Biol 106, 1703-1712. Bernareggi, A., Luin, E., Formaggio, E., Fumagalli, G. & Lorenzon, P. 2012. Novel role for prepatterned nicotinic acetylcholine receptors during myogenesis. Muscle Nerve 46, 112-121. Irintchev, A., Langer, M., Zweyer, M., Theisen, R. & Wernig, A. 1997. Functional improvement of damaged adult mouse muscle by implantation of primary myoblasts. J Physiol 500, 775-785. Lynge, J. & Hellsten, Y. 2000. Distribution of adenosine A1, A2A and A2B receptors in human skeletal muscle. Acta Physiol Scand 169, 283-290. Olah, M.E., Gallo-Rodriguez, C., Jacobson, K.A. & Stiles, G.L. 1994. 125I-4-aminobenzyl-5'-N-methylcarboxamidoadenosine, a high affinity radioligand for the rat A3 adenosine receptor. Mol Pharmacol 45, 978-982. Ferrer-Montiel, A.V., Montal, M.S., Díaz-Muñoz, M. & Montal, M. 1991. Agonist-independent activation of acetylcholine receptor channels by protein kinase A phosphorylation. Proc Natl Acad Sci USA 88, 10213-10217. Lorenzon, P., Bernareggi, A., Degasperi, V., Nurowska, E., Wernig, A. & Ruzzier, F. 2002. Properties of primary mouse myoblasts expanded in culture. Exp Cell Res 278, 84-91. Derave, W. & Hespel, P. 1999. Role of adenosine in regulating glucose uptake during contractions and hypoxia in rat skeletal muscle. J Physiol 515, 255-263. Ribeiro, J.A., Cunha, R.A., Correia-de-Sá, P. & Sebastião, A.M. 1996. Purinergic regulation of acetylcholine release. Prog Brain Res 109, 231-241. Igusa, Y. 1988. Adenosine 5'-triphosphate activates acetylcholine receptor channels in cultured Xenopus myotomal muscle cells. J Physiol 405, 169-185. Lynge, J., Juel, C. & Hellsten, Y. 2001. Extracellular formation and uptake of adenosine during skeletal muscle contraction in the rat: role of adenosine transporters. J Physiol 537, 597-605. Cinalli, A.R., Guarracino, J.F., Fernandez, V., Roquel, L.I. & Losavio, A.S. 2013. Inosine induces presynaptic inhibition of acetylcholine release by activation of A3 adenosine receptors at the mouse neuromuscular junction. Br J Pharmacol 169, 1810-1823. Phelps, P.T., Anthes, J.C. & Correll, C.C. 2006. Characterization of adenosine receptors in the human bladder carcinoma T24 cell line. Eur J Pharmacol 536, 28-37. Entwistle, A., Zalin, R.J., Bevan, S. & Warner, A.E. 1988a. The control of chick myoblast fusion by ion channels operated by prostaglandins and acetylcholine. J Cell Biol 106, 1693-1702. Jaramillo, F., Vicini, S. & Schuetze, S.M. 1988. Embryonic acetylcholine receptors guarantee spontaneous contractions in rat developing muscle. Nature 335, 66-68. Sebastião, A.M. & Ribeiro, J.A. 2009. Tuning and fine-tuning of synapses with adenosine. Curr Neuropharmacol 7, 180-194. Xu, Y., Ravid, K. & Smith, B.D. 2008. Major histocompatibility class II transactivator expression in smooth muscle cells from A2b adenosine receptor knock-out mice: cross-talk between the adenosine and interferon-gamma signaling. J Biol Chem 283, 14213-14220. Araya, R., Riquelme, M.A., Brandan, E. & Sáez, J.C. 2004. The formation of skeletal muscle myotubes requires functional membrane receptors activated by extracellular ATP. Brain Res Brain Res Rev 47, 174-188. Lu, B., Fu, W.M., Greengard, P. & Poo, M.M. 1993. Calcitonin gene-related peptide potentiates synaptic responses at developing neuromuscular junction. Nature 363, 76-79. Garcia, N., Priego, M., Hurtado, E., Obis, T., Santafe, M.M., Tomàs, M., Lanuza, M.A. & Tomàs, J. 2014. Adenosine A2B and A3 receptor location at the mouse neuromuscular junction. J Anat 225, 109-117. Tsentsevitsky, A., Kovyazina, I., Nikolsky, E., Bukharaeva, E. & Giniatullin, R. 2013. Redox-sensitive synchronizing action of adenosine on transmitter release at the neuromuscular junction. Neuroscience 17, 699-707. Wachtel, R.E. 1990. Comparison of anticholinesterases and their effects on acetylcholine-activated ion channels. Anesthesiology 72, 496-503. Fredholm, B.B. 2014. Adenosine - a physiological or pathophysiological agent? J Mol Med (Berl) 92, 201-206. Liu, I.M., Lai, T.Y., Tsai, C.C. & Cheng, J.T. 2001. Characterization of adenosine A1 receptor in cultured myoblast C2C12 cells of mice. Auton Neurosci 87, 59-64. Olivera-Bravo, S., Ivorra, I. & Morales, A. 2006. Quaternary ammonium anticholinesterases have different effects on nicotinic receptors: is there a single binding site? J Mol Neurosci 30, 205-208. Hellsten, Y., Nyberg, M., Jensen, L.G. & Mortensen, S.P. 2012. Vasodilator interactions in skeletal muscle blood flow regulation. J Physiol 590, 6297-6305. Unsworth, C.D. & Johnson, R.G. Jr 1990. ATP compartmentation in neuroendocrine secretory vesicles. Ann N Y Acad Sci 603, 353-363. Contreras-Sanz, A., Scott-Ward, T.S., Gill, H.S., Jacoby, J.C., Birch, R.E., Malone-Lee, J., Taylor, K.M., Peppiatt-Wildman, C.M. & Wildman, S.S. 2012. Simultaneous quantification of 12 different nucleotides and nucleosides released from renal epithelium and in human urine samples using ion-pair reversed-phase HPLC. Purinergic Signal 8, 741-751. Li, J., King, N.C. & Sinoway, L.I. 2003. ATP concentrations and muscle tension increase linearly with muscle contraction. J Appl Physiol 95, 577-583. Warren, G.L., Hulderman, T., Liston, A. & Simeonova, P.P. 2011. Toll-like and adenosine receptor expression in injured skeletal muscle. Muscle Nerve 44, 85-92. Krause, R.M., Hamann, M., Bader, C.R., Liu, J.H., Baroffio, A. & Bernheim, L. 1995. Activation of nicotinic acetylcholine receptors increases the rate of fusion of cultured human myoblasts. J Physiol 489, 779-790. Sciancalepore, M., Afzalov, R., Buzzin, V., Jurdana, M., Lorenzon, P. & Ruzzier, F. 2005. Intrinsic ionic conductances mediate the spontaneous electrical activity of cultured mouse myotubes. Biochim Biophys Acta 1720, 117-124. Anderson, R.G. 1993. Caveolae: where incoming and outgoing messengers meet. Proc Natl Acad Sci USA 90, 10909-10913. Menezes-Rodrigues, F.S., Pires-Oliveira, M., Duarte, T., Paredes-Gamero, E.J., Chiavegatti, T. & Godinho, R.O. 2013. Calcium influx through L-type channels attenuates skeletal muscle contraction via inhibition of adenylyl cyclases. Eur J Pharmacol 720, 326-334. Pitchford, S., Day, J.W., Gordon, A. & Mochly-Rosen, D. 1992. Nicotinic acetylcholine receptor desensitization is regulated by activation-induced extracellular adenosine accumulation. J Neurosci 12, 4540-4544. Bandi, E., Bernareggi, A., Grandolfo, M., Mozzetta, C., Augusti-Tocco, G., Ruzzier, F. & Lorenzon, P. 2005. Autocrine activation of nicotinic acetylcholine receptors contributes to Ca2 + spikes in mouse myotubes during myogenesis. J Physiol 568, 171-180. Ribeiro, J.A. & Sebastião, A.M. 2010. Modulation and metamodulation of synapses by adenosine. Acta Physiol (Oxf) 199, 161-169. Di Angelantonio, S., Piccioni, A., Moriconi, C., Trettel, F., Cristalli, G., Grassi, F. & Limatola, C. 2011. Adenosine A2A receptor induces protein kinase A-dependent functional modulation of human (alpha)3(beta)4 nicotinic receptor. J Physiol 589, 2755-2766. Brown, B.L., Ekins, R.P. & Albano, J.D.M. 1972. Saturation assay for cyclic AMP using endogenous binding protein. Adv Cyclic Nucleotide Res 2, 25-40. Fredholm, B.B., Ijzerman, A.P., Jacobson, K.A., Linden, J. & Müller, C.E. 2011. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors-an update. Pharmacol Rev 63, 1-34. Jaramillo, F. & Schuetze, S.M. 1988. Kinetic differences between embryonic- and adult-type acetylcholine receptors in rat myotubes. J Physiol 396, 267-296. Ginsborg, B.L. & Hirst, G.D. 1972. The effect of adenosine on the release of the transmitter from the phrenic nerve of the rat. J Physiol 224, 629-645. Lynge, J., Schulte, G., Nordsborg, N., Fredholm, B.B. & Hellsten, Y. 2003. Adenosine A2B receptors modulate cAMP levels and induce CREB but not ERK1/2 and p38 phosphorylation in rat skeletal muscle cells. Biochem Biophys Res Commun 307, 180-187. León, D., Albasanz, J.L., Fernández, M., Ruíz, M.A. & Martín, M. 2004. Down-regulation of rat brain adenosine A1 receptors at the end of pregnancy. J Neurochem 88, 993-1002. Martinello, T., Baldoin, M.C., Morbiato, L., Paganin, M., Tarricone, E., Schiavo, G., Bianchini, E., Sandonà, D. & Betto, R. 2011. Extracellular ATP signaling during differentiation of C2C12 skeletal muscle cells: role in proliferation. Mol Cell Biochem 351, 183-196. Hamann, M., Chamoin, M.C., Portalier, P., Bernheim, L., Baroffio, A., Widmer, H., Bader, C.R. & Ternaux, J.P. 1995. Synthesis and release of an acetylcholine-like compound by human myoblasts and myotubes. J Physiol 489, 791-803. Høier, B., Olsen, K., Nyberg, M., Bangsbo, J. & Hellsten, Y. 2010. Contraction-induced secretion of VEGF from skeletal muscle cells is mediated by adenosine. Am J Physiol Heart Circ Physiol 299, H857-H862. Chiavegatti, T., Costa, V.L. Jr, Araújo, M.S. & Godinho, R.O. 2008. Skeletal muscle expresses the extracellular cyclic AMP-adenosine pathway. Br J Pharmacol 153, 1331-1340. Nagano 1996; 109 2006; 30 1991; 432 2006; 35 2000; 43 2002; 278 2013; 720 2013; 169 2003; 95 2006; 536 1992; 12 1993; 363 2012; 53 2001; 87 2011; 351 1997; 500 2012; 889–890 1997; 504 2013; 17 2000; 169 1991; 88 1996; 492 2011; 63 2010; 199 1995; 489 2009; 284 2001; 537 1998; 124 2008; 153 2005; 1720 1972; 224 1988; 335 2004; 88 1990; 603 2014; 92 2011; 338 1988a; 106 2004; 47 1992; 347 1994; 45 1993; 90 1988; 405 2008; 283 1972; 2 2011; 589 2012; 590 2003; 307 1988b; 106 2010; 137 2010; 299 1988; 8 2005; 568 1992; 139 2011; 44 1988; 396 2009; 7 2008; 86 2012; 46 2014; 225 1999; 518 2012; 8 1999; 515 1990; 72 26082066 - Acta Physiol (Oxf). 2015 Aug;214(4):436-9 Mozrzymas (10.1111/apha.12473-BIB0044|apha12473-cit-0044) 1992; 139 Pitchford (10.1111/apha.12473-BIB0050|apha12473-cit-0050) 1992; 12 Araya (10.1111/apha.12473-BIB0002|apha12473-cit-0002) 2004; 47 Brown (10.1111/apha.12473-BIB0006|apha12473-cit-0006) 1972; 2 Entwistle (10.1111/apha.12473-BIB0014|apha12473-cit-0014) 1988b; 106 Jaramillo (10.1111/apha.12473-BIB0029|apha12473-cit-0029) 1988; 335 Phelps (10.1111/apha.12473-BIB0049|apha12473-cit-0049) 2006; 536 Ferrer-Montiel (10.1111/apha.12473-BIB0015|apha12473-cit-0015) 1991; 88 Giniatullin (10.1111/apha.12473-BIB0019|apha12473-cit-0019) 1998; 124 Pavan (10.1111/apha.12473-BIB0048|apha12473-cit-0048) 2006; 35 Anderson (10.1111/apha.12473-BIB0001|apha12473-cit-0001) 1993; 90 Angelantonio (10.1111/apha.12473-BIB0012|apha12473-cit-0012) 2011; 589 Garcia (10.1111/apha.12473-BIB0018|apha12473-cit-0018) 2014; 225 Liu (10.1111/apha.12473-BIB0034|apha12473-cit-0034) 2001; 87 Fredholm (10.1111/apha.12473-BIB0017|apha12473-cit-0017) 2011; 63 Tsentsevitsky (10.1111/apha.12473-BIB0058|apha12473-cit-0058) 2013; 17 Sciancalepore (10.1111/apha.12473-BIB0054|apha12473-cit-0054) 2012; 53 Contreras-Sanz (10.1111/apha.12473-BIB0010|apha12473-cit-0010) 2012; 8 Smith (10.1111/apha.12473-BIB0057|apha12473-cit-0057) 1991; 432 León (10.1111/apha.12473-BIB0032|apha12473-cit-0032) 2004; 88 Chiavegatti (10.1111/apha.12473-BIB0008|apha12473-cit-0008) 2008; 153 Olah (10.1111/apha.12473-BIB0046|apha12473-cit-0046) 1994; 45 Hellsten (10.1111/apha.12473-BIB0022|apha12473-cit-0022) 1999; 518 Igusa (10.1111/apha.12473-BIB0026|apha12473-cit-0026) 1988; 405 Olivera-Bravo (10.1111/apha.12473-BIB0047|apha12473-cit-0047) 2006; 30 Hoeven (10.1111/apha.12473-BIB0060|apha12473-cit-0060) 2011; 338 Lu (10.1111/apha.12473-BIB0036|apha12473-cit-0036) 1993; 363 Entwistle (10.1111/apha.12473-BIB0013|apha12473-cit-0013) 1988a; 106 Krause (10.1111/apha.12473-BIB0031|apha12473-cit-0031) 1995; 489 Lynge (10.1111/apha.12473-BIB0037|apha12473-cit-0037) 2000; 169 Hellsten (10.1111/apha.12473-BIB0024|apha12473-cit-0024) 2012; 590 Li (10.1111/apha.12473-BIB0033|apha12473-cit-0033) 2003; 95 Ginsborg (10.1111/apha.12473-BIB0020|apha12473-cit-0020) 1972; 224 Hellsten (10.1111/apha.12473-BIB0023|apha12473-cit-0023) 1997; 504 Bernareggi (10.1111/apha.12473-BIB0004|apha12473-cit-0004) 2012; 46 Silinsky (10.1111/apha.12473-BIB0056|apha12473-cit-0056) 1996; 492 Kim (10.1111/apha.12473-BIB0030|apha12473-cit-0030) 2000; 43 Lorenzon (10.1111/apha.12473-BIB0035|apha12473-cit-0035) 2002; 278 Unsworth (10.1111/apha.12473-BIB0059|apha12473-cit-0059) 1990; 603 Irintchev (10.1111/apha.12473-BIB0027|apha12473-cit-0027) 1997; 500 Lynge (10.1111/apha.12473-BIB0038|apha12473-cit-0038) 2001; 537 Wachtel (10.1111/apha.12473-BIB0061|apha12473-cit-0061) 1990; 72 Warren (10.1111/apha.12473-BIB0062|apha12473-cit-0062) 2011; 44 Sebastião (10.1111/apha.12473-BIB0055|apha12473-cit-0055) 2009; 7 Jaramillo (10.1111/apha.12473-BIB0028|apha12473-cit-0028) 1988; 396 Lynge (10.1111/apha.12473-BIB0039|apha12473-cit-0039) 2003; 307 Migita (10.1111/apha.12473-BIB0043|apha12473-cit-0043) 2008; 86 Sciancalepore (10.1111/apha.12473-BIB0053|apha12473-cit-0053) 2005; 1720 Martinello (10.1111/apha.12473-BIB0040|apha12473-cit-0040) 2011; 351 Ribeiro (10.1111/apha.12473-BIB0051|apha12473-cit-0051) 2010; 199 Hamann (10.1111/apha.12473-BIB0021|apha12473-cit-0021) 1995; 489 Wu (10.1111/apha.12473-BIB0063|apha12473-cit-0063) 2010; 137 Ribeiro (10.1111/apha.12473-BIB0052|apha12473-cit-0052) 1996; 109 Buvinic (10.1111/apha.12473-BIB0007|apha12473-cit-0007) 2009; 284 Fredholm (10.1111/apha.12473-BIB0016|apha12473-cit-0016) 2014; 92 Menezes-Rodrigues (10.1111/apha.12473-BIB0041|apha12473-cit-0041) 2013; 720 Nagano (10.1111/apha.12473-BIB0045|apha12473-cit-0045) 1992; 347 Bandi (10.1111/apha.12473-BIB0003|apha12473-cit-0003) 2005; 568 Middleton (10.1111/apha.12473-BIB0042|apha12473-cit-0042) 1988; 8 Xu (10.1111/apha.12473-BIB0064|apha12473-cit-0064) 2008; 283 Høier (10.1111/apha.12473-BIB0025|apha12473-cit-0025) 2010; 299 Cinalli (10.1111/apha.12473-BIB0009|apha12473-cit-0009) 2013; 169 Derave (10.1111/apha.12473-BIB0011|apha12473-cit-0011) 1999; 515 Bhatt (10.1111/apha.12473-BIB0005|apha12473-cit-0005) 2012; 889-890 |
References_xml | – volume: 86 start-page: 2820 year: 2008 end-page: 2828 article-title: Activation of adenosine A1 receptor‐induced neural stem cell proliferation via MEK/ERK and Akt signaling pathways publication-title: J Neurosci Res – volume: 568 start-page: 171 year: 2005 end-page: 180 article-title: Autocrine activation of nicotinic acetylcholine receptors contributes to Ca spikes in mouse myotubes during myogenesis publication-title: J Physiol – volume: 137 start-page: 1017 year: 2010 end-page: 1033 article-title: To build a synapse: signaling pathways in neuromuscular junction assembly publication-title: Development – volume: 515 start-page: 255 year: 1999 end-page: 263 article-title: Role of adenosine in regulating glucose uptake during contractions and hypoxia in rat skeletal muscle publication-title: J Physiol – volume: 2 start-page: 25 year: 1972 end-page: 40 article-title: Saturation assay for cyclic AMP using endogenous binding protein publication-title: Adv Cyclic Nucleotide Res – volume: 139 start-page: 217 year: 1992 end-page: 220 article-title: ATP activates junctional and extrajunctional acetylcholine receptor channels in isolated adult rat muscle fibres publication-title: Neurosci Lett – volume: 72 start-page: 496 year: 1990 end-page: 503 article-title: Comparison of anticholinesterases and their effects on acetylcholine‐activated ion channels publication-title: Anesthesiology – volume: 720 start-page: 326 year: 2013 end-page: 334 article-title: Calcium influx through L‐type channels attenuates skeletal muscle contraction via inhibition of adenylyl cyclases publication-title: Eur J Pharmacol – volume: 8 start-page: 741 year: 2012 end-page: 751 article-title: Simultaneous quantification of 12 different nucleotides and nucleosides released from renal epithelium and in human urine samples using ion‐pair reversed‐phase HPLC publication-title: Purinergic Signal – volume: 284 start-page: 34490 year: 2009 end-page: 34505 article-title: ATP released by electrical stimuli elicits calcium transients and gene expression in skeletal muscle publication-title: J Biol Chem – volume: 30 start-page: 205 year: 2006 end-page: 208 article-title: Quaternary ammonium anticholinesterases have different effects on nicotinic receptors: is there a single binding site? publication-title: J Mol Neurosci – volume: 47 start-page: 174 year: 2004 end-page: 188 article-title: The formation of skeletal muscle myotubes requires functional membrane receptors activated by extracellular ATP publication-title: Brain Res Brain Res Rev – volume: 106 start-page: 1693 year: 1988a end-page: 1702 article-title: The control of chick myoblast fusion by ion channels operated by prostaglandins and acetylcholine publication-title: J Cell Biol – volume: 489 start-page: 779 year: 1995 end-page: 790 article-title: Activation of nicotinic acetylcholine receptors increases the rate of fusion of cultured human myoblasts publication-title: J Physiol – volume: 396 start-page: 267 year: 1988 end-page: 296 article-title: Kinetic differences between embryonic‐ and adult‐type acetylcholine receptors in rat myotubes publication-title: J Physiol – volume: 537 start-page: 597 year: 2001 end-page: 605 article-title: Extracellular formation and uptake of adenosine during skeletal muscle contraction in the rat: role of adenosine transporters publication-title: J Physiol – volume: 88 start-page: 10213 year: 1991 end-page: 10217 article-title: Agonist‐independent activation of acetylcholine receptor channels by protein kinase A phosphorylation publication-title: Proc Natl Acad Sci USA – volume: 225 start-page: 109 year: 2014 end-page: 117 article-title: Adenosine A and A receptor location at the mouse neuromuscular junction publication-title: J Anat – volume: 307 start-page: 180 year: 2003 end-page: 187 article-title: Adenosine A receptors modulate cAMP levels and induce CREB but not ERK1/2 and p38 phosphorylation in rat skeletal muscle cells publication-title: Biochem Biophys Res Commun – volume: 153 start-page: 1331 year: 2008 end-page: 1340 article-title: Skeletal muscle expresses the extracellular cyclic AMP‐adenosine pathway publication-title: Br J Pharmacol – volume: 335 start-page: 66 year: 1988 end-page: 68 article-title: Embryonic acetylcholine receptors guarantee spontaneous contractions in rat developing muscle publication-title: Nature – volume: 492 start-page: 815 year: 1996 end-page: 822 article-title: Synchronous release of ATP and neurotransmitter within milliseconds of a motor nerve impulse in the frog publication-title: J Physiol – volume: 500 start-page: 775 year: 1997 end-page: 785 article-title: Functional improvement of damaged adult mouse muscle by implantation of primary myoblasts publication-title: J Physiol – volume: 169 start-page: 283 year: 2000 end-page: 290 article-title: Distribution of adenosine A1, A2A and A2B receptors in human skeletal muscle publication-title: Acta Physiol Scand – volume: 199 start-page: 161 year: 2010 end-page: 169 article-title: Modulation and metamodulation of synapses by adenosine publication-title: Acta Physiol (Oxf) – volume: 536 start-page: 28 year: 2006 end-page: 37 article-title: Characterization of adenosine receptors in the human bladder carcinoma T24 cell line publication-title: Eur J Pharmacol – volume: 63 start-page: 1 year: 2011 end-page: 34 article-title: International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors‐an update publication-title: Pharmacol Rev – volume: 278 start-page: 84 year: 2002 end-page: 91 article-title: Properties of primary mouse myoblasts expanded in culture publication-title: Exp Cell Res – volume: 169 start-page: 1810 year: 2013 end-page: 1823 article-title: Inosine induces presynaptic inhibition of acetylcholine release by activation of A3 adenosine receptors at the mouse neuromuscular junction publication-title: Br J Pharmacol – volume: 124 start-page: 839 year: 1998 end-page: 844 article-title: ATP and adenosine inhibit transmitter release at the frog neuromuscular junction through distinct presynaptic receptors publication-title: Br J Pharmacol – volume: 87 start-page: 59 year: 2001 end-page: 64 article-title: Characterization of adenosine A1 receptor in cultured myoblast C2C12 cells of mice publication-title: Auton Neurosci – volume: 88 start-page: 993 year: 2004 end-page: 1002 article-title: Down‐regulation of rat brain adenosine A1 receptors at the end of pregnancy publication-title: J Neurochem – volume: 44 start-page: 85 year: 2011 end-page: 92 article-title: Toll‐like and adenosine receptor expression in injured skeletal muscle publication-title: Muscle Nerve – volume: 7 start-page: 180 year: 2009 end-page: 194 article-title: Tuning and fine‐tuning of synapses with adenosine publication-title: Curr Neuropharmacol – volume: 53 start-page: 1392 year: 2012 end-page: 1398 article-title: Reactive oxygen species contribute to the promotion of the ATP‐mediated proliferation of mouse skeletal myoblasts publication-title: Free Radic Biol Med – volume: 489 start-page: 791 year: 1995 end-page: 803 article-title: Synthesis and release of an acetylcholine‐like compound by human myoblasts and myotubes publication-title: J Physiol – volume: 45 start-page: 978 year: 1994 end-page: 982 article-title: 125I‐4‐aminobenzyl‐5'‐N‐methylcarboxamidoadenosine, a high affinity radioligand for the rat A3 adenosine receptor publication-title: Mol Pharmacol – volume: 889–890 start-page: 110 year: 2012 end-page: 115 article-title: A sensitive HPLC‐based method to quantify adenine nucleotides in primary astrocyte cell cultures publication-title: J Chromatogr B Analyt Technol Biomed Life Sci – volume: 90 start-page: 10909 year: 1993 end-page: 10913 article-title: Caveolae: where incoming and outgoing messengers meet publication-title: Proc Natl Acad Sci USA – volume: 95 start-page: 577 year: 2003 end-page: 583 article-title: ATP concentrations and muscle tension increase linearly with muscle contraction publication-title: J Appl Physiol – volume: 351 start-page: 183 year: 2011 end-page: 196 article-title: Extracellular ATP signaling during differentiation of C2C12 skeletal muscle cells: role in proliferation publication-title: Mol Cell Biochem – volume: 1720 start-page: 117 year: 2005 end-page: 124 article-title: Intrinsic ionic conductances mediate the spontaneous electrical activity of cultured mouse myotubes publication-title: Biochim Biophys Acta – volume: 106 start-page: 1703 year: 1988b end-page: 1712 article-title: A role for acetylcholine receptors in the fusion of chick myoblasts publication-title: J Cell Biol – volume: 283 start-page: 14213 year: 2008 end-page: 14220 article-title: Major histocompatibility class II transactivator expression in smooth muscle cells from A2b adenosine receptor knock‐out mice: cross‐talk between the adenosine and interferon‐gamma signaling publication-title: J Biol Chem – volume: 589 start-page: 2755 year: 2011 end-page: 2766 article-title: Adenosine A2A receptor induces protein kinase A‐dependent functional modulation of human (alpha)3(beta)4 nicotinic receptor publication-title: J Physiol – volume: 46 start-page: 112 year: 2012 end-page: 121 article-title: Novel role for prepatterned nicotinic acetylcholine receptors during myogenesis publication-title: Muscle Nerve – volume: 8 start-page: 3405 year: 1988 end-page: 3412 article-title: Desensitization of acetylcholine receptors in rat myotubes is enhanced by agents that elevate intracellular cAMP publication-title: J Neurosci – volume: 224 start-page: 629 year: 1972 end-page: 645 article-title: The effect of adenosine on the release of the transmitter from the phrenic nerve of the rat publication-title: J Physiol – volume: 504 start-page: 695 year: 1997 end-page: 704 article-title: Adenosine formation in contracting primary rat skeletal muscle cells and endothelial cells in culture publication-title: J Physiol – volume: 299 start-page: H857 year: 2010 end-page: H862 article-title: Contraction‐induced secretion of VEGF from skeletal muscle cells is mediated by adenosine publication-title: Am J Physiol Heart Circ Physiol – volume: 347 start-page: 346 year: 1992 article-title: Presynaptic A1‐purinoceptor‐mediated inhibitory effects of adenosine and its stable analogues on the mouse hemidiaphragm preparation publication-title: Naunyn Schmiedebergs Arch Pharmacol – volume: 43 start-page: 1165 year: 2000 end-page: 1172 article-title: Anilide derivatives of an 8‐phenylxanthine carboxylic congener are highly potent and selective antagonists at human A(2B) adenosine receptors publication-title: J Med Chem – volume: 363 start-page: 76 year: 1993 end-page: 79 article-title: Calcitonin gene‐related peptide potentiates synaptic responses at developing neuromuscular junction publication-title: Nature – volume: 518 start-page: 761 year: 1999 end-page: 768 article-title: The effect of muscle contraction on the regulation of adenosine formation in rat skeletal muscle cells publication-title: J Physiol – volume: 109 start-page: 231 year: 1996 end-page: 241 article-title: Purinergic regulation of acetylcholine release publication-title: Prog Brain Res – volume: 405 start-page: 169 year: 1988 end-page: 185 article-title: Adenosine 5'‐triphosphate activates acetylcholine receptor channels in cultured Xenopus myotomal muscle cells publication-title: J Physiol – volume: 432 start-page: 343 year: 1991 end-page: 354 article-title: Sources of adenosine released during neuromuscular transmission in the rat publication-title: J Physiol – volume: 35 start-page: 169 year: 2006 end-page: 173 article-title: Circadian clocks regulate adenylyl cyclase activity rhythms in human RPE cells publication-title: Biochem Biophys Res Commun – volume: 12 start-page: 4540 year: 1992 end-page: 4544 article-title: Nicotinic acetylcholine receptor desensitization is regulated by activation‐induced extracellular adenosine accumulation publication-title: J Neurosci – volume: 17 start-page: 699 year: 2013 end-page: 707 article-title: Redox‐sensitive synchronizing action of adenosine on transmitter release at the neuromuscular junction publication-title: Neuroscience – volume: 338 start-page: 1004 year: 2011 end-page: 1012 article-title: A role for the low‐affinity A adenosine receptor in regulating superoxide generation by murine neutrophils publication-title: J Pharmacol Exp Ther – volume: 92 start-page: 201 year: 2014 end-page: 206 article-title: Adenosine ‐ a physiological or pathophysiological agent? publication-title: J Mol Med (Berl) – volume: 603 start-page: 353 year: 1990 end-page: 363 article-title: ATP compartmentation in neuroendocrine secretory vesicles publication-title: Ann N Y Acad Sci – volume: 590 start-page: 6297 year: 2012 end-page: 6305 article-title: Vasodilator interactions in skeletal muscle blood flow regulation publication-title: J Physiol – volume: 363 start-page: 76 year: 1993 ident: 10.1111/apha.12473-BIB0036|apha12473-cit-0036 article-title: Calcitonin gene-related peptide potentiates synaptic responses at developing neuromuscular junction publication-title: Nature doi: 10.1038/363076a0 contributor: fullname: Lu – volume: 17 start-page: 699 year: 2013 ident: 10.1111/apha.12473-BIB0058|apha12473-cit-0058 article-title: Redox-sensitive synchronizing action of adenosine on transmitter release at the neuromuscular junction publication-title: Neuroscience doi: 10.1016/j.neuroscience.2013.05.065 contributor: fullname: Tsentsevitsky – volume: 46 start-page: 112 year: 2012 ident: 10.1111/apha.12473-BIB0004|apha12473-cit-0004 article-title: Novel role for prepatterned nicotinic acetylcholine receptors during myogenesis publication-title: Muscle Nerve doi: 10.1002/mus.23284 contributor: fullname: Bernareggi – volume: 720 start-page: 326 year: 2013 ident: 10.1111/apha.12473-BIB0041|apha12473-cit-0041 article-title: Calcium influx through L-type channels attenuates skeletal muscle contraction via inhibition of adenylyl cyclases publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2013.10.009 contributor: fullname: Menezes-Rodrigues – volume: 283 start-page: 14213 year: 2008 ident: 10.1111/apha.12473-BIB0064|apha12473-cit-0064 article-title: Major histocompatibility class II transactivator expression in smooth muscle cells from A2b adenosine receptor knock-out mice: cross-talk between the adenosine and interferon-gamma signaling publication-title: J Biol Chem doi: 10.1074/jbc.M708657200 contributor: fullname: Xu – volume: 106 start-page: 1693 year: 1988a ident: 10.1111/apha.12473-BIB0013|apha12473-cit-0013 article-title: The control of chick myoblast fusion by ion channels operated by prostaglandins and acetylcholine publication-title: J Cell Biol doi: 10.1083/jcb.106.5.1693 contributor: fullname: Entwistle – volume: 109 start-page: 231 year: 1996 ident: 10.1111/apha.12473-BIB0052|apha12473-cit-0052 article-title: Purinergic regulation of acetylcholine release publication-title: Prog Brain Res doi: 10.1016/S0079-6123(08)62107-X contributor: fullname: Ribeiro – volume: 515 start-page: 255 year: 1999 ident: 10.1111/apha.12473-BIB0011|apha12473-cit-0011 article-title: Role of adenosine in regulating glucose uptake during contractions and hypoxia in rat skeletal muscle publication-title: J Physiol doi: 10.1111/j.1469-7793.1999.255ad.x contributor: fullname: Derave – volume: 299 start-page: H857 year: 2010 ident: 10.1111/apha.12473-BIB0025|apha12473-cit-0025 article-title: Contraction-induced secretion of VEGF from skeletal muscle cells is mediated by adenosine publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00082.2010 contributor: fullname: Høier – volume: 72 start-page: 496 year: 1990 ident: 10.1111/apha.12473-BIB0061|apha12473-cit-0061 article-title: Comparison of anticholinesterases and their effects on acetylcholine-activated ion channels publication-title: Anesthesiology doi: 10.1097/00000542-199003000-00018 contributor: fullname: Wachtel – volume: 590 start-page: 6297 year: 2012 ident: 10.1111/apha.12473-BIB0024|apha12473-cit-0024 article-title: Vasodilator interactions in skeletal muscle blood flow regulation publication-title: J Physiol doi: 10.1113/jphysiol.2012.240762 contributor: fullname: Hellsten – volume: 347 start-page: 346 year: 1992 ident: 10.1111/apha.12473-BIB0045|apha12473-cit-0045 article-title: Presynaptic A1-purinoceptor-mediated inhibitory effects of adenosine and its stable analogues on the mouse hemidiaphragm preparation publication-title: Naunyn Schmiedebergs Arch Pharmacol doi: 10.1007/BF00167456 contributor: fullname: Nagano – volume: 139 start-page: 217 year: 1992 ident: 10.1111/apha.12473-BIB0044|apha12473-cit-0044 article-title: ATP activates junctional and extrajunctional acetylcholine receptor channels in isolated adult rat muscle fibres publication-title: Neurosci Lett doi: 10.1016/0304-3940(92)90556-M contributor: fullname: Mozrzymas – volume: 307 start-page: 180 year: 2003 ident: 10.1111/apha.12473-BIB0039|apha12473-cit-0039 article-title: Adenosine A2B receptors modulate cAMP levels and induce CREB but not ERK1/2 and p38 phosphorylation in rat skeletal muscle cells publication-title: Biochem Biophys Res Commun doi: 10.1016/S0006-291X(03)01125-2 contributor: fullname: Lynge – volume: 124 start-page: 839 year: 1998 ident: 10.1111/apha.12473-BIB0019|apha12473-cit-0019 article-title: ATP and adenosine inhibit transmitter release at the frog neuromuscular junction through distinct presynaptic receptors publication-title: Br J Pharmacol doi: 10.1038/sj.bjp.0701881 contributor: fullname: Giniatullin – volume: 87 start-page: 59 year: 2001 ident: 10.1111/apha.12473-BIB0034|apha12473-cit-0034 article-title: Characterization of adenosine A1 receptor in cultured myoblast C2C12 cells of mice publication-title: Auton Neurosci doi: 10.1016/S1566-0702(00)00277-0 contributor: fullname: Liu – volume: 92 start-page: 201 year: 2014 ident: 10.1111/apha.12473-BIB0016|apha12473-cit-0016 article-title: Adenosine - a physiological or pathophysiological agent? publication-title: J Mol Med (Berl) doi: 10.1007/s00109-013-1101-6 contributor: fullname: Fredholm – volume: 405 start-page: 169 year: 1988 ident: 10.1111/apha.12473-BIB0026|apha12473-cit-0026 article-title: Adenosine 5'-triphosphate activates acetylcholine receptor channels in cultured Xenopus myotomal muscle cells publication-title: J Physiol doi: 10.1113/jphysiol.1988.sp017327 contributor: fullname: Igusa – volume: 489 start-page: 791 year: 1995 ident: 10.1111/apha.12473-BIB0021|apha12473-cit-0021 article-title: Synthesis and release of an acetylcholine-like compound by human myoblasts and myotubes publication-title: J Physiol doi: 10.1113/jphysiol.1995.sp021092 contributor: fullname: Hamann – volume: 169 start-page: 283 year: 2000 ident: 10.1111/apha.12473-BIB0037|apha12473-cit-0037 article-title: Distribution of adenosine A1, A2A and A2B receptors in human skeletal muscle publication-title: Acta Physiol Scand doi: 10.1046/j.1365-201x.2000.00742.x contributor: fullname: Lynge – volume: 568 start-page: 171 year: 2005 ident: 10.1111/apha.12473-BIB0003|apha12473-cit-0003 article-title: Autocrine activation of nicotinic acetylcholine receptors contributes to Ca2 + spikes in mouse myotubes during myogenesis publication-title: J Physiol doi: 10.1113/jphysiol.2005.091439 contributor: fullname: Bandi – volume: 12 start-page: 4540 year: 1992 ident: 10.1111/apha.12473-BIB0050|apha12473-cit-0050 article-title: Nicotinic acetylcholine receptor desensitization is regulated by activation-induced extracellular adenosine accumulation publication-title: J Neurosci doi: 10.1523/JNEUROSCI.12-11-04540.1992 contributor: fullname: Pitchford – volume: 86 start-page: 2820 year: 2008 ident: 10.1111/apha.12473-BIB0043|apha12473-cit-0043 article-title: Activation of adenosine A1 receptor-induced neural stem cell proliferation via MEK/ERK and Akt signaling pathways publication-title: J Neurosci Res doi: 10.1002/jnr.21742 contributor: fullname: Migita – volume: 351 start-page: 183 year: 2011 ident: 10.1111/apha.12473-BIB0040|apha12473-cit-0040 article-title: Extracellular ATP signaling during differentiation of C2C12 skeletal muscle cells: role in proliferation publication-title: Mol Cell Biochem doi: 10.1007/s11010-011-0726-4 contributor: fullname: Martinello – volume: 88 start-page: 10213 year: 1991 ident: 10.1111/apha.12473-BIB0015|apha12473-cit-0015 article-title: Agonist-independent activation of acetylcholine receptor channels by protein kinase A phosphorylation publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.88.22.10213 contributor: fullname: Ferrer-Montiel – volume: 90 start-page: 10909 year: 1993 ident: 10.1111/apha.12473-BIB0001|apha12473-cit-0001 article-title: Caveolae: where incoming and outgoing messengers meet publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.90.23.10909 contributor: fullname: Anderson – volume: 518 start-page: 761 year: 1999 ident: 10.1111/apha.12473-BIB0022|apha12473-cit-0022 article-title: The effect of muscle contraction on the regulation of adenosine formation in rat skeletal muscle cells publication-title: J Physiol doi: 10.1111/j.1469-7793.1999.0761p.x contributor: fullname: Hellsten – volume: 603 start-page: 353 year: 1990 ident: 10.1111/apha.12473-BIB0059|apha12473-cit-0059 article-title: ATP compartmentation in neuroendocrine secretory vesicles publication-title: Ann N Y Acad Sci doi: 10.1111/j.1749-6632.1990.tb37685.x contributor: fullname: Unsworth – volume: 106 start-page: 1703 year: 1988b ident: 10.1111/apha.12473-BIB0014|apha12473-cit-0014 article-title: A role for acetylcholine receptors in the fusion of chick myoblasts publication-title: J Cell Biol doi: 10.1083/jcb.106.5.1703 contributor: fullname: Entwistle – volume: 489 start-page: 779 year: 1995 ident: 10.1111/apha.12473-BIB0031|apha12473-cit-0031 article-title: Activation of nicotinic acetylcholine receptors increases the rate of fusion of cultured human myoblasts publication-title: J Physiol doi: 10.1113/jphysiol.1995.sp021091 contributor: fullname: Krause – volume: 2 start-page: 25 year: 1972 ident: 10.1111/apha.12473-BIB0006|apha12473-cit-0006 article-title: Saturation assay for cyclic AMP using endogenous binding protein publication-title: Adv Cyclic Nucleotide Res contributor: fullname: Brown – volume: 225 start-page: 109 year: 2014 ident: 10.1111/apha.12473-BIB0018|apha12473-cit-0018 article-title: Adenosine A2B and A3 receptor location at the mouse neuromuscular junction publication-title: J Anat doi: 10.1111/joa.12188 contributor: fullname: Garcia – volume: 537 start-page: 597 year: 2001 ident: 10.1111/apha.12473-BIB0038|apha12473-cit-0038 article-title: Extracellular formation and uptake of adenosine during skeletal muscle contraction in the rat: role of adenosine transporters publication-title: J Physiol doi: 10.1111/j.1469-7793.2001.00597.x contributor: fullname: Lynge – volume: 432 start-page: 343 year: 1991 ident: 10.1111/apha.12473-BIB0057|apha12473-cit-0057 article-title: Sources of adenosine released during neuromuscular transmission in the rat publication-title: J Physiol doi: 10.1113/jphysiol.1991.sp018388 contributor: fullname: Smith – volume: 7 start-page: 180 year: 2009 ident: 10.1111/apha.12473-BIB0055|apha12473-cit-0055 article-title: Tuning and fine-tuning of synapses with adenosine publication-title: Curr Neuropharmacol doi: 10.2174/157015909789152128 contributor: fullname: Sebastião – volume: 278 start-page: 84 year: 2002 ident: 10.1111/apha.12473-BIB0035|apha12473-cit-0035 article-title: Properties of primary mouse myoblasts expanded in culture publication-title: Exp Cell Res doi: 10.1006/excr.2002.5562 contributor: fullname: Lorenzon – volume: 137 start-page: 1017 year: 2010 ident: 10.1111/apha.12473-BIB0063|apha12473-cit-0063 article-title: To build a synapse: signaling pathways in neuromuscular junction assembly publication-title: Development doi: 10.1242/dev.038711 contributor: fullname: Wu – volume: 169 start-page: 1810 year: 2013 ident: 10.1111/apha.12473-BIB0009|apha12473-cit-0009 article-title: Inosine induces presynaptic inhibition of acetylcholine release by activation of A3 adenosine receptors at the mouse neuromuscular junction publication-title: Br J Pharmacol doi: 10.1111/bph.12262 contributor: fullname: Cinalli – volume: 504 start-page: 695 year: 1997 ident: 10.1111/apha.12473-BIB0023|apha12473-cit-0023 article-title: Adenosine formation in contracting primary rat skeletal muscle cells and endothelial cells in culture publication-title: J Physiol doi: 10.1111/j.1469-7793.1997.695bd.x contributor: fullname: Hellsten – volume: 1720 start-page: 117 year: 2005 ident: 10.1111/apha.12473-BIB0053|apha12473-cit-0053 article-title: Intrinsic ionic conductances mediate the spontaneous electrical activity of cultured mouse myotubes publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamem.2005.12.001 contributor: fullname: Sciancalepore – volume: 44 start-page: 85 year: 2011 ident: 10.1111/apha.12473-BIB0062|apha12473-cit-0062 article-title: Toll-like and adenosine receptor expression in injured skeletal muscle publication-title: Muscle Nerve doi: 10.1002/mus.22001 contributor: fullname: Warren – volume: 153 start-page: 1331 year: 2008 ident: 10.1111/apha.12473-BIB0008|apha12473-cit-0008 article-title: Skeletal muscle expresses the extracellular cyclic AMP-adenosine pathway publication-title: Br J Pharmacol doi: 10.1038/sj.bjp.0707648 contributor: fullname: Chiavegatti – volume: 536 start-page: 28 year: 2006 ident: 10.1111/apha.12473-BIB0049|apha12473-cit-0049 article-title: Characterization of adenosine receptors in the human bladder carcinoma T24 cell line publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2006.02.046 contributor: fullname: Phelps – volume: 338 start-page: 1004 year: 2011 ident: 10.1111/apha.12473-BIB0060|apha12473-cit-0060 article-title: A role for the low-affinity A2B adenosine receptor in regulating superoxide generation by murine neutrophils publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.111.181792 contributor: fullname: Hoeven – volume: 224 start-page: 629 year: 1972 ident: 10.1111/apha.12473-BIB0020|apha12473-cit-0020 article-title: The effect of adenosine on the release of the transmitter from the phrenic nerve of the rat publication-title: J Physiol doi: 10.1113/jphysiol.1972.sp009916 contributor: fullname: Ginsborg – volume: 335 start-page: 66 year: 1988 ident: 10.1111/apha.12473-BIB0029|apha12473-cit-0029 article-title: Embryonic acetylcholine receptors guarantee spontaneous contractions in rat developing muscle publication-title: Nature doi: 10.1038/335066a0 contributor: fullname: Jaramillo – volume: 199 start-page: 161 year: 2010 ident: 10.1111/apha.12473-BIB0051|apha12473-cit-0051 article-title: Modulation and metamodulation of synapses by adenosine publication-title: Acta Physiol (Oxf) doi: 10.1111/j.1748-1716.2010.02115.x contributor: fullname: Ribeiro – volume: 492 start-page: 815 year: 1996 ident: 10.1111/apha.12473-BIB0056|apha12473-cit-0056 article-title: Synchronous release of ATP and neurotransmitter within milliseconds of a motor nerve impulse in the frog publication-title: J Physiol doi: 10.1113/jphysiol.1996.sp021348 contributor: fullname: Silinsky – volume: 47 start-page: 174 year: 2004 ident: 10.1111/apha.12473-BIB0002|apha12473-cit-0002 article-title: The formation of skeletal muscle myotubes requires functional membrane receptors activated by extracellular ATP publication-title: Brain Res Brain Res Rev doi: 10.1016/j.brainresrev.2004.06.003 contributor: fullname: Araya – volume: 889-890 start-page: 110 year: 2012 ident: 10.1111/apha.12473-BIB0005|apha12473-cit-0005 article-title: A sensitive HPLC-based method to quantify adenine nucleotides in primary astrocyte cell cultures publication-title: J Chromatogr B Analyt Technol Biomed Life Sci doi: 10.1016/j.jchromb.2012.02.005 contributor: fullname: Bhatt – volume: 284 start-page: 34490 year: 2009 ident: 10.1111/apha.12473-BIB0007|apha12473-cit-0007 article-title: ATP released by electrical stimuli elicits calcium transients and gene expression in skeletal muscle publication-title: J Biol Chem doi: 10.1074/jbc.M109.057315 contributor: fullname: Buvinic – volume: 88 start-page: 993 year: 2004 ident: 10.1111/apha.12473-BIB0032|apha12473-cit-0032 article-title: Down-regulation of rat brain adenosine A1 receptors at the end of pregnancy publication-title: J Neurochem doi: 10.1046/j.1471-4159.2003.02220.x contributor: fullname: León – volume: 8 start-page: 3405 year: 1988 ident: 10.1111/apha.12473-BIB0042|apha12473-cit-0042 article-title: Desensitization of acetylcholine receptors in rat myotubes is enhanced by agents that elevate intracellular cAMP publication-title: J Neurosci doi: 10.1523/JNEUROSCI.08-09-03405.1988 contributor: fullname: Middleton – volume: 43 start-page: 1165 year: 2000 ident: 10.1111/apha.12473-BIB0030|apha12473-cit-0030 article-title: Anilide derivatives of an 8-phenylxanthine carboxylic congener are highly potent and selective antagonists at human A(2B) adenosine receptors publication-title: J Med Chem doi: 10.1021/jm990421v contributor: fullname: Kim – volume: 500 start-page: 775 year: 1997 ident: 10.1111/apha.12473-BIB0027|apha12473-cit-0027 article-title: Functional improvement of damaged adult mouse muscle by implantation of primary myoblasts publication-title: J Physiol doi: 10.1113/jphysiol.1997.sp022057 contributor: fullname: Irintchev – volume: 63 start-page: 1 year: 2011 ident: 10.1111/apha.12473-BIB0017|apha12473-cit-0017 article-title: International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors-an update publication-title: Pharmacol Rev doi: 10.1124/pr.110.003285 contributor: fullname: Fredholm – volume: 396 start-page: 267 year: 1988 ident: 10.1111/apha.12473-BIB0028|apha12473-cit-0028 article-title: Kinetic differences between embryonic- and adult-type acetylcholine receptors in rat myotubes publication-title: J Physiol doi: 10.1113/jphysiol.1988.sp016962 contributor: fullname: Jaramillo – volume: 30 start-page: 205 year: 2006 ident: 10.1111/apha.12473-BIB0047|apha12473-cit-0047 article-title: Quaternary ammonium anticholinesterases have different effects on nicotinic receptors: is there a single binding site? publication-title: J Mol Neurosci doi: 10.1385/JMN:30:1:205 contributor: fullname: Olivera-Bravo – volume: 35 start-page: 169 year: 2006 ident: 10.1111/apha.12473-BIB0048|apha12473-cit-0048 article-title: Circadian clocks regulate adenylyl cyclase activity rhythms in human RPE cells publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2006.09.015 contributor: fullname: Pavan – volume: 53 start-page: 1392 year: 2012 ident: 10.1111/apha.12473-BIB0054|apha12473-cit-0054 article-title: Reactive oxygen species contribute to the promotion of the ATP-mediated proliferation of mouse skeletal myoblasts publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2012.08.002 contributor: fullname: Sciancalepore – volume: 95 start-page: 577 year: 2003 ident: 10.1111/apha.12473-BIB0033|apha12473-cit-0033 article-title: ATP concentrations and muscle tension increase linearly with muscle contraction publication-title: J Appl Physiol doi: 10.1152/japplphysiol.00185.2003 contributor: fullname: Li – volume: 589 start-page: 2755 year: 2011 ident: 10.1111/apha.12473-BIB0012|apha12473-cit-0012 article-title: Adenosine A2A receptor induces protein kinase A-dependent functional modulation of human (alpha)3(beta)4 nicotinic receptor publication-title: J Physiol doi: 10.1113/jphysiol.2011.207282 contributor: fullname: Angelantonio – volume: 45 start-page: 978 year: 1994 ident: 10.1111/apha.12473-BIB0046|apha12473-cit-0046 article-title: 125I-4-aminobenzyl-5'-N-methylcarboxamidoadenosine, a high affinity radioligand for the rat A3 adenosine receptor publication-title: Mol Pharmacol contributor: fullname: Olah – volume: 8 start-page: 741 year: 2012 ident: 10.1111/apha.12473-BIB0010|apha12473-cit-0010 article-title: Simultaneous quantification of 12 different nucleotides and nucleosides released from renal epithelium and in human urine samples using ion-pair reversed-phase HPLC publication-title: Purinergic Signal doi: 10.1007/s11302-012-9321-8 contributor: fullname: Contreras-Sanz |
SSID | ssj0001213422 ssj0043892 |
Score | 2.1977916 |
Snippet | Aims
The autocrine activity of the embryonic isoform of the nicotinic acetylcholine receptor is crucial for the correct differentiation and trophism of... The autocrine activity of the embryonic isoform of the nicotinic acetylcholine receptor is crucial for the correct differentiation and trophism of skeletal... Aims The autocrine activity of the embryonic isoform of the nicotinic acetylcholine receptor is crucial for the correct differentiation and trophism of... AIMSThe autocrine activity of the embryonic isoform of the nicotinic acetylcholine receptor is crucial for the correct differentiation and trophism of skeletal... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 467 |
SubjectTerms | acetylcholine receptor adenosine Adenosine - metabolism Animals Calcium - metabolism Calcium Signaling - physiology Cells, Cultured Male Mice Mice, Inbred BALB C Muscle Fibers, Skeletal - metabolism myotubes patch clamp Patch-Clamp Techniques Receptors, Nicotinic - metabolism skeletal muscle |
Title | Adenosine enhances acetylcholine receptor channel openings and intracellular calcium 'spiking' in mouse skeletal myotubes |
URI | https://api.istex.fr/ark:/67375/WNG-8FSPLF3N-H/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fapha.12473 https://www.ncbi.nlm.nih.gov/pubmed/25683861 https://www.proquest.com/docview/1696029259 https://search.proquest.com/docview/1697209908 https://search.proquest.com/docview/1701486563 |
Volume | 214 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1daxNBFB1KffFFrfVjtcqI0gdhy-7O7swEfFnUGERDUYt9kWG-QkPMNnQ30AhCf4b-vf4S753Nrq1IQd9CcklmZu-de87NnTOEPGNOTyDPudgltohzzX2sIbHG3GZaugFwiqB4837MRwf528PicIO86M7CtPoQfcENIyPs1xjg2tQXglyjnBJkJ4FSnykT2M_16kN2ocCSsjzrtaTwlu-sPR0JtEkkcq1Vim09v7_qUna6hgt9-jfoeRnJhlQ0vEm-dJNoO1Bme8vG7Nlvf-g7_u8sb5Eba4xKy9aptsiGr26T7bICfj5f0V0aukZDOX6bfC8dyo3D71BfHaEL1VRb36y-4r6Kb8OW6hfA7CmeMYbhULywC-vzVFeOTrG4jP8eYDssBYex0-Wcnp_9qBdTrOKfn_0EG4oFCk_rGSRJYAt0vjpulsbXd8jB8PWnl6N4faVDbPOBZLE2WrNMAChy4CCJNhNvLOz9EmhN7gvJbWJ9oUWqLeAGnzmTo0SgzKU23JkJu0s2q-PK3ydUANBAFdPEagccPzVM2NQaIGTWMMZ5RJ52j1ItWuUO1TEeXFUVVjUiu-Ep9yb6ZIa9bqJQn8dvlBx-3H83ZGM1ishO5wZqHea1SjkQwGwAFDIiT_qPIUBx3XTlYW3QRuD55EReYSOwsAvQGsZzr3WxfkCASSWTPI3I8-AoV0xGlfujMrx68C_GD8l1gIFF29a4Qzabk6V_BFCrMY9DSP0CPREmFA |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF5Be4BLKRSKaYFFoB6QXNle_2yOFhAMpFEFrehttX8RURo3qh2pQULqY5TX65Mws3ZMi1AluEXOKF6PZ3bmm8x-Q8grZuQI4pzxTaATP5ap9SUEVj_VkeSmB5jCMd7sDdPiMP54lBy1vTl4Fqbhh-gKbugZbr9GB8eC9BUvl8inBOEpY7fJKvg7w8kNbz9HV0osIYujjk0K53xHzflIAE5ZwFu2Umzs-f1b1-LTKqr67G_J5_Vc1gWj_r1m4mrlOAyxB2WyO6_Vrv7-B8Pjfz_nOllr01SaN3Z1n9yy5QOykZcA0acLukNd46iryG-QH7lBxnG4EbXlN7Siikpt68Uxbq14GXZVOwNwT_GYMayH4swuLNFTWRo6xvoy_oGAHbEUbEaP51N6eX5RzcZYyL88_wkyFGsUllYTiJMAGOh0cVLPla0eksP-u4M3hd9OdfB13OPMl0pKFmWQFxmwkUCqkVUatn8OyCa2CU91oG0is1BqSB1sZFSMLIE85lKlRo3YI7JSnpT2MaEZ5BpIZBpoaQDmh4plOtQKMJlWjKWpR14u36WYNeQdYgl6UKvCadUjO-41dyLydILtblkivg7fC97_sj_os6EoPLK9tAPRenolwhQwYNQDFOmRF93X4KOoN1la0A3KZHhEOeA3yGRY24XsGtaz2dhYtyBISznjaeiR185SbngYke8Xufv05F-En5M7xcHeQAw-DD9tkbuQFSZNl-M2WalP5_YpZF61eub86xdslCos |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxNBFB5qC-KLt3pZrTqi9EHYsruzOzsBXxZ1jVpDUIt9kWFuoSHNNnQTMILQn6F_r7_Ec2azaytS0LeQHJKZ2XPmfN_JmW8IecqsGkGes6GNTBamirtQQWINuUmUsD3gFF7x5v2A9_fSt_vZ_hp53p6FafQhuoIbRobfrzHAZ3Z0JsgVyilBdsrZJbKRcoC-CIk-JGcqLDFLk05MCq_5TprjkcCb8kisxEqxr-f3d51LTxu40l__hj3PQ1mfi8pr5Es7i6YFZbKzmOsd8-0Pgcf_neZ1cnUFUmnReNUNsuaqm2SzqICgT5d0m_q2UV-P3yTfC4t64_A71FUH6EM1VcbNl4e4seLbsKe6GVB7ioeMYTgUb-zCAj1VlaVjrC7j3wfYD0vBY8x4MaWnJz_q2RjL-KcnP8GGYoXC0XoCWRLoAp0uj-YL7epbZK989elFP1zd6RCatCdYqLRSLMkBFVnwkEjpkdMGNn8BvCZ1meAmMi5TeawMAAeXWJ2iRqBIhdLc6hG7Tdaro8rdJTQHpIEyppFRFkh-rFluYqOBkRnNGOcBedI-SjlrpDtkS3lwVaVf1YBs-6fcmajjCTa75Zn8PHgtRflxuFuygewHZKt1A7mK81rGHBhg0gMOGZDH3ccQobhuqnKwNmiT4wHlSFxgk2NlF7A1jOdO42LdgACUCiZ4HJBn3lEumIwshv3Cv7r3L8aPyOXhy1Luvhm8u0-uACTMmhbHLbI-P164BwC75vqhj65f2ako2w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adenosine+enhances+acetylcholine+receptor+channel+openings+and+intracellular+calcium+%27spiking%27+in+mouse+skeletal+myotubes&rft.jtitle=Acta+physiologica+%28Oxford%2C+England%29&rft.au=Bernareggi%2C+A&rft.au=Luin%2C+E&rft.au=Pavan%2C+B&rft.au=Parato%2C+G&rft.date=2015-08-01&rft.eissn=1748-1716&rft.volume=214&rft.issue=4&rft.spage=467&rft.epage=480&rft_id=info:doi/10.1111%2Fapha.12473&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-1708&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-1708&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-1708&client=summon |