CFD simulation of gas-liquid stirred vessel: VC, S33, and L33 flow regimes
A comprehensive computational model based on the Eulerian–Eulerian approach was developed to simulate gas–liquid flows in a stirred vessel. A separate submodel was developed to quantitatively understand the influence of turbulence and presence of neighboring bubbles on drag acting on bubbles. This s...
Saved in:
Published in | AIChE journal Vol. 52; no. 5; pp. 1654 - 1672 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.05.2006
Wiley Subscription Services American Institute of Chemical Engineers |
Subjects | |
Online Access | Get full text |
ISSN | 0001-1541 1547-5905 |
DOI | 10.1002/aic.10762 |
Cover
Abstract | A comprehensive computational model based on the Eulerian–Eulerian approach was developed to simulate gas–liquid flows in a stirred vessel. A separate submodel was developed to quantitatively understand the influence of turbulence and presence of neighboring bubbles on drag acting on bubbles. This submodel was used to identify an appropriate correlation for estimating the interphase drag force. The standard k–ϵ turbulence model was used to simulate turbulent gas–liquid flows in a stirred vessel. A computational snapshot approach was used to simulate motion of the standard Rushton turbine in a fully baffled vessel. The computational model was mapped onto FLUENT4.5, a commercial CFD solver. The model predictions were compared with the previously published experimental data of Bombac and co‐workers. The model was used to simulate three distinct flow regimes in gas–liquid stirred vessels: vortex clinging (VC), alternating small cavities (S33), and alternating large cavities (L33). The predicted results show reasonably good agreement with the experimental data for all three regimes. The computational model and results discussed in this work would be useful for understanding and simulating gas holdup distribution and flow regimes in stirred vessels. © 2006 American Institute of Chemical Engineers AIChE J, 2006 |
---|---|
AbstractList | A comprehensive computational model based on the Eulerian-Eulerian approach was developed to simulate gas-liquid flows in a stirred vessel. A separate submodel was developed to quantitatively understand the influence of turbulence and presence of neighboring bubbles on drag acting on bubbles. This submodel was used to identify an appropriate correlation for estimating the interphase drag force. The standard k- turbulence model was used to simulate turbulent gas-liquid flows in a stirred vessel. A computational snapshot approach was used to simulate motion of the standard Rushton turbine in a fully baffled vessel. The computational model was mapped onto FLUENT4.5, a commercial CFD solver. The model predictions were compared with the previously published experimental data of Bombac and co-workers. The model was used to simulate three distinct flow regimes in gas-liquid stirred vessels: vortex clinging (VC), alternating small cavities (S33), and alternating large cavities (L33). The predicted results show reasonably good agreement with the experimental data for all three regimes. The computational model and results discussed in this work would be useful for understanding and simulating gas holdup distribution and flow regimes in stirred vessels. A comprehensive computational model based on the Eulerian–Eulerian approach was developed to simulate gas–liquid flows in a stirred vessel. A separate submodel was developed to quantitatively understand the influence of turbulence and presence of neighboring bubbles on drag acting on bubbles. This submodel was used to identify an appropriate correlation for estimating the interphase drag force. The standard k–ϵ turbulence model was used to simulate turbulent gas–liquid flows in a stirred vessel. A computational snapshot approach was used to simulate motion of the standard Rushton turbine in a fully baffled vessel. The computational model was mapped onto FLUENT4.5, a commercial CFD solver. The model predictions were compared with the previously published experimental data of Bombac and co‐workers. The model was used to simulate three distinct flow regimes in gas–liquid stirred vessels: vortex clinging (VC), alternating small cavities (S33), and alternating large cavities (L33). The predicted results show reasonably good agreement with the experimental data for all three regimes. The computational model and results discussed in this work would be useful for understanding and simulating gas holdup distribution and flow regimes in stirred vessels. © 2006 American Institute of Chemical Engineers AIChE J, 2006 A comprehensive computational model based on the Eulerian-Eulerian approach was developed to simulate gas-liquid flows in a stirred vessel. A separate submodel was developed to quantitatively understand the influence of turbulence and presence of neighboring bubbles on drag acting on bubbles. This submodel was used to identify an appropriate correlation for estimating the interphase drag force. The standard k- turbulence model was used to simulate turbulent gas-liquid flows in a stirred vessel. A computational snapshot approach was used to simulate motion of the standard Rushton turbine in a fully baffled vessel. The computational model was mapped onto FLUENT4.5, a commercial CFD solver. The model predictions were compared with the previously published experimental data of Bombac and co-workers. The model was used to simulate three distinct flow regimes in gas-liquid stirred vessels: vortex clinging (VC), alternating small cavities (S33), and alternating large cavities (L33). The predicted results show reasonably good agreement with the experimental data for all three regimes. The computational model and results discussed in this work would be useful for understanding and simulating gas holdup distribution and flow regimes in stirred vessels. [PUBLICATION ABSTRACT] |
Author | Ranade, Vivek V. Khopkar, Avinash R. |
Author_xml | – sequence: 1 givenname: Avinash R. surname: Khopkar fullname: Khopkar, Avinash R. organization: Industrial Flow Modelling Group, National Chemical Laboratory, Pune 411 008, India – sequence: 2 givenname: Vivek V. surname: Ranade fullname: Ranade, Vivek V. email: vv.ranade@ncl.res.in organization: Industrial Flow Modelling Group, National Chemical Laboratory, Pune 411 008, India |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17720549$$DView record in Pascal Francis |
BookMark | eNp9kNtrFDEUh4NUcLv2wf8gCApCx-aymSS-tVN7XRS8gi8hkzkpqdmZNpmx9r9v2q0WCvp0Lnzf4fDbRBv90ANCLyh5SwlhOza40siaPUEzKhayEpqIDTQjhNCqLOgztJnzeZmYVGyGTpqDfZzDaop2DEOPB4_PbK5iuJxCh_MYUoIO_4KcIb7D35pt_JnzbWz7Di85xz4OVzjBWVhBfo6eehszbN3XOfp68P5Lc1QtPx4eN7vLyi20YpXsCHSsJmB9ecK2zDuwgrctcaTVTi1a6GqmvCKyJco5C5pLTzl3gtYANZ-j1-u7F2m4nCCPZhWygxhtD8OUDdOCMVWEOXr5CDwfptSX3wzVmiuhiC7Qq3vIZmejT7Z3IZuLFFY2XRsqJSNiccu9WXMuDTkn8A8IMbfRmxK9uYu-sDuPWBfGu3zHZEP8n3EVIlz_-7TZPW7-GNXaCHmE338Nm36aWnIpzPcPh2Z_7_TT6YmW5ge_AYHzov4 |
CODEN | AICEAC |
CitedBy_id | crossref_primary_10_1002_ceat_201900651 crossref_primary_10_1252_jcej_09we061 crossref_primary_10_1016_j_ces_2014_05_048 crossref_primary_10_1515_ijcre_2015_0215 crossref_primary_10_1515_cppm_2023_0050 crossref_primary_10_1016_j_cjche_2020_06_036 crossref_primary_10_1016_S1004_9541_10_60231_5 crossref_primary_10_1080_01496395_2016_1218895 crossref_primary_10_1016_j_ces_2008_01_005 crossref_primary_10_1002_jctb_5367 crossref_primary_10_1016_j_ces_2021_117007 crossref_primary_10_1002_cjce_20465 crossref_primary_10_1590_0104_6632_20190364s20180450 crossref_primary_10_1016_j_cej_2016_03_102 crossref_primary_10_1016_j_cep_2023_109267 crossref_primary_10_1021_acs_iecr_6b01660 crossref_primary_10_1016_j_ces_2011_05_039 crossref_primary_10_1252_jcej_16we242 crossref_primary_10_1016_j_ces_2008_04_039 crossref_primary_10_1016_j_apm_2013_05_032 crossref_primary_10_1002_btpr_2242 crossref_primary_10_3390_pr8080982 crossref_primary_10_1016_j_cjche_2020_06_016 crossref_primary_10_1002_aic_14860 crossref_primary_10_1016_j_bej_2020_107522 crossref_primary_10_1016_j_ces_2014_01_032 crossref_primary_10_1016_j_ces_2023_119058 crossref_primary_10_1002_aic_11878 crossref_primary_10_1016_j_powtec_2011_08_005 crossref_primary_10_1021_ie050941q crossref_primary_10_1205_cherd06243 crossref_primary_10_1515_ijcre_2022_0102 crossref_primary_10_1016_j_jclepro_2018_04_172 crossref_primary_10_1016_j_cjche_2015_09_002 crossref_primary_10_1021_ie400639r crossref_primary_10_1080_01496395_2018_1459702 crossref_primary_10_1016_j_cej_2019_04_134 crossref_primary_10_1016_j_cej_2025_160723 crossref_primary_10_1515_cppm_2015_0076 crossref_primary_10_1007_s11696_018_0605_5 crossref_primary_10_1016_j_ces_2005_09_023 crossref_primary_10_1021_acs_iecr_8b02720 crossref_primary_10_1016_j_pnucene_2018_10_012 crossref_primary_10_1021_acs_iecr_3c00882 crossref_primary_10_3390_pr12050896 crossref_primary_10_1016_j_jtice_2023_105206 crossref_primary_10_1016_j_bej_2020_107867 crossref_primary_10_1002_ceat_201900162 crossref_primary_10_1016_j_ces_2008_08_033 crossref_primary_10_1016_j_cherd_2008_12_017 crossref_primary_10_1021_acs_iecr_3c00962 crossref_primary_10_1002_ceat_200700278 crossref_primary_10_1016_j_ces_2011_07_004 crossref_primary_10_1002_aic_11414 crossref_primary_10_3390_e24030357 crossref_primary_10_1002_aic_12548 crossref_primary_10_1002_aic_16586 crossref_primary_10_1205_cherd06141 crossref_primary_10_1021_acs_iecr_5b03163 crossref_primary_10_1002_cite_200900171 |
Cites_doi | 10.1016/0009-2509(85)87023-8 10.1016/S0009-2509(98)00114-6 10.1016/0009-2509(90)87005-D 10.1016/0009-2509(94)00318-1 10.1002/aic.690381210 10.1021/ie020954t 10.1002/aic.10314 10.1016/j.ces.2004.04.033 10.1205/02638760152721190 10.1007/BF02812053 10.1016/S0009-2509(97)00127-9 10.1016/0009-2509(96)00128-5 10.1016/0009-2509(92)80318-7 10.1016/S0009-2509(02)00274-9 10.1016/S0009-2509(98)00301-7 10.1016/B978-044450476-0/50026-1 10.1007/978-94-009-6175-3_4 10.1205/026387698525315 10.1021/ie00067a600 10.1002/aic.690250513 10.1002/cjce.5450490403 10.1002/aic.690431105 10.1017/S0022112096004739 10.1016/j.ces.2004.11.046 10.1016/0009-2509(95)00270-7 10.1115/1.2822210 10.1205/026387697523345 10.1021/i260076a023 10.1080/00986449208936095 10.1016/j.ces.2004.11.044 |
ContentType | Journal Article |
Copyright | Copyright © 2006 American Institute of Chemical Engineers (AIChE) 2006 INIST-CNRS Copyright American Institute of Chemical Engineers May 2006 |
Copyright_xml | – notice: Copyright © 2006 American Institute of Chemical Engineers (AIChE) – notice: 2006 INIST-CNRS – notice: Copyright American Institute of Chemical Engineers May 2006 |
DBID | BSCLL AAYXX CITATION IQODW 7ST 7U5 8FD C1K L7M SOI |
DOI | 10.1002/aic.10762 |
DatabaseName | Istex CrossRef Pascal-Francis Environment Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Technology Research Database CrossRef Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1547-5905 |
EndPage | 1672 |
ExternalDocumentID | 1038405141 17720549 10_1002_aic_10762 AIC10762 ark_67375_WNG_DBKRKJ97_Z |
Genre | article Feature |
GrantInformation_xml | – fundername: Department of Science and Technology Grant funderid: DST/SF/40/99 |
GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3EH 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6TJ 702 7PT 7XC 8-0 8-1 8-3 8-4 8-5 88I 8FE 8FG 8FH 8G5 8R4 8R5 8UM 8WZ 930 9M8 A03 A6W AAESR AAEVG AAHHS AAIHA AAIKC AAMNW AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDEX ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BLYAC BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DWQXO EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PDBOC PQQKQ PRG PROAC PTHSS PYCSY Q.N Q11 Q2X QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 S0X SAMSI SUPJJ TAE TN5 TUS UAO UB1 UHS V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZE2 ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMMB AAMNL AANHP AAYCA ABJIA ACRPL ACYXJ ADMLS ADNMO AEFGJ AEUYN AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ PHGZM PHGZT PQGLB AAYXX CITATION IQODW 7ST 7U5 8FD C1K L7M SOI |
ID | FETCH-LOGICAL-c4982-7d0ed260eaf012ab2fcea53bb0c0b9c84bed628f807b08ccae937f133c516ee63 |
IEDL.DBID | DR2 |
ISSN | 0001-1541 |
IngestDate | Fri Sep 05 09:31:55 EDT 2025 Fri Jul 25 10:58:38 EDT 2025 Mon Jul 21 09:14:44 EDT 2025 Thu Apr 24 23:01:29 EDT 2025 Tue Jul 01 01:40:21 EDT 2025 Wed Aug 20 07:24:52 EDT 2025 Wed Oct 30 09:55:23 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Gas holdup computational fluid dynamics (CFD) Euler equation Stirred vessel Correlation Turbulence Two phase flow Computational fluid dynamics gas holdup distribution Interphase Hydrodynamics Turbine impeller Forecast model Modeling Rusliton turbine Bubble Flow regime Drag Correlation analysis Gas liquid flow flow regimes Vortex |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4982-7d0ed260eaf012ab2fcea53bb0c0b9c84bed628f807b08ccae937f133c516ee63 |
Notes | ArticleID:AIC10762 ark:/67375/WNG-DBKRKJ97-Z istex:C03EB55D4657FE5A4A954AA6A79D2C536E6D7185 Department of Science and Technology Grant - No. DST/SF/40/99 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 199385809 |
PQPubID | 7879 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_29522813 proquest_journals_199385809 pascalfrancis_primary_17720549 crossref_primary_10_1002_aic_10762 crossref_citationtrail_10_1002_aic_10762 wiley_primary_10_1002_aic_10762_AIC10762 istex_primary_ark_67375_WNG_DBKRKJ97_Z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2006 |
PublicationDateYYYYMMDD | 2006-05-01 |
PublicationDate_xml | – month: 05 year: 2006 text: May 2006 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Hoboken, NJ – name: New York |
PublicationTitle | AIChE journal |
PublicationTitleAlternate | AIChE J |
PublicationYear | 2006 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley Subscription Services American Institute of Chemical Engineers |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley Subscription Services – name: American Institute of Chemical Engineers |
References | Ranade VV, Deshpande VR. Gas-liquid flow in stirred reactors: Trailing vortices and gas accumulation behind impeller blades. Chem Eng Sci. 1999; 54: 2305-2315. Ranade VV. Modelling of turbulent flow in a bubble column reactor. Chem Eng Res Des. 1997;75:14. Khopkar AR, Rammohan A, Ranade VV, Dudukovic MP. Gas-liquid flow generated by a Rushton turbine in stirred vessel: CARPT/CT measurements and CFD simulations. Chem Eng Sci. 2005; 60: 2215-2229. Cui YQ, van der Lans RGJM, Luben KChAM. Local power uptake in gas-liquid systems with single and multiple Rushton turbines. Chem Eng Sci. 1996; 51: 2631-2636. Ranade VV. Computational Flow Modelling for Chemical Reactor Engineering. New York, NY: Academic Press; 2002. Calderbank PH. Physical rate processes in industrial fermentation: Part I. The interfacial area in gas-liquid contacting with mechanical agitation. Trans IChemE. 1958; 36:443. Morud KE, Hjertager BH. LDA measurements and CFD modelling of gas-liquid flow in stirred vessel. Chem Eng Sci. 1996; 51: 233-249. Ishii M, Zuber N. Drag coefficient and relative velocity in bubbly, droplet, or particulate flows. AIChE J. 1979; 25: 843-855. Ranade VV, Perrard M, Xureb C, Le Sauze N, Bertrand J. Influence of gas flow rate on the structure of trailing vortices of a Rushton turbine. Chem Eng Res Des. 2001b; 79A:957-964. Barigou M, Greaves M. Bubble size distribution in a mechanically agitated gas-liquid contactor. Chem Eng Sci. 1992; 47: 2009-2025. Kataoka I, Besnard DC, Serizawa A. Basic equation of turbulence and modelling of interfacial terms in gas-liquid two phase flows. Chem Eng Commun. 1992;118:221. Clift R, Gauvin WH. Motion of entrained particles in gas streams. Can J Chem Eng. 1971; 49: 439-448. Bombac A, Zun I, Filipic B, Zumer M. Gas-filled cavity structure and local void fraction distribution in aerated stirred vessel. AIChE J. 1997; 43: 2921-2931. Clift R, Grace JR, Weber ME. Bubbles, Drops, and Particles. New York, NY: Academic Press; 1978. Brucato A, Grisafi F, Montante G. Particle drag coefficient in turbulent fluids. Chem Eng Sci. 1998; 45: 3295-3314. Tsuchiya K, Furumoto A, Fan LS, Zhang J. Suspension viscosity and bubble rise velocity in liquid-solid fluidised beds. Chem Eng Sci. 1997; 52: 3053-3066. Ranade VV. Numerical simulation of dispersed gas-liquid flows. Sadhana. 1992; 17: 237-273. Warmoeskerken MMCG, Smith JM. Flooding of disk turbines in gas-liquid dispersions: A new description of the phenomenon. Chem Eng Sci. 1985; 40: 2063. Buwa VV, Ranade VV. Dynamics of gas-liquid flow in rectangular bubble columns. Chem Eng Sci. 2002; 57: 4715-4736. Wechsler K, Breuer M, Durst F. Steady and unsteady computations of turbulent flows induced by a 4/45° pitched blade impeller. J Fluids Eng. 1999;121:318. Bakker A, van den Akker HEA. A computational model for the gas-liquid flow in stirred reactors. Trans IChemE. 1994; 72: 594-606. Gunjal PR, Ranade VV, Chaudhari RV. Computational study of a single-phase flow in packed beds of sphere. AIChE J. 2005; 51: 365-378. Magelli F, Fajner D, Nocentini M, Pasquali G. Solids distribution in vessels stirred with multiple impellers. Chem Eng Sci. 1990; 45: 615-625. Gosman AD, Lekakou C, Politis S, Issa RI, Looney MK. Multi-dimensional modelling of turbulent two-phase flows in stirred vessels. AIChE J. 1992; 38: 1947-1956. Khopkar AR, Aubin J, Xureb C, Le Sauze N, Bertrand J, Ranade VV. Gas-liquid flow generated by a pitched blade turbine: Particle velocimetry measurements and CFD simulations. Ind Eng Chem Res. 2003; 42: 5318-5332. Spelt PDM, Biesheuvel A. On the motion of gas bubbles in homogeneous isotropic turbulence. J Fluid Mech. 1997; 336: 221-244. Ng K, Fentiman NJ, Lee KC, Yianneskis M. Assessment of sliding mesh CFD predictions and LDA measurements of the flow in a tank stirred by a Rushton impeller. Chem Eng Res Des. 1998; 76: 737-747. Uhleherr PHT, Sinclair CG. The effect of free stream turbulence on the drag coefficient of spheres. Proceedings Chemeca'70 Vol. 1. Melbourne, Australia: Butterworths; 1970:1-13. Hughmark G. Power requirements and interfacial area in gas-liquid turbine agitated systems. Ind Eng Chem Proc Des Dev. 1980; 19: 641-646. Ranade VV, van den Akker HEA. A computational snapshot of gas-liquid flow in baffled stirred reactors. Chem Eng Sci. 1994; 49: 5175-5192. Lane GL, Schwarz MP, Evans GM. Computational modelling of gas-liquid flow in mechanically stirred tanks. Chem Eng Sci. 2005; 60: 2203-2214. Prakash O, Gupta SN, Mishra P. Newtonian and inelastic non-Newtonian flow across tube banks. Ind Eng Chem Res. 1987; 26: 1365-1372. Pinelli D, Montante G, Magelli F. Dispersion coefficients and settling velocities of solids in slurry vessels stirred with different types of multiple impellers. Chem Eng Sci. 2004; 59: 3081-3089. 1997; 336 1997; 43 1971; 49 2002; 57 1958; 36 1992; 17 1999; 121 1996; 51 2001c 1985; 40 1994; 49 2004 2005; 60 2002 1992; 38 2001b; 79A 1970; 1 1998; 45 1978 1999 1990; 45 1980; 19 1979; 25 2000 1997; 75 1997; 52 2004; 59 2005; 51 1992; 118 1999; 54 1984 1992; 47 1994; 72 1998; 76 2003; 42 1987; 26 e_1_2_7_5_2 Clift R (e_1_2_7_30_2) 1978 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_18_2 Calderbank PH (e_1_2_7_39_2) 1958; 36 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_26_2 e_1_2_7_27_2 e_1_2_7_28_2 e_1_2_7_29_2 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_22_2 e_1_2_7_32_2 Ranade VV (e_1_2_7_3_2) 2002 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_35_2 e_1_2_7_37_2 e_1_2_7_38_2 Uhleherr PHT (e_1_2_7_36_2) 1970 Bakker A (e_1_2_7_6_2) 1994; 72 |
References_xml | – reference: Khopkar AR, Aubin J, Xureb C, Le Sauze N, Bertrand J, Ranade VV. Gas-liquid flow generated by a pitched blade turbine: Particle velocimetry measurements and CFD simulations. Ind Eng Chem Res. 2003; 42: 5318-5332. – reference: Ranade VV, van den Akker HEA. A computational snapshot of gas-liquid flow in baffled stirred reactors. Chem Eng Sci. 1994; 49: 5175-5192. – reference: Prakash O, Gupta SN, Mishra P. Newtonian and inelastic non-Newtonian flow across tube banks. Ind Eng Chem Res. 1987; 26: 1365-1372. – reference: Gunjal PR, Ranade VV, Chaudhari RV. Computational study of a single-phase flow in packed beds of sphere. AIChE J. 2005; 51: 365-378. – reference: Cui YQ, van der Lans RGJM, Luben KChAM. Local power uptake in gas-liquid systems with single and multiple Rushton turbines. Chem Eng Sci. 1996; 51: 2631-2636. – reference: Clift R, Grace JR, Weber ME. Bubbles, Drops, and Particles. New York, NY: Academic Press; 1978. – reference: Ishii M, Zuber N. Drag coefficient and relative velocity in bubbly, droplet, or particulate flows. AIChE J. 1979; 25: 843-855. – reference: Uhleherr PHT, Sinclair CG. The effect of free stream turbulence on the drag coefficient of spheres. Proceedings Chemeca'70 Vol. 1. Melbourne, Australia: Butterworths; 1970:1-13. – reference: Barigou M, Greaves M. Bubble size distribution in a mechanically agitated gas-liquid contactor. Chem Eng Sci. 1992; 47: 2009-2025. – reference: Tsuchiya K, Furumoto A, Fan LS, Zhang J. Suspension viscosity and bubble rise velocity in liquid-solid fluidised beds. Chem Eng Sci. 1997; 52: 3053-3066. – reference: Lane GL, Schwarz MP, Evans GM. Computational modelling of gas-liquid flow in mechanically stirred tanks. Chem Eng Sci. 2005; 60: 2203-2214. – reference: Warmoeskerken MMCG, Smith JM. Flooding of disk turbines in gas-liquid dispersions: A new description of the phenomenon. Chem Eng Sci. 1985; 40: 2063. – reference: Ng K, Fentiman NJ, Lee KC, Yianneskis M. Assessment of sliding mesh CFD predictions and LDA measurements of the flow in a tank stirred by a Rushton impeller. Chem Eng Res Des. 1998; 76: 737-747. – reference: Buwa VV, Ranade VV. Dynamics of gas-liquid flow in rectangular bubble columns. Chem Eng Sci. 2002; 57: 4715-4736. – reference: Ranade VV. Computational Flow Modelling for Chemical Reactor Engineering. New York, NY: Academic Press; 2002. – reference: Morud KE, Hjertager BH. LDA measurements and CFD modelling of gas-liquid flow in stirred vessel. Chem Eng Sci. 1996; 51: 233-249. – reference: Hughmark G. Power requirements and interfacial area in gas-liquid turbine agitated systems. Ind Eng Chem Proc Des Dev. 1980; 19: 641-646. – reference: Brucato A, Grisafi F, Montante G. Particle drag coefficient in turbulent fluids. Chem Eng Sci. 1998; 45: 3295-3314. – reference: Ranade VV, Deshpande VR. Gas-liquid flow in stirred reactors: Trailing vortices and gas accumulation behind impeller blades. Chem Eng Sci. 1999; 54: 2305-2315. – reference: Magelli F, Fajner D, Nocentini M, Pasquali G. Solids distribution in vessels stirred with multiple impellers. Chem Eng Sci. 1990; 45: 615-625. – reference: Ranade VV. Numerical simulation of dispersed gas-liquid flows. Sadhana. 1992; 17: 237-273. – reference: Bakker A, van den Akker HEA. A computational model for the gas-liquid flow in stirred reactors. Trans IChemE. 1994; 72: 594-606. – reference: Calderbank PH. Physical rate processes in industrial fermentation: Part I. The interfacial area in gas-liquid contacting with mechanical agitation. Trans IChemE. 1958; 36:443. – reference: Clift R, Gauvin WH. Motion of entrained particles in gas streams. Can J Chem Eng. 1971; 49: 439-448. – reference: Pinelli D, Montante G, Magelli F. Dispersion coefficients and settling velocities of solids in slurry vessels stirred with different types of multiple impellers. Chem Eng Sci. 2004; 59: 3081-3089. – reference: Kataoka I, Besnard DC, Serizawa A. Basic equation of turbulence and modelling of interfacial terms in gas-liquid two phase flows. Chem Eng Commun. 1992;118:221. – reference: Ranade VV, Perrard M, Xureb C, Le Sauze N, Bertrand J. Influence of gas flow rate on the structure of trailing vortices of a Rushton turbine. Chem Eng Res Des. 2001b; 79A:957-964. – reference: Bombac A, Zun I, Filipic B, Zumer M. Gas-filled cavity structure and local void fraction distribution in aerated stirred vessel. AIChE J. 1997; 43: 2921-2931. – reference: Khopkar AR, Rammohan A, Ranade VV, Dudukovic MP. Gas-liquid flow generated by a Rushton turbine in stirred vessel: CARPT/CT measurements and CFD simulations. Chem Eng Sci. 2005; 60: 2215-2229. – reference: Spelt PDM, Biesheuvel A. On the motion of gas bubbles in homogeneous isotropic turbulence. J Fluid Mech. 1997; 336: 221-244. – reference: Wechsler K, Breuer M, Durst F. Steady and unsteady computations of turbulent flows induced by a 4/45° pitched blade impeller. J Fluids Eng. 1999;121:318. – reference: Gosman AD, Lekakou C, Politis S, Issa RI, Looney MK. Multi-dimensional modelling of turbulent two-phase flows in stirred vessels. AIChE J. 1992; 38: 1947-1956. – reference: Ranade VV. Modelling of turbulent flow in a bubble column reactor. Chem Eng Res Des. 1997;75:14. – volume: 47 start-page: 2009 year: 1992 end-page: 2025 article-title: Bubble size distribution in a mechanically agitated gas–liquid contactor publication-title: Chem Eng Sci. – volume: 54 start-page: 2305 year: 1999 end-page: 2315 article-title: Gas–liquid flow in stirred reactors: Trailing vortices and gas accumulation behind impeller blades publication-title: Chem Eng Sci. – volume: 45 start-page: 3295 year: 1998 end-page: 3314 article-title: Particle drag coefficient in turbulent fluids publication-title: Chem Eng Sci. – volume: 118 start-page: 221 year: 1992 article-title: Basic equation of turbulence and modelling of interfacial terms in gas–liquid two phase flows publication-title: Chem Eng Commun. – volume: 57 start-page: 4715 year: 2002 end-page: 4736 article-title: Dynamics of gas–liquid flow in rectangular bubble columns publication-title: Chem Eng Sci. – start-page: 21 year: 1999 end-page: 28 – year: 2001c – volume: 76 start-page: 737 year: 1998 end-page: 747 article-title: Assessment of sliding mesh CFD predictions and LDA measurements of the flow in a tank stirred by a Rushton impeller publication-title: Chem Eng Res Des. – year: 2000 – volume: 75 start-page: 14 year: 1997 article-title: Modelling of turbulent flow in a bubble column reactor publication-title: Chem Eng Res Des. – volume: 1 start-page: 1 year: 1970 end-page: 13 – volume: 60 start-page: 2215 year: 2005 end-page: 2229 article-title: Gas–liquid flow generated by a Rushton turbine in stirred vessel: CARPT/CT measurements and CFD simulations publication-title: Chem Eng Sci. – volume: 42 start-page: 5318 year: 2003 end-page: 5332 article-title: Gas–liquid flow generated by a pitched blade turbine: Particle velocimetry measurements and CFD simulations publication-title: Ind Eng Chem Res. – volume: 17 start-page: 237 year: 1992 end-page: 273 article-title: Numerical simulation of dispersed gas–liquid flows publication-title: Sadhana. – volume: 49 start-page: 5175 year: 1994 end-page: 5192 article-title: A computational snapshot of gas–liquid flow in baffled stirred reactors publication-title: Chem Eng Sci. – volume: 38 start-page: 1947 year: 1992 end-page: 1956 article-title: Multi‐dimensional modelling of turbulent two‐phase flows in stirred vessels publication-title: AIChE J. – start-page: 197 year: 2000 end-page: 204 – start-page: 199 year: 1984 end-page: 251 – volume: 19 start-page: 641 year: 1980 end-page: 646 article-title: Power requirements and interfacial area in gas–liquid turbine agitated systems publication-title: Ind Eng Chem Proc Des Dev. – volume: 45 start-page: 615 year: 1990 end-page: 625 article-title: Solids distribution in vessels stirred with multiple impellers publication-title: Chem Eng Sci. – volume: 52 start-page: 3053 year: 1997 end-page: 3066 article-title: Suspension viscosity and bubble rise velocity in liquid–solid fluidised beds publication-title: Chem Eng Sci. – volume: 49 start-page: 439 year: 1971 end-page: 448 article-title: Motion of entrained particles in gas streams publication-title: Can J Chem Eng. – volume: 26 start-page: 1365 year: 1987 end-page: 1372 article-title: Newtonian and inelastic non‐Newtonian flow across tube banks publication-title: Ind Eng Chem Res. – volume: 60 start-page: 2203 year: 2005 end-page: 2214 article-title: Computational modelling of gas–liquid flow in mechanically stirred tanks publication-title: Chem Eng Sci. – volume: 72 start-page: 594 year: 1994 end-page: 606 article-title: A computational model for the gas–liquid flow in stirred reactors publication-title: Trans IChemE. – volume: 336 start-page: 221 year: 1997 end-page: 244 article-title: On the motion of gas bubbles in homogeneous isotropic turbulence publication-title: J Fluid Mech. – volume: 25 start-page: 843 year: 1979 end-page: 855 article-title: Drag coefficient and relative velocity in bubbly, droplet, or particulate flows publication-title: AIChE J. – year: 2002 – volume: 59 start-page: 3081 year: 2004 end-page: 3089 article-title: Dispersion coefficients and settling velocities of solids in slurry vessels stirred with different types of multiple impellers publication-title: Chem Eng Sci. – year: 2004 – volume: 79A start-page: 957 year: 2001b end-page: 964 article-title: Influence of gas flow rate on the structure of trailing vortices of a Rushton turbine publication-title: Chem Eng Res Des. – volume: 51 start-page: 2631 year: 1996 end-page: 2636 article-title: Local power uptake in gas–liquid systems with single and multiple Rushton turbines publication-title: Chem Eng Sci. – volume: 51 start-page: 365 year: 2005 end-page: 378 article-title: Computational study of a single‐phase flow in packed beds of sphere publication-title: AIChE J. – year: 1978 – volume: 36 start-page: 443 year: 1958 article-title: Physical rate processes in industrial fermentation: Part I. The interfacial area in gas–liquid contacting with mechanical agitation publication-title: Trans IChemE. – volume: 43 start-page: 2921 year: 1997 end-page: 2931 article-title: Gas‐filled cavity structure and local void fraction distribution in aerated stirred vessel publication-title: AIChE J. – volume: 121 start-page: 318 year: 1999 article-title: Steady and unsteady computations of turbulent flows induced by a 4/45° pitched blade impeller publication-title: J Fluids Eng. – volume: 40 start-page: 2063 year: 1985 article-title: Flooding of disk turbines in gas–liquid dispersions: A new description of the phenomenon publication-title: Chem Eng Sci. – volume: 51 start-page: 233 year: 1996 end-page: 249 article-title: LDA measurements and CFD modelling of gas–liquid flow in stirred vessel publication-title: Chem Eng Sci. – ident: e_1_2_7_2_2 doi: 10.1016/0009-2509(85)87023-8 – volume-title: Computational Flow Modelling for Chemical Reactor Engineering year: 2002 ident: e_1_2_7_3_2 – ident: e_1_2_7_17_2 doi: 10.1016/S0009-2509(98)00114-6 – ident: e_1_2_7_16_2 – ident: e_1_2_7_37_2 doi: 10.1016/0009-2509(90)87005-D – ident: e_1_2_7_7_2 doi: 10.1016/0009-2509(94)00318-1 – ident: e_1_2_7_4_2 doi: 10.1002/aic.690381210 – ident: e_1_2_7_13_2 – ident: e_1_2_7_12_2 doi: 10.1021/ie020954t – ident: e_1_2_7_38_2 – ident: e_1_2_7_31_2 doi: 10.1002/aic.10314 – ident: e_1_2_7_18_2 doi: 10.1016/j.ces.2004.04.033 – volume-title: Bubbles, Drops, and Particles year: 1978 ident: e_1_2_7_30_2 – ident: e_1_2_7_11_2 doi: 10.1205/02638760152721190 – ident: e_1_2_7_25_2 doi: 10.1007/BF02812053 – start-page: 1 volume-title: The effect of free stream turbulence on the drag coefficient of spheres. Proceedings Chemeca'70 year: 1970 ident: e_1_2_7_36_2 – ident: e_1_2_7_26_2 doi: 10.1016/S0009-2509(97)00127-9 – ident: e_1_2_7_41_2 doi: 10.1016/0009-2509(96)00128-5 – ident: e_1_2_7_21_2 doi: 10.1016/0009-2509(92)80318-7 – ident: e_1_2_7_22_2 doi: 10.1016/S0009-2509(02)00274-9 – ident: e_1_2_7_8_2 doi: 10.1016/S0009-2509(98)00301-7 – ident: e_1_2_7_9_2 – ident: e_1_2_7_10_2 doi: 10.1016/B978-044450476-0/50026-1 – ident: e_1_2_7_20_2 – ident: e_1_2_7_34_2 doi: 10.1007/978-94-009-6175-3_4 – volume: 72 start-page: 594 year: 1994 ident: e_1_2_7_6_2 article-title: A computational model for the gas–liquid flow in stirred reactors publication-title: Trans IChemE. – ident: e_1_2_7_32_2 doi: 10.1205/026387698525315 – ident: e_1_2_7_35_2 doi: 10.1021/ie00067a600 – ident: e_1_2_7_27_2 doi: 10.1002/aic.690250513 – ident: e_1_2_7_28_2 doi: 10.1002/cjce.5450490403 – ident: e_1_2_7_19_2 doi: 10.1002/aic.690431105 – volume: 36 start-page: 443 year: 1958 ident: e_1_2_7_39_2 article-title: Physical rate processes in industrial fermentation: Part I. The interfacial area in gas–liquid contacting with mechanical agitation publication-title: Trans IChemE. – ident: e_1_2_7_29_2 doi: 10.1017/S0022112096004739 – ident: e_1_2_7_15_2 doi: 10.1016/j.ces.2004.11.046 – ident: e_1_2_7_5_2 doi: 10.1016/0009-2509(95)00270-7 – ident: e_1_2_7_33_2 doi: 10.1115/1.2822210 – ident: e_1_2_7_24_2 doi: 10.1205/026387697523345 – ident: e_1_2_7_40_2 doi: 10.1021/i260076a023 – ident: e_1_2_7_23_2 doi: 10.1080/00986449208936095 – ident: e_1_2_7_14_2 doi: 10.1016/j.ces.2004.11.044 |
SSID | ssj0012782 |
Score | 2.0818033 |
Snippet | A comprehensive computational model based on the Eulerian–Eulerian approach was developed to simulate gas–liquid flows in a stirred vessel. A separate submodel... A comprehensive computational model based on the Eulerian-Eulerian approach was developed to simulate gas-liquid flows in a stirred vessel. A separate submodel... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1654 |
SubjectTerms | Applied sciences Bubbles Chemical engineering computational fluid dynamics (CFD) Exact sciences and technology Experimental data flow regimes Fluid dynamics gas holdup distribution Gases Hydrodynamics of contact apparatus Liquids Mixing Rushton turbine stirred vessel Turbines Turbulence models Turbulent flow |
Title | CFD simulation of gas-liquid stirred vessel: VC, S33, and L33 flow regimes |
URI | https://api.istex.fr/ark:/67375/WNG-DBKRKJ97-Z/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.10762 https://www.proquest.com/docview/199385809 https://www.proquest.com/docview/29522813 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqcoEDlD-xtBQLIcShae04Tmw4lV2W0pYeCoWqQrJsx0GrbrOw2QXEiXfgDXkSxs5PuwgkxM2SJ5E947G_cSbfIPSQ6kS7VOgosbSIEu54JA0VkbEp4OGccBEoNl4dpDtHye4xP15CT9t_YWp-iO7CzXtG2K-9g2tTbZ2ThuqRhWYW9l_KUs-bPzjsqKNonImaKRzCZYAJtGUVIvFW9-TCWXTJq_Wrz43UFainqOtaLADPi_A1nD_Da-h9O_I67eR0cz4zm_bbb6SO_zm1FXS1waV4u15I19GSK2-gKxfYCm-i_f5wgKvRWVPwC08K_EFXP7__GI8-zUc5hs1iOnU5_uzpyMdP8Nv-Bn7N2AbWZY73GcPFePIF-0oQZ666hY6Gz9_0d6KmGENkE-lReE5cDsGP0wUoV5u4sE5zZgyxxEgrEuPyNBaFIJkhAtaFA-BTQARsOU2dS9lttFxOSncHYSNZzqUmxgibWK2Fo0THlhFLidQ27aHHrVmUbZjKfcGMsao5lmMFClJBQT30oBP9WNNz_EnoUbBtJ6Gnpz6fLePq3cELNXi2d7i3KzN10kPrC8Y_fyXEIIBtZQ-ttqtBNb5eKZ8CKbgg0Hu_6wUn9V9edOkm80rFEmCuoAxmFuz-97Gq7Zf90Lj776Kr6HJ9MeTTMNfQ8mw6d_cAKs3MevCJXyzfDZ4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELaq9gAcoLxEKLQWQohDt7XX-7ARlzYhpE2aQ2lphYQs2-tFUdMNZJOCOPEf-If9JYz31QaBhLhZ8uzKnvHY33hnv0HoOVWBshFXXmBo6gWhDT2hKfe0iQAPJyTkBcXGwTDqHQf7p-HpEnpd_wtT8kM0F27OM4r92jm4u5DevmINVSMDzdhtwCsBAA0XenUOG_Io6se85AqHgBmAAq15hYi_3Ty6cBqtOMV-c9mRKgcFpWVliwXoeR3AFidQ9w76WI-9TDw525rP9Jb5_hut4_9ObhXdrqAp3inX0l20ZLN76NY1wsL7aNDudnA-Oq9qfuFJij-p_PLHz_Hoy3yUYNgvplOb4AvHSD5-hd-3N_E7xjaxyhI8YAyn48lX7IpBnNv8ATruvjlq97yqHoNnAuGAeEJsAvGPVSloV2k_NVaFTGtiiBaGB9omkc9TTmJNOCwNC9gnhSDYhDSyNmIP0XI2yewjhLVgSSgU0ZqbwCjFLSXKN4wYSoQyUQu9rO0iTUVW7mpmjGVJs-xLUJAsFNRCzxrRzyVDx5-EXhTGbSTU9MyltMWhPBm-lZ3d_mF_X8TyQwutL1j_6pUQhgC8FS20Vi8HWbl7Ll0WJA85gd6Nphf81H18UZmdzHPpC0C6nDKYWWH4v49V7uy1i8bjfxfdQDd6RwcDOdgb9tfQzfKeyGVlPkHLs-ncPgXkNNPrhYP8AgSrEb0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bTxQxFG4IJEYfFG9xBaExxvjAQDvXVp9w1xXYdWNQkBiTpu20ZsMyCzu7aHzyP_AP-SWezg3WaGJ8a9Izk_acnvY7nTPfQegZlaE0MZNeqKn1wshEHleUeUrHgIdTErGCYuPdIN45CPeOoqMF9Kr-F6bkh2gu3JxnFPu1c_DT1G5dkYbKoYZm4vbfpTAGJOEQ0X7DHUX9hJVU4RAvA06gNa0Q8beaR-cOoyWn1-8uOVLmoB9bFraYQ57X8WtxAHXvoC_10Mu8k-PN2VRt6h-_sTr-59yW0e0KmOLtciXdRQsmu4duXaMrvI_67W4H58OTquIXHlv8VeaXPy9Gw7PZMMWwW0wmJsXnjo989BIftjfwhyDYwDJLcT8IsB2Nv2FXCuLE5A_QQffNx_aOV1Vj8HTIHQxPiUkh-jHSgnKl8q02MgqUIpoorlmoTBr7zDKSKMJgYRhAPhZCYB3R2Jg4eIgWs3FmHiGseJBGXBKlmA61lMxQIn0dEE0JlzpuoRe1WYSuqMpdxYyRKEmWfQEKEoWCWuhpI3pa8nP8Seh5YdtGQk6OXUJbEolPg7ei87q339vjifjcQmtzxr96JQQhAG55C63Uq0FUzp4LlwPJIkagd73pBS91n15kZsazXPgccC6jAcyssPvfxyq2d9tF4_G_i66jG-87XdHfHfRW0M3yksilZK6ixelkZp4AbJqqtcI9fgHEARBs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CFD+simulation+of+gas-liquid+stirred+vessel+%3A+VC%2C+S33%2C+and+L33+flow+regimes&rft.jtitle=AIChE+journal&rft.au=KHOPKAR%2C+Avinash+R&rft.au=RANADE%2C+Vivek+V&rft.date=2006-05-01&rft.pub=Wiley+Subscription+Services&rft.issn=0001-1541&rft.volume=52&rft.issue=5&rft.spage=1654&rft.epage=1672&rft_id=info:doi/10.1002%2Faic.10762&rft.externalDBID=n%2Fa&rft.externalDocID=17720549 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon |