CFD simulation of gas-liquid stirred vessel: VC, S33, and L33 flow regimes

A comprehensive computational model based on the Eulerian–Eulerian approach was developed to simulate gas–liquid flows in a stirred vessel. A separate submodel was developed to quantitatively understand the influence of turbulence and presence of neighboring bubbles on drag acting on bubbles. This s...

Full description

Saved in:
Bibliographic Details
Published inAIChE journal Vol. 52; no. 5; pp. 1654 - 1672
Main Authors Khopkar, Avinash R., Ranade, Vivek V.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.05.2006
Wiley Subscription Services
American Institute of Chemical Engineers
Subjects
Online AccessGet full text
ISSN0001-1541
1547-5905
DOI10.1002/aic.10762

Cover

Abstract A comprehensive computational model based on the Eulerian–Eulerian approach was developed to simulate gas–liquid flows in a stirred vessel. A separate submodel was developed to quantitatively understand the influence of turbulence and presence of neighboring bubbles on drag acting on bubbles. This submodel was used to identify an appropriate correlation for estimating the interphase drag force. The standard k–ϵ turbulence model was used to simulate turbulent gas–liquid flows in a stirred vessel. A computational snapshot approach was used to simulate motion of the standard Rushton turbine in a fully baffled vessel. The computational model was mapped onto FLUENT4.5, a commercial CFD solver. The model predictions were compared with the previously published experimental data of Bombac and co‐workers. The model was used to simulate three distinct flow regimes in gas–liquid stirred vessels: vortex clinging (VC), alternating small cavities (S33), and alternating large cavities (L33). The predicted results show reasonably good agreement with the experimental data for all three regimes. The computational model and results discussed in this work would be useful for understanding and simulating gas holdup distribution and flow regimes in stirred vessels. © 2006 American Institute of Chemical Engineers AIChE J, 2006
AbstractList A comprehensive computational model based on the Eulerian-Eulerian approach was developed to simulate gas-liquid flows in a stirred vessel. A separate submodel was developed to quantitatively understand the influence of turbulence and presence of neighboring bubbles on drag acting on bubbles. This submodel was used to identify an appropriate correlation for estimating the interphase drag force. The standard k- turbulence model was used to simulate turbulent gas-liquid flows in a stirred vessel. A computational snapshot approach was used to simulate motion of the standard Rushton turbine in a fully baffled vessel. The computational model was mapped onto FLUENT4.5, a commercial CFD solver. The model predictions were compared with the previously published experimental data of Bombac and co-workers. The model was used to simulate three distinct flow regimes in gas-liquid stirred vessels: vortex clinging (VC), alternating small cavities (S33), and alternating large cavities (L33). The predicted results show reasonably good agreement with the experimental data for all three regimes. The computational model and results discussed in this work would be useful for understanding and simulating gas holdup distribution and flow regimes in stirred vessels.
A comprehensive computational model based on the Eulerian–Eulerian approach was developed to simulate gas–liquid flows in a stirred vessel. A separate submodel was developed to quantitatively understand the influence of turbulence and presence of neighboring bubbles on drag acting on bubbles. This submodel was used to identify an appropriate correlation for estimating the interphase drag force. The standard k–ϵ turbulence model was used to simulate turbulent gas–liquid flows in a stirred vessel. A computational snapshot approach was used to simulate motion of the standard Rushton turbine in a fully baffled vessel. The computational model was mapped onto FLUENT4.5, a commercial CFD solver. The model predictions were compared with the previously published experimental data of Bombac and co‐workers. The model was used to simulate three distinct flow regimes in gas–liquid stirred vessels: vortex clinging (VC), alternating small cavities (S33), and alternating large cavities (L33). The predicted results show reasonably good agreement with the experimental data for all three regimes. The computational model and results discussed in this work would be useful for understanding and simulating gas holdup distribution and flow regimes in stirred vessels. © 2006 American Institute of Chemical Engineers AIChE J, 2006
A comprehensive computational model based on the Eulerian-Eulerian approach was developed to simulate gas-liquid flows in a stirred vessel. A separate submodel was developed to quantitatively understand the influence of turbulence and presence of neighboring bubbles on drag acting on bubbles. This submodel was used to identify an appropriate correlation for estimating the interphase drag force. The standard k- turbulence model was used to simulate turbulent gas-liquid flows in a stirred vessel. A computational snapshot approach was used to simulate motion of the standard Rushton turbine in a fully baffled vessel. The computational model was mapped onto FLUENT4.5, a commercial CFD solver. The model predictions were compared with the previously published experimental data of Bombac and co-workers. The model was used to simulate three distinct flow regimes in gas-liquid stirred vessels: vortex clinging (VC), alternating small cavities (S33), and alternating large cavities (L33). The predicted results show reasonably good agreement with the experimental data for all three regimes. The computational model and results discussed in this work would be useful for understanding and simulating gas holdup distribution and flow regimes in stirred vessels. [PUBLICATION ABSTRACT]
Author Ranade, Vivek V.
Khopkar, Avinash R.
Author_xml – sequence: 1
  givenname: Avinash R.
  surname: Khopkar
  fullname: Khopkar, Avinash R.
  organization: Industrial Flow Modelling Group, National Chemical Laboratory, Pune 411 008, India
– sequence: 2
  givenname: Vivek V.
  surname: Ranade
  fullname: Ranade, Vivek V.
  email: vv.ranade@ncl.res.in
  organization: Industrial Flow Modelling Group, National Chemical Laboratory, Pune 411 008, India
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17720549$$DView record in Pascal Francis
BookMark eNp9kNtrFDEUh4NUcLv2wf8gCApCx-aymSS-tVN7XRS8gi8hkzkpqdmZNpmx9r9v2q0WCvp0Lnzf4fDbRBv90ANCLyh5SwlhOza40siaPUEzKhayEpqIDTQjhNCqLOgztJnzeZmYVGyGTpqDfZzDaop2DEOPB4_PbK5iuJxCh_MYUoIO_4KcIb7D35pt_JnzbWz7Di85xz4OVzjBWVhBfo6eehszbN3XOfp68P5Lc1QtPx4eN7vLyi20YpXsCHSsJmB9ecK2zDuwgrctcaTVTi1a6GqmvCKyJco5C5pLTzl3gtYANZ-j1-u7F2m4nCCPZhWygxhtD8OUDdOCMVWEOXr5CDwfptSX3wzVmiuhiC7Qq3vIZmejT7Z3IZuLFFY2XRsqJSNiccu9WXMuDTkn8A8IMbfRmxK9uYu-sDuPWBfGu3zHZEP8n3EVIlz_-7TZPW7-GNXaCHmE338Nm36aWnIpzPcPh2Z_7_TT6YmW5ge_AYHzov4
CODEN AICEAC
CitedBy_id crossref_primary_10_1002_ceat_201900651
crossref_primary_10_1252_jcej_09we061
crossref_primary_10_1016_j_ces_2014_05_048
crossref_primary_10_1515_ijcre_2015_0215
crossref_primary_10_1515_cppm_2023_0050
crossref_primary_10_1016_j_cjche_2020_06_036
crossref_primary_10_1016_S1004_9541_10_60231_5
crossref_primary_10_1080_01496395_2016_1218895
crossref_primary_10_1016_j_ces_2008_01_005
crossref_primary_10_1002_jctb_5367
crossref_primary_10_1016_j_ces_2021_117007
crossref_primary_10_1002_cjce_20465
crossref_primary_10_1590_0104_6632_20190364s20180450
crossref_primary_10_1016_j_cej_2016_03_102
crossref_primary_10_1016_j_cep_2023_109267
crossref_primary_10_1021_acs_iecr_6b01660
crossref_primary_10_1016_j_ces_2011_05_039
crossref_primary_10_1252_jcej_16we242
crossref_primary_10_1016_j_ces_2008_04_039
crossref_primary_10_1016_j_apm_2013_05_032
crossref_primary_10_1002_btpr_2242
crossref_primary_10_3390_pr8080982
crossref_primary_10_1016_j_cjche_2020_06_016
crossref_primary_10_1002_aic_14860
crossref_primary_10_1016_j_bej_2020_107522
crossref_primary_10_1016_j_ces_2014_01_032
crossref_primary_10_1016_j_ces_2023_119058
crossref_primary_10_1002_aic_11878
crossref_primary_10_1016_j_powtec_2011_08_005
crossref_primary_10_1021_ie050941q
crossref_primary_10_1205_cherd06243
crossref_primary_10_1515_ijcre_2022_0102
crossref_primary_10_1016_j_jclepro_2018_04_172
crossref_primary_10_1016_j_cjche_2015_09_002
crossref_primary_10_1021_ie400639r
crossref_primary_10_1080_01496395_2018_1459702
crossref_primary_10_1016_j_cej_2019_04_134
crossref_primary_10_1016_j_cej_2025_160723
crossref_primary_10_1515_cppm_2015_0076
crossref_primary_10_1007_s11696_018_0605_5
crossref_primary_10_1016_j_ces_2005_09_023
crossref_primary_10_1021_acs_iecr_8b02720
crossref_primary_10_1016_j_pnucene_2018_10_012
crossref_primary_10_1021_acs_iecr_3c00882
crossref_primary_10_3390_pr12050896
crossref_primary_10_1016_j_jtice_2023_105206
crossref_primary_10_1016_j_bej_2020_107867
crossref_primary_10_1002_ceat_201900162
crossref_primary_10_1016_j_ces_2008_08_033
crossref_primary_10_1016_j_cherd_2008_12_017
crossref_primary_10_1021_acs_iecr_3c00962
crossref_primary_10_1002_ceat_200700278
crossref_primary_10_1016_j_ces_2011_07_004
crossref_primary_10_1002_aic_11414
crossref_primary_10_3390_e24030357
crossref_primary_10_1002_aic_12548
crossref_primary_10_1002_aic_16586
crossref_primary_10_1205_cherd06141
crossref_primary_10_1021_acs_iecr_5b03163
crossref_primary_10_1002_cite_200900171
Cites_doi 10.1016/0009-2509(85)87023-8
10.1016/S0009-2509(98)00114-6
10.1016/0009-2509(90)87005-D
10.1016/0009-2509(94)00318-1
10.1002/aic.690381210
10.1021/ie020954t
10.1002/aic.10314
10.1016/j.ces.2004.04.033
10.1205/02638760152721190
10.1007/BF02812053
10.1016/S0009-2509(97)00127-9
10.1016/0009-2509(96)00128-5
10.1016/0009-2509(92)80318-7
10.1016/S0009-2509(02)00274-9
10.1016/S0009-2509(98)00301-7
10.1016/B978-044450476-0/50026-1
10.1007/978-94-009-6175-3_4
10.1205/026387698525315
10.1021/ie00067a600
10.1002/aic.690250513
10.1002/cjce.5450490403
10.1002/aic.690431105
10.1017/S0022112096004739
10.1016/j.ces.2004.11.046
10.1016/0009-2509(95)00270-7
10.1115/1.2822210
10.1205/026387697523345
10.1021/i260076a023
10.1080/00986449208936095
10.1016/j.ces.2004.11.044
ContentType Journal Article
Copyright Copyright © 2006 American Institute of Chemical Engineers (AIChE)
2006 INIST-CNRS
Copyright American Institute of Chemical Engineers May 2006
Copyright_xml – notice: Copyright © 2006 American Institute of Chemical Engineers (AIChE)
– notice: 2006 INIST-CNRS
– notice: Copyright American Institute of Chemical Engineers May 2006
DBID BSCLL
AAYXX
CITATION
IQODW
7ST
7U5
8FD
C1K
L7M
SOI
DOI 10.1002/aic.10762
DatabaseName Istex
CrossRef
Pascal-Francis
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Technology Research Database

CrossRef
Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1547-5905
EndPage 1672
ExternalDocumentID 1038405141
17720549
10_1002_aic_10762
AIC10762
ark_67375_WNG_DBKRKJ97_Z
Genre article
Feature
GrantInformation_xml – fundername: Department of Science and Technology Grant
  funderid: DST/SF/40/99
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHHS
AAIHA
AAIKC
AAMNW
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDEX
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UAO
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ABJIA
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEUYN
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
PHGZM
PHGZT
PQGLB
AAYXX
CITATION
IQODW
7ST
7U5
8FD
C1K
L7M
SOI
ID FETCH-LOGICAL-c4982-7d0ed260eaf012ab2fcea53bb0c0b9c84bed628f807b08ccae937f133c516ee63
IEDL.DBID DR2
ISSN 0001-1541
IngestDate Fri Sep 05 09:31:55 EDT 2025
Fri Jul 25 10:58:38 EDT 2025
Mon Jul 21 09:14:44 EDT 2025
Thu Apr 24 23:01:29 EDT 2025
Tue Jul 01 01:40:21 EDT 2025
Wed Aug 20 07:24:52 EDT 2025
Wed Oct 30 09:55:23 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Gas holdup
computational fluid dynamics (CFD)
Euler equation
Stirred vessel
Correlation
Turbulence
Two phase flow
Computational fluid dynamics
gas holdup distribution
Interphase
Hydrodynamics
Turbine impeller
Forecast model
Modeling
Rusliton turbine
Bubble
Flow regime
Drag
Correlation analysis
Gas liquid flow
flow regimes
Vortex
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4982-7d0ed260eaf012ab2fcea53bb0c0b9c84bed628f807b08ccae937f133c516ee63
Notes ArticleID:AIC10762
ark:/67375/WNG-DBKRKJ97-Z
istex:C03EB55D4657FE5A4A954AA6A79D2C536E6D7185
Department of Science and Technology Grant - No. DST/SF/40/99
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 199385809
PQPubID 7879
PageCount 19
ParticipantIDs proquest_miscellaneous_29522813
proquest_journals_199385809
pascalfrancis_primary_17720549
crossref_primary_10_1002_aic_10762
crossref_citationtrail_10_1002_aic_10762
wiley_primary_10_1002_aic_10762_AIC10762
istex_primary_ark_67375_WNG_DBKRKJ97_Z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2006
PublicationDateYYYYMMDD 2006-05-01
PublicationDate_xml – month: 05
  year: 2006
  text: May 2006
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: New York
PublicationTitle AIChE journal
PublicationTitleAlternate AIChE J
PublicationYear 2006
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley Subscription Services
American Institute of Chemical Engineers
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley Subscription Services
– name: American Institute of Chemical Engineers
References Ranade VV, Deshpande VR. Gas-liquid flow in stirred reactors: Trailing vortices and gas accumulation behind impeller blades. Chem Eng Sci. 1999; 54: 2305-2315.
Ranade VV. Modelling of turbulent flow in a bubble column reactor. Chem Eng Res Des. 1997;75:14.
Khopkar AR, Rammohan A, Ranade VV, Dudukovic MP. Gas-liquid flow generated by a Rushton turbine in stirred vessel: CARPT/CT measurements and CFD simulations. Chem Eng Sci. 2005; 60: 2215-2229.
Cui YQ, van der Lans RGJM, Luben KChAM. Local power uptake in gas-liquid systems with single and multiple Rushton turbines. Chem Eng Sci. 1996; 51: 2631-2636.
Ranade VV. Computational Flow Modelling for Chemical Reactor Engineering. New York, NY: Academic Press; 2002.
Calderbank PH. Physical rate processes in industrial fermentation: Part I. The interfacial area in gas-liquid contacting with mechanical agitation. Trans IChemE. 1958; 36:443.
Morud KE, Hjertager BH. LDA measurements and CFD modelling of gas-liquid flow in stirred vessel. Chem Eng Sci. 1996; 51: 233-249.
Ishii M, Zuber N. Drag coefficient and relative velocity in bubbly, droplet, or particulate flows. AIChE J. 1979; 25: 843-855.
Ranade VV, Perrard M, Xureb C, Le Sauze N, Bertrand J. Influence of gas flow rate on the structure of trailing vortices of a Rushton turbine. Chem Eng Res Des. 2001b; 79A:957-964.
Barigou M, Greaves M. Bubble size distribution in a mechanically agitated gas-liquid contactor. Chem Eng Sci. 1992; 47: 2009-2025.
Kataoka I, Besnard DC, Serizawa A. Basic equation of turbulence and modelling of interfacial terms in gas-liquid two phase flows. Chem Eng Commun. 1992;118:221.
Clift R, Gauvin WH. Motion of entrained particles in gas streams. Can J Chem Eng. 1971; 49: 439-448.
Bombac A, Zun I, Filipic B, Zumer M. Gas-filled cavity structure and local void fraction distribution in aerated stirred vessel. AIChE J. 1997; 43: 2921-2931.
Clift R, Grace JR, Weber ME. Bubbles, Drops, and Particles. New York, NY: Academic Press; 1978.
Brucato A, Grisafi F, Montante G. Particle drag coefficient in turbulent fluids. Chem Eng Sci. 1998; 45: 3295-3314.
Tsuchiya K, Furumoto A, Fan LS, Zhang J. Suspension viscosity and bubble rise velocity in liquid-solid fluidised beds. Chem Eng Sci. 1997; 52: 3053-3066.
Ranade VV. Numerical simulation of dispersed gas-liquid flows. Sadhana. 1992; 17: 237-273.
Warmoeskerken MMCG, Smith JM. Flooding of disk turbines in gas-liquid dispersions: A new description of the phenomenon. Chem Eng Sci. 1985; 40: 2063.
Buwa VV, Ranade VV. Dynamics of gas-liquid flow in rectangular bubble columns. Chem Eng Sci. 2002; 57: 4715-4736.
Wechsler K, Breuer M, Durst F. Steady and unsteady computations of turbulent flows induced by a 4/45° pitched blade impeller. J Fluids Eng. 1999;121:318.
Bakker A, van den Akker HEA. A computational model for the gas-liquid flow in stirred reactors. Trans IChemE. 1994; 72: 594-606.
Gunjal PR, Ranade VV, Chaudhari RV. Computational study of a single-phase flow in packed beds of sphere. AIChE J. 2005; 51: 365-378.
Magelli F, Fajner D, Nocentini M, Pasquali G. Solids distribution in vessels stirred with multiple impellers. Chem Eng Sci. 1990; 45: 615-625.
Gosman AD, Lekakou C, Politis S, Issa RI, Looney MK. Multi-dimensional modelling of turbulent two-phase flows in stirred vessels. AIChE J. 1992; 38: 1947-1956.
Khopkar AR, Aubin J, Xureb C, Le Sauze N, Bertrand J, Ranade VV. Gas-liquid flow generated by a pitched blade turbine: Particle velocimetry measurements and CFD simulations. Ind Eng Chem Res. 2003; 42: 5318-5332.
Spelt PDM, Biesheuvel A. On the motion of gas bubbles in homogeneous isotropic turbulence. J Fluid Mech. 1997; 336: 221-244.
Ng K, Fentiman NJ, Lee KC, Yianneskis M. Assessment of sliding mesh CFD predictions and LDA measurements of the flow in a tank stirred by a Rushton impeller. Chem Eng Res Des. 1998; 76: 737-747.
Uhleherr PHT, Sinclair CG. The effect of free stream turbulence on the drag coefficient of spheres. Proceedings Chemeca'70 Vol. 1. Melbourne, Australia: Butterworths; 1970:1-13.
Hughmark G. Power requirements and interfacial area in gas-liquid turbine agitated systems. Ind Eng Chem Proc Des Dev. 1980; 19: 641-646.
Ranade VV, van den Akker HEA. A computational snapshot of gas-liquid flow in baffled stirred reactors. Chem Eng Sci. 1994; 49: 5175-5192.
Lane GL, Schwarz MP, Evans GM. Computational modelling of gas-liquid flow in mechanically stirred tanks. Chem Eng Sci. 2005; 60: 2203-2214.
Prakash O, Gupta SN, Mishra P. Newtonian and inelastic non-Newtonian flow across tube banks. Ind Eng Chem Res. 1987; 26: 1365-1372.
Pinelli D, Montante G, Magelli F. Dispersion coefficients and settling velocities of solids in slurry vessels stirred with different types of multiple impellers. Chem Eng Sci. 2004; 59: 3081-3089.
1997; 336
1997; 43
1971; 49
2002; 57
1958; 36
1992; 17
1999; 121
1996; 51
2001c
1985; 40
1994; 49
2004
2005; 60
2002
1992; 38
2001b; 79A
1970; 1
1998; 45
1978
1999
1990; 45
1980; 19
1979; 25
2000
1997; 75
1997; 52
2004; 59
2005; 51
1992; 118
1999; 54
1984
1992; 47
1994; 72
1998; 76
2003; 42
1987; 26
e_1_2_7_5_2
Clift R (e_1_2_7_30_2) 1978
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_18_2
Calderbank PH (e_1_2_7_39_2) 1958; 36
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_28_2
e_1_2_7_29_2
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_32_2
Ranade VV (e_1_2_7_3_2) 2002
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_35_2
e_1_2_7_37_2
e_1_2_7_38_2
Uhleherr PHT (e_1_2_7_36_2) 1970
Bakker A (e_1_2_7_6_2) 1994; 72
References_xml – reference: Khopkar AR, Aubin J, Xureb C, Le Sauze N, Bertrand J, Ranade VV. Gas-liquid flow generated by a pitched blade turbine: Particle velocimetry measurements and CFD simulations. Ind Eng Chem Res. 2003; 42: 5318-5332.
– reference: Ranade VV, van den Akker HEA. A computational snapshot of gas-liquid flow in baffled stirred reactors. Chem Eng Sci. 1994; 49: 5175-5192.
– reference: Prakash O, Gupta SN, Mishra P. Newtonian and inelastic non-Newtonian flow across tube banks. Ind Eng Chem Res. 1987; 26: 1365-1372.
– reference: Gunjal PR, Ranade VV, Chaudhari RV. Computational study of a single-phase flow in packed beds of sphere. AIChE J. 2005; 51: 365-378.
– reference: Cui YQ, van der Lans RGJM, Luben KChAM. Local power uptake in gas-liquid systems with single and multiple Rushton turbines. Chem Eng Sci. 1996; 51: 2631-2636.
– reference: Clift R, Grace JR, Weber ME. Bubbles, Drops, and Particles. New York, NY: Academic Press; 1978.
– reference: Ishii M, Zuber N. Drag coefficient and relative velocity in bubbly, droplet, or particulate flows. AIChE J. 1979; 25: 843-855.
– reference: Uhleherr PHT, Sinclair CG. The effect of free stream turbulence on the drag coefficient of spheres. Proceedings Chemeca'70 Vol. 1. Melbourne, Australia: Butterworths; 1970:1-13.
– reference: Barigou M, Greaves M. Bubble size distribution in a mechanically agitated gas-liquid contactor. Chem Eng Sci. 1992; 47: 2009-2025.
– reference: Tsuchiya K, Furumoto A, Fan LS, Zhang J. Suspension viscosity and bubble rise velocity in liquid-solid fluidised beds. Chem Eng Sci. 1997; 52: 3053-3066.
– reference: Lane GL, Schwarz MP, Evans GM. Computational modelling of gas-liquid flow in mechanically stirred tanks. Chem Eng Sci. 2005; 60: 2203-2214.
– reference: Warmoeskerken MMCG, Smith JM. Flooding of disk turbines in gas-liquid dispersions: A new description of the phenomenon. Chem Eng Sci. 1985; 40: 2063.
– reference: Ng K, Fentiman NJ, Lee KC, Yianneskis M. Assessment of sliding mesh CFD predictions and LDA measurements of the flow in a tank stirred by a Rushton impeller. Chem Eng Res Des. 1998; 76: 737-747.
– reference: Buwa VV, Ranade VV. Dynamics of gas-liquid flow in rectangular bubble columns. Chem Eng Sci. 2002; 57: 4715-4736.
– reference: Ranade VV. Computational Flow Modelling for Chemical Reactor Engineering. New York, NY: Academic Press; 2002.
– reference: Morud KE, Hjertager BH. LDA measurements and CFD modelling of gas-liquid flow in stirred vessel. Chem Eng Sci. 1996; 51: 233-249.
– reference: Hughmark G. Power requirements and interfacial area in gas-liquid turbine agitated systems. Ind Eng Chem Proc Des Dev. 1980; 19: 641-646.
– reference: Brucato A, Grisafi F, Montante G. Particle drag coefficient in turbulent fluids. Chem Eng Sci. 1998; 45: 3295-3314.
– reference: Ranade VV, Deshpande VR. Gas-liquid flow in stirred reactors: Trailing vortices and gas accumulation behind impeller blades. Chem Eng Sci. 1999; 54: 2305-2315.
– reference: Magelli F, Fajner D, Nocentini M, Pasquali G. Solids distribution in vessels stirred with multiple impellers. Chem Eng Sci. 1990; 45: 615-625.
– reference: Ranade VV. Numerical simulation of dispersed gas-liquid flows. Sadhana. 1992; 17: 237-273.
– reference: Bakker A, van den Akker HEA. A computational model for the gas-liquid flow in stirred reactors. Trans IChemE. 1994; 72: 594-606.
– reference: Calderbank PH. Physical rate processes in industrial fermentation: Part I. The interfacial area in gas-liquid contacting with mechanical agitation. Trans IChemE. 1958; 36:443.
– reference: Clift R, Gauvin WH. Motion of entrained particles in gas streams. Can J Chem Eng. 1971; 49: 439-448.
– reference: Pinelli D, Montante G, Magelli F. Dispersion coefficients and settling velocities of solids in slurry vessels stirred with different types of multiple impellers. Chem Eng Sci. 2004; 59: 3081-3089.
– reference: Kataoka I, Besnard DC, Serizawa A. Basic equation of turbulence and modelling of interfacial terms in gas-liquid two phase flows. Chem Eng Commun. 1992;118:221.
– reference: Ranade VV, Perrard M, Xureb C, Le Sauze N, Bertrand J. Influence of gas flow rate on the structure of trailing vortices of a Rushton turbine. Chem Eng Res Des. 2001b; 79A:957-964.
– reference: Bombac A, Zun I, Filipic B, Zumer M. Gas-filled cavity structure and local void fraction distribution in aerated stirred vessel. AIChE J. 1997; 43: 2921-2931.
– reference: Khopkar AR, Rammohan A, Ranade VV, Dudukovic MP. Gas-liquid flow generated by a Rushton turbine in stirred vessel: CARPT/CT measurements and CFD simulations. Chem Eng Sci. 2005; 60: 2215-2229.
– reference: Spelt PDM, Biesheuvel A. On the motion of gas bubbles in homogeneous isotropic turbulence. J Fluid Mech. 1997; 336: 221-244.
– reference: Wechsler K, Breuer M, Durst F. Steady and unsteady computations of turbulent flows induced by a 4/45° pitched blade impeller. J Fluids Eng. 1999;121:318.
– reference: Gosman AD, Lekakou C, Politis S, Issa RI, Looney MK. Multi-dimensional modelling of turbulent two-phase flows in stirred vessels. AIChE J. 1992; 38: 1947-1956.
– reference: Ranade VV. Modelling of turbulent flow in a bubble column reactor. Chem Eng Res Des. 1997;75:14.
– volume: 47
  start-page: 2009
  year: 1992
  end-page: 2025
  article-title: Bubble size distribution in a mechanically agitated gas–liquid contactor
  publication-title: Chem Eng Sci.
– volume: 54
  start-page: 2305
  year: 1999
  end-page: 2315
  article-title: Gas–liquid flow in stirred reactors: Trailing vortices and gas accumulation behind impeller blades
  publication-title: Chem Eng Sci.
– volume: 45
  start-page: 3295
  year: 1998
  end-page: 3314
  article-title: Particle drag coefficient in turbulent fluids
  publication-title: Chem Eng Sci.
– volume: 118
  start-page: 221
  year: 1992
  article-title: Basic equation of turbulence and modelling of interfacial terms in gas–liquid two phase flows
  publication-title: Chem Eng Commun.
– volume: 57
  start-page: 4715
  year: 2002
  end-page: 4736
  article-title: Dynamics of gas–liquid flow in rectangular bubble columns
  publication-title: Chem Eng Sci.
– start-page: 21
  year: 1999
  end-page: 28
– year: 2001c
– volume: 76
  start-page: 737
  year: 1998
  end-page: 747
  article-title: Assessment of sliding mesh CFD predictions and LDA measurements of the flow in a tank stirred by a Rushton impeller
  publication-title: Chem Eng Res Des.
– year: 2000
– volume: 75
  start-page: 14
  year: 1997
  article-title: Modelling of turbulent flow in a bubble column reactor
  publication-title: Chem Eng Res Des.
– volume: 1
  start-page: 1
  year: 1970
  end-page: 13
– volume: 60
  start-page: 2215
  year: 2005
  end-page: 2229
  article-title: Gas–liquid flow generated by a Rushton turbine in stirred vessel: CARPT/CT measurements and CFD simulations
  publication-title: Chem Eng Sci.
– volume: 42
  start-page: 5318
  year: 2003
  end-page: 5332
  article-title: Gas–liquid flow generated by a pitched blade turbine: Particle velocimetry measurements and CFD simulations
  publication-title: Ind Eng Chem Res.
– volume: 17
  start-page: 237
  year: 1992
  end-page: 273
  article-title: Numerical simulation of dispersed gas–liquid flows
  publication-title: Sadhana.
– volume: 49
  start-page: 5175
  year: 1994
  end-page: 5192
  article-title: A computational snapshot of gas–liquid flow in baffled stirred reactors
  publication-title: Chem Eng Sci.
– volume: 38
  start-page: 1947
  year: 1992
  end-page: 1956
  article-title: Multi‐dimensional modelling of turbulent two‐phase flows in stirred vessels
  publication-title: AIChE J.
– start-page: 197
  year: 2000
  end-page: 204
– start-page: 199
  year: 1984
  end-page: 251
– volume: 19
  start-page: 641
  year: 1980
  end-page: 646
  article-title: Power requirements and interfacial area in gas–liquid turbine agitated systems
  publication-title: Ind Eng Chem Proc Des Dev.
– volume: 45
  start-page: 615
  year: 1990
  end-page: 625
  article-title: Solids distribution in vessels stirred with multiple impellers
  publication-title: Chem Eng Sci.
– volume: 52
  start-page: 3053
  year: 1997
  end-page: 3066
  article-title: Suspension viscosity and bubble rise velocity in liquid–solid fluidised beds
  publication-title: Chem Eng Sci.
– volume: 49
  start-page: 439
  year: 1971
  end-page: 448
  article-title: Motion of entrained particles in gas streams
  publication-title: Can J Chem Eng.
– volume: 26
  start-page: 1365
  year: 1987
  end-page: 1372
  article-title: Newtonian and inelastic non‐Newtonian flow across tube banks
  publication-title: Ind Eng Chem Res.
– volume: 60
  start-page: 2203
  year: 2005
  end-page: 2214
  article-title: Computational modelling of gas–liquid flow in mechanically stirred tanks
  publication-title: Chem Eng Sci.
– volume: 72
  start-page: 594
  year: 1994
  end-page: 606
  article-title: A computational model for the gas–liquid flow in stirred reactors
  publication-title: Trans IChemE.
– volume: 336
  start-page: 221
  year: 1997
  end-page: 244
  article-title: On the motion of gas bubbles in homogeneous isotropic turbulence
  publication-title: J Fluid Mech.
– volume: 25
  start-page: 843
  year: 1979
  end-page: 855
  article-title: Drag coefficient and relative velocity in bubbly, droplet, or particulate flows
  publication-title: AIChE J.
– year: 2002
– volume: 59
  start-page: 3081
  year: 2004
  end-page: 3089
  article-title: Dispersion coefficients and settling velocities of solids in slurry vessels stirred with different types of multiple impellers
  publication-title: Chem Eng Sci.
– year: 2004
– volume: 79A
  start-page: 957
  year: 2001b
  end-page: 964
  article-title: Influence of gas flow rate on the structure of trailing vortices of a Rushton turbine
  publication-title: Chem Eng Res Des.
– volume: 51
  start-page: 2631
  year: 1996
  end-page: 2636
  article-title: Local power uptake in gas–liquid systems with single and multiple Rushton turbines
  publication-title: Chem Eng Sci.
– volume: 51
  start-page: 365
  year: 2005
  end-page: 378
  article-title: Computational study of a single‐phase flow in packed beds of sphere
  publication-title: AIChE J.
– year: 1978
– volume: 36
  start-page: 443
  year: 1958
  article-title: Physical rate processes in industrial fermentation: Part I. The interfacial area in gas–liquid contacting with mechanical agitation
  publication-title: Trans IChemE.
– volume: 43
  start-page: 2921
  year: 1997
  end-page: 2931
  article-title: Gas‐filled cavity structure and local void fraction distribution in aerated stirred vessel
  publication-title: AIChE J.
– volume: 121
  start-page: 318
  year: 1999
  article-title: Steady and unsteady computations of turbulent flows induced by a 4/45° pitched blade impeller
  publication-title: J Fluids Eng.
– volume: 40
  start-page: 2063
  year: 1985
  article-title: Flooding of disk turbines in gas–liquid dispersions: A new description of the phenomenon
  publication-title: Chem Eng Sci.
– volume: 51
  start-page: 233
  year: 1996
  end-page: 249
  article-title: LDA measurements and CFD modelling of gas–liquid flow in stirred vessel
  publication-title: Chem Eng Sci.
– ident: e_1_2_7_2_2
  doi: 10.1016/0009-2509(85)87023-8
– volume-title: Computational Flow Modelling for Chemical Reactor Engineering
  year: 2002
  ident: e_1_2_7_3_2
– ident: e_1_2_7_17_2
  doi: 10.1016/S0009-2509(98)00114-6
– ident: e_1_2_7_16_2
– ident: e_1_2_7_37_2
  doi: 10.1016/0009-2509(90)87005-D
– ident: e_1_2_7_7_2
  doi: 10.1016/0009-2509(94)00318-1
– ident: e_1_2_7_4_2
  doi: 10.1002/aic.690381210
– ident: e_1_2_7_13_2
– ident: e_1_2_7_12_2
  doi: 10.1021/ie020954t
– ident: e_1_2_7_38_2
– ident: e_1_2_7_31_2
  doi: 10.1002/aic.10314
– ident: e_1_2_7_18_2
  doi: 10.1016/j.ces.2004.04.033
– volume-title: Bubbles, Drops, and Particles
  year: 1978
  ident: e_1_2_7_30_2
– ident: e_1_2_7_11_2
  doi: 10.1205/02638760152721190
– ident: e_1_2_7_25_2
  doi: 10.1007/BF02812053
– start-page: 1
  volume-title: The effect of free stream turbulence on the drag coefficient of spheres. Proceedings Chemeca'70
  year: 1970
  ident: e_1_2_7_36_2
– ident: e_1_2_7_26_2
  doi: 10.1016/S0009-2509(97)00127-9
– ident: e_1_2_7_41_2
  doi: 10.1016/0009-2509(96)00128-5
– ident: e_1_2_7_21_2
  doi: 10.1016/0009-2509(92)80318-7
– ident: e_1_2_7_22_2
  doi: 10.1016/S0009-2509(02)00274-9
– ident: e_1_2_7_8_2
  doi: 10.1016/S0009-2509(98)00301-7
– ident: e_1_2_7_9_2
– ident: e_1_2_7_10_2
  doi: 10.1016/B978-044450476-0/50026-1
– ident: e_1_2_7_20_2
– ident: e_1_2_7_34_2
  doi: 10.1007/978-94-009-6175-3_4
– volume: 72
  start-page: 594
  year: 1994
  ident: e_1_2_7_6_2
  article-title: A computational model for the gas–liquid flow in stirred reactors
  publication-title: Trans IChemE.
– ident: e_1_2_7_32_2
  doi: 10.1205/026387698525315
– ident: e_1_2_7_35_2
  doi: 10.1021/ie00067a600
– ident: e_1_2_7_27_2
  doi: 10.1002/aic.690250513
– ident: e_1_2_7_28_2
  doi: 10.1002/cjce.5450490403
– ident: e_1_2_7_19_2
  doi: 10.1002/aic.690431105
– volume: 36
  start-page: 443
  year: 1958
  ident: e_1_2_7_39_2
  article-title: Physical rate processes in industrial fermentation: Part I. The interfacial area in gas–liquid contacting with mechanical agitation
  publication-title: Trans IChemE.
– ident: e_1_2_7_29_2
  doi: 10.1017/S0022112096004739
– ident: e_1_2_7_15_2
  doi: 10.1016/j.ces.2004.11.046
– ident: e_1_2_7_5_2
  doi: 10.1016/0009-2509(95)00270-7
– ident: e_1_2_7_33_2
  doi: 10.1115/1.2822210
– ident: e_1_2_7_24_2
  doi: 10.1205/026387697523345
– ident: e_1_2_7_40_2
  doi: 10.1021/i260076a023
– ident: e_1_2_7_23_2
  doi: 10.1080/00986449208936095
– ident: e_1_2_7_14_2
  doi: 10.1016/j.ces.2004.11.044
SSID ssj0012782
Score 2.0818033
Snippet A comprehensive computational model based on the Eulerian–Eulerian approach was developed to simulate gas–liquid flows in a stirred vessel. A separate submodel...
A comprehensive computational model based on the Eulerian-Eulerian approach was developed to simulate gas-liquid flows in a stirred vessel. A separate submodel...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1654
SubjectTerms Applied sciences
Bubbles
Chemical engineering
computational fluid dynamics (CFD)
Exact sciences and technology
Experimental data
flow regimes
Fluid dynamics
gas holdup distribution
Gases
Hydrodynamics of contact apparatus
Liquids
Mixing
Rushton turbine
stirred vessel
Turbines
Turbulence models
Turbulent flow
Title CFD simulation of gas-liquid stirred vessel: VC, S33, and L33 flow regimes
URI https://api.istex.fr/ark:/67375/WNG-DBKRKJ97-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.10762
https://www.proquest.com/docview/199385809
https://www.proquest.com/docview/29522813
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqcoEDlD-xtBQLIcShae04Tmw4lV2W0pYeCoWqQrJsx0GrbrOw2QXEiXfgDXkSxs5PuwgkxM2SJ5E947G_cSbfIPSQ6kS7VOgosbSIEu54JA0VkbEp4OGccBEoNl4dpDtHye4xP15CT9t_YWp-iO7CzXtG2K-9g2tTbZ2ThuqRhWYW9l_KUs-bPzjsqKNonImaKRzCZYAJtGUVIvFW9-TCWXTJq_Wrz43UFainqOtaLADPi_A1nD_Da-h9O_I67eR0cz4zm_bbb6SO_zm1FXS1waV4u15I19GSK2-gKxfYCm-i_f5wgKvRWVPwC08K_EFXP7__GI8-zUc5hs1iOnU5_uzpyMdP8Nv-Bn7N2AbWZY73GcPFePIF-0oQZ666hY6Gz9_0d6KmGENkE-lReE5cDsGP0wUoV5u4sE5zZgyxxEgrEuPyNBaFIJkhAtaFA-BTQARsOU2dS9lttFxOSncHYSNZzqUmxgibWK2Fo0THlhFLidQ27aHHrVmUbZjKfcGMsao5lmMFClJBQT30oBP9WNNz_EnoUbBtJ6Gnpz6fLePq3cELNXi2d7i3KzN10kPrC8Y_fyXEIIBtZQ-ttqtBNb5eKZ8CKbgg0Hu_6wUn9V9edOkm80rFEmCuoAxmFuz-97Gq7Zf90Lj776Kr6HJ9MeTTMNfQ8mw6d_cAKs3MevCJXyzfDZ4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELaq9gAcoLxEKLQWQohDt7XX-7ARlzYhpE2aQ2lphYQs2-tFUdMNZJOCOPEf-If9JYz31QaBhLhZ8uzKnvHY33hnv0HoOVWBshFXXmBo6gWhDT2hKfe0iQAPJyTkBcXGwTDqHQf7p-HpEnpd_wtT8kM0F27OM4r92jm4u5DevmINVSMDzdhtwCsBAA0XenUOG_Io6se85AqHgBmAAq15hYi_3Ty6cBqtOMV-c9mRKgcFpWVliwXoeR3AFidQ9w76WI-9TDw525rP9Jb5_hut4_9ObhXdrqAp3inX0l20ZLN76NY1wsL7aNDudnA-Oq9qfuFJij-p_PLHz_Hoy3yUYNgvplOb4AvHSD5-hd-3N_E7xjaxyhI8YAyn48lX7IpBnNv8ATruvjlq97yqHoNnAuGAeEJsAvGPVSloV2k_NVaFTGtiiBaGB9omkc9TTmJNOCwNC9gnhSDYhDSyNmIP0XI2yewjhLVgSSgU0ZqbwCjFLSXKN4wYSoQyUQu9rO0iTUVW7mpmjGVJs-xLUJAsFNRCzxrRzyVDx5-EXhTGbSTU9MyltMWhPBm-lZ3d_mF_X8TyQwutL1j_6pUQhgC8FS20Vi8HWbl7Ll0WJA85gd6Nphf81H18UZmdzHPpC0C6nDKYWWH4v49V7uy1i8bjfxfdQDd6RwcDOdgb9tfQzfKeyGVlPkHLs-ncPgXkNNPrhYP8AgSrEb0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bTxQxFG4IJEYfFG9xBaExxvjAQDvXVp9w1xXYdWNQkBiTpu20ZsMyCzu7aHzyP_AP-SWezg3WaGJ8a9Izk_acnvY7nTPfQegZlaE0MZNeqKn1wshEHleUeUrHgIdTErGCYuPdIN45CPeOoqMF9Kr-F6bkh2gu3JxnFPu1c_DT1G5dkYbKoYZm4vbfpTAGJOEQ0X7DHUX9hJVU4RAvA06gNa0Q8beaR-cOoyWn1-8uOVLmoB9bFraYQ57X8WtxAHXvoC_10Mu8k-PN2VRt6h-_sTr-59yW0e0KmOLtciXdRQsmu4duXaMrvI_67W4H58OTquIXHlv8VeaXPy9Gw7PZMMWwW0wmJsXnjo989BIftjfwhyDYwDJLcT8IsB2Nv2FXCuLE5A_QQffNx_aOV1Vj8HTIHQxPiUkh-jHSgnKl8q02MgqUIpoorlmoTBr7zDKSKMJgYRhAPhZCYB3R2Jg4eIgWs3FmHiGseJBGXBKlmA61lMxQIn0dEE0JlzpuoRe1WYSuqMpdxYyRKEmWfQEKEoWCWuhpI3pa8nP8Seh5YdtGQk6OXUJbEolPg7ei87q339vjifjcQmtzxr96JQQhAG55C63Uq0FUzp4LlwPJIkagd73pBS91n15kZsazXPgccC6jAcyssPvfxyq2d9tF4_G_i66jG-87XdHfHfRW0M3yksilZK6ixelkZp4AbJqqtcI9fgHEARBs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CFD+simulation+of+gas-liquid+stirred+vessel+%3A+VC%2C+S33%2C+and+L33+flow+regimes&rft.jtitle=AIChE+journal&rft.au=KHOPKAR%2C+Avinash+R&rft.au=RANADE%2C+Vivek+V&rft.date=2006-05-01&rft.pub=Wiley+Subscription+Services&rft.issn=0001-1541&rft.volume=52&rft.issue=5&rft.spage=1654&rft.epage=1672&rft_id=info:doi/10.1002%2Faic.10762&rft.externalDBID=n%2Fa&rft.externalDocID=17720549
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon