Extent of enthalpy–entropy compensation in protein–ligand interactions

The extent of enthalpy–entropy compensation in protein–ligand interactions has long been disputed because negatively correlated enthalpy (ΔH) and entropy (TΔS) changes can arise from constraints imposed by experimental and analytical procedures as well as through a physical compensation mechanism. T...

Full description

Saved in:
Bibliographic Details
Published inProtein science Vol. 20; no. 9; pp. 1607 - 1618
Main Authors Olsson, Tjelvar S. G., Ladbury, John E., Pitt, Will R., Williams, Mark A.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.09.2011
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The extent of enthalpy–entropy compensation in protein–ligand interactions has long been disputed because negatively correlated enthalpy (ΔH) and entropy (TΔS) changes can arise from constraints imposed by experimental and analytical procedures as well as through a physical compensation mechanism. To distinguish these possibilities, we have created quantitative models of the effects of experimental constraints on isothermal titration calorimetry (ITC) measurements. These constraints are found to obscure any compensation that may be present in common data representations and regression analyses (e.g., in ΔH vs. –TΔS plots). However, transforming the thermodynamic data into ΔΔ‐plots of the differences between all pairs of ligands that bind each protein diminishes the influence of experimental constraints and representational bias. Statistical analysis of data from 32 diverse proteins shows a significant and widespread tendency to compensation. ΔΔH versus ΔΔG plots reveal a wide variation in the extent of compensation for different ligand modifications. While strong compensation (ΔΔH and −TΔΔS opposed and differing by < 20% in magnitude) is observed for 22% of modifications (twice that expected without compensation), 15% of modifications result in reinforcement (ΔΔH and −TΔΔS of the same sign). Because both enthalpy and entropy changes arise from changes to the distribution of energy states on binding, there is a general theoretical expectation of compensated behavior. However, prior theoretical studies have focussed on explaining a stronger tendency to compensation than actually found here. These results, showing strong but imperfect compensation, will act as a benchmark for future theoretical models of the thermodynamic consequences of ligand modification.
AbstractList The extent of enthalpy–entropy compensation in protein–ligand interactions has long been disputed because negatively correlated enthalpy (Δ H ) and entropy ( T Δ S ) changes can arise from constraints imposed by experimental and analytical procedures as well as through a physical compensation mechanism. To distinguish these possibilities, we have created quantitative models of the effects of experimental constraints on isothermal titration calorimetry (ITC) measurements. These constraints are found to obscure any compensation that may be present in common data representations and regression analyses (e.g., in Δ H vs. – T Δ S plots). However, transforming the thermodynamic data into ΔΔ‐plots of the differences between all pairs of ligands that bind each protein diminishes the influence of experimental constraints and representational bias. Statistical analysis of data from 32 diverse proteins shows a significant and widespread tendency to compensation. ΔΔ H versus ΔΔG plots reveal a wide variation in the extent of compensation for different ligand modifications. While strong compensation (ΔΔ H and − T ΔΔ S opposed and differing by < 20% in magnitude) is observed for 22% of modifications (twice that expected without compensation), 15% of modifications result in reinforcement (ΔΔ H and − T ΔΔ S of the same sign). Because both enthalpy and entropy changes arise from changes to the distribution of energy states on binding, there is a general theoretical expectation of compensated behavior. However, prior theoretical studies have focussed on explaining a stronger tendency to compensation than actually found here. These results, showing strong but imperfect compensation, will act as a benchmark for future theoretical models of the thermodynamic consequences of ligand modification.
The extent of enthalpy-entropy compensation in protein-ligand interactions has long been disputed because negatively correlated enthalpy ([Delta]H) and entropy (T[Delta]S) changes can arise from constraints imposed by experimental and analytical procedures as well as through a physical compensation mechanism. To distinguish these possibilities, we have created quantitative models of the effects of experimental constraints on isothermal titration calorimetry (ITC) measurements. These constraints are found to obscure any compensation that may be present in common data representations and regression analyses (e.g., in [Delta]H vs. -T[Delta]S plots). However, transforming the thermodynamic data into [Delta][Delta]-plots of the differences between all pairs of ligands that bind each protein diminishes the influence of experimental constraints and representational bias. Statistical analysis of data from 32 diverse proteins shows a significant and widespread tendency to compensation. [Delta][Delta]H versus [Delta][Delta]G plots reveal a wide variation in the extent of compensation for different ligand modifications. While strong compensation ([Delta][Delta]H and -T[Delta][Delta]S opposed and differing by < 20% in magnitude) is observed for 22% of modifications (twice that expected without compensation), 15% of modifications result in reinforcement ([Delta][Delta]H and -T[Delta][Delta]S of the same sign). Because both enthalpy and entropy changes arise from changes to the distribution of energy states on binding, there is a general theoretical expectation of compensated behavior. However, prior theoretical studies have focussed on explaining a stronger tendency to compensation than actually found here. These results, showing strong but imperfect compensation, will act as a benchmark for future theoretical models of the thermodynamic consequences of ligand modification.
The extent of enthalpy-entropy compensation in protein-ligand interactions has long been disputed because negatively correlated enthalpy (ΔH) and entropy (TΔS) changes can arise from constraints imposed by experimental and analytical procedures as well as through a physical compensation mechanism. To distinguish these possibilities, we have created quantitative models of the effects of experimental constraints on isothermal titration calorimetry (ITC) measurements. These constraints are found to obscure any compensation that may be present in common data representations and regression analyses (e.g., in ΔH vs. -TΔS plots). However, transforming the thermodynamic data into ΔΔ-plots of the differences between all pairs of ligands that bind each protein diminishes the influence of experimental constraints and representational bias. Statistical analysis of data from 32 diverse proteins shows a significant and widespread tendency to compensation. ΔΔH versus ΔΔG plots reveal a wide variation in the extent of compensation for different ligand modifications. While strong compensation (ΔΔH and -TΔΔS opposed and differing by < 20% in magnitude) is observed for 22% of modifications (twice that expected without compensation), 15% of modifications result in reinforcement (ΔΔH and -TΔΔS of the same sign). Because both enthalpy and entropy changes arise from changes to the distribution of energy states on binding, there is a general theoretical expectation of compensated behavior. However, prior theoretical studies have focussed on explaining a stronger tendency to compensation than actually found here. These results, showing strong but imperfect compensation, will act as a benchmark for future theoretical models of the thermodynamic consequences of ligand modification.
The extent of enthalpy–entropy compensation in protein–ligand interactions has long been disputed because negatively correlated enthalpy (ΔH) and entropy (TΔS) changes can arise from constraints imposed by experimental and analytical procedures as well as through a physical compensation mechanism. To distinguish these possibilities, we have created quantitative models of the effects of experimental constraints on isothermal titration calorimetry (ITC) measurements. These constraints are found to obscure any compensation that may be present in common data representations and regression analyses (e.g., in ΔH vs. –TΔS plots). However, transforming the thermodynamic data into ΔΔ‐plots of the differences between all pairs of ligands that bind each protein diminishes the influence of experimental constraints and representational bias. Statistical analysis of data from 32 diverse proteins shows a significant and widespread tendency to compensation. ΔΔH versus ΔΔG plots reveal a wide variation in the extent of compensation for different ligand modifications. While strong compensation (ΔΔH and −TΔΔS opposed and differing by < 20% in magnitude) is observed for 22% of modifications (twice that expected without compensation), 15% of modifications result in reinforcement (ΔΔH and −TΔΔS of the same sign). Because both enthalpy and entropy changes arise from changes to the distribution of energy states on binding, there is a general theoretical expectation of compensated behavior. However, prior theoretical studies have focussed on explaining a stronger tendency to compensation than actually found here. These results, showing strong but imperfect compensation, will act as a benchmark for future theoretical models of the thermodynamic consequences of ligand modification.
Author Pitt, Will R.
Williams, Mark A.
Ladbury, John E.
Olsson, Tjelvar S. G.
AuthorAffiliation 4 Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London London WC1E 7HX, United Kingdom
1 Institute of Structural and Molecular Biology, Division of Biosciences, University College London London WC1E 6BT, United Kingdom
2 UCB Celltech Slough SL1 3WE, United Kingdom
3 Department of Biochemistry, University of Cambridge Cambridge CB2 1GA, United Kingdom
AuthorAffiliation_xml – name: 4 Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London London WC1E 7HX, United Kingdom
– name: 2 UCB Celltech Slough SL1 3WE, United Kingdom
– name: 1 Institute of Structural and Molecular Biology, Division of Biosciences, University College London London WC1E 6BT, United Kingdom
– name: 3 Department of Biochemistry, University of Cambridge Cambridge CB2 1GA, United Kingdom
Author_xml – sequence: 1
  givenname: Tjelvar S. G.
  surname: Olsson
  fullname: Olsson, Tjelvar S. G.
– sequence: 2
  givenname: John E.
  surname: Ladbury
  fullname: Ladbury, John E.
– sequence: 3
  givenname: Will R.
  surname: Pitt
  fullname: Pitt, Will R.
– sequence: 4
  givenname: Mark A.
  surname: Williams
  fullname: Williams, Mark A.
  email: m.williams@mail.cryst.bbk.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21739503$$D View this record in MEDLINE/PubMed
BookMark eNp1kctKAzEUhoMoWi_4BjLgwoVMza2ZZCOIeEVQRMFdSDOJRqbJmEzV7nwH39AnMcV6BTc5OTkf__nDvwzmffAGgHUE-whCvNPG0GcCz4EeokyUXLCbedCDgqGSE8aXwHJK9xBCijBZBEsYVUQMIOmB04PnzviuCLbI5U417eTt5TVfY2gnhQ6j1vikOhd84XyR13TG-Uw07lb5Or91Jio9nadVsGBVk8zarK6A68ODq_3j8uz86GR_76zUVHBcKgONxhUXos5nPcwNHFKL6BApMrCMqApigpHVVquaMVWRmmtlragsodiQFbD7oduOhyNT66lZ1cg2upGKExmUk78n3t3J2_AoCRIQDQZZYGsmEMPD2KROjlzSpmmUN2GcJOeUYoYEzeTmH_I-jKPPv5OoYoxTVAn4radjSCka--UFQTmNJ_dB5ngyufHT-hf3mUcGtj-AJ9eYyX868uLyfCr3DgsCnxo
CODEN PRCIEI
CitedBy_id crossref_primary_10_1371_journal_pone_0114106
crossref_primary_10_2139_ssrn_3155851
crossref_primary_10_1016_j_bmc_2015_02_052
crossref_primary_10_1039_C5RA04395F
crossref_primary_10_1021_acs_jpcb_5b04064
crossref_primary_10_1063_1_4714726
crossref_primary_10_1080_17460441_2017_1297418
crossref_primary_10_1016_j_heliyon_2023_e15083
crossref_primary_10_1016_j_desal_2022_116041
crossref_primary_10_1021_jacs_8b08336
crossref_primary_10_1016_j_bpc_2015_05_009
crossref_primary_10_1039_D3CP05389J
crossref_primary_10_1021_acs_jpca_8b04432
crossref_primary_10_1126_sciadv_1501240
crossref_primary_10_1038_ncomms14404
crossref_primary_10_1080_87559129_2017_1377225
crossref_primary_10_1016_j_ijbiomac_2022_07_058
crossref_primary_10_1146_annurev_biophys_070816_033743
crossref_primary_10_1039_D1RA04694B
crossref_primary_10_1016_j_ejmech_2020_112195
crossref_primary_10_1039_C6CP07899K
crossref_primary_10_1016_j_ejmcr_2024_100133
crossref_primary_10_1039_C7SM01220A
crossref_primary_10_1016_j_drudis_2019_01_014
crossref_primary_10_1042_BJ20120324
crossref_primary_10_1038_s41598_019_47815_z
crossref_primary_10_1080_07391102_2024_2331088
crossref_primary_10_1016_j_compbiomed_2022_105537
crossref_primary_10_1002_chem_201801756
crossref_primary_10_1080_17460441_2023_2267015
crossref_primary_10_1016_j_bbagen_2016_09_002
crossref_primary_10_1002_cmdc_201400013
crossref_primary_10_1007_s10534_017_0041_y
crossref_primary_10_1021_acs_jmedchem_6b00515
crossref_primary_10_1021_acs_jmedchem_6b00998
crossref_primary_10_3390_biology10121310
crossref_primary_10_1016_j_jmb_2013_01_018
crossref_primary_10_3390_biom9120765
crossref_primary_10_1016_j_cocis_2013_10_002
crossref_primary_10_1016_j_str_2018_11_002
crossref_primary_10_1016_j_jmb_2012_09_009
crossref_primary_10_1140_epjst_e2013_01818_y
crossref_primary_10_1016_j_jmb_2012_01_054
crossref_primary_10_1016_j_foodchem_2014_11_141
crossref_primary_10_1007_s11030_022_10392_x
crossref_primary_10_1021_jm400087k
crossref_primary_10_1007_s10973_013_3067_6
crossref_primary_10_1002_cphc_202000390
crossref_primary_10_1073_pnas_1213180109
crossref_primary_10_3390_ijms25137201
crossref_primary_10_1002_jmr_2295
crossref_primary_10_1002_jcc_24898
crossref_primary_10_1063_1_4973349
crossref_primary_10_1371_journal_pone_0080755
crossref_primary_10_1021_acs_biomac_1c00553
crossref_primary_10_1146_annurev_biophys_083012_130318
crossref_primary_10_1021_bi201674d
crossref_primary_10_3390_ijms17020144
crossref_primary_10_1042_BCJ20220200
crossref_primary_10_1021_acs_jctc_5b00235
crossref_primary_10_1021_jp402632a
crossref_primary_10_1021_la3037296
crossref_primary_10_1073_pnas_2120456119
crossref_primary_10_1039_C3CP54164A
crossref_primary_10_1038_s41467_023_43596_2
crossref_primary_10_1021_acs_langmuir_1c00773
crossref_primary_10_1021_jf5025278
crossref_primary_10_1080_07391102_2017_1359671
crossref_primary_10_1021_acs_chemrestox_9b00450
crossref_primary_10_1126_scitranslmed_3009427
crossref_primary_10_1021_jacs_1c07095
crossref_primary_10_1021_acs_jpcb_3c03799
crossref_primary_10_1021_acs_jctc_5b00405
crossref_primary_10_1021_acs_jpcb_5b11593
crossref_primary_10_1080_07391102_2022_2123399
crossref_primary_10_3389_fphar_2022_927570
crossref_primary_10_1021_acs_analchem_6b04046
crossref_primary_10_1021_bi3006994
crossref_primary_10_1021_acs_joc_7b01368
crossref_primary_10_1080_07391102_2022_2158944
crossref_primary_10_1002_jmr_2550
crossref_primary_10_1039_D2SM00888B
crossref_primary_10_3390_biophysica4020021
crossref_primary_10_1021_ct501161t
crossref_primary_10_1021_acs_jpcb_0c10264
crossref_primary_10_1021_acs_jmedchem_3c01548
crossref_primary_10_1016_j_bpc_2022_106770
crossref_primary_10_3390_foundations1010005
crossref_primary_10_1021_acs_jctc_1c00714
crossref_primary_10_1021_ml400211q
crossref_primary_10_1039_C4MD00057A
crossref_primary_10_3390_e24010024
crossref_primary_10_1007_s10973_022_11200_2
crossref_primary_10_1016_j_compbiomed_2023_107257
crossref_primary_10_1016_j_ijbiomac_2022_01_059
crossref_primary_10_1039_c3md00038a
crossref_primary_10_1002_cmdc_201200065
crossref_primary_10_1016_j_abb_2013_08_011
crossref_primary_10_1007_s12038_017_9719_0
crossref_primary_10_1007_s10822_015_9867_y
crossref_primary_10_1146_annurev_biochem_060410_105819
crossref_primary_10_1002_tcr_202300276
crossref_primary_10_1038_nrd3701
crossref_primary_10_1111_cbdd_14107
crossref_primary_10_1021_jm501511f
crossref_primary_10_1002_gch2_202000067
crossref_primary_10_1038_nature11271
crossref_primary_10_1038_nrd4486
crossref_primary_10_1111_febs_16951
crossref_primary_10_1016_j_abb_2014_03_005
crossref_primary_10_1021_acs_jctc_0c00764
crossref_primary_10_1038_s41598_024_59355_2
crossref_primary_10_1016_j_ejmech_2020_112771
crossref_primary_10_1002_bab_2548
crossref_primary_10_1093_jb_mvy032
crossref_primary_10_1007_s10930_014_9570_1
crossref_primary_10_1021_bi201642p
crossref_primary_10_1016_j_foodres_2017_03_004
crossref_primary_10_1038_s41598_017_07266_w
crossref_primary_10_3389_fmolb_2021_733148
crossref_primary_10_1038_srep22217
crossref_primary_10_1016_j_ijbiomac_2023_125792
crossref_primary_10_1002_cphc_202100431
crossref_primary_10_1016_j_bmcl_2014_04_114
crossref_primary_10_1038_srep10518
Cites_doi 10.1016/j.sbi.2010.09.001
10.1135/cccc19641094
10.1038/261566a0
10.1021/ja060070r
10.1002/prot.10189
10.1016/j.jmb.2008.09.073
10.1110/ps.37801
10.1039/b002758h
10.1063/1.472728
10.1016/S0301-4622(00)00130-7
10.1007/BF02703768
10.1146/annurev.biophys.36.040306.132812
10.1021/j100562a007
10.1016/1074-5521(95)90097-7
10.1016/S0301-4622(01)00222-8
10.1016/0003-2697(89)90213-3
10.1111/j.1747-0285.2008.00661.x
10.1002/bip.1970.360091002
10.1016/0076-6879(95)59065-X
10.1021/ja071642q
10.1039/p29950000141
10.1021/ja075975z
10.1021/ja974061h
10.1021/ja054519c
10.1135/cccc19721425
ContentType Journal Article
Copyright Copyright © 2011 The Protein Society
Copyright © 2011 The Protein Society.
Copyright © 2011 The Protein Society 2011
Copyright_xml – notice: Copyright © 2011 The Protein Society
– notice: Copyright © 2011 The Protein Society.
– notice: Copyright © 2011 The Protein Society 2011
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7T5
7TM
7U9
8FD
FR3
H94
K9.
P64
RC3
7X8
5PM
DOI 10.1002/pro.692
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Immunology Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Virology and AIDS Abstracts
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

Genetics Abstracts
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1469-896X
EndPage 1618
ExternalDocumentID 3958279401
10_1002_pro_692
21739503
PRO692
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: UCB Celltech (graduate studentship to T.S.G.O.)
GroupedDBID ---
.GJ
05W
0R~
123
1L6
1OC
24P
29P
2WC
31~
33P
3SF
3WU
4.4
52U
53G
5RE
6TJ
8-0
8-1
8UM
A00
A8Z
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABGDZ
ABLJU
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACQPF
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
C1A
C45
CAG
COF
CS3
DCZOG
DIK
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMOBN
ESTFP
F5P
G-S
GODZA
GX1
HGLYW
HH5
HYE
HZ~
IH2
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
NNB
O66
O9-
OIG
OK1
OVD
P2P
P2W
P4E
PQQKQ
QRW
RCA
RIG
ROL
RPM
RWI
SJN
SUPJJ
SV3
TEORI
TR2
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WOQ
WXSBR
WYISQ
WYJ
XV2
Y6R
YKV
ZGI
ZXP
ZZTAW
~02
~S-
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7QO
7T5
7TM
7U9
8FD
FR3
H94
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c4982-ae0ec27899d278dbec20b4f14b1a35f63a702321fcfcad66a73d8caff97f342e3
IEDL.DBID RPM
ISSN 0961-8368
IngestDate Tue Sep 17 21:15:13 EDT 2024
Wed Dec 04 11:13:59 EST 2024
Tue Nov 19 05:50:17 EST 2024
Fri Dec 06 17:40:45 EST 2024
Sat Sep 28 07:48:56 EDT 2024
Sat Aug 24 01:03:07 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Copyright © 2011 The Protein Society.
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4982-ae0ec27899d278dbec20b4f14b1a35f63a702321fcfcad66a73d8caff97f342e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Grant sponsor: UCB Celltech (graduate studentship to T.S.G.O.).
Additional Supporting Information may be found in the online version of this article
Tjelvar S. G. Olsson's current address is Cambridge Crystallographic Data Centre, Cambridge, CB2 1EZ, UK.
John E. Ladbury's current address is Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
OpenAccessLink https://europepmc.org/articles/pmc3190155?pdf=render
PMID 21739503
PQID 1766841790
PQPubID 1016442
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3190155
proquest_miscellaneous_884426194
proquest_journals_1766841790
crossref_primary_10_1002_pro_692
pubmed_primary_21739503
wiley_primary_10_1002_pro_692_PRO692
PublicationCentury 2000
PublicationDate September 2011
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: September 2011
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
– name: Bethesda
PublicationTitle Protein science
PublicationTitleAlternate Protein Sci
PublicationYear 2011
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley Subscription Services, Inc
References 1970; 9
2001; 93
2007; 129
1976; 261
1989; 179
1976; 80
2008; 37
2003; 14
1995; 259
2007
1964; 26
1995; 2
2000; 2000
2008; 384
2008; 71
1996; 105
2002; 27
2002; 49
2010; 20
2005; 127
2000; 84
2006; 128
2008; 130
1998; 120
2001; 10
1972; 37
20888754 - Curr Opin Struct Biol. 2010 Oct;20(5):598-605
11344335 - Protein Sci. 2001 Mar;10(3):661-7
16637649 - J Am Chem Soc. 2006 May 3;128(17):5802-12
16287305 - J Am Chem Soc. 2005 Nov 23;127(46):16167-70
2757186 - Anal Biochem. 1989 May 15;179(1):131-7
11937682 - J Biosci. 2002 Mar;27(2):121-6
10852311 - Biophys Chem. 2000 May 15;84(3):239-51
18482338 - Chem Biol Drug Des. 2008 Jun;71(6):529-32
8538476 - Methods Enzymol. 1995;259:628-720
18257565 - J Am Chem Soc. 2008 Mar 5;130(9):2798-805
11804727 - Biophys Chem. 2001 Nov 28;93(2-3):215-30
4918636 - Biopolymers. 1970;9(10):1125-227
9383477 - Chem Biol. 1995 Nov;2(11):709-12
17672456 - J Am Chem Soc. 2007 Sep 5;129(35):10747-53
18930735 - J Mol Biol. 2008 Dec 26;384(4):1002-17
14715884 - J Biomol Tech. 2003 Dec;14(4):247-69
18573076 - Annu Rev Biophys. 2008;37:135-51
12360529 - Proteins. 2002 Nov 15;49(3):398-402
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_13_2
e_1_2_6_10_2
e_1_2_6_11_2
e_1_2_6_16_2
e_1_2_6_17_2
e_1_2_6_14_2
e_1_2_6_15_2
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_21_2
e_1_2_6_27_2
Press WH (e_1_2_6_28_2) 2007
Myszka DG (e_1_2_6_20_2) 2003; 14
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – volume: 26
  start-page: 1094
  year: 1964
  end-page: 1113
  article-title: On the enthalpy–entropy relationship
  publication-title: Coll Czech Chem Commun
– volume: 10
  start-page: 661
  year: 2001
  end-page: 667
  article-title: Entropy–enthalpy compensation: fact or artefact?
  publication-title: Protein Sci
– volume: 130
  start-page: 2798
  year: 2008
  end-page: 2805
  article-title: Enthalpy–entropy compensation reveals solvent reorganization as a driving force for supramolecular encapsulation in water
  publication-title: J Am Chem Soc
– volume: 261
  start-page: 566
  year: 1976
  end-page: 567
  article-title: Statistical interpretation of enthalpy–entropy compensation
  publication-title: Nature
– volume: 37
  start-page: 135
  year: 2008
  end-page: 151
  article-title: Calorimetry and thermodynamics in drug design
  publication-title: Annu Rev Biophys
– volume: 2
  start-page: 709
  year: 1995
  end-page: 712
  article-title: Win some lose some: enthalpy–entropy compensation in weak intermolecular interactions
  publication-title: Chem Biol
– volume: 80
  start-page: 2341
  year: 1976
  end-page: 2351
  article-title: Enthalpy–entropy compensation. 2. Separation of the chemical from the statistical effect
  publication-title: J Phys Chem
– volume: 129
  start-page: 10747
  year: 2007
  end-page: 10753
  article-title: Biomimetic interactions of proteins with functionalized nanoparticles: a thermodynamic study
  publication-title: J Am Chem Soc
– volume: 179
  start-page: 131
  year: 1989
  end-page: 137
  article-title: Rapid measurement of binding constants and heats of binding using a new titration calorimeter
  publication-title: Anal Biochem
– volume: 128
  start-page: 5802
  year: 2006
  end-page: 5812
  article-title: The paradoxical thermodynamic basis for the interaction of ethylene glycol, glycine, and sarcosine chains with bovine carbonic anhydrase II: an unexpected manifestation of enthalpy/entropy compensation
  publication-title: J Am Chem Soc
– volume: 384
  start-page: 1002
  year: 2008
  end-page: 1017
  article-title: The thermodynamics of protein–ligand interaction and solvation: insights for ligand design
  publication-title: J Mol Biol
– volume: 37
  start-page: 1425
  year: 1972
  end-page: 1444
  article-title: Statistics of the enthalpy–entropy relationship. I. The special case
  publication-title: Coll Czech Chem Commun
– volume: 2
  start-page: 141
  year: 1995
  end-page: 151
  article-title: Application of a generalized enthalpy–entropy relationship to binding cooperativity to weak associations in solution
  publication-title: J Chem Soc Perkin Trans
– volume: 71
  start-page: 529
  year: 2008
  end-page: 532
  article-title: PDBcal: a comprehensive dataset for receptor–ligand interactions with three‐dimensional structures and binding thermodynamics from isothermal titration calorimetry
  publication-title: Chem Biol Drug Des
– volume: 105
  start-page: 9292
  year: 1996
  end-page: 9299
  article-title: Entropy–enthalpy compensation: perturbation and relaxation in thermodynamic systems
  publication-title: J Phys Chem
– volume: 127
  start-page: 16167
  year: 2005
  end-page: 16170
  article-title: Enthalpy–entropy compensation is not a general feature of weak association
  publication-title: J Am Chem Soc
– volume: 120
  start-page: 4526
  year: 1998
  end-page: 4527
  article-title: Enthalpy–entropy compensation in solvation and ligand binding revisited
  publication-title: J Am Chem Soc
– volume: 2000
  start-page: 1655
  year: 2000
  end-page: 1656
  article-title: Entropy–enthalpy compensation and anticompensation: solvation and ligand binding
  publication-title: Chem Commun
– volume: 84
  start-page: 239
  year: 2000
  end-page: 251
  article-title: A study on the enthalpy–entropy compensation in protein unfolding
  publication-title: Biophys Chem
– volume: 27
  start-page: 121
  year: 2002
  end-page: 126
  article-title: Enthalpy–entropy compensation: a phantom phenomenon
  publication-title: Bioscience
– start-page: 736
  year: 2007
  end-page: 740
– volume: 93
  start-page: 215
  year: 2001
  end-page: 230
  article-title: Heat does not come in different colours: entropy–enthalpy compensation, free energy windows, quantum confinement, pressure perturbation calorimetry, solvation and multiple causes of heat capacity effects in biomolecular interactions
  publication-title: Biophys Chem
– volume: 9
  start-page: 1125
  year: 1970
  end-page: 1227
  article-title: Enthalpy–entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous property of water
  publication-title: Biopolymers
– volume: 14
  start-page: 247
  year: 2003
  end-page: 269
  article-title: The ABRF‐MIRG'02 Study: assembly state, thermodynamic, and kinetic analysis of an enzyme/inhibitor interaction
  publication-title: J Biomol Technol
– volume: 259
  start-page: 628
  year: 1995
  end-page: 720
  article-title: On the interpretation of data from isothermal processes
  publication-title: Meth Enzymol
– volume: 49
  start-page: 398
  year: 2002
  end-page: 402
  article-title: Searching for quantitative entropy–enthalpy compensation among protein variants
  publication-title: Proteins: Struct Func Genetics
– volume: 20
  start-page: 1
  year: 2010
  end-page: 8
  article-title: Higher throughput calorimetry: opportunities, approaches and challenges
  publication-title: Curr Opin Struct Biol
– ident: e_1_2_6_13_2
  doi: 10.1016/j.sbi.2010.09.001
– ident: e_1_2_6_4_2
  doi: 10.1135/cccc19641094
– ident: e_1_2_6_3_2
  doi: 10.1038/261566a0
– ident: e_1_2_6_14_2
  doi: 10.1021/ja060070r
– ident: e_1_2_6_19_2
  doi: 10.1002/prot.10189
– volume: 14
  start-page: 247
  year: 2003
  ident: e_1_2_6_20_2
  article-title: The ABRF‐MIRG'02 Study: assembly state, thermodynamic, and kinetic analysis of an enzyme/inhibitor interaction
  publication-title: J Biomol Technol
  contributor:
    fullname: Myszka DG
– ident: e_1_2_6_12_2
  doi: 10.1016/j.jmb.2008.09.073
– ident: e_1_2_6_5_2
  doi: 10.1110/ps.37801
– ident: e_1_2_6_7_2
  doi: 10.1039/b002758h
– ident: e_1_2_6_22_2
  doi: 10.1063/1.472728
– ident: e_1_2_6_27_2
  doi: 10.1016/S0301-4622(00)00130-7
– ident: e_1_2_6_6_2
  doi: 10.1007/BF02703768
– ident: e_1_2_6_8_2
  doi: 10.1146/annurev.biophys.36.040306.132812
– ident: e_1_2_6_9_2
  doi: 10.1021/j100562a007
– ident: e_1_2_6_23_2
  doi: 10.1016/1074-5521(95)90097-7
– ident: e_1_2_6_17_2
  doi: 10.1016/S0301-4622(01)00222-8
– ident: e_1_2_6_11_2
  doi: 10.1016/0003-2697(89)90213-3
– ident: e_1_2_6_16_2
  doi: 10.1111/j.1747-0285.2008.00661.x
– ident: e_1_2_6_2_2
  doi: 10.1002/bip.1970.360091002
– ident: e_1_2_6_18_2
  doi: 10.1016/0076-6879(95)59065-X
– ident: e_1_2_6_15_2
  doi: 10.1021/ja071642q
– ident: e_1_2_6_24_2
  doi: 10.1039/p29950000141
– ident: e_1_2_6_26_2
  doi: 10.1021/ja075975z
– ident: e_1_2_6_21_2
  doi: 10.1021/ja974061h
– ident: e_1_2_6_25_2
  doi: 10.1021/ja054519c
– start-page: 736
  volume-title: Numerical recipes: the art of scientific computing
  year: 2007
  ident: e_1_2_6_28_2
  contributor:
    fullname: Press WH
– ident: e_1_2_6_10_2
  doi: 10.1135/cccc19721425
SSID ssj0004123
Score 2.4485965
Snippet The extent of enthalpy–entropy compensation in protein–ligand interactions has long been disputed because negatively correlated enthalpy (ΔH) and entropy (TΔS)...
The extent of enthalpy-entropy compensation in protein-ligand interactions has long been disputed because negatively correlated enthalpy (ΔH) and entropy (TΔS)...
The extent of enthalpy–entropy compensation in protein–ligand interactions has long been disputed because negatively correlated enthalpy (Δ H ) and entropy ( T...
The extent of enthalpy-entropy compensation in protein-ligand interactions has long been disputed because negatively correlated enthalpy ([Delta]H) and entropy...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1607
SubjectTerms binding thermodynamics
Calorimetry
Compensation
enthalpy–entropy compensation
Entropy
free energy
Ligands
Models, Theoretical
Protein Binding
protein complexes
Proteins
Proteins - chemistry
Proteins - metabolism
protein–ligand interactions
Thermodynamics
Title Extent of enthalpy–entropy compensation in protein–ligand interactions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpro.692
https://www.ncbi.nlm.nih.gov/pubmed/21739503
https://www.proquest.com/docview/1766841790
https://search.proquest.com/docview/884426194
https://pubmed.ncbi.nlm.nih.gov/PMC3190155
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTuMwEB0BF_aCdim7dBeQDxW3tI3tpM4RVSCEBFSrReIWTZx4idQ6FS2H3vYf9g_5EsZOXYGqvezFVmQnY804mhl75g1Aj-tCZmQpRzyT5KBoapCXKhJYlUgehSqNu9G9vUuvH-TNY_K4A0nIhfFB-7qo-3Y669v6ycdWzmd6EOLEBpPbsfBaLBnswi6p3-Cih2TImLf149M4UiJVbaasQxp1yW39NOMeANhdUIVKWUEbbZmY25GS7y1Yr4KuPsPB2nZkF-0av8BOZQ-hc2HJb56t2Dnz0Zz-mPwQ9sehklsHbi7dSfeSNYZR94TT-er1z19Hq5mvmAsqJ1_WS4jVlnnkhtrSjGn9G23JHKLEc5v_sDiCh6vLX-PraF1DIdIkAx5hNay0y3bNSmpLkhgfFtLEsohRJCYVOCKtzWOjjcYyTXEkSqXRmGxkhOSV-Ap7trHVMTDJNcdC0QiiG8lUgYJeIDZigonsAgu8zOctVEbegiJzem5y4nwXTgKP8_W_ssgdRKVyhdCG9IXNMLHIXV2grZqXRa6U9L4eEfnWSmRDIoiyC6MPstpMcADaH0doX3kg7fU-6kLPS_Vfq84nP--p-_7fBH7Ap_Yo2oWmncDe8vmlOiVbZlmc-b37BsRI97s
link.rule.ids 230,314,727,780,784,885,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtswDCa67tBdhq7dT9Zu06HYzUksybZ8LIIWWdd0xdACvRm0bK0GEjlo0kNue4e9YZ-klBwFK4pddpFgUDYFUoZIifwIcMR1KXOylCOeS3JQNDXIKxUJrCskj0JVxt3oTi7S8bU8u0lutiAJuTA-aF-XTd9OZ33b3PrYyvlMD0Kc2OByMhJ-F0sGL-BlIrI8Dk56SIeMeVdBPo0jJVLV5co6rFGX3tZPc-4hgN0VVaiVFfajZ0bm81jJv21Yvwmd7sLrtfXIjrtZvoGt2u7B_rElz3m2Yl-Zj-f0B-V7sDMKtdz24ezEnXUvWWsYdbc4na8efv9xvNr5irmwcvJmvY5YY5nHbmgsjZg2v9BWzGFK3HUZEIu3cH16cjUaR-sqCpEmLfAI62GtXb5rXlFbkc74sJQmlmWMIjGpwIz2bR4bbTRWaYqZqJRGY_LMCMlr8Q62bWvrD8Ak1xxLRRRER8lViYJeIDFigonsAQuyLOYdWEbRwSJzem4LknwPDoOMi_XfsigcSKVypdCG9IUNmUTkLi_Q1u39olBKem-PmLzvNLJhEVTZg-yJrjYDHIT2UwqtLA-lvV5JPTjyWv3XrIvLnz-o-_jfDL7Azvhqcl6cf7v4fgCvuoNpF6h2CNvLu_v6E1k2y_KzX8eP7Mb7EA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtswDCa2Dth2Gbp2P9m6TodiNyexJDvysUgbtN3aBcMK9GbQstUaSGSjSQ-57R32hnuSUXIUtCh22UWCIdkSSBokJfIjwAHXhczIUo54JslB0dQgL1UksCqRPApVGneje36RnlzKs6vk6l6pLx-0r4u6b2fzvq1vfGxlO9eDECc2mJ6PhddiyaAtzeApPEsECVlw1ENKZMy7KvJpHCmRqi5f1uGNuhS3fppxDwPsrqlCvaygkx4Zmo_jJe_bsV4RTbbh1dqCZIfdTl_Dk8ruwO6hJe95vmJfmI_p9IflO_BiHOq57cLZsTvvXrLGMOpucNau_vz67dZq2hVzoeXk0Xo-sdoyj99QW5oxq6_RlszhStx2WRCLN3A5Of45PonWlRQiTZzgEVbDSruc16yktiS-8WEhTSyLGEViUoEj0t08NtpoLNMUR6JUGo3JRkZIXom3sGUbW70HJrnmWCgaQXQjmSpQ0AtERkwwkT1ggZZ52wFm5B00MqfnJifK92Av0Dhf_zGL3AFVKlcObUhf2AwTidwFBtqquVvkSknv8dEi7zqObJYIrOzB6AGvNhMcjPbDEZIuD6e9lqYeHHiu_mvX-fTHd-o-_PcCn-H59GiSfzu9-PoRXnZn0y5WbQ-2lrd31ScybpbFvhfjv3po_CM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extent+of+enthalpy%E2%80%93entropy+compensation+in+protein%E2%80%93ligand+interactions&rft.jtitle=Protein+science&rft.au=Olsson%2C+Tjelvar+S.+G.&rft.au=Ladbury%2C+John+E.&rft.au=Pitt%2C+Will+R.&rft.au=Williams%2C+Mark+A.&rft.date=2011-09-01&rft.issn=0961-8368&rft.eissn=1469-896X&rft.volume=20&rft.issue=9&rft.spage=1607&rft.epage=1618&rft_id=info:doi/10.1002%2Fpro.692&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pro_692
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-8368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-8368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-8368&client=summon