Dead or dying? Quantifying the point of no return from hydraulic failure in drought-induced tree mortality
Determining physiological mechanisms and thresholds for climate-driven tree die-off could help improve global predictions of future terrestrial carbon sinks. We directly tested for the lethal threshold in hydraulic failure – an inability to move water due to drought-induced xylem embolism – in a pin...
Saved in:
Published in | The New phytologist Vol. 223; no. 4; pp. 1834 - 1843 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley
01.09.2019
Wiley Subscription Services, Inc John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Determining physiological mechanisms and thresholds for climate-driven tree die-off could help improve global predictions of future terrestrial carbon sinks. We directly tested for the lethal threshold in hydraulic failure – an inability to move water due to drought-induced xylem embolism – in a pine sapling experiment.
In a glasshouse experiment, we exposed loblolly pine (Pinus taeda) saplings (n = 83) to drought-induced water stress ranging from mild to lethal. Before rewatering to relieve drought stress, we measured native hydraulic conductivity and foliar color change. We monitored all measured individuals for survival or mortality.
We found a lethal threshold at 80% loss of hydraulic conductivity – a point of hydraulic failure beyond which it is more likely trees will die, than survive, and describe mortality risk across all levels of water stress. Foliar color changes lagged behind hydraulic failure – best predicting when trees had been dead for some time, rather than when they were dying.
Our direct measurement of native conductivity, while monitoring the same individuals for survival or mortality, quantifies a continuous probability of mortality risk from hydraulic failure. Predicting tree die-off events and understanding the mechanism involved requires knowledge not only of when trees are dead, but when they begin dying – having passed the point of no return. |
---|---|
AbstractList | Determining physiological mechanisms and thresholds for climate‐driven tree die‐off could help improve global predictions of future terrestrial carbon sinks. We directly tested for the lethal threshold in hydraulic failure – an inability to move water due to drought‐induced xylem embolism – in a pine sapling experiment. In a glasshouse experiment, we exposed loblolly pine (Pinus taeda) saplings (n = 83) to drought‐induced water stress ranging from mild to lethal. Before rewatering to relieve drought stress, we measured native hydraulic conductivity and foliar color change. We monitored all measured individuals for survival or mortality. We found a lethal threshold at 80% loss of hydraulic conductivity – a point of hydraulic failure beyond which it is more likely trees will die, than survive, and describe mortality risk across all levels of water stress. Foliar color changes lagged behind hydraulic failure – best predicting when trees had been dead for some time, rather than when they were dying. Our direct measurement of native conductivity, while monitoring the same individuals for survival or mortality, quantifies a continuous probability of mortality risk from hydraulic failure. Predicting tree die‐off events and understanding the mechanism involved requires knowledge not only of when trees are dead, but when they begin dying – having passed the point of no return. Determining physiological mechanisms and thresholds for climate-driven tree die-off could help improve global predictions of future terrestrial carbon sinks. We directly tested for the lethal threshold in hydraulic failure – an inability to move water due to drought-induced xylem embolism – in a pine sapling experiment. In a glasshouse experiment, we exposed loblolly pine (Pinus taeda) saplings (n = 83) to drought-induced water stress ranging from mild to lethal. Before rewatering to relieve drought stress, we measured native hydraulic conductivity and foliar color change. We monitored all measured individuals for survival or mortality. We found a lethal threshold at 80% loss of hydraulic conductivity – a point of hydraulic failure beyond which it is more likely trees will die, than survive, and describe mortality risk across all levels of water stress. Foliar color changes lagged behind hydraulic failure – best predicting when trees had been dead for some time, rather than when they were dying. Our direct measurement of native conductivity, while monitoring the same individuals for survival or mortality, quantifies a continuous probability of mortality risk from hydraulic failure. Predicting tree die-off events and understanding the mechanism involved requires knowledge not only of when trees are dead, but when they begin dying – having passed the point of no return. Determining physiological mechanisms and thresholds for climate-driven tree die-off could help improve global predictions of future terrestrial carbon sinks. We directly tested for the lethal threshold in hydraulic failure - an inability to move water due to drought-induced xylem embolism - in a pine sapling experiment. In a glasshouse experiment, we exposed loblolly pine (Pinus taeda) saplings (n = 83) to drought-induced water stress ranging from mild to lethal. Before rewatering to relieve drought stress, we measured native hydraulic conductivity and foliar color change. We monitored all measured individuals for survival or mortality. We found a lethal threshold at 80% loss of hydraulic conductivity - a point of hydraulic failure beyond which it is more likely trees will die, than survive, and describe mortality risk across all levels of water stress. Foliar color changes lagged behind hydraulic failure - best predicting when trees had been dead for some time, rather than when they were dying. Our direct measurement of native conductivity, while monitoring the same individuals for survival or mortality, quantifies a continuous probability of mortality risk from hydraulic failure. Predicting tree die-off events and understanding the mechanism involved requires knowledge not only of when trees are dead, but when they begin dying - having passed the point of no return.Determining physiological mechanisms and thresholds for climate-driven tree die-off could help improve global predictions of future terrestrial carbon sinks. We directly tested for the lethal threshold in hydraulic failure - an inability to move water due to drought-induced xylem embolism - in a pine sapling experiment. In a glasshouse experiment, we exposed loblolly pine (Pinus taeda) saplings (n = 83) to drought-induced water stress ranging from mild to lethal. Before rewatering to relieve drought stress, we measured native hydraulic conductivity and foliar color change. We monitored all measured individuals for survival or mortality. We found a lethal threshold at 80% loss of hydraulic conductivity - a point of hydraulic failure beyond which it is more likely trees will die, than survive, and describe mortality risk across all levels of water stress. Foliar color changes lagged behind hydraulic failure - best predicting when trees had been dead for some time, rather than when they were dying. Our direct measurement of native conductivity, while monitoring the same individuals for survival or mortality, quantifies a continuous probability of mortality risk from hydraulic failure. Predicting tree die-off events and understanding the mechanism involved requires knowledge not only of when trees are dead, but when they begin dying - having passed the point of no return. Determining physiological mechanisms and thresholds for climate-driven tree die-off could help improve global predictions of future terrestrial carbon sinks. We directly tested for the lethal threshold in hydraulic failure - an inability to move water due to drought-induced xylem embolism - in a pine sapling experiment. In a glasshouse experiment, we exposed loblolly pine (Pinus taeda) saplings (n = 83) to drought-induced water stress ranging from mild to lethal. Before rewatering to relieve drought stress, we measured native hydraulic conductivity and foliar color change. We monitored all measured individuals for survival or mortality. We found a lethal threshold at 80% loss of hydraulic conductivity - a point of hydraulic failure beyond which it is more likely trees will die, than survive, and describe mortality risk across all levels of water stress. Foliar color changes lagged behind hydraulic failure - best predicting when trees had been dead for some time, rather than when they were dying. Our direct measurement of native conductivity, while monitoring the same individuals for survival or mortality, quantifies a continuous probability of mortality risk from hydraulic failure. Predicting tree die-off events and understanding the mechanism involved requires knowledge not only of when trees are dead, but when they begin dying - having passed the point of no return. Summary Determining physiological mechanisms and thresholds for climate‐driven tree die‐off could help improve global predictions of future terrestrial carbon sinks. We directly tested for the lethal threshold in hydraulic failure – an inability to move water due to drought‐induced xylem embolism – in a pine sapling experiment. In a glasshouse experiment, we exposed loblolly pine (Pinus taeda) saplings (n = 83) to drought‐induced water stress ranging from mild to lethal. Before rewatering to relieve drought stress, we measured native hydraulic conductivity and foliar color change. We monitored all measured individuals for survival or mortality. We found a lethal threshold at 80% loss of hydraulic conductivity – a point of hydraulic failure beyond which it is more likely trees will die, than survive, and describe mortality risk across all levels of water stress. Foliar color changes lagged behind hydraulic failure – best predicting when trees had been dead for some time, rather than when they were dying. Our direct measurement of native conductivity, while monitoring the same individuals for survival or mortality, quantifies a continuous probability of mortality risk from hydraulic failure. Predicting tree die‐off events and understanding the mechanism involved requires knowledge not only of when trees are dead, but when they begin dying – having passed the point of no return. Determining physiological mechanisms and thresholds for climate‐driven tree die‐off could help improve global predictions of future terrestrial carbon sinks. We directly tested for the lethal threshold in hydraulic failure – an inability to move water due to drought‐induced xylem embolism – in a pine sapling experiment. In a glasshouse experiment, we exposed loblolly pine ( Pinus taeda ) saplings ( n = 83) to drought‐induced water stress ranging from mild to lethal. Before rewatering to relieve drought stress, we measured native hydraulic conductivity and foliar color change. We monitored all measured individuals for survival or mortality. We found a lethal threshold at 80% loss of hydraulic conductivity – a point of hydraulic failure beyond which it is more likely trees will die, than survive, and describe mortality risk across all levels of water stress. Foliar color changes lagged behind hydraulic failure – best predicting when trees had been dead for some time, rather than when they were dying. Our direct measurement of native conductivity, while monitoring the same individuals for survival or mortality, quantifies a continuous probability of mortality risk from hydraulic failure. Predicting tree die‐off events and understanding the mechanism involved requires knowledge not only of when trees are dead, but when they begin dying – having passed the point of no return. |
Author | Yu, Kailiang Adams, Henry D. Anderegg, William R. L. Hammond, William M. Wilson, Luke A. Will, Rodney E. |
AuthorAffiliation | 1 Plant Biology, Ecology and Evolution Oklahoma State University Stillwater OK 74078 USA 3 Department of Natural Resource Ecology and Management Oklahoma State University Stillwater OK 74078 USA 2 School of Biological Sciences University of Utah Salt Lake City UT 84112 USA |
AuthorAffiliation_xml | – name: 1 Plant Biology, Ecology and Evolution Oklahoma State University Stillwater OK 74078 USA – name: 3 Department of Natural Resource Ecology and Management Oklahoma State University Stillwater OK 74078 USA – name: 2 School of Biological Sciences University of Utah Salt Lake City UT 84112 USA |
Author_xml | – sequence: 1 givenname: William M. surname: Hammond fullname: Hammond, William M. – sequence: 2 givenname: Kailiang surname: Yu fullname: Yu, Kailiang – sequence: 3 givenname: Luke A. surname: Wilson fullname: Wilson, Luke A. – sequence: 4 givenname: Rodney E. surname: Will fullname: Will, Rodney E. – sequence: 5 givenname: William R. L. surname: Anderegg fullname: Anderegg, William R. L. – sequence: 6 givenname: Henry D. surname: Adams fullname: Adams, Henry D. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31087656$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkttrFDEUxoNU7Lb64B-gBHypD9MmmVwmL4rUS4XiBRR8C9lcdrLMJGsmY5n_3ll3t2hRzMsh5Pd9nJzznYCjmKID4DFG53g-F3HTnmMmCbkHFphyWTW4FkdggRBpKk75t2NwMgxrhJBknDwAxzVGjeCML8D6tdMWpgztFOLqJfw86liC315gaR3cpBALTB7GBLMrY47Q59TDdrJZj10w0OvQjdnBEKHNaVy1pQrRjsZZWLJzsE-56C6U6SG473U3uEf7egq-vn3z5fKquv747v3lq-vKUNmQyjaIcuprKkhjvfeSMcuXmnBjG7H0VpJaO89FQyimki6xEdoTbq0hmjFk6lPwYue7GZe9s8bFknWnNjn0Ok8q6aD-fImhVav0Q3EhcCPpbHC2N8jp--iGovowGNd1Oro0DorUREiBMSL_R2cWYVFjPKPP7qDrNI9znsRM8YaRGost9fT35m-7PmxsBi52gMlpGLLzyoSiS0jbv4ROYaS2mVBzJtSvTMyK53cUB9O_sXv3m9C56d-g-vDp6qB4slOsh5LyrYJwwSQjtP4JOefQiQ |
CitedBy_id | crossref_primary_10_1111_pce_15080 crossref_primary_10_3390_plants9020231 crossref_primary_10_1186_s13595_024_01246_7 crossref_primary_10_3390_f13121979 crossref_primary_10_1016_j_sciaf_2020_e00405 crossref_primary_10_1111_plb_13476 crossref_primary_10_3390_w13202911 crossref_primary_10_1111_nph_17571 crossref_primary_10_1016_j_tplants_2023_01_004 crossref_primary_10_1016_j_agrformet_2022_108959 crossref_primary_10_5194_gmd_16_6267_2023 crossref_primary_10_3389_fpls_2022_822136 crossref_primary_10_1038_s41586_023_05971_3 crossref_primary_10_1088_1748_9326_ac7968 crossref_primary_10_1016_j_jaridenv_2025_105324 crossref_primary_10_3389_fpls_2025_1542301 crossref_primary_10_1071_FP21326 crossref_primary_10_1093_treephys_tpae063 crossref_primary_10_1016_j_foreco_2023_121127 crossref_primary_10_1093_jxb_erz474 crossref_primary_10_1111_nph_18770 crossref_primary_10_3389_ffgc_2023_1198156 crossref_primary_10_1111_ele_13856 crossref_primary_10_1093_treephys_tpab128 crossref_primary_10_3390_app10186322 crossref_primary_10_1007_s00442_021_04905_y crossref_primary_10_1111_gcb_17133 crossref_primary_10_1007_s00468_023_02459_5 crossref_primary_10_3390_f14091784 crossref_primary_10_1111_gcb_15869 crossref_primary_10_1016_j_tplants_2021_10_003 crossref_primary_10_1093_treephys_tpab137 crossref_primary_10_1093_treephys_tpab018 crossref_primary_10_1093_jxb_erac061 crossref_primary_10_1007_s00468_019_01939_x crossref_primary_10_1016_j_agrformet_2025_110430 crossref_primary_10_1007_s00468_021_02188_7 crossref_primary_10_1111_nph_19859 crossref_primary_10_1111_nph_17317 crossref_primary_10_1111_nph_19615 crossref_primary_10_1016_j_plaphy_2021_05_046 crossref_primary_10_1126_sciadv_adl4800 crossref_primary_10_1093_jxb_erae159 crossref_primary_10_1111_nph_17266 crossref_primary_10_3389_ffgc_2020_560409 crossref_primary_10_1525_abt_2020_82_8_553 crossref_primary_10_1007_s00442_022_05106_x crossref_primary_10_1016_j_foreco_2020_117980 crossref_primary_10_1007_s40725_020_00124_5 crossref_primary_10_1088_1748_9326_ac1135 crossref_primary_10_3390_f13030370 crossref_primary_10_1016_j_envexpbot_2023_105484 crossref_primary_10_1111_nph_16859 crossref_primary_10_5194_gmd_15_7809_2022 crossref_primary_10_1016_j_foreco_2024_122388 crossref_primary_10_5194_bg_20_4491_2023 crossref_primary_10_1093_treephys_tpae027 crossref_primary_10_1111_pce_14639 crossref_primary_10_1093_treephys_tpad056 crossref_primary_10_1111_1365_2745_13931 crossref_primary_10_1073_pnas_1913072116 crossref_primary_10_1111_gcb_15480 crossref_primary_10_1111_pce_14401 crossref_primary_10_1093_treephys_tpz117 crossref_primary_10_1111_gcb_70049 crossref_primary_10_34133_remotesensing_0445 crossref_primary_10_1111_nph_18454 crossref_primary_10_1111_nph_18578 crossref_primary_10_1093_treephys_tpae038 crossref_primary_10_1038_s41893_024_01295_w crossref_primary_10_1111_pce_13881 crossref_primary_10_1093_aob_mcac053 crossref_primary_10_1073_pnas_2316164121 crossref_primary_10_1111_nph_20097 crossref_primary_10_1007_s00468_020_01983_y crossref_primary_10_1111_ppl_14467 crossref_primary_10_3389_fpls_2021_627403 crossref_primary_10_1007_s13595_019_0868_1 crossref_primary_10_1126_science_aat7631 crossref_primary_10_1016_j_scitotenv_2022_157808 crossref_primary_10_1038_s41467_022_29289_2 crossref_primary_10_1029_2022WR034117 crossref_primary_10_1002_ecy_3877 crossref_primary_10_1016_j_envexpbot_2022_105173 crossref_primary_10_1016_j_jhydrol_2024_132255 crossref_primary_10_1111_nph_18208 crossref_primary_10_1016_j_seta_2023_103080 crossref_primary_10_3389_fpls_2020_585674 crossref_primary_10_1111_ppl_14114 crossref_primary_10_1016_j_earscirev_2024_105012 crossref_primary_10_3390_w13141945 crossref_primary_10_1002_ajb2_1518 crossref_primary_10_3390_fire5050128 crossref_primary_10_1111_ppl_13556 crossref_primary_10_1111_pce_14033 crossref_primary_10_1093_plphys_kiab497 crossref_primary_10_1093_plphys_kiae407 crossref_primary_10_1080_03721426_2023_2200875 crossref_primary_10_1093_aobpla_plac012 crossref_primary_10_1088_1748_9326_ad29aa crossref_primary_10_1016_j_envexpbot_2021_104451 crossref_primary_10_1093_jxb_erac446 crossref_primary_10_1016_j_scitotenv_2024_171174 crossref_primary_10_5194_bg_22_1_2025 crossref_primary_10_1093_jxb_eraa381 crossref_primary_10_3389_fpls_2023_1149760 crossref_primary_10_1029_2023EF003705 crossref_primary_10_1111_pce_14712 crossref_primary_10_1016_j_foreco_2020_118179 crossref_primary_10_3390_f14122415 crossref_primary_10_1029_2022JG006971 crossref_primary_10_1093_plphys_kiab002 crossref_primary_10_1111_pce_15011 crossref_primary_10_1016_j_envexpbot_2023_105334 crossref_primary_10_1111_ele_13575 crossref_primary_10_1111_nph_17043 crossref_primary_10_1016_j_fecs_2024_100273 crossref_primary_10_1111_nph_19463 crossref_primary_10_1093_treephys_tpae117 crossref_primary_10_1093_treephys_tpab086 crossref_primary_10_1093_treephys_tpae110 crossref_primary_10_1111_nph_20218 crossref_primary_10_1111_pce_14921 crossref_primary_10_1016_j_foreco_2022_120129 crossref_primary_10_5194_nhess_24_3173_2024 crossref_primary_10_1038_s41559_023_02180_z crossref_primary_10_1111_pce_14254 crossref_primary_10_1111_ppl_13450 crossref_primary_10_1111_ppl_13331 crossref_primary_10_1111_ele_14314 crossref_primary_10_1029_2021GL096686 crossref_primary_10_1007_s00442_020_04772_z crossref_primary_10_1080_17550874_2021_1961172 crossref_primary_10_1086_725385 crossref_primary_10_1088_1748_9326_ad8f48 crossref_primary_10_1093_aobpla_plab027 crossref_primary_10_1111_nph_19692 crossref_primary_10_3389_fpls_2021_606908 crossref_primary_10_1093_treephys_tpab096 crossref_primary_10_1073_pnas_2025251118 crossref_primary_10_1093_treephys_tpad151 crossref_primary_10_1111_pce_14149 crossref_primary_10_1016_j_envpol_2022_119855 crossref_primary_10_1016_j_foreco_2023_120779 crossref_primary_10_1111_pce_14265 crossref_primary_10_1111_nph_18129 crossref_primary_10_3390_f10110941 crossref_primary_10_3390_f12081104 crossref_primary_10_1007_s11676_021_01351_7 crossref_primary_10_1111_nph_17786 crossref_primary_10_1186_s13595_024_01244_9 crossref_primary_10_1093_treephys_tpab145 crossref_primary_10_1360_TB_2022_0980 crossref_primary_10_1111_pce_13937 crossref_primary_10_1016_j_rse_2024_114080 crossref_primary_10_1038_s43017_022_00272_1 crossref_primary_10_1007_s40626_023_00267_3 crossref_primary_10_1093_treephys_tpae095 crossref_primary_10_1111_ppl_13995 crossref_primary_10_1640_0002_8444_112_4_336 crossref_primary_10_1111_gcb_17038 crossref_primary_10_3389_fpls_2021_715127 crossref_primary_10_1093_jxb_eraa186 crossref_primary_10_1111_nph_19276 crossref_primary_10_1093_treephys_tpac007 crossref_primary_10_1007_s00468_022_02345_6 crossref_primary_10_1111_nph_18620 crossref_primary_10_1111_ppl_14292 crossref_primary_10_1111_plb_13563 crossref_primary_10_1111_nph_18065 crossref_primary_10_1093_treephys_tpac001 crossref_primary_10_1111_pce_13942 crossref_primary_10_3390_f11050513 crossref_primary_10_1111_1365_2745_14069 crossref_primary_10_3389_fevo_2023_1166538 crossref_primary_10_1038_s41598_022_24833_y crossref_primary_10_1111_plb_13444 crossref_primary_10_1111_gcb_15881 crossref_primary_10_3390_su16072703 crossref_primary_10_1093_aobpla_plac051 crossref_primary_10_1111_nph_16448 crossref_primary_10_1002_ecs2_70083 crossref_primary_10_1111_gcb_16297 crossref_primary_10_1111_geb_13736 crossref_primary_10_1093_treephys_tpad104 crossref_primary_10_1111_aec_13343 crossref_primary_10_1007_s00442_019_04550_6 crossref_primary_10_1093_treephys_tpab043 crossref_primary_10_1111_pce_14327 crossref_primary_10_3390_f13010065 crossref_primary_10_1111_pce_14573 crossref_primary_10_1111_plb_13455 crossref_primary_10_1016_j_foreco_2024_122081 crossref_primary_10_1111_gcb_16400 crossref_primary_10_1111_nph_18614 crossref_primary_10_1016_j_foreco_2023_121130 crossref_primary_10_5194_bg_21_2973_2024 crossref_primary_10_1111_nph_18168 crossref_primary_10_1093_treephys_tpz050 crossref_primary_10_1093_treephys_tpab174 crossref_primary_10_1016_j_agrformet_2023_109329 crossref_primary_10_1093_treephys_tpac143 crossref_primary_10_1111_pce_14469 crossref_primary_10_1016_j_foreco_2021_119944 crossref_primary_10_1111_nph_16304 crossref_primary_10_1002_ecs2_4525 |
Cites_doi | 10.1111/ele.12851 10.1093/treephys/tpz050 10.1002/2015WR017244 10.1111/j.1469-8137.2009.03167.x 10.1111/pce.13121 10.1093/jxb/ert193 10.1038/s41559-017-0248-x 10.1111/nph.15333 10.1038/nclimate2873 10.1111/j.1469-8137.2010.03393.x 10.1093/treephys/tpz016 10.2307/1222974 10.1111/nph.13354 10.1093/treephys/tpt030 10.1111/pce.12461 10.1111/nph.15644 10.1111/pce.12139 10.1890/02-0538 10.4135/9781412983433 10.1104/pp.114.249706 10.1073/pnas.1222477110 10.1093/treephys/tps116 10.1073/pnas.0908053106 10.1111/pce.12141 10.1016/j.plaphy.2017.10.003 10.1104/pp.88.3.581 10.1104/pp.108.129783 10.1093/jxb/erx342 10.1016/j.cageo.2012.10.020 10.1038/nclimate1635 10.1093/treephys/tpz062 10.1016/j.tree.2011.06.003 10.1093/aob/mct204 10.1038/nclimate2281 10.1073/pnas.1519620113 10.3389/fpls.2013.00108 10.1111/nph.13110 10.1104/pp.100.1.205 10.1111/nph.15048 10.1038/ngeo2400 10.1073/pnas.1525678113 10.1175/JCLI-D-12-00579.1 10.1016/j.envexpbot.2018.03.011 10.1016/j.foreco.2009.09.001 10.1126/science.1165000 10.1111/j.1469-8137.2008.02436.x 10.1126/science.1155121 10.1111/j.1365-3040.2005.01433.x 10.1111/j.1365-2435.2008.01483.x 10.1073/pnas.1107891109 10.1890/15-1402.1 10.1038/s41586-018-0240-x 10.1175/JCLI3800.1 10.1111/pce.12852 10.1111/ele.12962 10.1073/pnas.0901438106 10.1002/2017JG004095 10.1111/j.1365-3040.1988.tb01774.x 10.3389/fpls.2016.00751 10.1111/j.1365-3040.2011.02439.x |
ContentType | Journal Article |
Copyright | 2019 The Authors © 2019 New Phytologist Trust 2019 The Authors. New Phytologist © 2019 New Phytologist Trust 2019 The Authors. New Phytologist © 2019 New Phytologist Trust. 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019 The Authors © 2019 New Phytologist Trust – notice: 2019 The Authors. New Phytologist © 2019 New Phytologist Trust – notice: 2019 The Authors. New Phytologist © 2019 New Phytologist Trust. – notice: 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1111/nph.15922 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 1843 |
ExternalDocumentID | PMC6771894 31087656 10_1111_nph_15922 NPH15922 26759524 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Division of Graduate Education funderid: 1144467 – fundername: National Science Foundation funderid: 1714972; 1802880 – fundername: USDA National Institute of Food and Agriculture, Agricultural and Food Research Initiative Competitive Programme, Ecosystem Services and Agro‐ecosystem Management funderid: 2018‐67019‐27850 – fundername: Oklahoma NSF EPSCoR Research Infrastructure Improvement Award funderid: OIA‐1301789 – fundername: David and Lucile Packard Foundation – fundername: University of Utah Global Change and Sustainability Center – fundername: Division of Graduate Education grantid: 1144467 – fundername: National Science Foundation grantid: 1714972; 1802880 – fundername: USDA National Institute of Food and Agriculture, Agricultural and Food Research Initiative Competitive Programme, Ecosystem Services and Agro‐ecosystem Management grantid: 2018‐67019‐27850 – fundername: Oklahoma NSF EPSCoR Research Infrastructure Improvement Award grantid: OIA‐1301789 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGUYK AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASVR ABEFU ABEML ACCFJ ACQPF ADULT AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU LW6 MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ADXHL CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c4982-d80464f34728dfff955d6ba26cd87bfd923aef678241494b1c7af26ddc2a550c3 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Thu Aug 21 13:53:43 EDT 2025 Fri Jul 11 18:32:18 EDT 2025 Fri Jul 11 12:25:56 EDT 2025 Fri Jul 25 12:16:26 EDT 2025 Thu Apr 03 07:01:43 EDT 2025 Thu Apr 24 23:12:28 EDT 2025 Tue Jul 01 02:28:32 EDT 2025 Wed Jan 22 16:39:31 EST 2025 Thu Jul 03 22:05:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | tree mortality foliar color drought tree die-off hydraulic failure tree physiology ecophysiology climate change |
Language | English |
License | Attribution 2019 The Authors. New Phytologist © 2019 New Phytologist Trust. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4982-d80464f34728dfff955d6ba26cd87bfd923aef678241494b1c7af26ddc2a550c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6551-3331 0000-0002-2904-810X 0000-0003-4277-770X 0000-0001-9630-4305 0000-0003-4223-5169 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.15922 |
PMID | 31087656 |
PQID | 2268523171 |
PQPubID | 2026848 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6771894 proquest_miscellaneous_2327971102 proquest_miscellaneous_2232017311 proquest_journals_2268523171 pubmed_primary_31087656 crossref_citationtrail_10_1111_nph_15922 crossref_primary_10_1111_nph_15922 wiley_primary_10_1111_nph_15922_NPH15922 jstor_primary_26759524 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2019 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: September 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster – name: Hoboken |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2019 |
Publisher | Wiley Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2018b; 152 2015; 36 2017; 1 2013; 3 2013; 4 2015; 38 2013; 64 2014; 27 2010; 188 2010; 186 2018; 41 2018a; 218 2014; 4 2013; 52 1991; 40 2016; 113 2013; 112 1988; 88 2006; 29 2016; 40 2011; 26 2017; 120 2017; 122 2009; 323 2009; 23 2004; 85 2017; 20 2018; 220 2015; 51 1992; 100 2015; 167 2017; 68 1988; 11 2019; 223 2006; 19 2015; 207 2015; 205 2002 2008; 320 2014; 111 2012; 35 2015; 8 2018; 21 2012; 33 2012; 109 2016; 6 2016; 7 2013; 36 2013; 33 2010; 259 2018; 558 2019 2014; 37 2014 2013 2008; 178 2016; 26 2009; 149 2009; 106 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 R Core Team (e_1_2_7_47_1) 2013 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Li S (e_1_2_7_35_1) 2015; 36 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 152 start-page: 7 year: 2018b end-page: 18 article-title: Identifying differences in carbohydrate dynamics of seedlings and mature trees to improve carbon allocation in models for trees and forests publication-title: Environmental and Experimental Botany – volume: 38 start-page: 1060 year: 2015 end-page: 1068 article-title: Excising stem samples underwater at native tension does not induce xylem cavitation publication-title: Plant, Cell & Environment – volume: 21 start-page: 968 year: 2018 end-page: 977 article-title: Woody plants optimise stomatal behaviour relative to hydraulic risk publication-title: Ecology Letters – volume: 51 start-page: 6156 year: 2015 end-page: 6176 article-title: Interdependence of chronic hydraulic dysfunction and canopy processes can improve integrated models of tree response to drought publication-title: Water Resources Research – volume: 223 start-page: 22 year: 2019 end-page: 32 article-title: Greater focus on water pools may improve our ability to understand and anticipate drought‐induced mortality in plants publication-title: New Phytologist – volume: 167 start-page: 40 year: 2015 end-page: 43 article-title: Direct X‐ray microtomography observation confirms the induction of embolism upon xylem cutting under tension publication-title: Plant Physiology – volume: 3 start-page: 30 year: 2013 article-title: Consequences of widespread tree mortality triggered by drought and temperature stress publication-title: Nature Climate Change – year: 2019 article-title: Plant water content integrates hydraulics and carbon depletion to predict drought-induced seedling mortality publication-title: Tree Physiology – volume: 1 start-page: 1285 year: 2017 article-title: A multi‐species synthesis of physiological mechanisms in drought‐induced tree mortality publication-title: Nature Ecology and Evolution – volume: 26 start-page: 1827 year: 2016 end-page: 1841 article-title: Towards a common methodology for developing logistic tree mortality models based on ring‐width data publication-title: Ecological Applications – volume: 29 start-page: 571 year: 2006 end-page: 583 article-title: Functional coordination between leaf gas exchange and vulnerability to xylem cavitation in temperate forest trees publication-title: Plant, Cell & Environment – volume: 41 start-page: 576 year: 2018 end-page: 588 article-title: Co‐occurring woody species have diverse hydraulic strategies and mortality rates during an extreme drought publication-title: Plant, Cell & Environment – volume: 40 start-page: 816 year: 2016 end-page: 830 article-title: Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost publication-title: Plant, Cell & Environment – year: 2014 – volume: 111 start-page: 3280 year: 2014 end-page: 3285 article-title: Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO publication-title: Proceedings of the National Academy of Sciences, USA – volume: 23 start-page: 93 year: 2009 end-page: 102 article-title: Tolerance to low leaf water status of tropical tree seedlings is related to drought performance and distribution publication-title: Functional Ecology – volume: 178 start-page: 719 year: 2008 end-page: 739 article-title: Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? publication-title: New Phytologist – volume: 33 start-page: 672 year: 2013 end-page: 683 article-title: Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees publication-title: Tree Physiology – volume: 64 start-page: 4779 year: 2013 end-page: 4791 article-title: Methods for measuring plant vulnerability to cavitation: a critical review publication-title: Journal of Experimental Botany – volume: 33 start-page: 26 year: 2012 end-page: 36 article-title: Differential ecophysiological response of a major Mediterranean pine species across a climatic gradient publication-title: Tree Physiology – volume: 4 start-page: 710 year: 2014 article-title: Drought survival of tropical tree seedlings enhanced by non‐structural carbohydrate levels publication-title: Nature Climate Change – volume: 26 start-page: 523 year: 2011 end-page: 532 article-title: The interdependence of mechanisms underlying climate‐driven vegetation mortality publication-title: Trends in Ecology & Evolution – volume: 109 start-page: 233 year: 2012 end-page: 237 article-title: The roles of hydraulic and carbon stress in a widespread climate‐induced forest die‐off publication-title: Proceedings of the National Academy of Sciences, USA – volume: 259 start-page: 660 year: 2010 end-page: 684 article-title: A global overview of drought and heat‐induced tree mortality reveals emerging climate change risks for forests publication-title: Forest Ecology and Management – volume: 20 start-page: 1437 year: 2017 end-page: 1447 article-title: Plant resistance to drought depends on timely stomatal closure publication-title: Ecology Letters – volume: 188 start-page: 533 year: 2010 end-page: 542 article-title: Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit publication-title: New Phytologist – volume: 218 start-page: 15 year: 2018a end-page: 28 article-title: Research frontiers for improving our understanding of drought‐induced tree and forest mortality publication-title: New Phytologist – volume: 100 start-page: 205 year: 1992 end-page: 209 article-title: Use of positive pressures to establish vulnerability curves: further support for the air‐seeding hypothesis and implications for pressure–volume analysis publication-title: Plant Physiology – volume: 113 start-page: 5024 year: 2016 end-page: 5029 article-title: Meta‐analysis reveals that hydraulic traits explain cross‐species patterns of drought‐induced tree mortality across the globe publication-title: Proceedings of the National Academy of Sciences, USA – volume: 149 start-page: 575 year: 2009 end-page: 584 article-title: Hydraulic failure defines the recovery and point of death in water‐stressed conifers publication-title: Plant Physiology – volume: 85 start-page: 2184 year: 2004 end-page: 2199 article-title: Adaptive variation in the vulnerability of woody plants to xylem cavitation publication-title: Ecology – volume: 186 start-page: 274 year: 2010 end-page: 281 article-title: Physiological mechanisms of drought‐induced tree mortality are far from being resolved publication-title: New Phytologist – volume: 106 start-page: E106 year: 2009 end-page: E106 article-title: Poor methodology for predicting large‐scale tree die‐off publication-title: Proceedings of the National Academy of Sciences, USA – volume: 36 start-page: 179 year: 2015 end-page: 192 article-title: Leaf gas exchange performance and the lethal water potential of five European species during drought publication-title: Tree Physiology – volume: 37 start-page: 153 year: 2014 end-page: 161 article-title: How do trees die? A test of the hydraulic failure and carbon starvation hypotheses publication-title: Plant, Cell & Environment – volume: 35 start-page: 601 year: 2012 end-page: 610 article-title: Vulnerability curves by centrifugation: is there an open vessel artefact, and are ‘r’ shaped curves necessarily invalid? publication-title: Plant, Cell & Environment – volume: 113 start-page: 5880 year: 2016 end-page: 5885 article-title: Warm spring reduced carbon cycle impact of the 2012 US summer drought publication-title: Proceedings of the National Academy of Sciences, USA – volume: 36 start-page: 1938 year: 2013 end-page: 1949 article-title: Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism publication-title: Plant, Cell & Environment – year: 2019 article-title: Dying on time: traits influencing the dynamics of tree mortality risk from drought publication-title: Tree Physiology – volume: 40 start-page: 201 year: 1991 end-page: 214 article-title: A survey of color charts for biological descriptions publication-title: Taxon – volume: 19 start-page: 3337 year: 2006 end-page: 3353 article-title: Climate‐carbon cycle feedback analysis: results from the C4MIP model intercomparison publication-title: Journal of Climate – volume: 205 start-page: 1095 year: 2015 end-page: 1105 article-title: Synchrotron X‐ray microtomography of xylem embolism in saplings during cycles of drought and recovery publication-title: New Phytologist – volume: 106 start-page: 7063 year: 2009 end-page: 7066 article-title: Temperature sensitivity of drought‐induced tree mortality portends increased regional die‐off under global‐change‐type drought publication-title: Proceedings of the National Academy of Sciences, USA – volume: 122 start-page: 3343 year: 2017 end-page: 3361 article-title: Tree mortality decreases water availability and ecosystem resilience to drought in piñon‐juniper woodlands in the southwestern USA publication-title: Journal of Geophysical Research: Biogeosciences – volume: 323 start-page: 521 year: 2009 end-page: 524 article-title: Widespread increase of tree mortality rates in the western United States publication-title: Science – volume: 207 start-page: 14 year: 2015 end-page: 27 article-title: What plant hydraulics can tell us about responses to climate‐change droughts publication-title: New Phytologist – volume: 68 start-page: 5221 year: 2017 end-page: 5232 article-title: Dying piece by piece: carbohydrate dynamics in aspen ( ) seedlings under severe carbon stress publication-title: Journal of Experimental Botany – volume: 8 start-page: 367 year: 2015 end-page: 371 article-title: Tree mortality predicted from drought‐induced vascular damage publication-title: Nature Geoscience – volume: 4 start-page: 108 year: 2013 article-title: Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants publication-title: Frontiers in Plant Science – volume: 7 start-page: 751 year: 2016 article-title: Desiccation and mortality dynamics in seedlings of different European beech ( L.) populations under extreme drought conditions publication-title: Frontiers in Plant Science – volume: 558 start-page: 531 year: 2018 article-title: Triggers of tree mortality under drought publication-title: Nature – volume: 27 start-page: 511 year: 2014 end-page: 526 article-title: Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks publication-title: Journal of Climate – volume: 120 start-page: 232 year: 2017 end-page: 241 article-title: Effects of prolonged drought on stem non‐structural carbohydrates content and post‐drought hydraulic recovery in L.: the possible link between carbon starvation and hydraulic failure publication-title: Plant Physiology and Biochemistry – volume: 220 start-page: 836 year: 2018 end-page: 850 article-title: A stomatal control model based on optimization of carbon gain versus hydraulic risk predicts aspen sapling responses to drought publication-title: New Phytologist – volume: 52 start-page: 258 year: 2013 end-page: 268 article-title: Algorithms for quantitative pedology: a toolkit for soil scientists publication-title: Computers & Geosciences – volume: 112 start-page: 1431 year: 2013 end-page: 1437 article-title: Water stress‐induced xylem hydraulic failure is a causal factor of tree mortality in beech and poplar publication-title: Annals of Botany – volume: 11 start-page: 35 year: 1988 end-page: 40 article-title: A method for measuring hydraulic conductivity and embolism in xylem publication-title: Plant, Cell & Environment – year: 2002 – volume: 320 start-page: 1444 year: 2008 end-page: 1449 article-title: Forests and climate change: forcings, feedbacks, and the climate benefits of forests publication-title: Science – volume: 6 start-page: 295 year: 2016 article-title: Multi‐scale predictions of massive conifer mortality due to chronic temperature rise publication-title: Nature Climate Change – year: 2019 article-title: Drought response strategies and hydraulic traits contribute to mechanistic understanding of plant dry‐down to hydraulic failure publication-title: Tree Physiology – year: 2013 – volume: 88 start-page: 581 issue: 3 year: 1988 end-page: 587 article-title: Mechanism of water stress‐induced xylem embolism publication-title: Plant Physiology – ident: e_1_2_7_40_1 doi: 10.1111/ele.12851 – ident: e_1_2_7_26_1 doi: 10.1093/treephys/tpz050 – ident: e_1_2_7_36_1 doi: 10.1002/2015WR017244 – ident: e_1_2_7_48_1 doi: 10.1111/j.1469-8137.2009.03167.x – volume-title: R: a language and environment for statistical computing, v.3.3.3 year: 2013 ident: e_1_2_7_47_1 – ident: e_1_2_7_30_1 doi: 10.1111/pce.13121 – ident: e_1_2_7_21_1 doi: 10.1093/jxb/ert193 – ident: e_1_2_7_3_1 doi: 10.1038/s41559-017-0248-x – ident: e_1_2_7_62_1 doi: 10.1111/nph.15333 – ident: e_1_2_7_43_1 doi: 10.1038/nclimate2873 – ident: e_1_2_7_16_1 doi: 10.1111/j.1469-8137.2010.03393.x – ident: e_1_2_7_12_1 doi: 10.1093/treephys/tpz016 – ident: e_1_2_7_58_1 doi: 10.2307/1222974 – ident: e_1_2_7_53_1 doi: 10.1111/nph.13354 – ident: e_1_2_7_59_1 doi: 10.1093/treephys/tpt030 – ident: e_1_2_7_61_1 doi: 10.1111/pce.12461 – ident: e_1_2_7_39_1 doi: 10.1111/nph.15644 – ident: e_1_2_7_63_1 doi: 10.1111/pce.12139 – ident: e_1_2_7_38_1 doi: 10.1890/02-0538 – ident: e_1_2_7_44_1 doi: 10.4135/9781412983433 – ident: e_1_2_7_56_1 doi: 10.1104/pp.114.249706 – ident: e_1_2_7_32_1 – ident: e_1_2_7_25_1 doi: 10.1073/pnas.1222477110 – ident: e_1_2_7_31_1 doi: 10.1093/treephys/tps116 – ident: e_1_2_7_34_1 doi: 10.1073/pnas.0908053106 – volume: 36 start-page: 179 year: 2015 ident: e_1_2_7_35_1 article-title: Leaf gas exchange performance and the lethal water potential of five European species during drought publication-title: Tree Physiology – ident: e_1_2_7_50_1 doi: 10.1111/pce.12141 – ident: e_1_2_7_57_1 doi: 10.1016/j.plaphy.2017.10.003 – ident: e_1_2_7_54_1 doi: 10.1104/pp.88.3.581 – ident: e_1_2_7_17_1 doi: 10.1104/pp.108.129783 – ident: e_1_2_7_64_1 doi: 10.1093/jxb/erx342 – ident: e_1_2_7_11_1 doi: 10.1016/j.cageo.2012.10.020 – ident: e_1_2_7_7_1 doi: 10.1038/nclimate1635 – ident: e_1_2_7_49_1 doi: 10.1093/treephys/tpz062 – ident: e_1_2_7_41_1 doi: 10.1016/j.tree.2011.06.003 – ident: e_1_2_7_29_1 – ident: e_1_2_7_10_1 doi: 10.1093/aob/mct204 – ident: e_1_2_7_46_1 doi: 10.1038/nclimate2281 – ident: e_1_2_7_65_1 doi: 10.1073/pnas.1519620113 – ident: e_1_2_7_15_1 doi: 10.3389/fpls.2013.00108 – ident: e_1_2_7_19_1 doi: 10.1111/nph.13110 – ident: e_1_2_7_22_1 doi: 10.1104/pp.100.1.205 – ident: e_1_2_7_28_1 doi: 10.1111/nph.15048 – ident: e_1_2_7_6_1 doi: 10.1038/ngeo2400 – ident: e_1_2_7_8_1 doi: 10.1073/pnas.1525678113 – ident: e_1_2_7_24_1 doi: 10.1175/JCLI-D-12-00579.1 – ident: e_1_2_7_27_1 doi: 10.1016/j.envexpbot.2018.03.011 – ident: e_1_2_7_4_1 doi: 10.1016/j.foreco.2009.09.001 – ident: e_1_2_7_60_1 doi: 10.1126/science.1165000 – ident: e_1_2_7_42_1 doi: 10.1111/j.1469-8137.2008.02436.x – ident: e_1_2_7_14_1 doi: 10.1126/science.1155121 – ident: e_1_2_7_37_1 doi: 10.1111/j.1365-3040.2005.01433.x – ident: e_1_2_7_33_1 doi: 10.1111/j.1365-2435.2008.01483.x – ident: e_1_2_7_5_1 doi: 10.1073/pnas.1107891109 – ident: e_1_2_7_18_1 doi: 10.1890/15-1402.1 – ident: e_1_2_7_20_1 doi: 10.1038/s41586-018-0240-x – ident: e_1_2_7_23_1 doi: 10.1175/JCLI3800.1 – ident: e_1_2_7_55_1 doi: 10.1111/pce.12852 – ident: e_1_2_7_9_1 doi: 10.1111/ele.12962 – ident: e_1_2_7_2_1 doi: 10.1073/pnas.0901438106 – ident: e_1_2_7_45_1 doi: 10.1002/2017JG004095 – ident: e_1_2_7_52_1 doi: 10.1111/j.1365-3040.1988.tb01774.x – ident: e_1_2_7_13_1 doi: 10.3389/fpls.2016.00751 – ident: e_1_2_7_51_1 doi: 10.1111/j.1365-3040.2011.02439.x |
SSID | ssj0009562 |
Score | 2.651637 |
Snippet | Determining physiological mechanisms and thresholds for climate-driven tree die-off could help improve global predictions of future terrestrial carbon sinks.... Summary Determining physiological mechanisms and thresholds for climate‐driven tree die‐off could help improve global predictions of future terrestrial carbon... Determining physiological mechanisms and thresholds for climate‐driven tree die‐off could help improve global predictions of future terrestrial carbon sinks.... |
SourceID | pubmedcentral proquest pubmed crossref wiley jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1834 |
SubjectTerms | Carbon sinks climate change Color Colour die-off Drought Droughts ecophysiology Embolism Failure Flight simulation foliar color greenhouse experimentation Greenhouses Health risks Hydraulic conductivity hydraulic failure Hydraulics Logistic Models monitoring Mortality Mortality risk Pine trees Pinus - physiology Pinus taeda Plant Stems - physiology plant-water relations prediction Predictions Probability theory risk saplings soil-plant interactions Survival tree die‐off tree mortality tree physiology Trees Trees - physiology Water Water stress Xylem Xylem - physiology |
Title | Dead or dying? Quantifying the point of no return from hydraulic failure in drought-induced tree mortality |
URI | https://www.jstor.org/stable/26759524 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.15922 https://www.ncbi.nlm.nih.gov/pubmed/31087656 https://www.proquest.com/docview/2268523171 https://www.proquest.com/docview/2232017311 https://www.proquest.com/docview/2327971102 https://pubmed.ncbi.nlm.nih.gov/PMC6771894 |
Volume | 223 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKxYEL79JAqQzi0EtWxHFsRz1U5VGtkKgKotIekCI_Ym3E4qy2yaGc-An9jfwSxs5Du1AQ4pbIE8WPGc839vgzQi90xhNJpYyFKllMqU5jUVIaK5MLwMfGCOsX9N-fsuk5fTfLZlvocDgL0_FDjAtu3jLCfO0NXKqLNSN3y_kEfDHx86_P1fKA6CNZI9xlZGBgZpTNelYhn8Uzfrnhi7p0xOuA5u_5kus4Njiikzvo89CELv_ky6Rt1ER_-4Xd8T_beBfd7gEqPu406h7aKt19dPNVDSDy8gFavAGdwPUKG3886gh_aKXPNvIvGKAkXtaVa3BtsavxqgR35rA_wILnl2Yl20WlsZWVz4THlcMmXBHU_Ph-VTkDKmaw3yLHX0NEANHBQ3R-8vbT62ncX9gQa5oDUjfCb5TalHIijLU2zzLDlCRMG8GVNQAmZWnBPQJsoDlViebSEmaMJhIiJZ3uoG1Xu3IXYaWYpkJqamUJc0wqLRNJYl8KI_M8szxCB8PQFbpnM_eXaiyKIaqBvitC30Xo-Si67Cg8rhPaCeM_ShCIpPKM0AjtDQpR9OZ9UQBmFRDBJzyJ0LOxGAzT77ZIV9atl0kBXPE0-ZtMSnjOAYHB_x91OjZWAHA3eKqMRYhvaN8o4InBN0tcNQ8E4YwD4sih6gdBuf7c6uL0bBoeHv-76BN0C9rV59ntoe1m1ZZPAZg1ah_dIPRsP9jhTzkEOEc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKQaIb3oWBAgaB1E1GxHFsZ4EQMFRT2o4AtdLsUseONVEHZzRNhIYVn8CH8Cv8BF_CdV6agYLYdMEuUa4SO76Pc-3rY4SeqJD7kkrpiSRlHqUq8ERKqZfoSAA-1loYN6F_MGLDI_p2HI7X0Ld2L0zND9FNuDnLqPy1M3A3Ib1k5XY26UMwJqQpqdxLF58gYTt9vjuA0X1KyM6bw9dDrzlTwFM0AjCphVvLMwHlRGhjTBSGmiWSMKUFT4wGvCNTAx4cIhuNaOIrLg1hWisiAcyrAN57AV10J4g7pv7BB7JE8ctIy_nMKBs3PEaubqhr6kr0qwsgz4K2v1doLiPnKvTtXEXf259WV7yc9Msi6avPv_BJ_i9_9Rq60mBw_LI2mutoLbU30KVXOeDkxU00HYDa43yOtdsB9gK_L6UrqHI3GNAynuWZLXBusM3xPIWIbbHbo4MnCz2X5TRT2MjMFfvjzGJdnYJU_PjyNbMarEhjVwWAP1ZJDyRAt9DRufR0E63b3KZ3EE4SpqiQihqZghsNpGHC980zoWUUhYb30HarK7FqCNvduSHTuE3cYKziaqx66HEnOqtZSs4S2qwUrpMgkCxGIaE9tNVqYNx4sNMYYLkIAfxzv4cedY_B97gFJWnTvHQyAeBHHvh_kwkIjziATPj-7VqpuwZAagHBOGQ9xFfUvRNw3OerT2w2qTjQGQdQFUHTtytt_nOv49G7YXVx999FH6LLw8OD_Xh_d7R3D21AH5uywi20XszL9D7g0CJ5UJk_RsfnbRk_AVE0lhU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELaWBaG9IP4WAgsYBNJegojj2M4BIaBUXRaqIrFSb1nHP2qkrlN1W6HeeATeg7fiSRg7adSKBXHZWyKPEtsz4_nGMx4j9FxlPJFUyliUhsWUqjQWhtK41LkAfKy1sH5D__OQDU7ox3E23kE_12dhmvoQ3Yab14ywXnsFn2m7oeRuNnkJtpiQNqPy2Ky-gb92_vqoB8x9QUj_w9f3g7i9UiBWNAcsqYUP5dmUciK0tTbPMs1KSZjSgpdWA9yRxsICDoaN5rRMFJeWMK0VkYDlVQrfvYKu-uCizx8jdLRR4ZeRdclnRtm4LWPk04a6rm4Zvyb_8SJk-2eC5iZwDpavfxPdaCErftvI2C20Y9xtdO1dDbBydQdNeyAluJ5j7Q9MvcFfltLnH_kXDOASz-rKLXBtsavx3ICBc9gfacGTlZ7L5bRS2MrK58bjymEdLg1a_Pr-o3IahE5jHzTHZ8FHAH_hLjq5lPneR7uuduY-wmXJFBVSUSsNrDqptEwkiX0ltMzzzPIIHa7ntlBtfXN_zca0WPs5wIYisCFCzzrSWVPU4yKi_cCgjoKAb5VnhEboYM2xolX48wJQrACfPuFJhJ52zaCqPv4inamXniYFuMXT5F80KeE5B0wG_7_XCEHXAUDiYLsyFiG-JR4dgS8Vvt3iqkkoGc44YJAcun4YBOnvoy6Go0F4ePD_pE_Q9VGvX3w6Gh4_RHswxDYJ7wDtLuZL8whQ26J8HLQFo9PLVs_f34VUSA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dead+or+dying%3F+Quantifying+the+point+of+no+return+from+hydraulic+failure+in+drought%E2%80%90induced+tree+mortality&rft.jtitle=The+New+phytologist&rft.au=Hammond%2C+William+M&rft.au=Yu%2C+Kailiang&rft.au=Wilson%2C+Luke+A.&rft.au=Will%2C+Rodney+E&rft.date=2019-09-01&rft.issn=0028-646X&rft.volume=223&rft.issue=4+p.1834-1843&rft.spage=1834&rft.epage=1843&rft_id=info:doi/10.1111%2Fnph.15922&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |