Dead or dying? Quantifying the point of no return from hydraulic failure in drought-induced tree mortality

Determining physiological mechanisms and thresholds for climate-driven tree die-off could help improve global predictions of future terrestrial carbon sinks. We directly tested for the lethal threshold in hydraulic failure – an inability to move water due to drought-induced xylem embolism – in a pin...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 223; no. 4; pp. 1834 - 1843
Main Authors Hammond, William M., Yu, Kailiang, Wilson, Luke A., Will, Rodney E., Anderegg, William R. L., Adams, Henry D.
Format Journal Article
LanguageEnglish
Published England Wiley 01.09.2019
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Determining physiological mechanisms and thresholds for climate-driven tree die-off could help improve global predictions of future terrestrial carbon sinks. We directly tested for the lethal threshold in hydraulic failure – an inability to move water due to drought-induced xylem embolism – in a pine sapling experiment. In a glasshouse experiment, we exposed loblolly pine (Pinus taeda) saplings (n = 83) to drought-induced water stress ranging from mild to lethal. Before rewatering to relieve drought stress, we measured native hydraulic conductivity and foliar color change. We monitored all measured individuals for survival or mortality. We found a lethal threshold at 80% loss of hydraulic conductivity – a point of hydraulic failure beyond which it is more likely trees will die, than survive, and describe mortality risk across all levels of water stress. Foliar color changes lagged behind hydraulic failure – best predicting when trees had been dead for some time, rather than when they were dying. Our direct measurement of native conductivity, while monitoring the same individuals for survival or mortality, quantifies a continuous probability of mortality risk from hydraulic failure. Predicting tree die-off events and understanding the mechanism involved requires knowledge not only of when trees are dead, but when they begin dying – having passed the point of no return.
AbstractList Determining physiological mechanisms and thresholds for climate‐driven tree die‐off could help improve global predictions of future terrestrial carbon sinks. We directly tested for the lethal threshold in hydraulic failure – an inability to move water due to drought‐induced xylem embolism – in a pine sapling experiment. In a glasshouse experiment, we exposed loblolly pine (Pinus taeda) saplings (n = 83) to drought‐induced water stress ranging from mild to lethal. Before rewatering to relieve drought stress, we measured native hydraulic conductivity and foliar color change. We monitored all measured individuals for survival or mortality. We found a lethal threshold at 80% loss of hydraulic conductivity – a point of hydraulic failure beyond which it is more likely trees will die, than survive, and describe mortality risk across all levels of water stress. Foliar color changes lagged behind hydraulic failure – best predicting when trees had been dead for some time, rather than when they were dying. Our direct measurement of native conductivity, while monitoring the same individuals for survival or mortality, quantifies a continuous probability of mortality risk from hydraulic failure. Predicting tree die‐off events and understanding the mechanism involved requires knowledge not only of when trees are dead, but when they begin dying – having passed the point of no return.
Determining physiological mechanisms and thresholds for climate-driven tree die-off could help improve global predictions of future terrestrial carbon sinks. We directly tested for the lethal threshold in hydraulic failure – an inability to move water due to drought-induced xylem embolism – in a pine sapling experiment. In a glasshouse experiment, we exposed loblolly pine (Pinus taeda) saplings (n = 83) to drought-induced water stress ranging from mild to lethal. Before rewatering to relieve drought stress, we measured native hydraulic conductivity and foliar color change. We monitored all measured individuals for survival or mortality. We found a lethal threshold at 80% loss of hydraulic conductivity – a point of hydraulic failure beyond which it is more likely trees will die, than survive, and describe mortality risk across all levels of water stress. Foliar color changes lagged behind hydraulic failure – best predicting when trees had been dead for some time, rather than when they were dying. Our direct measurement of native conductivity, while monitoring the same individuals for survival or mortality, quantifies a continuous probability of mortality risk from hydraulic failure. Predicting tree die-off events and understanding the mechanism involved requires knowledge not only of when trees are dead, but when they begin dying – having passed the point of no return.
Determining physiological mechanisms and thresholds for climate-driven tree die-off could help improve global predictions of future terrestrial carbon sinks. We directly tested for the lethal threshold in hydraulic failure - an inability to move water due to drought-induced xylem embolism - in a pine sapling experiment. In a glasshouse experiment, we exposed loblolly pine (Pinus taeda) saplings (n = 83) to drought-induced water stress ranging from mild to lethal. Before rewatering to relieve drought stress, we measured native hydraulic conductivity and foliar color change. We monitored all measured individuals for survival or mortality. We found a lethal threshold at 80% loss of hydraulic conductivity - a point of hydraulic failure beyond which it is more likely trees will die, than survive, and describe mortality risk across all levels of water stress. Foliar color changes lagged behind hydraulic failure - best predicting when trees had been dead for some time, rather than when they were dying. Our direct measurement of native conductivity, while monitoring the same individuals for survival or mortality, quantifies a continuous probability of mortality risk from hydraulic failure. Predicting tree die-off events and understanding the mechanism involved requires knowledge not only of when trees are dead, but when they begin dying - having passed the point of no return.Determining physiological mechanisms and thresholds for climate-driven tree die-off could help improve global predictions of future terrestrial carbon sinks. We directly tested for the lethal threshold in hydraulic failure - an inability to move water due to drought-induced xylem embolism - in a pine sapling experiment. In a glasshouse experiment, we exposed loblolly pine (Pinus taeda) saplings (n = 83) to drought-induced water stress ranging from mild to lethal. Before rewatering to relieve drought stress, we measured native hydraulic conductivity and foliar color change. We monitored all measured individuals for survival or mortality. We found a lethal threshold at 80% loss of hydraulic conductivity - a point of hydraulic failure beyond which it is more likely trees will die, than survive, and describe mortality risk across all levels of water stress. Foliar color changes lagged behind hydraulic failure - best predicting when trees had been dead for some time, rather than when they were dying. Our direct measurement of native conductivity, while monitoring the same individuals for survival or mortality, quantifies a continuous probability of mortality risk from hydraulic failure. Predicting tree die-off events and understanding the mechanism involved requires knowledge not only of when trees are dead, but when they begin dying - having passed the point of no return.
Determining physiological mechanisms and thresholds for climate-driven tree die-off could help improve global predictions of future terrestrial carbon sinks. We directly tested for the lethal threshold in hydraulic failure - an inability to move water due to drought-induced xylem embolism - in a pine sapling experiment. In a glasshouse experiment, we exposed loblolly pine (Pinus taeda) saplings (n = 83) to drought-induced water stress ranging from mild to lethal. Before rewatering to relieve drought stress, we measured native hydraulic conductivity and foliar color change. We monitored all measured individuals for survival or mortality. We found a lethal threshold at 80% loss of hydraulic conductivity - a point of hydraulic failure beyond which it is more likely trees will die, than survive, and describe mortality risk across all levels of water stress. Foliar color changes lagged behind hydraulic failure - best predicting when trees had been dead for some time, rather than when they were dying. Our direct measurement of native conductivity, while monitoring the same individuals for survival or mortality, quantifies a continuous probability of mortality risk from hydraulic failure. Predicting tree die-off events and understanding the mechanism involved requires knowledge not only of when trees are dead, but when they begin dying - having passed the point of no return.
Summary Determining physiological mechanisms and thresholds for climate‐driven tree die‐off could help improve global predictions of future terrestrial carbon sinks. We directly tested for the lethal threshold in hydraulic failure – an inability to move water due to drought‐induced xylem embolism – in a pine sapling experiment. In a glasshouse experiment, we exposed loblolly pine (Pinus taeda) saplings (n = 83) to drought‐induced water stress ranging from mild to lethal. Before rewatering to relieve drought stress, we measured native hydraulic conductivity and foliar color change. We monitored all measured individuals for survival or mortality. We found a lethal threshold at 80% loss of hydraulic conductivity – a point of hydraulic failure beyond which it is more likely trees will die, than survive, and describe mortality risk across all levels of water stress. Foliar color changes lagged behind hydraulic failure – best predicting when trees had been dead for some time, rather than when they were dying. Our direct measurement of native conductivity, while monitoring the same individuals for survival or mortality, quantifies a continuous probability of mortality risk from hydraulic failure. Predicting tree die‐off events and understanding the mechanism involved requires knowledge not only of when trees are dead, but when they begin dying – having passed the point of no return.
Determining physiological mechanisms and thresholds for climate‐driven tree die‐off could help improve global predictions of future terrestrial carbon sinks. We directly tested for the lethal threshold in hydraulic failure – an inability to move water due to drought‐induced xylem embolism – in a pine sapling experiment. In a glasshouse experiment, we exposed loblolly pine ( Pinus taeda ) saplings ( n  = 83) to drought‐induced water stress ranging from mild to lethal. Before rewatering to relieve drought stress, we measured native hydraulic conductivity and foliar color change. We monitored all measured individuals for survival or mortality. We found a lethal threshold at 80% loss of hydraulic conductivity – a point of hydraulic failure beyond which it is more likely trees will die, than survive, and describe mortality risk across all levels of water stress. Foliar color changes lagged behind hydraulic failure – best predicting when trees had been dead for some time, rather than when they were dying. Our direct measurement of native conductivity, while monitoring the same individuals for survival or mortality, quantifies a continuous probability of mortality risk from hydraulic failure. Predicting tree die‐off events and understanding the mechanism involved requires knowledge not only of when trees are dead, but when they begin dying – having passed the point of no return.
Author Yu, Kailiang
Adams, Henry D.
Anderegg, William R. L.
Hammond, William M.
Wilson, Luke A.
Will, Rodney E.
AuthorAffiliation 1 Plant Biology, Ecology and Evolution Oklahoma State University Stillwater OK 74078 USA
3 Department of Natural Resource Ecology and Management Oklahoma State University Stillwater OK 74078 USA
2 School of Biological Sciences University of Utah Salt Lake City UT 84112 USA
AuthorAffiliation_xml – name: 1 Plant Biology, Ecology and Evolution Oklahoma State University Stillwater OK 74078 USA
– name: 3 Department of Natural Resource Ecology and Management Oklahoma State University Stillwater OK 74078 USA
– name: 2 School of Biological Sciences University of Utah Salt Lake City UT 84112 USA
Author_xml – sequence: 1
  givenname: William M.
  surname: Hammond
  fullname: Hammond, William M.
– sequence: 2
  givenname: Kailiang
  surname: Yu
  fullname: Yu, Kailiang
– sequence: 3
  givenname: Luke A.
  surname: Wilson
  fullname: Wilson, Luke A.
– sequence: 4
  givenname: Rodney E.
  surname: Will
  fullname: Will, Rodney E.
– sequence: 5
  givenname: William R. L.
  surname: Anderegg
  fullname: Anderegg, William R. L.
– sequence: 6
  givenname: Henry D.
  surname: Adams
  fullname: Adams, Henry D.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31087656$$D View this record in MEDLINE/PubMed
BookMark eNqFkttrFDEUxoNU7Lb64B-gBHypD9MmmVwmL4rUS4XiBRR8C9lcdrLMJGsmY5n_3ll3t2hRzMsh5Pd9nJzznYCjmKID4DFG53g-F3HTnmMmCbkHFphyWTW4FkdggRBpKk75t2NwMgxrhJBknDwAxzVGjeCML8D6tdMWpgztFOLqJfw86liC315gaR3cpBALTB7GBLMrY47Q59TDdrJZj10w0OvQjdnBEKHNaVy1pQrRjsZZWLJzsE-56C6U6SG473U3uEf7egq-vn3z5fKquv747v3lq-vKUNmQyjaIcuprKkhjvfeSMcuXmnBjG7H0VpJaO89FQyimki6xEdoTbq0hmjFk6lPwYue7GZe9s8bFknWnNjn0Ok8q6aD-fImhVav0Q3EhcCPpbHC2N8jp--iGovowGNd1Oro0DorUREiBMSL_R2cWYVFjPKPP7qDrNI9znsRM8YaRGost9fT35m-7PmxsBi52gMlpGLLzyoSiS0jbv4ROYaS2mVBzJtSvTMyK53cUB9O_sXv3m9C56d-g-vDp6qB4slOsh5LyrYJwwSQjtP4JOefQiQ
CitedBy_id crossref_primary_10_1111_pce_15080
crossref_primary_10_3390_plants9020231
crossref_primary_10_1186_s13595_024_01246_7
crossref_primary_10_3390_f13121979
crossref_primary_10_1016_j_sciaf_2020_e00405
crossref_primary_10_1111_plb_13476
crossref_primary_10_3390_w13202911
crossref_primary_10_1111_nph_17571
crossref_primary_10_1016_j_tplants_2023_01_004
crossref_primary_10_1016_j_agrformet_2022_108959
crossref_primary_10_5194_gmd_16_6267_2023
crossref_primary_10_3389_fpls_2022_822136
crossref_primary_10_1038_s41586_023_05971_3
crossref_primary_10_1088_1748_9326_ac7968
crossref_primary_10_1016_j_jaridenv_2025_105324
crossref_primary_10_3389_fpls_2025_1542301
crossref_primary_10_1071_FP21326
crossref_primary_10_1093_treephys_tpae063
crossref_primary_10_1016_j_foreco_2023_121127
crossref_primary_10_1093_jxb_erz474
crossref_primary_10_1111_nph_18770
crossref_primary_10_3389_ffgc_2023_1198156
crossref_primary_10_1111_ele_13856
crossref_primary_10_1093_treephys_tpab128
crossref_primary_10_3390_app10186322
crossref_primary_10_1007_s00442_021_04905_y
crossref_primary_10_1111_gcb_17133
crossref_primary_10_1007_s00468_023_02459_5
crossref_primary_10_3390_f14091784
crossref_primary_10_1111_gcb_15869
crossref_primary_10_1016_j_tplants_2021_10_003
crossref_primary_10_1093_treephys_tpab137
crossref_primary_10_1093_treephys_tpab018
crossref_primary_10_1093_jxb_erac061
crossref_primary_10_1007_s00468_019_01939_x
crossref_primary_10_1016_j_agrformet_2025_110430
crossref_primary_10_1007_s00468_021_02188_7
crossref_primary_10_1111_nph_19859
crossref_primary_10_1111_nph_17317
crossref_primary_10_1111_nph_19615
crossref_primary_10_1016_j_plaphy_2021_05_046
crossref_primary_10_1126_sciadv_adl4800
crossref_primary_10_1093_jxb_erae159
crossref_primary_10_1111_nph_17266
crossref_primary_10_3389_ffgc_2020_560409
crossref_primary_10_1525_abt_2020_82_8_553
crossref_primary_10_1007_s00442_022_05106_x
crossref_primary_10_1016_j_foreco_2020_117980
crossref_primary_10_1007_s40725_020_00124_5
crossref_primary_10_1088_1748_9326_ac1135
crossref_primary_10_3390_f13030370
crossref_primary_10_1016_j_envexpbot_2023_105484
crossref_primary_10_1111_nph_16859
crossref_primary_10_5194_gmd_15_7809_2022
crossref_primary_10_1016_j_foreco_2024_122388
crossref_primary_10_5194_bg_20_4491_2023
crossref_primary_10_1093_treephys_tpae027
crossref_primary_10_1111_pce_14639
crossref_primary_10_1093_treephys_tpad056
crossref_primary_10_1111_1365_2745_13931
crossref_primary_10_1073_pnas_1913072116
crossref_primary_10_1111_gcb_15480
crossref_primary_10_1111_pce_14401
crossref_primary_10_1093_treephys_tpz117
crossref_primary_10_1111_gcb_70049
crossref_primary_10_34133_remotesensing_0445
crossref_primary_10_1111_nph_18454
crossref_primary_10_1111_nph_18578
crossref_primary_10_1093_treephys_tpae038
crossref_primary_10_1038_s41893_024_01295_w
crossref_primary_10_1111_pce_13881
crossref_primary_10_1093_aob_mcac053
crossref_primary_10_1073_pnas_2316164121
crossref_primary_10_1111_nph_20097
crossref_primary_10_1007_s00468_020_01983_y
crossref_primary_10_1111_ppl_14467
crossref_primary_10_3389_fpls_2021_627403
crossref_primary_10_1007_s13595_019_0868_1
crossref_primary_10_1126_science_aat7631
crossref_primary_10_1016_j_scitotenv_2022_157808
crossref_primary_10_1038_s41467_022_29289_2
crossref_primary_10_1029_2022WR034117
crossref_primary_10_1002_ecy_3877
crossref_primary_10_1016_j_envexpbot_2022_105173
crossref_primary_10_1016_j_jhydrol_2024_132255
crossref_primary_10_1111_nph_18208
crossref_primary_10_1016_j_seta_2023_103080
crossref_primary_10_3389_fpls_2020_585674
crossref_primary_10_1111_ppl_14114
crossref_primary_10_1016_j_earscirev_2024_105012
crossref_primary_10_3390_w13141945
crossref_primary_10_1002_ajb2_1518
crossref_primary_10_3390_fire5050128
crossref_primary_10_1111_ppl_13556
crossref_primary_10_1111_pce_14033
crossref_primary_10_1093_plphys_kiab497
crossref_primary_10_1093_plphys_kiae407
crossref_primary_10_1080_03721426_2023_2200875
crossref_primary_10_1093_aobpla_plac012
crossref_primary_10_1088_1748_9326_ad29aa
crossref_primary_10_1016_j_envexpbot_2021_104451
crossref_primary_10_1093_jxb_erac446
crossref_primary_10_1016_j_scitotenv_2024_171174
crossref_primary_10_5194_bg_22_1_2025
crossref_primary_10_1093_jxb_eraa381
crossref_primary_10_3389_fpls_2023_1149760
crossref_primary_10_1029_2023EF003705
crossref_primary_10_1111_pce_14712
crossref_primary_10_1016_j_foreco_2020_118179
crossref_primary_10_3390_f14122415
crossref_primary_10_1029_2022JG006971
crossref_primary_10_1093_plphys_kiab002
crossref_primary_10_1111_pce_15011
crossref_primary_10_1016_j_envexpbot_2023_105334
crossref_primary_10_1111_ele_13575
crossref_primary_10_1111_nph_17043
crossref_primary_10_1016_j_fecs_2024_100273
crossref_primary_10_1111_nph_19463
crossref_primary_10_1093_treephys_tpae117
crossref_primary_10_1093_treephys_tpab086
crossref_primary_10_1093_treephys_tpae110
crossref_primary_10_1111_nph_20218
crossref_primary_10_1111_pce_14921
crossref_primary_10_1016_j_foreco_2022_120129
crossref_primary_10_5194_nhess_24_3173_2024
crossref_primary_10_1038_s41559_023_02180_z
crossref_primary_10_1111_pce_14254
crossref_primary_10_1111_ppl_13450
crossref_primary_10_1111_ppl_13331
crossref_primary_10_1111_ele_14314
crossref_primary_10_1029_2021GL096686
crossref_primary_10_1007_s00442_020_04772_z
crossref_primary_10_1080_17550874_2021_1961172
crossref_primary_10_1086_725385
crossref_primary_10_1088_1748_9326_ad8f48
crossref_primary_10_1093_aobpla_plab027
crossref_primary_10_1111_nph_19692
crossref_primary_10_3389_fpls_2021_606908
crossref_primary_10_1093_treephys_tpab096
crossref_primary_10_1073_pnas_2025251118
crossref_primary_10_1093_treephys_tpad151
crossref_primary_10_1111_pce_14149
crossref_primary_10_1016_j_envpol_2022_119855
crossref_primary_10_1016_j_foreco_2023_120779
crossref_primary_10_1111_pce_14265
crossref_primary_10_1111_nph_18129
crossref_primary_10_3390_f10110941
crossref_primary_10_3390_f12081104
crossref_primary_10_1007_s11676_021_01351_7
crossref_primary_10_1111_nph_17786
crossref_primary_10_1186_s13595_024_01244_9
crossref_primary_10_1093_treephys_tpab145
crossref_primary_10_1360_TB_2022_0980
crossref_primary_10_1111_pce_13937
crossref_primary_10_1016_j_rse_2024_114080
crossref_primary_10_1038_s43017_022_00272_1
crossref_primary_10_1007_s40626_023_00267_3
crossref_primary_10_1093_treephys_tpae095
crossref_primary_10_1111_ppl_13995
crossref_primary_10_1640_0002_8444_112_4_336
crossref_primary_10_1111_gcb_17038
crossref_primary_10_3389_fpls_2021_715127
crossref_primary_10_1093_jxb_eraa186
crossref_primary_10_1111_nph_19276
crossref_primary_10_1093_treephys_tpac007
crossref_primary_10_1007_s00468_022_02345_6
crossref_primary_10_1111_nph_18620
crossref_primary_10_1111_ppl_14292
crossref_primary_10_1111_plb_13563
crossref_primary_10_1111_nph_18065
crossref_primary_10_1093_treephys_tpac001
crossref_primary_10_1111_pce_13942
crossref_primary_10_3390_f11050513
crossref_primary_10_1111_1365_2745_14069
crossref_primary_10_3389_fevo_2023_1166538
crossref_primary_10_1038_s41598_022_24833_y
crossref_primary_10_1111_plb_13444
crossref_primary_10_1111_gcb_15881
crossref_primary_10_3390_su16072703
crossref_primary_10_1093_aobpla_plac051
crossref_primary_10_1111_nph_16448
crossref_primary_10_1002_ecs2_70083
crossref_primary_10_1111_gcb_16297
crossref_primary_10_1111_geb_13736
crossref_primary_10_1093_treephys_tpad104
crossref_primary_10_1111_aec_13343
crossref_primary_10_1007_s00442_019_04550_6
crossref_primary_10_1093_treephys_tpab043
crossref_primary_10_1111_pce_14327
crossref_primary_10_3390_f13010065
crossref_primary_10_1111_pce_14573
crossref_primary_10_1111_plb_13455
crossref_primary_10_1016_j_foreco_2024_122081
crossref_primary_10_1111_gcb_16400
crossref_primary_10_1111_nph_18614
crossref_primary_10_1016_j_foreco_2023_121130
crossref_primary_10_5194_bg_21_2973_2024
crossref_primary_10_1111_nph_18168
crossref_primary_10_1093_treephys_tpz050
crossref_primary_10_1093_treephys_tpab174
crossref_primary_10_1016_j_agrformet_2023_109329
crossref_primary_10_1093_treephys_tpac143
crossref_primary_10_1111_pce_14469
crossref_primary_10_1016_j_foreco_2021_119944
crossref_primary_10_1111_nph_16304
crossref_primary_10_1002_ecs2_4525
Cites_doi 10.1111/ele.12851
10.1093/treephys/tpz050
10.1002/2015WR017244
10.1111/j.1469-8137.2009.03167.x
10.1111/pce.13121
10.1093/jxb/ert193
10.1038/s41559-017-0248-x
10.1111/nph.15333
10.1038/nclimate2873
10.1111/j.1469-8137.2010.03393.x
10.1093/treephys/tpz016
10.2307/1222974
10.1111/nph.13354
10.1093/treephys/tpt030
10.1111/pce.12461
10.1111/nph.15644
10.1111/pce.12139
10.1890/02-0538
10.4135/9781412983433
10.1104/pp.114.249706
10.1073/pnas.1222477110
10.1093/treephys/tps116
10.1073/pnas.0908053106
10.1111/pce.12141
10.1016/j.plaphy.2017.10.003
10.1104/pp.88.3.581
10.1104/pp.108.129783
10.1093/jxb/erx342
10.1016/j.cageo.2012.10.020
10.1038/nclimate1635
10.1093/treephys/tpz062
10.1016/j.tree.2011.06.003
10.1093/aob/mct204
10.1038/nclimate2281
10.1073/pnas.1519620113
10.3389/fpls.2013.00108
10.1111/nph.13110
10.1104/pp.100.1.205
10.1111/nph.15048
10.1038/ngeo2400
10.1073/pnas.1525678113
10.1175/JCLI-D-12-00579.1
10.1016/j.envexpbot.2018.03.011
10.1016/j.foreco.2009.09.001
10.1126/science.1165000
10.1111/j.1469-8137.2008.02436.x
10.1126/science.1155121
10.1111/j.1365-3040.2005.01433.x
10.1111/j.1365-2435.2008.01483.x
10.1073/pnas.1107891109
10.1890/15-1402.1
10.1038/s41586-018-0240-x
10.1175/JCLI3800.1
10.1111/pce.12852
10.1111/ele.12962
10.1073/pnas.0901438106
10.1002/2017JG004095
10.1111/j.1365-3040.1988.tb01774.x
10.3389/fpls.2016.00751
10.1111/j.1365-3040.2011.02439.x
ContentType Journal Article
Copyright 2019 The Authors © 2019 New Phytologist Trust
2019 The Authors. New Phytologist © 2019 New Phytologist Trust
2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Authors © 2019 New Phytologist Trust
– notice: 2019 The Authors. New Phytologist © 2019 New Phytologist Trust
– notice: 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
– notice: 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1111/nph.15922
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
MEDLINE

Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 1843
ExternalDocumentID PMC6771894
31087656
10_1111_nph_15922
NPH15922
26759524
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Division of Graduate Education
  funderid: 1144467
– fundername: National Science Foundation
  funderid: 1714972; 1802880
– fundername: USDA National Institute of Food and Agriculture, Agricultural and Food Research Initiative Competitive Programme, Ecosystem Services and Agro‐ecosystem Management
  funderid: 2018‐67019‐27850
– fundername: Oklahoma NSF EPSCoR Research Infrastructure Improvement Award
  funderid: OIA‐1301789
– fundername: David and Lucile Packard Foundation
– fundername: University of Utah Global Change and Sustainability Center
– fundername: Division of Graduate Education
  grantid: 1144467
– fundername: National Science Foundation
  grantid: 1714972; 1802880
– fundername: USDA National Institute of Food and Agriculture, Agricultural and Food Research Initiative Competitive Programme, Ecosystem Services and Agro‐ecosystem Management
  grantid: 2018‐67019‐27850
– fundername: Oklahoma NSF EPSCoR Research Infrastructure Improvement Award
  grantid: OIA‐1301789
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACQPF
ADULT
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
LW6
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ADXHL
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c4982-d80464f34728dfff955d6ba26cd87bfd923aef678241494b1c7af26ddc2a550c3
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Thu Aug 21 13:53:43 EDT 2025
Fri Jul 11 18:32:18 EDT 2025
Fri Jul 11 12:25:56 EDT 2025
Fri Jul 25 12:16:26 EDT 2025
Thu Apr 03 07:01:43 EDT 2025
Thu Apr 24 23:12:28 EDT 2025
Tue Jul 01 02:28:32 EDT 2025
Wed Jan 22 16:39:31 EST 2025
Thu Jul 03 22:05:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords tree mortality
foliar color
drought
tree die-off
hydraulic failure
tree physiology
ecophysiology
climate change
Language English
License Attribution
2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4982-d80464f34728dfff955d6ba26cd87bfd923aef678241494b1c7af26ddc2a550c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6551-3331
0000-0002-2904-810X
0000-0003-4277-770X
0000-0001-9630-4305
0000-0003-4223-5169
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.15922
PMID 31087656
PQID 2268523171
PQPubID 2026848
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6771894
proquest_miscellaneous_2327971102
proquest_miscellaneous_2232017311
proquest_journals_2268523171
pubmed_primary_31087656
crossref_citationtrail_10_1111_nph_15922
crossref_primary_10_1111_nph_15922
wiley_primary_10_1111_nph_15922_NPH15922
jstor_primary_26759524
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2019
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: September 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
– name: Hoboken
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2019
Publisher Wiley
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2018b; 152
2015; 36
2017; 1
2013; 3
2013; 4
2015; 38
2013; 64
2014; 27
2010; 188
2010; 186
2018; 41
2018a; 218
2014; 4
2013; 52
1991; 40
2016; 113
2013; 112
1988; 88
2006; 29
2016; 40
2011; 26
2017; 120
2017; 122
2009; 323
2009; 23
2004; 85
2017; 20
2018; 220
2015; 51
1992; 100
2015; 167
2017; 68
1988; 11
2019; 223
2006; 19
2015; 207
2015; 205
2002
2008; 320
2014; 111
2012; 35
2015; 8
2018; 21
2012; 33
2012; 109
2016; 6
2016; 7
2013; 36
2013; 33
2010; 259
2018; 558
2019
2014; 37
2014
2013
2008; 178
2016; 26
2009; 149
2009; 106
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
R Core Team (e_1_2_7_47_1) 2013
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Li S (e_1_2_7_35_1) 2015; 36
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 152
  start-page: 7
  year: 2018b
  end-page: 18
  article-title: Identifying differences in carbohydrate dynamics of seedlings and mature trees to improve carbon allocation in models for trees and forests
  publication-title: Environmental and Experimental Botany
– volume: 38
  start-page: 1060
  year: 2015
  end-page: 1068
  article-title: Excising stem samples underwater at native tension does not induce xylem cavitation
  publication-title: Plant, Cell & Environment
– volume: 21
  start-page: 968
  year: 2018
  end-page: 977
  article-title: Woody plants optimise stomatal behaviour relative to hydraulic risk
  publication-title: Ecology Letters
– volume: 51
  start-page: 6156
  year: 2015
  end-page: 6176
  article-title: Interdependence of chronic hydraulic dysfunction and canopy processes can improve integrated models of tree response to drought
  publication-title: Water Resources Research
– volume: 223
  start-page: 22
  year: 2019
  end-page: 32
  article-title: Greater focus on water pools may improve our ability to understand and anticipate drought‐induced mortality in plants
  publication-title: New Phytologist
– volume: 167
  start-page: 40
  year: 2015
  end-page: 43
  article-title: Direct X‐ray microtomography observation confirms the induction of embolism upon xylem cutting under tension
  publication-title: Plant Physiology
– volume: 3
  start-page: 30
  year: 2013
  article-title: Consequences of widespread tree mortality triggered by drought and temperature stress
  publication-title: Nature Climate Change
– year: 2019
  article-title: Plant water content integrates hydraulics and carbon depletion to predict drought-induced seedling mortality
  publication-title: Tree Physiology
– volume: 1
  start-page: 1285
  year: 2017
  article-title: A multi‐species synthesis of physiological mechanisms in drought‐induced tree mortality
  publication-title: Nature Ecology and Evolution
– volume: 26
  start-page: 1827
  year: 2016
  end-page: 1841
  article-title: Towards a common methodology for developing logistic tree mortality models based on ring‐width data
  publication-title: Ecological Applications
– volume: 29
  start-page: 571
  year: 2006
  end-page: 583
  article-title: Functional coordination between leaf gas exchange and vulnerability to xylem cavitation in temperate forest trees
  publication-title: Plant, Cell & Environment
– volume: 41
  start-page: 576
  year: 2018
  end-page: 588
  article-title: Co‐occurring woody species have diverse hydraulic strategies and mortality rates during an extreme drought
  publication-title: Plant, Cell & Environment
– volume: 40
  start-page: 816
  year: 2016
  end-page: 830
  article-title: Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost
  publication-title: Plant, Cell & Environment
– year: 2014
– volume: 111
  start-page: 3280
  year: 2014
  end-page: 3285
  article-title: Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 23
  start-page: 93
  year: 2009
  end-page: 102
  article-title: Tolerance to low leaf water status of tropical tree seedlings is related to drought performance and distribution
  publication-title: Functional Ecology
– volume: 178
  start-page: 719
  year: 2008
  end-page: 739
  article-title: Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?
  publication-title: New Phytologist
– volume: 33
  start-page: 672
  year: 2013
  end-page: 683
  article-title: Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees
  publication-title: Tree Physiology
– volume: 64
  start-page: 4779
  year: 2013
  end-page: 4791
  article-title: Methods for measuring plant vulnerability to cavitation: a critical review
  publication-title: Journal of Experimental Botany
– volume: 33
  start-page: 26
  year: 2012
  end-page: 36
  article-title: Differential ecophysiological response of a major Mediterranean pine species across a climatic gradient
  publication-title: Tree Physiology
– volume: 4
  start-page: 710
  year: 2014
  article-title: Drought survival of tropical tree seedlings enhanced by non‐structural carbohydrate levels
  publication-title: Nature Climate Change
– volume: 26
  start-page: 523
  year: 2011
  end-page: 532
  article-title: The interdependence of mechanisms underlying climate‐driven vegetation mortality
  publication-title: Trends in Ecology & Evolution
– volume: 109
  start-page: 233
  year: 2012
  end-page: 237
  article-title: The roles of hydraulic and carbon stress in a widespread climate‐induced forest die‐off
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 259
  start-page: 660
  year: 2010
  end-page: 684
  article-title: A global overview of drought and heat‐induced tree mortality reveals emerging climate change risks for forests
  publication-title: Forest Ecology and Management
– volume: 20
  start-page: 1437
  year: 2017
  end-page: 1447
  article-title: Plant resistance to drought depends on timely stomatal closure
  publication-title: Ecology Letters
– volume: 188
  start-page: 533
  year: 2010
  end-page: 542
  article-title: Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit
  publication-title: New Phytologist
– volume: 218
  start-page: 15
  year: 2018a
  end-page: 28
  article-title: Research frontiers for improving our understanding of drought‐induced tree and forest mortality
  publication-title: New Phytologist
– volume: 100
  start-page: 205
  year: 1992
  end-page: 209
  article-title: Use of positive pressures to establish vulnerability curves: further support for the air‐seeding hypothesis and implications for pressure–volume analysis
  publication-title: Plant Physiology
– volume: 113
  start-page: 5024
  year: 2016
  end-page: 5029
  article-title: Meta‐analysis reveals that hydraulic traits explain cross‐species patterns of drought‐induced tree mortality across the globe
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 149
  start-page: 575
  year: 2009
  end-page: 584
  article-title: Hydraulic failure defines the recovery and point of death in water‐stressed conifers
  publication-title: Plant Physiology
– volume: 85
  start-page: 2184
  year: 2004
  end-page: 2199
  article-title: Adaptive variation in the vulnerability of woody plants to xylem cavitation
  publication-title: Ecology
– volume: 186
  start-page: 274
  year: 2010
  end-page: 281
  article-title: Physiological mechanisms of drought‐induced tree mortality are far from being resolved
  publication-title: New Phytologist
– volume: 106
  start-page: E106
  year: 2009
  end-page: E106
  article-title: Poor methodology for predicting large‐scale tree die‐off
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 36
  start-page: 179
  year: 2015
  end-page: 192
  article-title: Leaf gas exchange performance and the lethal water potential of five European species during drought
  publication-title: Tree Physiology
– volume: 37
  start-page: 153
  year: 2014
  end-page: 161
  article-title: How do trees die? A test of the hydraulic failure and carbon starvation hypotheses
  publication-title: Plant, Cell & Environment
– volume: 35
  start-page: 601
  year: 2012
  end-page: 610
  article-title: Vulnerability curves by centrifugation: is there an open vessel artefact, and are ‘r’ shaped curves necessarily invalid?
  publication-title: Plant, Cell & Environment
– volume: 113
  start-page: 5880
  year: 2016
  end-page: 5885
  article-title: Warm spring reduced carbon cycle impact of the 2012 US summer drought
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 36
  start-page: 1938
  year: 2013
  end-page: 1949
  article-title: Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism
  publication-title: Plant, Cell & Environment
– year: 2019
  article-title: Dying on time: traits influencing the dynamics of tree mortality risk from drought
  publication-title: Tree Physiology
– volume: 40
  start-page: 201
  year: 1991
  end-page: 214
  article-title: A survey of color charts for biological descriptions
  publication-title: Taxon
– volume: 19
  start-page: 3337
  year: 2006
  end-page: 3353
  article-title: Climate‐carbon cycle feedback analysis: results from the C4MIP model intercomparison
  publication-title: Journal of Climate
– volume: 205
  start-page: 1095
  year: 2015
  end-page: 1105
  article-title: Synchrotron X‐ray microtomography of xylem embolism in saplings during cycles of drought and recovery
  publication-title: New Phytologist
– volume: 106
  start-page: 7063
  year: 2009
  end-page: 7066
  article-title: Temperature sensitivity of drought‐induced tree mortality portends increased regional die‐off under global‐change‐type drought
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 122
  start-page: 3343
  year: 2017
  end-page: 3361
  article-title: Tree mortality decreases water availability and ecosystem resilience to drought in piñon‐juniper woodlands in the southwestern USA
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 323
  start-page: 521
  year: 2009
  end-page: 524
  article-title: Widespread increase of tree mortality rates in the western United States
  publication-title: Science
– volume: 207
  start-page: 14
  year: 2015
  end-page: 27
  article-title: What plant hydraulics can tell us about responses to climate‐change droughts
  publication-title: New Phytologist
– volume: 68
  start-page: 5221
  year: 2017
  end-page: 5232
  article-title: Dying piece by piece: carbohydrate dynamics in aspen ( ) seedlings under severe carbon stress
  publication-title: Journal of Experimental Botany
– volume: 8
  start-page: 367
  year: 2015
  end-page: 371
  article-title: Tree mortality predicted from drought‐induced vascular damage
  publication-title: Nature Geoscience
– volume: 4
  start-page: 108
  year: 2013
  article-title: Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants
  publication-title: Frontiers in Plant Science
– volume: 7
  start-page: 751
  year: 2016
  article-title: Desiccation and mortality dynamics in seedlings of different European beech ( L.) populations under extreme drought conditions
  publication-title: Frontiers in Plant Science
– volume: 558
  start-page: 531
  year: 2018
  article-title: Triggers of tree mortality under drought
  publication-title: Nature
– volume: 27
  start-page: 511
  year: 2014
  end-page: 526
  article-title: Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks
  publication-title: Journal of Climate
– volume: 120
  start-page: 232
  year: 2017
  end-page: 241
  article-title: Effects of prolonged drought on stem non‐structural carbohydrates content and post‐drought hydraulic recovery in L.: the possible link between carbon starvation and hydraulic failure
  publication-title: Plant Physiology and Biochemistry
– volume: 220
  start-page: 836
  year: 2018
  end-page: 850
  article-title: A stomatal control model based on optimization of carbon gain versus hydraulic risk predicts aspen sapling responses to drought
  publication-title: New Phytologist
– volume: 52
  start-page: 258
  year: 2013
  end-page: 268
  article-title: Algorithms for quantitative pedology: a toolkit for soil scientists
  publication-title: Computers & Geosciences
– volume: 112
  start-page: 1431
  year: 2013
  end-page: 1437
  article-title: Water stress‐induced xylem hydraulic failure is a causal factor of tree mortality in beech and poplar
  publication-title: Annals of Botany
– volume: 11
  start-page: 35
  year: 1988
  end-page: 40
  article-title: A method for measuring hydraulic conductivity and embolism in xylem
  publication-title: Plant, Cell & Environment
– year: 2002
– volume: 320
  start-page: 1444
  year: 2008
  end-page: 1449
  article-title: Forests and climate change: forcings, feedbacks, and the climate benefits of forests
  publication-title: Science
– volume: 6
  start-page: 295
  year: 2016
  article-title: Multi‐scale predictions of massive conifer mortality due to chronic temperature rise
  publication-title: Nature Climate Change
– year: 2019
  article-title: Drought response strategies and hydraulic traits contribute to mechanistic understanding of plant dry‐down to hydraulic failure
  publication-title: Tree Physiology
– year: 2013
– volume: 88
  start-page: 581
  issue: 3
  year: 1988
  end-page: 587
  article-title: Mechanism of water stress‐induced xylem embolism
  publication-title: Plant Physiology
– ident: e_1_2_7_40_1
  doi: 10.1111/ele.12851
– ident: e_1_2_7_26_1
  doi: 10.1093/treephys/tpz050
– ident: e_1_2_7_36_1
  doi: 10.1002/2015WR017244
– ident: e_1_2_7_48_1
  doi: 10.1111/j.1469-8137.2009.03167.x
– volume-title: R: a language and environment for statistical computing, v.3.3.3
  year: 2013
  ident: e_1_2_7_47_1
– ident: e_1_2_7_30_1
  doi: 10.1111/pce.13121
– ident: e_1_2_7_21_1
  doi: 10.1093/jxb/ert193
– ident: e_1_2_7_3_1
  doi: 10.1038/s41559-017-0248-x
– ident: e_1_2_7_62_1
  doi: 10.1111/nph.15333
– ident: e_1_2_7_43_1
  doi: 10.1038/nclimate2873
– ident: e_1_2_7_16_1
  doi: 10.1111/j.1469-8137.2010.03393.x
– ident: e_1_2_7_12_1
  doi: 10.1093/treephys/tpz016
– ident: e_1_2_7_58_1
  doi: 10.2307/1222974
– ident: e_1_2_7_53_1
  doi: 10.1111/nph.13354
– ident: e_1_2_7_59_1
  doi: 10.1093/treephys/tpt030
– ident: e_1_2_7_61_1
  doi: 10.1111/pce.12461
– ident: e_1_2_7_39_1
  doi: 10.1111/nph.15644
– ident: e_1_2_7_63_1
  doi: 10.1111/pce.12139
– ident: e_1_2_7_38_1
  doi: 10.1890/02-0538
– ident: e_1_2_7_44_1
  doi: 10.4135/9781412983433
– ident: e_1_2_7_56_1
  doi: 10.1104/pp.114.249706
– ident: e_1_2_7_32_1
– ident: e_1_2_7_25_1
  doi: 10.1073/pnas.1222477110
– ident: e_1_2_7_31_1
  doi: 10.1093/treephys/tps116
– ident: e_1_2_7_34_1
  doi: 10.1073/pnas.0908053106
– volume: 36
  start-page: 179
  year: 2015
  ident: e_1_2_7_35_1
  article-title: Leaf gas exchange performance and the lethal water potential of five European species during drought
  publication-title: Tree Physiology
– ident: e_1_2_7_50_1
  doi: 10.1111/pce.12141
– ident: e_1_2_7_57_1
  doi: 10.1016/j.plaphy.2017.10.003
– ident: e_1_2_7_54_1
  doi: 10.1104/pp.88.3.581
– ident: e_1_2_7_17_1
  doi: 10.1104/pp.108.129783
– ident: e_1_2_7_64_1
  doi: 10.1093/jxb/erx342
– ident: e_1_2_7_11_1
  doi: 10.1016/j.cageo.2012.10.020
– ident: e_1_2_7_7_1
  doi: 10.1038/nclimate1635
– ident: e_1_2_7_49_1
  doi: 10.1093/treephys/tpz062
– ident: e_1_2_7_41_1
  doi: 10.1016/j.tree.2011.06.003
– ident: e_1_2_7_29_1
– ident: e_1_2_7_10_1
  doi: 10.1093/aob/mct204
– ident: e_1_2_7_46_1
  doi: 10.1038/nclimate2281
– ident: e_1_2_7_65_1
  doi: 10.1073/pnas.1519620113
– ident: e_1_2_7_15_1
  doi: 10.3389/fpls.2013.00108
– ident: e_1_2_7_19_1
  doi: 10.1111/nph.13110
– ident: e_1_2_7_22_1
  doi: 10.1104/pp.100.1.205
– ident: e_1_2_7_28_1
  doi: 10.1111/nph.15048
– ident: e_1_2_7_6_1
  doi: 10.1038/ngeo2400
– ident: e_1_2_7_8_1
  doi: 10.1073/pnas.1525678113
– ident: e_1_2_7_24_1
  doi: 10.1175/JCLI-D-12-00579.1
– ident: e_1_2_7_27_1
  doi: 10.1016/j.envexpbot.2018.03.011
– ident: e_1_2_7_4_1
  doi: 10.1016/j.foreco.2009.09.001
– ident: e_1_2_7_60_1
  doi: 10.1126/science.1165000
– ident: e_1_2_7_42_1
  doi: 10.1111/j.1469-8137.2008.02436.x
– ident: e_1_2_7_14_1
  doi: 10.1126/science.1155121
– ident: e_1_2_7_37_1
  doi: 10.1111/j.1365-3040.2005.01433.x
– ident: e_1_2_7_33_1
  doi: 10.1111/j.1365-2435.2008.01483.x
– ident: e_1_2_7_5_1
  doi: 10.1073/pnas.1107891109
– ident: e_1_2_7_18_1
  doi: 10.1890/15-1402.1
– ident: e_1_2_7_20_1
  doi: 10.1038/s41586-018-0240-x
– ident: e_1_2_7_23_1
  doi: 10.1175/JCLI3800.1
– ident: e_1_2_7_55_1
  doi: 10.1111/pce.12852
– ident: e_1_2_7_9_1
  doi: 10.1111/ele.12962
– ident: e_1_2_7_2_1
  doi: 10.1073/pnas.0901438106
– ident: e_1_2_7_45_1
  doi: 10.1002/2017JG004095
– ident: e_1_2_7_52_1
  doi: 10.1111/j.1365-3040.1988.tb01774.x
– ident: e_1_2_7_13_1
  doi: 10.3389/fpls.2016.00751
– ident: e_1_2_7_51_1
  doi: 10.1111/j.1365-3040.2011.02439.x
SSID ssj0009562
Score 2.651637
Snippet Determining physiological mechanisms and thresholds for climate-driven tree die-off could help improve global predictions of future terrestrial carbon sinks....
Summary Determining physiological mechanisms and thresholds for climate‐driven tree die‐off could help improve global predictions of future terrestrial carbon...
Determining physiological mechanisms and thresholds for climate‐driven tree die‐off could help improve global predictions of future terrestrial carbon sinks....
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1834
SubjectTerms Carbon sinks
climate change
Color
Colour
die-off
Drought
Droughts
ecophysiology
Embolism
Failure
Flight simulation
foliar color
greenhouse experimentation
Greenhouses
Health risks
Hydraulic conductivity
hydraulic failure
Hydraulics
Logistic Models
monitoring
Mortality
Mortality risk
Pine trees
Pinus - physiology
Pinus taeda
Plant Stems - physiology
plant-water relations
prediction
Predictions
Probability theory
risk
saplings
soil-plant interactions
Survival
tree die‐off
tree mortality
tree physiology
Trees
Trees - physiology
Water
Water stress
Xylem
Xylem - physiology
Title Dead or dying? Quantifying the point of no return from hydraulic failure in drought-induced tree mortality
URI https://www.jstor.org/stable/26759524
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.15922
https://www.ncbi.nlm.nih.gov/pubmed/31087656
https://www.proquest.com/docview/2268523171
https://www.proquest.com/docview/2232017311
https://www.proquest.com/docview/2327971102
https://pubmed.ncbi.nlm.nih.gov/PMC6771894
Volume 223
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKxYEL79JAqQzi0EtWxHFsRz1U5VGtkKgKotIekCI_Ym3E4qy2yaGc-An9jfwSxs5Du1AQ4pbIE8WPGc839vgzQi90xhNJpYyFKllMqU5jUVIaK5MLwMfGCOsX9N-fsuk5fTfLZlvocDgL0_FDjAtu3jLCfO0NXKqLNSN3y_kEfDHx86_P1fKA6CNZI9xlZGBgZpTNelYhn8Uzfrnhi7p0xOuA5u_5kus4Njiikzvo89CELv_ky6Rt1ER_-4Xd8T_beBfd7gEqPu406h7aKt19dPNVDSDy8gFavAGdwPUKG3886gh_aKXPNvIvGKAkXtaVa3BtsavxqgR35rA_wILnl2Yl20WlsZWVz4THlcMmXBHU_Ph-VTkDKmaw3yLHX0NEANHBQ3R-8vbT62ncX9gQa5oDUjfCb5TalHIijLU2zzLDlCRMG8GVNQAmZWnBPQJsoDlViebSEmaMJhIiJZ3uoG1Xu3IXYaWYpkJqamUJc0wqLRNJYl8KI_M8szxCB8PQFbpnM_eXaiyKIaqBvitC30Xo-Si67Cg8rhPaCeM_ShCIpPKM0AjtDQpR9OZ9UQBmFRDBJzyJ0LOxGAzT77ZIV9atl0kBXPE0-ZtMSnjOAYHB_x91OjZWAHA3eKqMRYhvaN8o4InBN0tcNQ8E4YwD4sih6gdBuf7c6uL0bBoeHv-76BN0C9rV59ntoe1m1ZZPAZg1ah_dIPRsP9jhTzkEOEc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKQaIb3oWBAgaB1E1GxHFsZ4EQMFRT2o4AtdLsUseONVEHZzRNhIYVn8CH8Cv8BF_CdV6agYLYdMEuUa4SO76Pc-3rY4SeqJD7kkrpiSRlHqUq8ERKqZfoSAA-1loYN6F_MGLDI_p2HI7X0Ld2L0zND9FNuDnLqPy1M3A3Ib1k5XY26UMwJqQpqdxLF58gYTt9vjuA0X1KyM6bw9dDrzlTwFM0AjCphVvLMwHlRGhjTBSGmiWSMKUFT4wGvCNTAx4cIhuNaOIrLg1hWisiAcyrAN57AV10J4g7pv7BB7JE8ctIy_nMKBs3PEaubqhr6kr0qwsgz4K2v1doLiPnKvTtXEXf259WV7yc9Msi6avPv_BJ_i9_9Rq60mBw_LI2mutoLbU30KVXOeDkxU00HYDa43yOtdsB9gK_L6UrqHI3GNAynuWZLXBusM3xPIWIbbHbo4MnCz2X5TRT2MjMFfvjzGJdnYJU_PjyNbMarEhjVwWAP1ZJDyRAt9DRufR0E63b3KZ3EE4SpqiQihqZghsNpGHC980zoWUUhYb30HarK7FqCNvduSHTuE3cYKziaqx66HEnOqtZSs4S2qwUrpMgkCxGIaE9tNVqYNx4sNMYYLkIAfxzv4cedY_B97gFJWnTvHQyAeBHHvh_kwkIjziATPj-7VqpuwZAagHBOGQ9xFfUvRNw3OerT2w2qTjQGQdQFUHTtytt_nOv49G7YXVx999FH6LLw8OD_Xh_d7R3D21AH5uywi20XszL9D7g0CJ5UJk_RsfnbRk_AVE0lhU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELaWBaG9IP4WAgsYBNJegojj2M4BIaBUXRaqIrFSb1nHP2qkrlN1W6HeeATeg7fiSRg7adSKBXHZWyKPEtsz4_nGMx4j9FxlPJFUyliUhsWUqjQWhtK41LkAfKy1sH5D__OQDU7ox3E23kE_12dhmvoQ3Yab14ywXnsFn2m7oeRuNnkJtpiQNqPy2Ky-gb92_vqoB8x9QUj_w9f3g7i9UiBWNAcsqYUP5dmUciK0tTbPMs1KSZjSgpdWA9yRxsICDoaN5rRMFJeWMK0VkYDlVQrfvYKu-uCizx8jdLRR4ZeRdclnRtm4LWPk04a6rm4Zvyb_8SJk-2eC5iZwDpavfxPdaCErftvI2C20Y9xtdO1dDbBydQdNeyAluJ5j7Q9MvcFfltLnH_kXDOASz-rKLXBtsavx3ICBc9gfacGTlZ7L5bRS2MrK58bjymEdLg1a_Pr-o3IahE5jHzTHZ8FHAH_hLjq5lPneR7uuduY-wmXJFBVSUSsNrDqptEwkiX0ltMzzzPIIHa7ntlBtfXN_zca0WPs5wIYisCFCzzrSWVPU4yKi_cCgjoKAb5VnhEboYM2xolX48wJQrACfPuFJhJ52zaCqPv4inamXniYFuMXT5F80KeE5B0wG_7_XCEHXAUDiYLsyFiG-JR4dgS8Vvt3iqkkoGc44YJAcun4YBOnvoy6Go0F4ePD_pE_Q9VGvX3w6Gh4_RHswxDYJ7wDtLuZL8whQ26J8HLQFo9PLVs_f34VUSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dead+or+dying%3F+Quantifying+the+point+of+no+return+from+hydraulic+failure+in+drought%E2%80%90induced+tree+mortality&rft.jtitle=The+New+phytologist&rft.au=Hammond%2C+William+M&rft.au=Yu%2C+Kailiang&rft.au=Wilson%2C+Luke+A.&rft.au=Will%2C+Rodney+E&rft.date=2019-09-01&rft.issn=0028-646X&rft.volume=223&rft.issue=4+p.1834-1843&rft.spage=1834&rft.epage=1843&rft_id=info:doi/10.1111%2Fnph.15922&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon