STGATE: Spatial-temporal graph attention network with a transformer encoder for EEG-based emotion recognition

Electroencephalogram (EEG) is a crucial and widely utilized technique in neuroscience research. In this paper, we introduce a novel graph neural network called the spatial-temporal graph attention network with a transformer encoder (STGATE) to learn graph representations of emotion EEG signals and i...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in human neuroscience Vol. 17; p. 1169949
Main Authors Li, Jingcong, Pan, Weijian, Huang, Haiyun, Pan, Jiahui, Wang, Fei
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 13.04.2023
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroencephalogram (EEG) is a crucial and widely utilized technique in neuroscience research. In this paper, we introduce a novel graph neural network called the spatial-temporal graph attention network with a transformer encoder (STGATE) to learn graph representations of emotion EEG signals and improve emotion recognition performance. In STGATE, a transformer-encoder is applied for capturing time-frequency features which are fed into a spatial-temporal graph attention for emotion classification. Using a dynamic adjacency matrix, the proposed STGATE adaptively learns intrinsic connections between different EEG channels. To evaluate the cross-subject emotion recognition performance, leave-one-subject-out experiments are carried out on three public emotion recognition datasets, i.e., SEED, SEED-IV, and DREAMER. The proposed STGATE model achieved a state-of-the-art EEG-based emotion recognition performance accuracy of 90.37% in SEED, 76.43% in SEED-IV, and 76.35% in DREAMER dataset, respectively. The experiments demonstrated the effectiveness of the proposed STGATE model for cross-subject EEG emotion recognition and its potential for graph-based neuroscience research.
AbstractList Electroencephalogram (EEG) is a crucial and widely utilized technique in neuroscience research. In this paper, we introduce a novel graph neural network called the spatial-temporal graph attention network with a transformer encoder (STGATE) to learn graph representations of emotion EEG signals and improve emotion recognition performance. In STGATE, a transformer-encoder is applied for capturing time-frequency features which are fed into a spatial-temporal graph attention for emotion classification. Using a dynamic adjacency matrix, the proposed STGATE adaptively learns intrinsic connections between different EEG channels. To evaluate the cross-subject emotion recognition performance, leave-one-subject-out experiments are carried out on three public emotion recognition datasets, i.e., SEED, SEED-IV, and DREAMER. The proposed STGATE model achieved a state-of-the-art EEG-based emotion recognition performance accuracy of 90.37% in SEED, 76.43% in SEED-IV, and 76.35% in DREAMER dataset, respectively. The experiments demonstrated the effectiveness of the proposed STGATE model for cross-subject EEG emotion recognition and its potential for graph-based neuroscience research.
Electroencephalogram (EEG) is a crucial and widely utilized technique in neuroscience research. In this paper, we introduce a novel graph neural network called the spatial-temporal graph attention network with a transformer encoder (STGATE) to learn graph representations of emotion EEG signals and improve emotion recognition performance. In STGATE, a transformer-encoder is applied for capturing time-frequency features which are fed into a spatial-temporal graph attention for emotion classification. Using a dynamic adjacency matrix, the proposed STGATE adaptively learns intrinsic connections between different EEG channels. To evaluate the cross-subject emotion recognition performance, leave-one-subject-out experiments are carried out on three public emotion recognition datasets, i.e., SEED, SEED-IV, and DREAMER. The proposed STGATE model achieved a state-of-the-art EEG-based emotion recognition performance accuracy of 90.37% in SEED, 76.43% in SEED-IV, and 76.35% in DREAMER dataset, respectively. The experiments demonstrated the effectiveness of the proposed STGATE model for cross-subject EEG emotion recognition and its potential for graph-based neuroscience research.Electroencephalogram (EEG) is a crucial and widely utilized technique in neuroscience research. In this paper, we introduce a novel graph neural network called the spatial-temporal graph attention network with a transformer encoder (STGATE) to learn graph representations of emotion EEG signals and improve emotion recognition performance. In STGATE, a transformer-encoder is applied for capturing time-frequency features which are fed into a spatial-temporal graph attention for emotion classification. Using a dynamic adjacency matrix, the proposed STGATE adaptively learns intrinsic connections between different EEG channels. To evaluate the cross-subject emotion recognition performance, leave-one-subject-out experiments are carried out on three public emotion recognition datasets, i.e., SEED, SEED-IV, and DREAMER. The proposed STGATE model achieved a state-of-the-art EEG-based emotion recognition performance accuracy of 90.37% in SEED, 76.43% in SEED-IV, and 76.35% in DREAMER dataset, respectively. The experiments demonstrated the effectiveness of the proposed STGATE model for cross-subject EEG emotion recognition and its potential for graph-based neuroscience research.
Author Pan, Jiahui
Li, Jingcong
Huang, Haiyun
Wang, Fei
Pan, Weijian
AuthorAffiliation School of Software, South China Normal University , Guangzhou , China
AuthorAffiliation_xml – name: School of Software, South China Normal University , Guangzhou , China
Author_xml – sequence: 1
  givenname: Jingcong
  surname: Li
  fullname: Li, Jingcong
– sequence: 2
  givenname: Weijian
  surname: Pan
  fullname: Pan, Weijian
– sequence: 3
  givenname: Haiyun
  surname: Huang
  fullname: Huang, Haiyun
– sequence: 4
  givenname: Jiahui
  surname: Pan
  fullname: Pan, Jiahui
– sequence: 5
  givenname: Fei
  surname: Wang
  fullname: Wang, Fei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37125349$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vEzEQXaEi-gF_gANaiQuXDR57vWtzQVUVQqVKHBrO1qztTRx27eB1WvHvcZoUtT1w8nj83tPzzDsvTnzwtijeA5kxJuTn3q9344wSymYAjZS1fFWcQdPQikMDJ0_q0-J8mjaENLTh8KY4ZS1Qzmp5Voy3y8Xlcv6lvN1icjhUyY7bEHEoVxG36xJTsj654Etv032Iv8p7l3K7TBH91Ic42lhar4PJZ76W8_mi6nCyprRjeCBGq8PKu339tnjd4zDZd8fzovj5bb68-l7d_FhcX13eVLqWbaqsrpG1QjScMmKM6QCo5rJthWk5l6JDaanugHNCBOafMys4AJNd3zWsQXZRXB90TcCN2kY3YvyjAjr10AhxpTAmpwertGnAQtdL3ULdcSqQEUSjEZATLkzW-nrQ2u660Rqdx5HH80z0-Yt3a7UKdwoIMFa3JCt8OirE8Htnp6RGN2k7DOht2E2KCiIocMp5hn58Ad2EXfR5Voq2UkpoqISM-vDU0j8vj2vNAHEA6BimKdpeaZdwv4Hs0A3ZmtonSD0kSO0TpI4JylT6gvqo_h_SX1Cfyxo
CitedBy_id crossref_primary_10_1016_j_inffus_2024_102697
crossref_primary_10_3389_fnhum_2024_1464431
crossref_primary_10_3390_brainsci14040364
crossref_primary_10_1007_s00521_024_10821_y
crossref_primary_10_1016_j_compbiomed_2024_108808
crossref_primary_10_1016_j_bspc_2024_106505
crossref_primary_10_1109_TNNLS_2023_3319315
crossref_primary_10_1016_j_neunet_2024_106111
crossref_primary_10_54392_irjmt2456
crossref_primary_10_7717_peerj_cs_2065
crossref_primary_10_1049_rsn2_12484
crossref_primary_10_3390_s25051293
crossref_primary_10_3390_brainsci13091293
crossref_primary_10_3390_s24010077
crossref_primary_10_1109_ACCESS_2023_3329678
crossref_primary_10_1016_j_bspc_2024_106985
crossref_primary_10_1016_j_compbiomed_2024_108973
crossref_primary_10_1109_JBHI_2024_3395622
crossref_primary_10_1016_j_bspc_2024_106323
crossref_primary_10_1016_j_neunet_2024_106624
crossref_primary_10_4236_jbbs_2024_144009
crossref_primary_10_1007_s11042_024_20119_9
crossref_primary_10_1142_S0129065725500029
crossref_primary_10_1016_j_compeleceng_2025_110189
crossref_primary_10_3389_fnins_2024_1519970
crossref_primary_10_1109_ACCESS_2025_3530567
Cites_doi 10.1587/transinf.2015EDP7251
10.1109/TBME.2012.2217495
10.1109/TAFFC.2017.2712143
10.1088/1741-2552/ab0ab5
10.1016/j.irbm.2021.04.004
10.1016/j.biopsycho.2004.03.008
10.1023/B:NEAB.0000038139.39812.eb
10.1016/j.patcog.2017.10.013
10.1145/3474085.3475697
10.3389/fnins.2020.622759
10.1016/j.neulet.2006.04.006
10.1109/TAFFC.2017.2714671
10.1515/bmt-2019-0306
10.1109/TAMD.2015.2431497
10.48550/arXiv.2002.11867
10.1109/TCDS.2020.2999337
10.3390/brainsci10100687
10.14569/IJACSA.2017.081046
10.1016/j.intcom.2005.10.006
10.1007/s00779-011-0479-9
10.48550/arXiv.1609.02907
10.48550/arXiv.1710.10903
10.1023/A:1015075101937
10.1109/ICASSP.2003.1202279
10.3390/s21113786
10.1007/s10916-008-9231-z
10.1109/HSI.2013.6577880
10.1109/TAFFC.2019.2937768
10.1016/j.neucom.2017.01.012
10.1109/JBHI.2022.3198688
10.1109/CSPA.2011.5759912
10.1109/TAFFC.2022.3169001
10.1109/TSMCB.2005.854502
10.1016/j.entcs.2019.04.009
10.1109/TAFFC.2018.2817622
10.1016/j.compbiomed.2004.05.001
10.1007/978-3-030-04221-9_36
10.3390/s23031255
10.4414/smw.2013.13786
10.3389/fnhum.2020.00089
10.3758/s13428-014-0500-0
10.1109/TNNLS.2020.2978386
10.1016/B978-0-12-801851-4.00001-X
10.48550/arXiv.1412.6980
10.1016/0013-4694(70)90143-4
10.1016/j.procs.2018.04.056
10.1007/978-3-662-43790-2_11
10.1109/TNN.2010.2091281
10.1109/TCYB.2018.2797176
10.1016/j.inffus.2017.02.003
10.3390/s18072074
10.1109/TAFFC.2020.2994159
10.1016/j.eij.2019.10.002
10.1109/ICASSP43922.2022.9746600
10.3390/s20072034
10.1155/2020/8875426
10.1109/JBHI.2017.2688239
10.1109/TAFFC.2014.2339834
10.20944/preprints202301.0156.v1
10.3390/s20185083
10.1016/j.bspc.2018.01.015
10.1109/TASLP.2021.3095662
10.3389/fpsyg.2017.01454
10.3389/fnhum.2018.00521
ContentType Journal Article
Copyright Copyright © 2023 Li, Pan, Huang, Pan and Wang.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2023 Li, Pan, Huang, Pan and Wang. 2023 Li, Pan, Huang, Pan and Wang
Copyright_xml – notice: Copyright © 2023 Li, Pan, Huang, Pan and Wang.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2023 Li, Pan, Huang, Pan and Wang. 2023 Li, Pan, Huang, Pan and Wang
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnhum.2023.1169949
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
Publicly Available Content Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5161
ExternalDocumentID oai_doaj_org_article_cd61e1bf9c714b528a30aadca1a5058d
PMC10133470
37125349
10_3389_fnhum_2023_1169949
Genre Journal Article
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABIVO
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EMOBN
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IPNFZ
NPM
PQGLB
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c497t-ec4a378865230dddb112c59778d75598ba9e2cb155008a6993e851139bfb636a3
IEDL.DBID M48
ISSN 1662-5161
IngestDate Wed Aug 27 01:28:08 EDT 2025
Thu Aug 21 18:38:01 EDT 2025
Fri Jul 11 05:46:28 EDT 2025
Fri Jul 25 11:42:26 EDT 2025
Mon Jul 21 06:17:35 EDT 2025
Thu Apr 24 23:04:57 EDT 2025
Tue Jul 01 02:43:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords deep learning
EEG-based emotion classification
graph neural network
EEG
transformer encoder
Language English
License Copyright © 2023 Li, Pan, Huang, Pan and Wang.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-ec4a378865230dddb112c59778d75598ba9e2cb155008a6993e851139bfb636a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Redha Taiar, Université de Reims Champagne-Ardenne, France
This article was submitted to Brain-Computer Interfaces, a section of the journal Frontiers in Human Neuroscience
Reviewed by: Mohammad Ashraful Amin, North South University, Bangladesh; Jinyi Long, Jinan University, China
OpenAccessLink https://www.proquest.com/docview/2799916291?pq-origsite=%requestingapplication%
PMID 37125349
PQID 2799916291
PQPubID 4424408
ParticipantIDs doaj_primary_oai_doaj_org_article_cd61e1bf9c714b528a30aadca1a5058d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10133470
proquest_miscellaneous_2808215255
proquest_journals_2799916291
pubmed_primary_37125349
crossref_citationtrail_10_3389_fnhum_2023_1169949
crossref_primary_10_3389_fnhum_2023_1169949
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-13
PublicationDateYYYYMMDD 2023-04-13
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-13
  day: 13
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in human neuroscience
PublicationTitleAlternate Front Hum Neurosci
PublicationYear 2023
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Li (B38) 2009
Zhong (B77) 2020; 13
Huang (B27) 2022; 43
Ding (B17) 2020
Collobert (B14) 2006; 7
He (B25) 2022
Li (B39) 2021
Wioleta (B68) 2013
Zheng (B74) 2018; 49
Egger (B19) 2019; 343
Jia (B31) 2020
Raganato (B52) 2018
Balasubramanian (B7) 2018; 42
Jerritta (B30) 2011
Feng (B20) 2022; 26
Moontaha (B46) 2023; 23
Hadjidimitriou (B23) 2012; 59
Micheloyannis (B45) 2006; 402
Craik (B15) 2019; 16
Santurkar (B54) 2018
Newson (B47) 2019; 12
Rahman (B53) 2020; 21
Chen (B12) 2020
Ozdemir (B48) 2021; 66
Shi (B57) 2013
Akin (B3) 2002; 26
Hjorth (B26) 1970; 29
He (B24) 2020; 10
Song (B59) 2018; 11
Tyng (B65) 2017; 8
Jenke (B28) 2014; 5
Subha (B61) 2010; 34
Poria (B51) 2017; 37
Torres (B64) 2020; 20
Zhang (B73) 2020; 14
Stancin (B60) 2021; 21
Kıymık (B35) 2005; 35
Zhang (B72) 2019; 13
Sartipi (B55) 2021
Lew (B36) 2020
Li (B40) 2021
Cimtay (B13) 2020; 20
Gabert-Quillen (B21) 2015; 47
Van den Broek (B66) 2013; 17
Aftanas (B2) 2004; 34
Li (B37) 2018
Thammasan (B63) 2016; 99
Brave (B8) 2007
Gu (B22) 2018; 77
Pan (B49) 2010; 22
Yang (B71) 2020; 14
Alarcao (B4) 2017; 10
Shu (B58) 2018; 18
Castellano (B11) 2008
Kingma (B33) 2014
Xu (B70) 2018; 130
Ding (B18) 2021
Jeon (B29) 2017
Davidson (B16) 2004; 67
Wu (B69) 2020; 32
Alhagry (B5) 2017; 8
Cambria (B10) 2017
Kipf (B34) 2016
Peter (B50) 2006; 18
Brosch (B9) 2013; 143
Liu (B43) 2022
Schuller (B56) 2003
Zheng (B75) 2015; 7
Suhaimi (B62) 2020; 2020
Liu (B44) 2014
Anderson (B6) 2006; 36
Li (B41) 2020; 13
Veličkovi,ć (B67) 2017
Katsigiannis (B32) 2017; 22
Liu (B42) 2021; 29
Zheng (B76) 2017; 10
Abdel-Hamid (B1) 2023; 23
References_xml – volume: 99
  start-page: 1234
  year: 2016
  ident: B63
  article-title: Continuous music-emotion recognition based on electroencephalogram
  publication-title: IEICE Trans. Inf. Syst
  doi: 10.1587/transinf.2015EDP7251
– start-page: 116
  year: 2022
  ident: B43
  article-title: “Spatial-temporal transformers for eeg emotion recognition,”
  publication-title: 2022 The 6th International Conference on Advances in Artificial Intelligence
– volume: 59
  start-page: 3498
  year: 2012
  ident: B23
  article-title: Toward an eeg-based recognition of music liking using time-frequency analysis
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2012.2217495
– volume: 10
  start-page: 417
  year: 2017
  ident: B76
  article-title: Identifying stable patterns over time for emotion recognition from eeg
  publication-title: IEEE Trans. Affect. Comput
  doi: 10.1109/TAFFC.2017.2712143
– volume: 16
  start-page: 031001
  year: 2019
  ident: B15
  article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2552/ab0ab5
– volume: 43
  start-page: 107
  year: 2022
  ident: B27
  article-title: Classification of motor imagery eeg based on time-domain and frequency-domain dual-stream convolutional neural network
  publication-title: IRBM
  doi: 10.1016/j.irbm.2021.04.004
– volume: 67
  start-page: 219
  year: 2004
  ident: B16
  article-title: What does the prefrontal cortex “do” in affect: perspectives on frontal eeg asymmetry research
  publication-title: Biol. Psychol
  doi: 10.1016/j.biopsycho.2004.03.008
– start-page: 1
  volume-title: 2021 International Joint Conference on Neural Networks (IJCNN)
  year: 2021
  ident: B40
  article-title: “Attention-based spatio-temporal graphic lstm for eeg emotion recognition,”
– volume: 34
  start-page: 859
  year: 2004
  ident: B2
  article-title: Analysis of evoked eeg synchronization and desynchronization in conditions of emotional activation in humans: temporal and topographic characteristics
  publication-title: Neurosci. Behav. Physiol
  doi: 10.1023/B:NEAB.0000038139.39812.eb
– volume: 77
  start-page: 354
  year: 2018
  ident: B22
  article-title: Recent advances in convolutional neural networks
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.10.013
– year: 2018
  ident: B52
  article-title: “An analysis of encoder representations in transformer-based machine translation,”
  publication-title: Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP
– start-page: 5565
  year: 2021
  ident: B39
  article-title: “A multi-domain adaptive graph convolutional network for eeg-based emotion recognition,”
  publication-title: Proceedings of the 29th ACM International Conference on Multimedia
  doi: 10.1145/3474085.3475697
– volume: 14
  start-page: 622759
  year: 2020
  ident: B73
  article-title: An investigation of deep learning models for eeg-based emotion recognition
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2020.622759
– volume: 402
  start-page: 273
  year: 2006
  ident: B45
  article-title: Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis
  publication-title: Neurosci. Lett
  doi: 10.1016/j.neulet.2006.04.006
– volume: 10
  start-page: 374
  year: 2017
  ident: B4
  article-title: Emotions recognition using eeg signals: a survey
  publication-title: IEEE Trans. Affect. Comput
  doi: 10.1109/TAFFC.2017.2714671
– volume: 66
  start-page: 43
  year: 2021
  ident: B48
  article-title: Eeg-based emotion recognition with deep convolutional neural networks
  publication-title: Biomed. Eng
  doi: 10.1515/bmt-2019-0306
– volume: 7
  start-page: 162
  year: 2015
  ident: B75
  article-title: Investigating critical frequency bands and channels for eeg-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Ment. Dev
  doi: 10.1109/TAMD.2015.2431497
– year: 2020
  ident: B12
  article-title: Bridging the gap between spatial and spectral domains: A survey on graph neural networks
  publication-title: arXiv preprint
  doi: 10.48550/arXiv.2002.11867
– volume: 13
  start-page: 354
  year: 2020
  ident: B41
  article-title: A novel bi-hemispheric discrepancy model for EEG emotion recognition
  publication-title: IEEE Trans. Cogn. Dev. Syst
  doi: 10.1109/TCDS.2020.2999337
– volume: 10
  start-page: 687
  year: 2020
  ident: B24
  article-title: Advances in multimodal emotion recognition based on brain-computer interfaces
  publication-title: Brain Sci
  doi: 10.3390/brainsci10100687
– volume: 8
  start-page: 355
  year: 2017
  ident: B5
  article-title: Emotion recognition based on eeg using lstm recurrent neural network
  publication-title: Emotion
  doi: 10.14569/IJACSA.2017.081046
– volume: 18
  start-page: 139
  year: 2006
  ident: B50
  article-title: Emotion representation and physiology assignments in digital systems
  publication-title: Interact Comput
  doi: 10.1016/j.intcom.2005.10.006
– volume: 17
  start-page: 53
  year: 2013
  ident: B66
  article-title: Ubiquitous emotion-aware computing
  publication-title: Pers. Ubiquit. Comput
  doi: 10.1007/s00779-011-0479-9
– year: 2016
  ident: B34
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: arXiv preprint
  doi: 10.48550/arXiv.1609.02907
– year: 2017
  ident: B67
  article-title: Graph attention networks
  publication-title: arXiv preprint
  doi: 10.48550/arXiv.1710.10903
– volume: 26
  start-page: 241
  year: 2002
  ident: B3
  article-title: Comparison of wavelet transform and fft methods in the analysis of eeg signals
  publication-title: J. Med. Syst
  doi: 10.1023/A:1015075101937
– volume-title: 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP'03), volume 2
  year: 2003
  ident: B56
  article-title: “Hidden markov model-based speech emotion recognition,”
  doi: 10.1109/ICASSP.2003.1202279
– volume: 21
  start-page: 3786
  year: 2021
  ident: B60
  article-title: A review of eeg signal features and their application in driver drowsiness detection systems
  publication-title: Sensors
  doi: 10.3390/s21113786
– year: 2018
  ident: B54
  article-title: “How does batch normalization help optimization?”
  publication-title: Advances in Neural Information Processing Systems, Vol. 31
– volume: 34
  start-page: 195
  year: 2010
  ident: B61
  article-title: EEG signal analysis: a survey
  publication-title: J. Med. Syst
  doi: 10.1007/s10916-008-9231-z
– start-page: 556
  volume-title: 2013 6th International Conference on Human System Interactions (HSI)
  year: 2013
  ident: B68
  article-title: “Using physiological signals for emotion recognition,”
  doi: 10.1109/HSI.2013.6577880
– volume: 13
  start-page: 379
  year: 2019
  ident: B72
  article-title: Gcb-net: Graph convolutional broad network and its application in emotion recognition
  publication-title: IEEE Trans. Affect. Comput
  doi: 10.1109/TAFFC.2019.2937768
– volume: 7
  start-page: 1687
  year: 2006
  ident: B14
  article-title: Large scale transductive svms
  publication-title: J. Mach. Learn. Res
  doi: 10.1016/j.neucom.2017.01.012
– volume: 26
  start-page: 5406
  year: 2022
  ident: B20
  article-title: Eeg-based emotion recognition using spatial-temporal graph convolutional lstm with attention mechanism
  publication-title: IEEE J. Biomed. Health Inform
  doi: 10.1109/JBHI.2022.3198688
– volume-title: Emotion Recognition Through Multiple Modalities: Face, Body Gesture, Speech
  year: 2008
  ident: B11
– start-page: 410
  volume-title: 2011 IEEE 7th International Colloquium on Signal Processing and its Applications
  year: 2011
  ident: B30
  article-title: “Physiological signals based human emotion recognition: a review,”
  doi: 10.1109/CSPA.2011.5759912
– year: 2021
  ident: B18
  article-title: Tsception: capturing temporal dynamics and spatial asymmetry from eeg for emotion recognition
  publication-title: arXiv preprint
  doi: 10.1109/TAFFC.2022.3169001
– start-page: 116
  volume-title: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine &Biology Society (EMBC)
  year: 2020
  ident: B36
  article-title: “EEG-based emotion recognition using spatial-temporal representation via bi-gru,”
– volume: 36
  start-page: 96
  year: 2006
  ident: B6
  article-title: A real-time automated system for the recognition of human facial expressions
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/TSMCB.2005.854502
– volume: 343
  start-page: 35
  year: 2019
  ident: B19
  article-title: Emotion recognition from physiological signal analysis: a review
  publication-title: Electron. Notes Theor. Comput. Sci
  doi: 10.1016/j.entcs.2019.04.009
– start-page: 1324
  year: 2020
  ident: B31
  article-title: “Graphsleepnet: adaptive spatial-temporal graph convolutional networks for sleep stage classification,”
  publication-title: IJCAI
– volume: 11
  start-page: 532
  year: 2018
  ident: B59
  article-title: Eeg emotion recognition using dynamical graph convolutional neural networks
  publication-title: IEEE Trans. Affect. Comput
  doi: 10.1109/TAFFC.2018.2817622
– volume: 35
  start-page: 603
  year: 2005
  ident: B35
  article-title: Comparison of stft and wavelet transform methods in determining epileptic seizure activity in eeg signals for real-time application
  publication-title: Comput. Biol. Med
  doi: 10.1016/j.compbiomed.2004.05.001
– start-page: 403
  volume-title: Neural Information Processing: 25th International Conference, ICONIP 2018, Siem Reap
  year: 2018
  ident: B37
  article-title: “Cross-subject emotion recognition using deep adaptation networks,”
  doi: 10.1007/978-3-030-04221-9_36
– volume: 23
  start-page: 1255
  year: 2023
  ident: B1
  article-title: An efficient machine learning-based emotional valence recognition approach towards wearable eeg
  publication-title: Sensors
  doi: 10.3390/s23031255
– volume: 143
  start-page: w13786
  year: 2013
  ident: B9
  article-title: The impact of emotion on perception, attention, memory, and decision-making
  publication-title: Swiss Med. Wkly
  doi: 10.4414/smw.2013.13786
– volume: 14
  start-page: 89
  year: 2020
  ident: B71
  article-title: High gamma band eeg closely related to emotion: evidence from functional network
  publication-title: Front. Hum. Neurosci
  doi: 10.3389/fnhum.2020.00089
– volume: 47
  start-page: 773
  year: 2015
  ident: B21
  article-title: Ratings for emotion film clips
  publication-title: Behav. Res. Methods
  doi: 10.3758/s13428-014-0500-0
– start-page: 571
  volume-title: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  year: 2021
  ident: B55
  article-title: “EEG emotion recognition via graph-based spatio-temporal attention neural networks,”
– volume: 32
  start-page: 4
  year: 2020
  ident: B69
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst
  doi: 10.1109/TNNLS.2020.2978386
– start-page: 3
  year: 2017
  ident: B29
  article-title: “Emotions and affect in human factors and human-computer interaction: taxonomy, theories, approaches, and methods,”
  publication-title: Emotions and Affect in Human Factors and Human-Computer Interaction
  doi: 10.1016/B978-0-12-801851-4.00001-X
– start-page: 103
  volume-title: The Human-Computer Interaction Handbook
  year: 2007
  ident: B8
  article-title: “Emotion in human-computer interaction,”
– start-page: 6627
  volume-title: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  year: 2013
  ident: B57
  article-title: “Differential entropy feature for EEG-based vigilance estimation,”
– start-page: 1
  volume-title: 2020 International Joint Conference on Neural Networks (IJCNN)
  year: 2020
  ident: B17
  article-title: “Tsception: a deep learning framework for emotion detection using EEG,”
– year: 2014
  ident: B33
  article-title: Adam: a method for stochastic optimization
  publication-title: arXiv preprint
  doi: 10.48550/arXiv.1412.6980
– volume: 29
  start-page: 306
  year: 1970
  ident: B26
  article-title: Eeg analysis based on time domain properties
  publication-title: Electroencephalogr. Clin. Neurophysiol
  doi: 10.1016/0013-4694(70)90143-4
– volume: 130
  start-page: 376
  year: 2018
  ident: B70
  article-title: Learning emotions eeg-based recognition and brain activity: a survey study on bci for intelligent tutoring system
  publication-title: Procedia Comput. Sci
  doi: 10.1016/j.procs.2018.04.056
– volume-title: Real-Time Subject-Dependent EEG-Based Emotion Recognition Algorithm
  year: 2014
  ident: B44
  doi: 10.1007/978-3-662-43790-2_11
– volume: 22
  start-page: 199
  year: 2010
  ident: B49
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2010.2091281
– volume: 49
  start-page: 1110
  year: 2018
  ident: B74
  article-title: Emotionmeter: a multimodal framework for recognizing human emotions
  publication-title: IEEE Trans. Cybern
  doi: 10.1109/TCYB.2018.2797176
– volume: 37
  start-page: 98
  year: 2017
  ident: B51
  article-title: A review of affective computing: from unimodal analysis to multimodal fusion
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.02.003
– volume: 18
  start-page: 2074
  year: 2018
  ident: B58
  article-title: A review of emotion recognition using physiological signals
  publication-title: Sensors
  doi: 10.3390/s18072074
– volume: 13
  start-page: 1290
  year: 2020
  ident: B77
  article-title: Eeg-based emotion recognition using regularized graph neural networks
  publication-title: IEEE Trans. Affect. Comput
  doi: 10.1109/TAFFC.2020.2994159
– volume-title: Affective Computing and Sentiment Analysis
  year: 2017
  ident: B10
– volume: 21
  start-page: 23
  year: 2020
  ident: B53
  article-title: Employing pca and t-statistical approach for feature extraction and classification of emotion from multichannel eeg signal
  publication-title: Egyptian Inform. J
  doi: 10.1016/j.eij.2019.10.002
– start-page: 3214
  volume-title: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
  year: 2022
  ident: B25
  article-title: “Joint temporal convolutional networks and adversarial discriminative domain adaptation for EEG-based cross-subject emotion recognition,”
  doi: 10.1109/ICASSP43922.2022.9746600
– volume: 20
  start-page: 2034
  year: 2020
  ident: B13
  article-title: Investigating the use of pretrained convolutional neural network on cross-subject and cross-dataset eeg emotion recognition
  publication-title: Sensors
  doi: 10.3390/s20072034
– volume: 2020
  start-page: 8875426
  year: 2020
  ident: B62
  article-title: EEG-based emotion recognition: a state-of-the-art review of current trends and opportunities
  publication-title: Comput. Intell. Neurosci
  doi: 10.1155/2020/8875426
– volume: 22
  start-page: 98
  year: 2017
  ident: B32
  article-title: Dreamer: a database for emotion recognition through eeg and ecg signals from wireless low-cost off-the-shelf devices
  publication-title: IEEE J. Biomed. Health Inform
  doi: 10.1109/JBHI.2017.2688239
– volume: 5
  start-page: 327
  year: 2014
  ident: B28
  article-title: Feature extraction and selection for emotion recognition from EEG
  publication-title: IEEE Trans. Affect. Comput
  doi: 10.1109/TAFFC.2014.2339834
– start-page: 1223
  volume-title: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
  year: 2009
  ident: B38
  article-title: “Emotion classification based on gamma-band EEG,”
– volume: 23
  start-page: 2387
  year: 2023
  ident: B46
  article-title: Online learning for wearable eeg-based emotion classification
  publication-title: Sensors
  doi: 10.20944/preprints202301.0156.v1
– volume: 20
  start-page: 5083
  year: 2020
  ident: B64
  article-title: EEG-based bci emotion recognition: a survey
  publication-title: Sensors
  doi: 10.3390/s20185083
– volume: 42
  start-page: 115
  year: 2018
  ident: B7
  article-title: Music induced emotion using wavelet packet decomposition–an EEG study
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.01.015
– volume: 29
  start-page: 2351
  year: 2021
  ident: B42
  article-title: Tera: Self-supervised learning of transformer encoder representation for speech
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process
  doi: 10.1109/TASLP.2021.3095662
– volume: 8
  start-page: 1454
  year: 2017
  ident: B65
  article-title: The influences of emotion on learning and memory
  publication-title: Front. Psychol
  doi: 10.3389/fpsyg.2017.01454
– volume: 12
  start-page: 521
  year: 2019
  ident: B47
  article-title: Eeg frequency bands in psychiatric disorders: a review of resting state studies
  publication-title: Front. Hum. Neurosci
  doi: 10.3389/fnhum.2018.00521
SSID ssj0062651
Score 2.4737692
Snippet Electroencephalogram (EEG) is a crucial and widely utilized technique in neuroscience research. In this paper, we introduce a novel graph neural network called...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1169949
SubjectTerms Accuracy
Attention
Brain research
deep learning
EEG
EEG-based emotion classification
Electroencephalography
Emotions
graph neural network
Graph representations
Human Neuroscience
Human-computer interaction
Memory
Nervous system
Neural networks
Neurosciences
Physiology
transformer encoder
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTlyqFmi75SEjoV6qiDh2EpvbghYQEly6SNwsvyIqgRfB7oF_z4ydjXYr1F56ipI4ku0Zz3zjjL8h5ChwhecfXdHIyhbCSlFI2UGw4q1UAaxhSNUbrm-ay1txdVffrZT6wpywTA-cJ-7Y-YYFZjvlWiZsXUnDS2O8M8yA85YerS_4vGUwlW0woPSa5SMyEIKp4y7eL_DYecXBRDRKIXPmihtKbP3vQcw_MyVXXM_5J_Kxx4x0nPv6mXwIcYtsjyPEy4-v9AdNWZxpe3ybPP6aXoynkxOKtYZBt4qee-qBJmpqinSaKcGRxpwATnEnlho6XyLY8EyR3NLDFW7pZHJRoKvzNOSKP3TIOZrFHXJ7PpmeXRZ9SYXCCdXOi-CEQQb5BjeDvfcW4JZDCjrpW6Rqt0aFylmMW0ppYKZ4QEjGle1swxvDv5CNOIvhG6HGd661tgQlaEVdecPqjgnGnCuFq3g9Imw5w9r1fONY9uJBQ9yBUtFJKhqlonupjMjP4ZunzLbx19anKLihJTJlpwegP7rXH_0v_RmRvaXYdb98X3TVJtxcKTYih8NrWHj4N8XEMFtAGwnoCatHwUi_Zi0ZesJbwI0ceyjX9Getq-tv4u_7RO4NJpJz0Zbf_8fgdskmThj-_WJ8j2zMnxdhH0DU3B6k9fIG5egc4A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBQHksLchIiAuKGsdOYnNBW5S2QqJCsJV6s_xKi9QmZbt76L9nxnFCF6GeoiSO5HjG42_G428IeR-4wvOPLqtkYTNhpcikbMFZ8VaqANYwxOoN306q41Px9aw8SwG3m5RWOdrEaKh97zBGvl_UEcoUin2-_p1h1SjcXU0lNB6SbTDBEpyv7YPm5PuP0RYDWi_ZcFQGXDG133YXazx-XnAwFZVSyKB5ZzmKrP3_g5r_ZkzeWYIOn5DHCTvS-SDsp-RB6J6RnXkHfvPVLf1AYzZnDJPvkKufi6P5ovlEseYw6FiWOKguaaSopkirGRMdaTckglOMyFJDVyOSDUuKJJcernBLm-YowyXP0zBU_qFT7lHfPSenh83iy3GWSitkTqh6lQUnDDLJVxgU9t5bgF0Oqeikr5Gy3RoVCmfRf8mlgZHiAaEZV7a1Fa8Mf0G2ur4Lrwg1vnW1tTkoQy3KwhtWtkww5lwuXMHLGWHjCGuXeMex_MWlBv8DpaKjVDRKRSepzMjH6ZvrgXXj3tYHKLipJTJmxwf98lynCaidr1hgtlWuZsKWhTQ8N8Y7wwyAQOlnZG8Uu07T-Eb_VboZeTe9hgmIuyqmC_0a2khAUVhFCv705aAlU094DfiRYw_lhv5sdHXzTffrIpJ8g6nkXNT56_v7tUse4VDg_hbje2RrtVyHNwCTVvZtmgt_AMK1FNU
  priority: 102
  providerName: ProQuest
Title STGATE: Spatial-temporal graph attention network with a transformer encoder for EEG-based emotion recognition
URI https://www.ncbi.nlm.nih.gov/pubmed/37125349
https://www.proquest.com/docview/2799916291
https://www.proquest.com/docview/2808215255
https://pubmed.ncbi.nlm.nih.gov/PMC10133470
https://doaj.org/article/cd61e1bf9c714b528a30aadca1a5058d
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dixMxEA_n3Ysvop4f1bNEEF9kdbPJbhJBpCd7PYQ7RFvo25KvvRN6W60teP-9M9kPrJyCL122m5ZsZibzm2TyG0JeBK7x_KNLCpXZRFglEqVqCFa8VTrAbBhi9Yaz8-J0Lj4u8sUe6csddQP448bQDutJzdfL1z-_X78Hg3-HESf42zd1c7nFQ-UZhwmg0FroW-QAPJNEQz0Tw64CYPdYjpEVBQRgAHXaQzR_-Y8dRxX5_G8CoX_mUv7mnE7ukjsdqqSTVg3ukb3Q3CeHkwYi6qtr-pLGPM-4gH5Irr7MppNZ-ZZiNWLQvqRjp1rSSF5NkXAzpkDSpk0Rp7hWSw3d9Bg3rCnSX3q4wi0ty2mCztDT0NYEokNW0qp5QOYn5ezDadIVXUic0HKTBCcMcswXuFzsvbcAyByS1CkvkczdGh0yZzGySZWBkeIBQRvXtrYFLwx_SPabVRMeE2p87aS1KaiJFHnmDctrJhhzLhUu4_mIsH6EK9cxkmNhjGUFkQlKpYpSqVAqVSeVEXk1_OZby8fxz9bHKLihJXJpxy9W64uqM83K-YIFZmvtJBM2z5ThqTHeGWYAHio_Ike92KteP6tMRmSdaTYiz4fHYJq432KasNpCGwX4CutLwZs-arVk6AmXgCw59lDt6M9OV3efNF8vI_03TKKcC5k--a-heEpu4y1uhDF-RPY36214BnhqY8fk4Lg8__R5HNcj4HO6YONoOL8AaQshXw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXBJTHlgJGAi4oahw7iYOE0BbSbmm7QrCVegt-hVZqk7LdFeqf4jcy4zzoItRbT1FiJ3I84_E39vgbQl45nuH5RxMkMtKB0FIEUpbgrFgtMwfW0PnsDQeTZHwoPh_FRyvkd3cWBsMqO5voDbWtDa6Rb0aphzJRxj6c_wwwaxTurnYpNBq12HOXv8Blu3i_-wnk-zqKtvPpx3HQZhUIjMjSeeCMUEiinuB6qLVWA-IwyMImbYps5VplLjIaoXsoVQLzt0NUwjNd6oQnisN3b5FVwcGVGZDVrXzy5Wtn-8E7iFlzNAdcv2yzrI4XeNw94mCa4FPI2Hll-vNZAv4Hbf-N0Lwy5W3fI3dbrEpHjXLdJyuuekDWRhX46WeX9A310aN-WX6NnH2b7oym-TuKOY5Bp4OW8-qUekpsijSePrCSVk3gOcUVYKrovEPObkaRVNPCFW5pnu8EOMVa6ppMQ7SPdaqrh-TwRjr9ERlUdeWeEKpsaVKtQ1C-VMSRVSwumWDMmFCYiMdDwroeLkzLc47pNk4L8HdQKoWXSoFSKVqpDMnb_p3zhuXj2tpbKLi-JjJ0-wf17EfRDvjC2IQ5psvMpEzoOJKKh0pZo5gC0CntkGx0Yi9as3FR_FXyIXnZF8OAx10cVbl6AXUkoDbMWgV_-rjRkr4lPAW8yrGFckl_lpq6XFKdHHtScTDNnIs0XL--XS_I7fH0YL_Y353sPSV3sFtwb43xDTKYzxbuGUC0uX7ejgtKvt_0UPwDWUpQLA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyFeEDAuhQFGAl5Q1NjOxUFCqGPpNgbVBJ20t-BbGNKWjK4V2l_j13GOc2FFaG97qtI4keNz8Xfs4-8Q8tKJDM8_miCRXAeRllEgZQnBitUyc-ANna_e8Hma7B5GH4_iozXyuzsLg2mVnU_0jtrWBtfIRzz1UIZnbFS2aREH25P3Zz8DrCCFO61dOY1GRfbdxS8I387f7W2DrF9xPslnH3aDtsJAYKIsXQTORAoJ1RNcG7XWakAfBhnZpE2RuVyrzHGjEcaHUiUwlztEKCLTpU5EogS89wZZTyEqCgdkfSufHnzp5gGIFGLWHNOBMDAbldXxEo--cwFuCl6F7J2XpkJfMeB_MPffbM1L09_kDrnd4lY6bhTtLllz1T2yMa4gZj-9oK-pzyT1S_Qb5PTrbGc8y99SrHcM-h20_Fcn1NNjU6T09EmWtGqS0CmuBlNFFx2KdnOKBJsWfuGS5vlOgNOtpa6pOkT7vKe6uk8Or2XQH5BBVVfuEaHKlibVOgRFTKOYW8XikkWMGRNGhot4SFg3woVpOc-x9MZJAbEPSqXwUilQKkUrlSF50z9z1jB-XNl6CwXXt0S2bv9HPf9etMZfGJswx3SZmZRFOuZSiVApaxRTAEClHZLNTuxF60LOi78KPyQv-ttg_LijoypXL6GNBASHFazgSx82WtL3RKSAXQX2UK7oz0pXV-9UP449wTi4aSGiNHx8db-ek5tggsWnven-E3ILRwW32ZjYJIPFfOmeAlpb6GetWVDy7bot8Q_g4FRh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=STGATE%3A+Spatial-temporal+graph+attention+network+with+a+transformer+encoder+for+EEG-based+emotion+recognition&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Li%2C+Jingcong&rft.au=Pan%2C+Weijian&rft.au=Huang%2C+Haiyun&rft.au=Pan%2C+Jiahui&rft.date=2023-04-13&rft.issn=1662-5161&rft.eissn=1662-5161&rft.volume=17&rft_id=info:doi/10.3389%2Ffnhum.2023.1169949&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnhum_2023_1169949
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon