Extent of enthalpy–entropy compensation in protein–ligand interactions
The extent of enthalpy–entropy compensation in protein–ligand interactions has long been disputed because negatively correlated enthalpy (ΔH) and entropy (TΔS) changes can arise from constraints imposed by experimental and analytical procedures as well as through a physical compensation mechanism. T...
Saved in:
Published in | Protein science Vol. 20; no. 9; pp. 1607 - 1618 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.09.2011
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The extent of enthalpy–entropy compensation in protein–ligand interactions has long been disputed because negatively correlated enthalpy (ΔH) and entropy (TΔS) changes can arise from constraints imposed by experimental and analytical procedures as well as through a physical compensation mechanism. To distinguish these possibilities, we have created quantitative models of the effects of experimental constraints on isothermal titration calorimetry (ITC) measurements. These constraints are found to obscure any compensation that may be present in common data representations and regression analyses (e.g., in ΔH vs. –TΔS plots). However, transforming the thermodynamic data into ΔΔ‐plots of the differences between all pairs of ligands that bind each protein diminishes the influence of experimental constraints and representational bias. Statistical analysis of data from 32 diverse proteins shows a significant and widespread tendency to compensation. ΔΔH versus ΔΔG plots reveal a wide variation in the extent of compensation for different ligand modifications. While strong compensation (ΔΔH and −TΔΔS opposed and differing by < 20% in magnitude) is observed for 22% of modifications (twice that expected without compensation), 15% of modifications result in reinforcement (ΔΔH and −TΔΔS of the same sign). Because both enthalpy and entropy changes arise from changes to the distribution of energy states on binding, there is a general theoretical expectation of compensated behavior. However, prior theoretical studies have focussed on explaining a stronger tendency to compensation than actually found here. These results, showing strong but imperfect compensation, will act as a benchmark for future theoretical models of the thermodynamic consequences of ligand modification. |
---|---|
AbstractList | The extent of enthalpy–entropy compensation in protein–ligand interactions has long been disputed because negatively correlated enthalpy (Δ
H
) and entropy (
T
Δ
S
) changes can arise from constraints imposed by experimental and analytical procedures as well as through a physical compensation mechanism. To distinguish these possibilities, we have created quantitative models of the effects of experimental constraints on isothermal titration calorimetry (ITC) measurements. These constraints are found to obscure any compensation that may be present in common data representations and regression analyses (e.g., in Δ
H
vs. –
T
Δ
S
plots). However, transforming the thermodynamic data into ΔΔ‐plots of the differences between all pairs of ligands that bind each protein diminishes the influence of experimental constraints and representational bias. Statistical analysis of data from 32 diverse proteins shows a significant and widespread tendency to compensation. ΔΔ
H
versus ΔΔG plots reveal a wide variation in the extent of compensation for different ligand modifications. While strong compensation (ΔΔ
H
and −
T
ΔΔ
S
opposed and differing by < 20% in magnitude) is observed for 22% of modifications (twice that expected without compensation), 15% of modifications result in reinforcement (ΔΔ
H
and −
T
ΔΔ
S
of the same sign). Because both enthalpy and entropy changes arise from changes to the distribution of energy states on binding, there is a general theoretical expectation of compensated behavior. However, prior theoretical studies have focussed on explaining a stronger tendency to compensation than actually found here. These results, showing strong but imperfect compensation, will act as a benchmark for future theoretical models of the thermodynamic consequences of ligand modification. The extent of enthalpy-entropy compensation in protein-ligand interactions has long been disputed because negatively correlated enthalpy ([Delta]H) and entropy (T[Delta]S) changes can arise from constraints imposed by experimental and analytical procedures as well as through a physical compensation mechanism. To distinguish these possibilities, we have created quantitative models of the effects of experimental constraints on isothermal titration calorimetry (ITC) measurements. These constraints are found to obscure any compensation that may be present in common data representations and regression analyses (e.g., in [Delta]H vs. -T[Delta]S plots). However, transforming the thermodynamic data into [Delta][Delta]-plots of the differences between all pairs of ligands that bind each protein diminishes the influence of experimental constraints and representational bias. Statistical analysis of data from 32 diverse proteins shows a significant and widespread tendency to compensation. [Delta][Delta]H versus [Delta][Delta]G plots reveal a wide variation in the extent of compensation for different ligand modifications. While strong compensation ([Delta][Delta]H and -T[Delta][Delta]S opposed and differing by < 20% in magnitude) is observed for 22% of modifications (twice that expected without compensation), 15% of modifications result in reinforcement ([Delta][Delta]H and -T[Delta][Delta]S of the same sign). Because both enthalpy and entropy changes arise from changes to the distribution of energy states on binding, there is a general theoretical expectation of compensated behavior. However, prior theoretical studies have focussed on explaining a stronger tendency to compensation than actually found here. These results, showing strong but imperfect compensation, will act as a benchmark for future theoretical models of the thermodynamic consequences of ligand modification. The extent of enthalpy-entropy compensation in protein-ligand interactions has long been disputed because negatively correlated enthalpy (ΔH) and entropy (TΔS) changes can arise from constraints imposed by experimental and analytical procedures as well as through a physical compensation mechanism. To distinguish these possibilities, we have created quantitative models of the effects of experimental constraints on isothermal titration calorimetry (ITC) measurements. These constraints are found to obscure any compensation that may be present in common data representations and regression analyses (e.g., in ΔH vs. -TΔS plots). However, transforming the thermodynamic data into ΔΔ-plots of the differences between all pairs of ligands that bind each protein diminishes the influence of experimental constraints and representational bias. Statistical analysis of data from 32 diverse proteins shows a significant and widespread tendency to compensation. ΔΔH versus ΔΔG plots reveal a wide variation in the extent of compensation for different ligand modifications. While strong compensation (ΔΔH and -TΔΔS opposed and differing by < 20% in magnitude) is observed for 22% of modifications (twice that expected without compensation), 15% of modifications result in reinforcement (ΔΔH and -TΔΔS of the same sign). Because both enthalpy and entropy changes arise from changes to the distribution of energy states on binding, there is a general theoretical expectation of compensated behavior. However, prior theoretical studies have focussed on explaining a stronger tendency to compensation than actually found here. These results, showing strong but imperfect compensation, will act as a benchmark for future theoretical models of the thermodynamic consequences of ligand modification. The extent of enthalpy–entropy compensation in protein–ligand interactions has long been disputed because negatively correlated enthalpy (ΔH) and entropy (TΔS) changes can arise from constraints imposed by experimental and analytical procedures as well as through a physical compensation mechanism. To distinguish these possibilities, we have created quantitative models of the effects of experimental constraints on isothermal titration calorimetry (ITC) measurements. These constraints are found to obscure any compensation that may be present in common data representations and regression analyses (e.g., in ΔH vs. –TΔS plots). However, transforming the thermodynamic data into ΔΔ‐plots of the differences between all pairs of ligands that bind each protein diminishes the influence of experimental constraints and representational bias. Statistical analysis of data from 32 diverse proteins shows a significant and widespread tendency to compensation. ΔΔH versus ΔΔG plots reveal a wide variation in the extent of compensation for different ligand modifications. While strong compensation (ΔΔH and −TΔΔS opposed and differing by < 20% in magnitude) is observed for 22% of modifications (twice that expected without compensation), 15% of modifications result in reinforcement (ΔΔH and −TΔΔS of the same sign). Because both enthalpy and entropy changes arise from changes to the distribution of energy states on binding, there is a general theoretical expectation of compensated behavior. However, prior theoretical studies have focussed on explaining a stronger tendency to compensation than actually found here. These results, showing strong but imperfect compensation, will act as a benchmark for future theoretical models of the thermodynamic consequences of ligand modification. |
Author | Pitt, Will R. Williams, Mark A. Ladbury, John E. Olsson, Tjelvar S. G. |
AuthorAffiliation | 4 Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London London WC1E 7HX, United Kingdom 1 Institute of Structural and Molecular Biology, Division of Biosciences, University College London London WC1E 6BT, United Kingdom 2 UCB Celltech Slough SL1 3WE, United Kingdom 3 Department of Biochemistry, University of Cambridge Cambridge CB2 1GA, United Kingdom |
AuthorAffiliation_xml | – name: 4 Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London London WC1E 7HX, United Kingdom – name: 2 UCB Celltech Slough SL1 3WE, United Kingdom – name: 1 Institute of Structural and Molecular Biology, Division of Biosciences, University College London London WC1E 6BT, United Kingdom – name: 3 Department of Biochemistry, University of Cambridge Cambridge CB2 1GA, United Kingdom |
Author_xml | – sequence: 1 givenname: Tjelvar S. G. surname: Olsson fullname: Olsson, Tjelvar S. G. – sequence: 2 givenname: John E. surname: Ladbury fullname: Ladbury, John E. – sequence: 3 givenname: Will R. surname: Pitt fullname: Pitt, Will R. – sequence: 4 givenname: Mark A. surname: Williams fullname: Williams, Mark A. email: m.williams@mail.cryst.bbk.ac.uk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21739503$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctKAzEUhoMoWi_4BjLgwoVMza2ZZCOIeEVQRMFdSDOJRqbJmEzV7nwH39AnMcV6BTc5OTkf__nDvwzmffAGgHUE-whCvNPG0GcCz4EeokyUXLCbedCDgqGSE8aXwHJK9xBCijBZBEsYVUQMIOmB04PnzviuCLbI5U417eTt5TVfY2gnhQ6j1vikOhd84XyR13TG-Uw07lb5Or91Jio9nadVsGBVk8zarK6A68ODq_3j8uz86GR_76zUVHBcKgONxhUXos5nPcwNHFKL6BApMrCMqApigpHVVquaMVWRmmtlragsodiQFbD7oduOhyNT66lZ1cg2upGKExmUk78n3t3J2_AoCRIQDQZZYGsmEMPD2KROjlzSpmmUN2GcJOeUYoYEzeTmH_I-jKPPv5OoYoxTVAn4radjSCka--UFQTmNJ_dB5ngyufHT-hf3mUcGtj-AJ9eYyX868uLyfCr3DgsCnxo |
CODEN | PRCIEI |
CitedBy_id | crossref_primary_10_1371_journal_pone_0114106 crossref_primary_10_2139_ssrn_3155851 crossref_primary_10_1016_j_bmc_2015_02_052 crossref_primary_10_1039_C5RA04395F crossref_primary_10_1021_acs_jpcb_5b04064 crossref_primary_10_1063_1_4714726 crossref_primary_10_1080_17460441_2017_1297418 crossref_primary_10_1016_j_heliyon_2023_e15083 crossref_primary_10_1016_j_desal_2022_116041 crossref_primary_10_1021_jacs_8b08336 crossref_primary_10_1016_j_bpc_2015_05_009 crossref_primary_10_1039_D3CP05389J crossref_primary_10_1021_acs_jpca_8b04432 crossref_primary_10_1126_sciadv_1501240 crossref_primary_10_1038_ncomms14404 crossref_primary_10_1080_87559129_2017_1377225 crossref_primary_10_1016_j_ijbiomac_2022_07_058 crossref_primary_10_1146_annurev_biophys_070816_033743 crossref_primary_10_1039_D1RA04694B crossref_primary_10_1016_j_ejmech_2020_112195 crossref_primary_10_1039_C6CP07899K crossref_primary_10_1016_j_ejmcr_2024_100133 crossref_primary_10_1039_C7SM01220A crossref_primary_10_1016_j_drudis_2019_01_014 crossref_primary_10_1042_BJ20120324 crossref_primary_10_1038_s41598_019_47815_z crossref_primary_10_1080_07391102_2024_2331088 crossref_primary_10_1016_j_compbiomed_2022_105537 crossref_primary_10_1002_chem_201801756 crossref_primary_10_1080_17460441_2023_2267015 crossref_primary_10_1016_j_bbagen_2016_09_002 crossref_primary_10_1002_cmdc_201400013 crossref_primary_10_1007_s10534_017_0041_y crossref_primary_10_1021_acs_jmedchem_6b00515 crossref_primary_10_1021_acs_jmedchem_6b00998 crossref_primary_10_3390_biology10121310 crossref_primary_10_1016_j_jmb_2013_01_018 crossref_primary_10_3390_biom9120765 crossref_primary_10_1016_j_cocis_2013_10_002 crossref_primary_10_1016_j_str_2018_11_002 crossref_primary_10_1016_j_jmb_2012_09_009 crossref_primary_10_1140_epjst_e2013_01818_y crossref_primary_10_1016_j_jmb_2012_01_054 crossref_primary_10_1016_j_foodchem_2014_11_141 crossref_primary_10_1007_s11030_022_10392_x crossref_primary_10_1021_jm400087k crossref_primary_10_1007_s10973_013_3067_6 crossref_primary_10_1002_cphc_202000390 crossref_primary_10_1073_pnas_1213180109 crossref_primary_10_3390_ijms25137201 crossref_primary_10_1002_jmr_2295 crossref_primary_10_1002_jcc_24898 crossref_primary_10_1063_1_4973349 crossref_primary_10_1371_journal_pone_0080755 crossref_primary_10_1021_acs_biomac_1c00553 crossref_primary_10_1146_annurev_biophys_083012_130318 crossref_primary_10_1021_bi201674d crossref_primary_10_3390_ijms17020144 crossref_primary_10_1042_BCJ20220200 crossref_primary_10_1021_acs_jctc_5b00235 crossref_primary_10_1021_jp402632a crossref_primary_10_1021_la3037296 crossref_primary_10_1073_pnas_2120456119 crossref_primary_10_1039_C3CP54164A crossref_primary_10_1038_s41467_023_43596_2 crossref_primary_10_1021_acs_langmuir_1c00773 crossref_primary_10_1021_jf5025278 crossref_primary_10_1080_07391102_2017_1359671 crossref_primary_10_1021_acs_chemrestox_9b00450 crossref_primary_10_1126_scitranslmed_3009427 crossref_primary_10_1021_jacs_1c07095 crossref_primary_10_1021_acs_jpcb_3c03799 crossref_primary_10_1021_acs_jctc_5b00405 crossref_primary_10_1021_acs_jpcb_5b11593 crossref_primary_10_1080_07391102_2022_2123399 crossref_primary_10_3389_fphar_2022_927570 crossref_primary_10_1021_acs_analchem_6b04046 crossref_primary_10_1021_bi3006994 crossref_primary_10_1021_acs_joc_7b01368 crossref_primary_10_1080_07391102_2022_2158944 crossref_primary_10_1002_jmr_2550 crossref_primary_10_1039_D2SM00888B crossref_primary_10_3390_biophysica4020021 crossref_primary_10_1021_ct501161t crossref_primary_10_1021_acs_jpcb_0c10264 crossref_primary_10_1021_acs_jmedchem_3c01548 crossref_primary_10_1016_j_bpc_2022_106770 crossref_primary_10_3390_foundations1010005 crossref_primary_10_1021_acs_jctc_1c00714 crossref_primary_10_1021_ml400211q crossref_primary_10_1039_C4MD00057A crossref_primary_10_3390_e24010024 crossref_primary_10_1007_s10973_022_11200_2 crossref_primary_10_1016_j_compbiomed_2023_107257 crossref_primary_10_1016_j_ijbiomac_2022_01_059 crossref_primary_10_1039_c3md00038a crossref_primary_10_1002_cmdc_201200065 crossref_primary_10_1016_j_abb_2013_08_011 crossref_primary_10_1007_s12038_017_9719_0 crossref_primary_10_1007_s10822_015_9867_y crossref_primary_10_1146_annurev_biochem_060410_105819 crossref_primary_10_1002_tcr_202300276 crossref_primary_10_1038_nrd3701 crossref_primary_10_1111_cbdd_14107 crossref_primary_10_1021_jm501511f crossref_primary_10_1002_gch2_202000067 crossref_primary_10_1038_nature11271 crossref_primary_10_1038_nrd4486 crossref_primary_10_1111_febs_16951 crossref_primary_10_1016_j_abb_2014_03_005 crossref_primary_10_1021_acs_jctc_0c00764 crossref_primary_10_1038_s41598_024_59355_2 crossref_primary_10_1016_j_ejmech_2020_112771 crossref_primary_10_1002_bab_2548 crossref_primary_10_1093_jb_mvy032 crossref_primary_10_1007_s10930_014_9570_1 crossref_primary_10_1021_bi201642p crossref_primary_10_1016_j_foodres_2017_03_004 crossref_primary_10_1038_s41598_017_07266_w crossref_primary_10_3389_fmolb_2021_733148 crossref_primary_10_1038_srep22217 crossref_primary_10_1016_j_ijbiomac_2023_125792 crossref_primary_10_1002_cphc_202100431 crossref_primary_10_1016_j_bmcl_2014_04_114 crossref_primary_10_1038_srep10518 |
Cites_doi | 10.1016/j.sbi.2010.09.001 10.1135/cccc19641094 10.1038/261566a0 10.1021/ja060070r 10.1002/prot.10189 10.1016/j.jmb.2008.09.073 10.1110/ps.37801 10.1039/b002758h 10.1063/1.472728 10.1016/S0301-4622(00)00130-7 10.1007/BF02703768 10.1146/annurev.biophys.36.040306.132812 10.1021/j100562a007 10.1016/1074-5521(95)90097-7 10.1016/S0301-4622(01)00222-8 10.1016/0003-2697(89)90213-3 10.1111/j.1747-0285.2008.00661.x 10.1002/bip.1970.360091002 10.1016/0076-6879(95)59065-X 10.1021/ja071642q 10.1039/p29950000141 10.1021/ja075975z 10.1021/ja974061h 10.1021/ja054519c 10.1135/cccc19721425 |
ContentType | Journal Article |
Copyright | Copyright © 2011 The Protein Society Copyright © 2011 The Protein Society. Copyright © 2011 The Protein Society 2011 |
Copyright_xml | – notice: Copyright © 2011 The Protein Society – notice: Copyright © 2011 The Protein Society. – notice: Copyright © 2011 The Protein Society 2011 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7T5 7TM 7U9 8FD FR3 H94 K9. P64 RC3 7X8 5PM |
DOI | 10.1002/pro.692 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Immunology Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Virology and AIDS Abstracts Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1469-896X |
EndPage | 1618 |
ExternalDocumentID | 3958279401 10_1002_pro_692 21739503 PRO692 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: UCB Celltech (graduate studentship to T.S.G.O.) |
GroupedDBID | --- .GJ 05W 0R~ 123 1L6 1OC 24P 29P 2WC 31~ 33P 3SF 3WU 4.4 52U 53G 5RE 6TJ 8-0 8-1 8UM A00 A8Z AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABGDZ ABLJU ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACPOU ACPRK ACQPF ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI C1A C45 CAG COF CS3 DCZOG DIK DRFUL DRSTM DU5 E3Z EBD EBS EJD EMOBN ESTFP F5P G-S GODZA GX1 HGLYW HH5 HYE HZ~ IH2 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ NNB O66 O9- OIG OK1 OVD P2P P2W P4E PQQKQ QRW RCA RIG ROL RPM RWI SJN SUPJJ SV3 TEORI TR2 WBKPD WIH WIK WIN WNSPC WOHZO WOQ WXSBR WYISQ WYJ XV2 Y6R YKV ZGI ZXP ZZTAW ~02 ~S- CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7QO 7T5 7TM 7U9 8FD FR3 H94 K9. P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c4982-ae0ec27899d278dbec20b4f14b1a35f63a702321fcfcad66a73d8caff97f342e3 |
IEDL.DBID | RPM |
ISSN | 0961-8368 |
IngestDate | Tue Sep 17 21:15:13 EDT 2024 Wed Dec 04 11:13:59 EST 2024 Tue Nov 19 05:50:17 EST 2024 Fri Dec 06 17:40:45 EST 2024 Sat Sep 28 07:48:56 EDT 2024 Sat Aug 24 01:03:07 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Copyright © 2011 The Protein Society. http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4982-ae0ec27899d278dbec20b4f14b1a35f63a702321fcfcad66a73d8caff97f342e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Grant sponsor: UCB Celltech (graduate studentship to T.S.G.O.). Additional Supporting Information may be found in the online version of this article Tjelvar S. G. Olsson's current address is Cambridge Crystallographic Data Centre, Cambridge, CB2 1EZ, UK. John E. Ladbury's current address is Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA. |
OpenAccessLink | https://europepmc.org/articles/pmc3190155?pdf=render |
PMID | 21739503 |
PQID | 1766841790 |
PQPubID | 1016442 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3190155 proquest_miscellaneous_884426194 proquest_journals_1766841790 crossref_primary_10_1002_pro_692 pubmed_primary_21739503 wiley_primary_10_1002_pro_692_PRO692 |
PublicationCentury | 2000 |
PublicationDate | September 2011 |
PublicationDateYYYYMMDD | 2011-09-01 |
PublicationDate_xml | – month: 09 year: 2011 text: September 2011 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States – name: Bethesda |
PublicationTitle | Protein science |
PublicationTitleAlternate | Protein Sci |
PublicationYear | 2011 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley Subscription Services, Inc |
References | 1970; 9 2001; 93 2007; 129 1976; 261 1989; 179 1976; 80 2008; 37 2003; 14 1995; 259 2007 1964; 26 1995; 2 2000; 2000 2008; 384 2008; 71 1996; 105 2002; 27 2002; 49 2010; 20 2005; 127 2000; 84 2006; 128 2008; 130 1998; 120 2001; 10 1972; 37 20888754 - Curr Opin Struct Biol. 2010 Oct;20(5):598-605 11344335 - Protein Sci. 2001 Mar;10(3):661-7 16637649 - J Am Chem Soc. 2006 May 3;128(17):5802-12 16287305 - J Am Chem Soc. 2005 Nov 23;127(46):16167-70 2757186 - Anal Biochem. 1989 May 15;179(1):131-7 11937682 - J Biosci. 2002 Mar;27(2):121-6 10852311 - Biophys Chem. 2000 May 15;84(3):239-51 18482338 - Chem Biol Drug Des. 2008 Jun;71(6):529-32 8538476 - Methods Enzymol. 1995;259:628-720 18257565 - J Am Chem Soc. 2008 Mar 5;130(9):2798-805 11804727 - Biophys Chem. 2001 Nov 28;93(2-3):215-30 4918636 - Biopolymers. 1970;9(10):1125-227 9383477 - Chem Biol. 1995 Nov;2(11):709-12 17672456 - J Am Chem Soc. 2007 Sep 5;129(35):10747-53 18930735 - J Mol Biol. 2008 Dec 26;384(4):1002-17 14715884 - J Biomol Tech. 2003 Dec;14(4):247-69 18573076 - Annu Rev Biophys. 2008;37:135-51 12360529 - Proteins. 2002 Nov 15;49(3):398-402 e_1_2_6_18_2 e_1_2_6_19_2 e_1_2_6_12_2 e_1_2_6_13_2 e_1_2_6_10_2 e_1_2_6_11_2 e_1_2_6_16_2 e_1_2_6_17_2 e_1_2_6_14_2 e_1_2_6_15_2 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_22_2 e_1_2_6_21_2 e_1_2_6_27_2 Press WH (e_1_2_6_28_2) 2007 Myszka DG (e_1_2_6_20_2) 2003; 14 e_1_2_6_26_2 e_1_2_6_25_2 |
References_xml | – volume: 26 start-page: 1094 year: 1964 end-page: 1113 article-title: On the enthalpy–entropy relationship publication-title: Coll Czech Chem Commun – volume: 10 start-page: 661 year: 2001 end-page: 667 article-title: Entropy–enthalpy compensation: fact or artefact? publication-title: Protein Sci – volume: 130 start-page: 2798 year: 2008 end-page: 2805 article-title: Enthalpy–entropy compensation reveals solvent reorganization as a driving force for supramolecular encapsulation in water publication-title: J Am Chem Soc – volume: 261 start-page: 566 year: 1976 end-page: 567 article-title: Statistical interpretation of enthalpy–entropy compensation publication-title: Nature – volume: 37 start-page: 135 year: 2008 end-page: 151 article-title: Calorimetry and thermodynamics in drug design publication-title: Annu Rev Biophys – volume: 2 start-page: 709 year: 1995 end-page: 712 article-title: Win some lose some: enthalpy–entropy compensation in weak intermolecular interactions publication-title: Chem Biol – volume: 80 start-page: 2341 year: 1976 end-page: 2351 article-title: Enthalpy–entropy compensation. 2. Separation of the chemical from the statistical effect publication-title: J Phys Chem – volume: 129 start-page: 10747 year: 2007 end-page: 10753 article-title: Biomimetic interactions of proteins with functionalized nanoparticles: a thermodynamic study publication-title: J Am Chem Soc – volume: 179 start-page: 131 year: 1989 end-page: 137 article-title: Rapid measurement of binding constants and heats of binding using a new titration calorimeter publication-title: Anal Biochem – volume: 128 start-page: 5802 year: 2006 end-page: 5812 article-title: The paradoxical thermodynamic basis for the interaction of ethylene glycol, glycine, and sarcosine chains with bovine carbonic anhydrase II: an unexpected manifestation of enthalpy/entropy compensation publication-title: J Am Chem Soc – volume: 384 start-page: 1002 year: 2008 end-page: 1017 article-title: The thermodynamics of protein–ligand interaction and solvation: insights for ligand design publication-title: J Mol Biol – volume: 37 start-page: 1425 year: 1972 end-page: 1444 article-title: Statistics of the enthalpy–entropy relationship. I. The special case publication-title: Coll Czech Chem Commun – volume: 2 start-page: 141 year: 1995 end-page: 151 article-title: Application of a generalized enthalpy–entropy relationship to binding cooperativity to weak associations in solution publication-title: J Chem Soc Perkin Trans – volume: 71 start-page: 529 year: 2008 end-page: 532 article-title: PDBcal: a comprehensive dataset for receptor–ligand interactions with three‐dimensional structures and binding thermodynamics from isothermal titration calorimetry publication-title: Chem Biol Drug Des – volume: 105 start-page: 9292 year: 1996 end-page: 9299 article-title: Entropy–enthalpy compensation: perturbation and relaxation in thermodynamic systems publication-title: J Phys Chem – volume: 127 start-page: 16167 year: 2005 end-page: 16170 article-title: Enthalpy–entropy compensation is not a general feature of weak association publication-title: J Am Chem Soc – volume: 120 start-page: 4526 year: 1998 end-page: 4527 article-title: Enthalpy–entropy compensation in solvation and ligand binding revisited publication-title: J Am Chem Soc – volume: 2000 start-page: 1655 year: 2000 end-page: 1656 article-title: Entropy–enthalpy compensation and anticompensation: solvation and ligand binding publication-title: Chem Commun – volume: 84 start-page: 239 year: 2000 end-page: 251 article-title: A study on the enthalpy–entropy compensation in protein unfolding publication-title: Biophys Chem – volume: 27 start-page: 121 year: 2002 end-page: 126 article-title: Enthalpy–entropy compensation: a phantom phenomenon publication-title: Bioscience – start-page: 736 year: 2007 end-page: 740 – volume: 93 start-page: 215 year: 2001 end-page: 230 article-title: Heat does not come in different colours: entropy–enthalpy compensation, free energy windows, quantum confinement, pressure perturbation calorimetry, solvation and multiple causes of heat capacity effects in biomolecular interactions publication-title: Biophys Chem – volume: 9 start-page: 1125 year: 1970 end-page: 1227 article-title: Enthalpy–entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous property of water publication-title: Biopolymers – volume: 14 start-page: 247 year: 2003 end-page: 269 article-title: The ABRF‐MIRG'02 Study: assembly state, thermodynamic, and kinetic analysis of an enzyme/inhibitor interaction publication-title: J Biomol Technol – volume: 259 start-page: 628 year: 1995 end-page: 720 article-title: On the interpretation of data from isothermal processes publication-title: Meth Enzymol – volume: 49 start-page: 398 year: 2002 end-page: 402 article-title: Searching for quantitative entropy–enthalpy compensation among protein variants publication-title: Proteins: Struct Func Genetics – volume: 20 start-page: 1 year: 2010 end-page: 8 article-title: Higher throughput calorimetry: opportunities, approaches and challenges publication-title: Curr Opin Struct Biol – ident: e_1_2_6_13_2 doi: 10.1016/j.sbi.2010.09.001 – ident: e_1_2_6_4_2 doi: 10.1135/cccc19641094 – ident: e_1_2_6_3_2 doi: 10.1038/261566a0 – ident: e_1_2_6_14_2 doi: 10.1021/ja060070r – ident: e_1_2_6_19_2 doi: 10.1002/prot.10189 – volume: 14 start-page: 247 year: 2003 ident: e_1_2_6_20_2 article-title: The ABRF‐MIRG'02 Study: assembly state, thermodynamic, and kinetic analysis of an enzyme/inhibitor interaction publication-title: J Biomol Technol contributor: fullname: Myszka DG – ident: e_1_2_6_12_2 doi: 10.1016/j.jmb.2008.09.073 – ident: e_1_2_6_5_2 doi: 10.1110/ps.37801 – ident: e_1_2_6_7_2 doi: 10.1039/b002758h – ident: e_1_2_6_22_2 doi: 10.1063/1.472728 – ident: e_1_2_6_27_2 doi: 10.1016/S0301-4622(00)00130-7 – ident: e_1_2_6_6_2 doi: 10.1007/BF02703768 – ident: e_1_2_6_8_2 doi: 10.1146/annurev.biophys.36.040306.132812 – ident: e_1_2_6_9_2 doi: 10.1021/j100562a007 – ident: e_1_2_6_23_2 doi: 10.1016/1074-5521(95)90097-7 – ident: e_1_2_6_17_2 doi: 10.1016/S0301-4622(01)00222-8 – ident: e_1_2_6_11_2 doi: 10.1016/0003-2697(89)90213-3 – ident: e_1_2_6_16_2 doi: 10.1111/j.1747-0285.2008.00661.x – ident: e_1_2_6_2_2 doi: 10.1002/bip.1970.360091002 – ident: e_1_2_6_18_2 doi: 10.1016/0076-6879(95)59065-X – ident: e_1_2_6_15_2 doi: 10.1021/ja071642q – ident: e_1_2_6_24_2 doi: 10.1039/p29950000141 – ident: e_1_2_6_26_2 doi: 10.1021/ja075975z – ident: e_1_2_6_21_2 doi: 10.1021/ja974061h – ident: e_1_2_6_25_2 doi: 10.1021/ja054519c – start-page: 736 volume-title: Numerical recipes: the art of scientific computing year: 2007 ident: e_1_2_6_28_2 contributor: fullname: Press WH – ident: e_1_2_6_10_2 doi: 10.1135/cccc19721425 |
SSID | ssj0004123 |
Score | 2.4485965 |
Snippet | The extent of enthalpy–entropy compensation in protein–ligand interactions has long been disputed because negatively correlated enthalpy (ΔH) and entropy (TΔS)... The extent of enthalpy-entropy compensation in protein-ligand interactions has long been disputed because negatively correlated enthalpy (ΔH) and entropy (TΔS)... The extent of enthalpy–entropy compensation in protein–ligand interactions has long been disputed because negatively correlated enthalpy (Δ H ) and entropy ( T... The extent of enthalpy-entropy compensation in protein-ligand interactions has long been disputed because negatively correlated enthalpy ([Delta]H) and entropy... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1607 |
SubjectTerms | binding thermodynamics Calorimetry Compensation enthalpy–entropy compensation Entropy free energy Ligands Models, Theoretical Protein Binding protein complexes Proteins Proteins - chemistry Proteins - metabolism protein–ligand interactions Thermodynamics |
Title | Extent of enthalpy–entropy compensation in protein–ligand interactions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpro.692 https://www.ncbi.nlm.nih.gov/pubmed/21739503 https://www.proquest.com/docview/1766841790 https://search.proquest.com/docview/884426194 https://pubmed.ncbi.nlm.nih.gov/PMC3190155 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTuMwEB0BF_aCdim7dBeQDxW3tI3tpM4RVSCEBFSrReIWTZx4idQ6FS2H3vYf9g_5EsZOXYGqvezFVmQnY804mhl75g1Aj-tCZmQpRzyT5KBoapCXKhJYlUgehSqNu9G9vUuvH-TNY_K4A0nIhfFB-7qo-3Y669v6ycdWzmd6EOLEBpPbsfBaLBnswi6p3-Cih2TImLf149M4UiJVbaasQxp1yW39NOMeANhdUIVKWUEbbZmY25GS7y1Yr4KuPsPB2nZkF-0av8BOZQ-hc2HJb56t2Dnz0Zz-mPwQ9sehklsHbi7dSfeSNYZR94TT-er1z19Hq5mvmAsqJ1_WS4jVlnnkhtrSjGn9G23JHKLEc5v_sDiCh6vLX-PraF1DIdIkAx5hNay0y3bNSmpLkhgfFtLEsohRJCYVOCKtzWOjjcYyTXEkSqXRmGxkhOSV-Ap7trHVMTDJNcdC0QiiG8lUgYJeIDZigonsAgu8zOctVEbegiJzem5y4nwXTgKP8_W_ssgdRKVyhdCG9IXNMLHIXV2grZqXRa6U9L4eEfnWSmRDIoiyC6MPstpMcADaH0doX3kg7fU-6kLPS_Vfq84nP--p-_7fBH7Ap_Yo2oWmncDe8vmlOiVbZlmc-b37BsRI97s |
link.rule.ids | 230,314,727,780,784,885,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtswDCa67tBdhq7dT9Zu06HYzUksybZ8LIIWWdd0xdACvRm0bK0GEjlo0kNue4e9YZ-klBwFK4pddpFgUDYFUoZIifwIcMR1KXOylCOeS3JQNDXIKxUJrCskj0JVxt3oTi7S8bU8u0lutiAJuTA-aF-XTd9OZ33b3PrYyvlMD0Kc2OByMhJ-F0sGL-BlIrI8Dk56SIeMeVdBPo0jJVLV5co6rFGX3tZPc-4hgN0VVaiVFfajZ0bm81jJv21Yvwmd7sLrtfXIjrtZvoGt2u7B_rElz3m2Yl-Zj-f0B-V7sDMKtdz24ezEnXUvWWsYdbc4na8efv9xvNr5irmwcvJmvY5YY5nHbmgsjZg2v9BWzGFK3HUZEIu3cH16cjUaR-sqCpEmLfAI62GtXb5rXlFbkc74sJQmlmWMIjGpwIz2bR4bbTRWaYqZqJRGY_LMCMlr8Q62bWvrD8Ak1xxLRRRER8lViYJeIDFigonsAQuyLOYdWEbRwSJzem4LknwPDoOMi_XfsigcSKVypdCG9IUNmUTkLi_Q1u39olBKem-PmLzvNLJhEVTZg-yJrjYDHIT2UwqtLA-lvV5JPTjyWv3XrIvLnz-o-_jfDL7Azvhqcl6cf7v4fgCvuoNpF6h2CNvLu_v6E1k2y_KzX8eP7Mb7EA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtswDCa2Dth2Gbp2P9m6TodiNyexJDvysUgbtN3aBcMK9GbQstUaSGSjSQ-57R32hnuSUXIUtCh22UWCIdkSSBokJfIjwAHXhczIUo54JslB0dQgL1UksCqRPApVGneje36RnlzKs6vk6l6pLx-0r4u6b2fzvq1vfGxlO9eDECc2mJ6PhddiyaAtzeApPEsECVlw1ENKZMy7KvJpHCmRqi5f1uGNuhS3fppxDwPsrqlCvaygkx4Zmo_jJe_bsV4RTbbh1dqCZIfdTl_Dk8ruwO6hJe95vmJfmI_p9IflO_BiHOq57cLZsTvvXrLGMOpucNau_vz67dZq2hVzoeXk0Xo-sdoyj99QW5oxq6_RlszhStx2WRCLN3A5Of45PonWlRQiTZzgEVbDSruc16yktiS-8WEhTSyLGEViUoEj0t08NtpoLNMUR6JUGo3JRkZIXom3sGUbW70HJrnmWCgaQXQjmSpQ0AtERkwwkT1ggZZ52wFm5B00MqfnJifK92Av0Dhf_zGL3AFVKlcObUhf2AwTidwFBtqquVvkSknv8dEi7zqObJYIrOzB6AGvNhMcjPbDEZIuD6e9lqYeHHiu_mvX-fTHd-o-_PcCn-H59GiSfzu9-PoRXnZn0y5WbQ-2lrd31ScybpbFvhfjv3po_CM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extent+of+enthalpy%E2%80%93entropy+compensation+in+protein%E2%80%93ligand+interactions&rft.jtitle=Protein+science&rft.au=Olsson%2C+Tjelvar+S.+G.&rft.au=Ladbury%2C+John+E.&rft.au=Pitt%2C+Will+R.&rft.au=Williams%2C+Mark+A.&rft.date=2011-09-01&rft.issn=0961-8368&rft.eissn=1469-896X&rft.volume=20&rft.issue=9&rft.spage=1607&rft.epage=1618&rft_id=info:doi/10.1002%2Fpro.692&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pro_692 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-8368&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-8368&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-8368&client=summon |