Training multi-layer spiking neural networks with plastic synaptic weights and delays

Spiking neural networks are usually considered as the third generation of neural networks, which hold the potential of ultra-low power consumption on corresponding hardware platforms and are very suitable for temporal information processing. However, how to efficiently train the spiking neural netwo...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 17; p. 1253830
Main Author Wang, Jing
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 24.01.2024
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spiking neural networks are usually considered as the third generation of neural networks, which hold the potential of ultra-low power consumption on corresponding hardware platforms and are very suitable for temporal information processing. However, how to efficiently train the spiking neural networks remains an open question, and most existing learning methods only consider the plasticity of synaptic weights. In this paper, we proposed a new supervised learning algorithm for multiple-layer spiking neural networks based on the typical SpikeProp method. In the proposed method, both the synaptic weights and delays are considered as adjustable parameters to improve both the biological plausibility and the learning performance. In addition, the proposed method inherits the advantages of SpikeProp, which can make full use of the temporal information of spikes. Various experiments are conducted to verify the performance of the proposed method, and the results demonstrate that the proposed method achieves a competitive learning performance compared with the existing related works. Finally, the differences between the proposed method and the existing mainstream multi-layer training algorithms are discussed.
AbstractList Spiking neural networks are usually considered as the third generation of neural networks, which hold the potential of ultra-low power consumption on corresponding hardware platforms and are very suitable for temporal information processing. However, how to efficiently train the spiking neural networks remains an open question, and most existing learning methods only consider the plasticity of synaptic weights. In this paper, we proposed a new supervised learning algorithm for multiple-layer spiking neural networks based on the typical SpikeProp method. In the proposed method, both the synaptic weights and delays are considered as adjustable parameters to improve both the biological plausibility and the learning performance. In addition, the proposed method inherits the advantages of SpikeProp, which can make full use of the temporal information of spikes. Various experiments are conducted to verify the performance of the proposed method, and the results demonstrate that the proposed method achieves a competitive learning performance compared with the existing related works. Finally, the differences between the proposed method and the existing mainstream multi-layer training algorithms are discussed.
Spiking Neural Networks are usually considered as the third generation of neural networks, which hold the potential of ultra-low power consumption on corresponding hardware platforms and are very suitable for temporal information processing. However, how to efficiently train the spiking neural networks remains an open question, and most existing learning methods only consider the plasticity of synaptic weights. In this paper, we proposed a new supervised learning algorithm for multiple-layer spiking neural networks based on the typical SpikeProp method.In the proposed method, both the synaptic weights and delays are considered as adjustable parameters to improve both the biological plausibility and the learning performance. In addition, the proposed method inherits the advantages of SpikeProp, which can make full use of the temporal information of spikes. Various experiments are conducted to verify the performance of the proposed method, and the results demonstrate that the proposed method achieves a competitive learning performance compared with the existing related works.
Spiking neural networks are usually considered as the third generation of neural networks, which hold the potential of ultra-low power consumption on corresponding hardware platforms and are very suitable for temporal information processing. However, how to efficiently train the spiking neural networks remains an open question, and most existing learning methods only consider the plasticity of synaptic weights. In this paper, we proposed a new supervised learning algorithm for multiple-layer spiking neural networks based on the typical SpikeProp method. In the proposed method, both the synaptic weights and delays are considered as adjustable parameters to improve both the biological plausibility and the learning performance. In addition, the proposed method inherits the advantages of SpikeProp, which can make full use of the temporal information of spikes. Various experiments are conducted to verify the performance of the proposed method, and the results demonstrate that the proposed method achieves a competitive learning performance compared with the existing related works. Finally, the differences between the proposed method and the existing mainstream multi-layer training algorithms are discussed.Spiking neural networks are usually considered as the third generation of neural networks, which hold the potential of ultra-low power consumption on corresponding hardware platforms and are very suitable for temporal information processing. However, how to efficiently train the spiking neural networks remains an open question, and most existing learning methods only consider the plasticity of synaptic weights. In this paper, we proposed a new supervised learning algorithm for multiple-layer spiking neural networks based on the typical SpikeProp method. In the proposed method, both the synaptic weights and delays are considered as adjustable parameters to improve both the biological plausibility and the learning performance. In addition, the proposed method inherits the advantages of SpikeProp, which can make full use of the temporal information of spikes. Various experiments are conducted to verify the performance of the proposed method, and the results demonstrate that the proposed method achieves a competitive learning performance compared with the existing related works. Finally, the differences between the proposed method and the existing mainstream multi-layer training algorithms are discussed.
Author Wang, Jing
AuthorAffiliation School of Computer Science and Engineering, University of Electronic Science and Technology of China , Chengdu , China
AuthorAffiliation_xml – name: School of Computer Science and Engineering, University of Electronic Science and Technology of China , Chengdu , China
Author_xml – sequence: 1
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38328553$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wB1igSGzYZPD7sUKogrZSJTatxM5yHGfG04wdbKej-fc4M1PUdsHqXl2f--nYPufViQ_eVtVHCBYYC_m1986nBQIILyCiWGDwpjqDjKGGUPz75Fl_Wp2ntAaAIUHQu-q0aJGgFJ9V93dRu8JZ1ptpyK4Z9M7GOo3uYZ55O0U9lJK3IT6keuvyqh4HnbIzddp5Pc7N1rrlKqda-67ubCGk99XbXg_JfjjWi-r-54-7y-vm9tfVzeX328YQyXNjCZS6xbSz2mqgBWEIIy2FEKClXLOeIti2vCU9Z8BYyK2kmLIOYkM6iQm-qG4O3C7otRqj2-i4U0E7tR-EuFQ6FouDVUBy2FPYMdMDwmgrLASmlbYjvRHcwML6dmCNU7uxnbE-l7u_gL488W6lluFRQSAIR3s3X46EGP5MNmW1ccnYYdDehikpJBGWEEk2Sz-_kq7DFH15q6KCXAqOBC-qT88t_fPy9H1FIA4CE0NK0fbKuKyzC7NDNxRrak6K2idFzUlRx6SUVfRq9Yn-n6W_azXDxA
CitedBy_id crossref_primary_10_1111_coin_70001
crossref_primary_10_3390_ijms252212368
Cites_doi 10.1103/PhysRevE.51.738
10.1109/TNN.2010.2074212
10.3389/fnins.2019.00559
10.1146/annurev.neuro.31.060407.125639
10.1162/NECO_a_00395
10.1109/ICASSP40776.2020.9053856
10.1109/ICASSP43922.2022.9747411
10.1109/TNNLS.2022.3213688
10.1109/TCSVT.2021.3129503
10.1038/376033a0
10.1109/TFUZZ.2020.3030498
10.1109/MSP.2019.2931595
10.1109/MSP.2017.2743240
10.1126/science.aab4113
10.1109/TNNLS.2022.3164930
10.3389/fnins.2017.00324
10.1109/TNNLS.2015.2404938
10.1109/TCSI.2021.3061766
10.1109/TNNLS.2021.3110991
10.1109/CVPR.2016.90
10.3389/fnins.2021.650430
10.1142/S0129065720500276
10.1109/TNNLS.2017.2726060
10.1016/j.neunet.2014.12.001
10.1109/ICASSP39728.2021.9413901
10.1109/5.726791
10.1016/j.neucom.2018.11.014
10.1109/TCDS.2021.3073846
10.1109/TCSVT.2021.3114208
10.1109/TNN.2003.820440
10.3389/fnins.2018.00774
10.3389/fnins.2018.00331
10.1016/S0925-2312(01)00658-0
10.1364/PRJ.413742
10.1162/neco.2009.11-08-901
10.1109/TPAMI.2021.3114196
10.1016/j.neucom.2015.07.086
10.1016/j.neunet.2021.01.016
10.1109/TNNLS.2018.2797801
10.1016/S0893-6080(97)00011-7
10.1142/S0129065709002002
10.1016/j.neucom.2020.03.079
10.1109/TASLP.2021.3100684
10.1016/j.neunet.2019.09.007
10.1109/TNNLS.2015.2501322
10.1109/TNNLS.2021.3095724
ContentType Journal Article
Copyright Copyright © 2024 Wang.
2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2024 Wang. 2024 Wang
Copyright_xml – notice: Copyright © 2024 Wang.
– notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2024 Wang. 2024 Wang
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2023.1253830
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
Proquest Central Journals
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Proquest SciTech Premium Collection
ProQuest Biological Science Collection
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Proquest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_0971f51d6cf0465b8e10cb9ed4fc87c1
PMC10847234
38328553
10_3389_fnins_2023_1253830
Genre Journal Article
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
W2D
C1A
IAO
IEA
IHR
ISR
M~E
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c497t-e419ab35deaea0a846232a98880b57a6f521bb7b4f760ce17e95356d13c4d9343
IEDL.DBID M48
ISSN 1662-453X
1662-4548
IngestDate Wed Aug 27 01:30:13 EDT 2025
Thu Aug 21 18:35:24 EDT 2025
Thu Jul 10 23:31:51 EDT 2025
Fri Jul 25 10:29:45 EDT 2025
Thu Jan 02 22:28:58 EST 2025
Thu Apr 24 23:02:18 EDT 2025
Tue Jul 01 03:02:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords spiking neural networks
synaptic weights
synaptic delays
SpikeProp
supervised learning
Language English
License Copyright © 2024 Wang.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-e419ab35deaea0a846232a98880b57a6f521bb7b4f760ce17e95356d13c4d9343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Lei Deng, Tsinghua University, China
Reviewed by: Zihan Pan, Institute for Infocomm Research (A*STAR), Singapore
Pengfei Sun, Ghent University, Belgium
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2023.1253830
PMID 38328553
PQID 2917987287
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_0971f51d6cf0465b8e10cb9ed4fc87c1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10847234
proquest_miscellaneous_2923912964
proquest_journals_2917987287
pubmed_primary_38328553
crossref_citationtrail_10_3389_fnins_2023_1253830
crossref_primary_10_3389_fnins_2023_1253830
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-24
PublicationDateYYYYMMDD 2024-01-24
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-24
  day: 24
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2024
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Sun (B34) 2022
Gerstner (B6) 1995; 51
Ghosh-Dastidar (B7) 2009; 19
Yha (B45) 2020; 121
Liu (B19); 30
Luo (B20) 2022; 34
Wu (B44) 2018; 12
Wade (B39) 2010; 21
Zhu (B50) 2021; 14
Taherkhani (B35); 26
Taherkhani (B37) 2018; 29
Arulkumaran (B1) 2017; 34
Comsa (B4) 2020
Lan (B15) 2021; 15
Wu (B41); 34
Maass (B22) 1997; 10
Liu (B17) 2022; 32
Mostafa (B24) 2017; 29
Wu (B43); 68
Wu (B42); 44
Zhang (B46) 2021; 33
Maass (B23) 2001
Taherkhani (B36)
Zhang (B47) 2020; 409
Wang (B40) 2015; 28
Gütig (B8) 2016; 351
LeCun (B16) 1998; 86
Pfeiffer (B28) 2018; 12
Shrestha (B30) 2018
Zhang (B49) 2021; 138
Dora (B5) 2016; 171
Izhikevich (B13) 2003; 14
Kheradpisheh (B14) 2020; 30
Sun (B33) 2023
Bohte (B2) 2002; 48
Zhang (B48) 2022
Subakan (B32) 2021
Pan (B27) 2021; 29
He (B10) 2016
Neftci (B26) 2019; 36
Luo (B21) 2019; 13
Han (B9) 2021; 9
Hopfield (B11) 1995; 376
Caporale (B3) 2008; 31
Tavanaei (B38) 2019; 330
Neftci (B25) 2016; 11
Liu (B18); 32
Hu (B12) 2013; 25
Shrestha (B31) 2015; 63
Ponulak (B29) 2010; 22
References_xml – start-page: 1
  volume-title: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
  year: 2023
  ident: B33
  article-title: “Adaptive axonal delays in feedforward spiking neural networks for accurate spoken word recognition,”
– volume: 51
  start-page: 738
  year: 1995
  ident: B6
  article-title: Time structure of the activity in neural network models
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.51.738
– volume: 21
  start-page: 1817
  year: 2010
  ident: B39
  article-title: Swat: a spiking neural network training algorithm for classification problems
  publication-title: IEEE Trans. Neural Netw
  doi: 10.1109/TNN.2010.2074212
– volume: 13
  start-page: 559
  year: 2019
  ident: B21
  article-title: First error-based supervised learning algorithm for spiking neural networks
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2019.00559
– volume: 31
  start-page: 25
  year: 2008
  ident: B3
  article-title: Spike timing-dependent plasticity: a Hebbian learning rule
  publication-title: Annu. Rev. Neurosci
  doi: 10.1146/annurev.neuro.31.060407.125639
– volume: 25
  start-page: 450
  year: 2013
  ident: B12
  article-title: A spike-timing-based integrated model for pattern recognition
  publication-title: Neural Comput
  doi: 10.1162/NECO_a_00395
– start-page: 8529
  volume-title: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
  year: 2020
  ident: B4
  article-title: “Temporal coding in spiking neural networks with alpha synaptic function,”
  doi: 10.1109/ICASSP40776.2020.9053856
– start-page: 8932
  volume-title: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
  year: 2022
  ident: B34
  article-title: “Axonal delay as a short-term memory for feed forward deep spiking neural networks,”
  doi: 10.1109/ICASSP43922.2022.9747411
– year: 2022
  ident: B48
  article-title: Minicolumn-based episodic memory model with spiking neurons, dendrites and delays
  publication-title: IEEE Trans. Neural Netw. Learn. Syst
  doi: 10.1109/TNNLS.2022.3213688
– volume: 32
  start-page: 4900
  year: 2022
  ident: B17
  article-title: Efficient low-rank matrix factorization based on ℓ1,ε-norm for online background subtraction
  publication-title: IEEE Trans. Circuits Syst. Video Technol
  doi: 10.1109/TCSVT.2021.3129503
– volume: 376
  start-page: 33
  year: 1995
  ident: B11
  article-title: Pattern recognition computation using action potential timing for stimulus representation
  publication-title: Nature
  doi: 10.1038/376033a0
– volume-title: Pulsed Neural Networks
  year: 2001
  ident: B23
– volume: 30
  start-page: 287
  ident: B19
  article-title: Optimum codesign for image denoising between type-2 fuzzy identifier and matrix completion denoiser
  publication-title: IEEE Trans. Fuzzy Syst
  doi: 10.1109/TFUZZ.2020.3030498
– volume: 36
  start-page: 51
  year: 2019
  ident: B26
  article-title: Surrogate gradient learning in spiking neural networks: bringing the power of gradient-based optimization to spiking neural networks
  publication-title: IEEE Signal Process. Mag
  doi: 10.1109/MSP.2019.2931595
– volume: 34
  start-page: 26
  year: 2017
  ident: B1
  article-title: Deep reinforcement learning: a brief survey
  publication-title: IEEE Signal Process. Mag
  doi: 10.1109/MSP.2017.2743240
– volume: 351
  start-page: aab4113
  year: 2016
  ident: B8
  article-title: Spiking neurons can discover predictive features by aggregate-label learning
  publication-title: Science
  doi: 10.1126/science.aab4113
– volume: 34
  start-page: 10141
  year: 2022
  ident: B20
  article-title: Supervised learning in multilayer spiking neural networks with spike temporal error backpropagation
  publication-title: IEEE Trans. Neural Netw. Learn. Syst
  doi: 10.1109/TNNLS.2022.3164930
– volume: 11
  start-page: 324
  year: 2016
  ident: B25
  article-title: Event-driven random back-propagation: enabling neuromorphic deep learning machines
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2017.00324
– volume: 26
  start-page: 3137
  ident: B35
  article-title: Dl-resume: a delay learning-based remote supervised method for spiking neurons
  publication-title: IEEE Trans. Neural Netw. Learn. Syst
  doi: 10.1109/TNNLS.2015.2404938
– volume: 68
  start-page: 2522
  ident: B43
  article-title: Efficient design of spiking neural network with stdp learning based on fast cordic
  publication-title: IEEE Trans. Circuits Syst. I: Regul. Pap
  doi: 10.1109/TCSI.2021.3061766
– volume: 33
  start-page: 1947
  year: 2021
  ident: B46
  article-title: Rectified linear postsynaptic potential function for backpropagation in deep spiking neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst
  doi: 10.1109/TNNLS.2021.3110991
– start-page: 770
  volume-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2016
  ident: B10
  article-title: “Deep residual learning for image recognition,”
  doi: 10.1109/CVPR.2016.90
– volume: 15
  start-page: 374
  year: 2021
  ident: B15
  article-title: Spatio-temporal sequential memory model with mini-column neural network
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2021.650430
– volume: 30
  start-page: 2050027
  year: 2020
  ident: B14
  article-title: Temporal backpropagation for spiking neural networks with one spike per neuron
  publication-title: Int. J. Neural Syst
  doi: 10.1142/S0129065720500276
– volume: 29
  start-page: 3227
  year: 2017
  ident: B24
  article-title: Supervised learning based on temporal coding in spiking neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst
  doi: 10.1109/TNNLS.2017.2726060
– start-page: 1
  volume-title: 2015 International Joint Conference on Neural Networks (IJCNN)
  ident: B36
  article-title: “Multi-dl-resume: multiple neurons delay learning remote supervised method,”
– volume: 63
  start-page: 185
  year: 2015
  ident: B31
  article-title: Adaptive learning rate of spikeprop based on weight convergence analysis
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2014.12.001
– start-page: 21
  year: 2021
  ident: B32
  article-title: “Attention is all you need in speech separation,”
  publication-title: ICASSP 2021
  doi: 10.1109/ICASSP39728.2021.9413901
– volume: 86
  start-page: 2278
  year: 1998
  ident: B16
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 330
  start-page: 39
  year: 2019
  ident: B38
  article-title: Bp-stdp: approximating backpropagation using spike timing dependent plasticity
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.11.014
– volume: 14
  start-page: 847
  year: 2021
  ident: B50
  article-title: An efficient learning algorithm for direct training deep spiking neural networks
  publication-title: IEEE Trans. Cogn. Develop. Syst
  doi: 10.1109/TCDS.2021.3073846
– volume: 32
  start-page: 3462
  ident: B18
  article-title: From simulated to visual data: a robust low-rank tensor completion approach using ℓp-regression for outlier resistance
  publication-title: IEEE Trans. Circuits Syst. Video Technol
  doi: 10.1109/TCSVT.2021.3114208
– volume: 14
  start-page: 1569
  year: 2003
  ident: B13
  article-title: Simple model of spiking neurons
  publication-title: IEEE Trans. Neural Netw
  doi: 10.1109/TNN.2003.820440
– volume: 12
  start-page: 774
  year: 2018
  ident: B28
  article-title: Deep learning with spiking neurons: opportunities and challenges
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2018.00774
– volume: 12
  start-page: 331
  year: 2018
  ident: B44
  article-title: Spatio-temporal backpropagation for training high-performance spiking neural networks
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2018.00331
– volume: 48
  start-page: 17
  year: 2002
  ident: B2
  article-title: Error-backpropagation in temporally encoded networks of spiking neurons
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00658-0
– volume: 9
  start-page: 119
  year: 2021
  ident: B9
  article-title: Delay-weight plasticity-based supervised learning in optical spiking neural networks
  publication-title: Photonics Res
  doi: 10.1364/PRJ.413742
– volume: 22
  start-page: 467
  year: 2010
  ident: B29
  article-title: Supervised learning in spiking neural networks with resume: sequence learning, classification, and spike shifting
  publication-title: Neural Comput
  doi: 10.1162/neco.2009.11-08-901
– volume: 44
  start-page: 7824
  ident: B42
  article-title: Progressive tandem learning for pattern recognition with deep spiking neural networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell
  doi: 10.1109/TPAMI.2021.3114196
– volume: 171
  start-page: 1216
  year: 2016
  ident: B5
  article-title: Development of a self-regulating evolving spiking neural network for classification problem
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.07.086
– volume: 138
  start-page: 110
  year: 2021
  ident: B49
  article-title: A new recursive least squares-based learning algorithm for spiking neurons
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2021.01.016
– start-page: 1419
  year: 2018
  ident: B30
  article-title: “Slayer: spike layer error reassignment in time,”
  publication-title: Advances in Neural Information Processing Systems, Vol. 31
– volume: 29
  start-page: 5394
  year: 2018
  ident: B37
  article-title: A supervised learning algorithm for learning precise timing of multiple spikes in multilayer spiking neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst
  doi: 10.1109/TNNLS.2018.2797801
– volume: 10
  start-page: 1659
  year: 1997
  ident: B22
  article-title: Networks of spiking neurons: the third generation of neural network models
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(97)00011-7
– volume: 19
  start-page: 295
  year: 2009
  ident: B7
  article-title: Spiking neural networks
  publication-title: Int. J. Neural Syst
  doi: 10.1142/S0129065709002002
– volume: 409
  start-page: 103
  year: 2020
  ident: B47
  article-title: Supervised learning in spiking neural networks with synaptic delay-weight plasticity
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.03.079
– volume: 29
  start-page: 2656
  year: 2021
  ident: B27
  article-title: Multi-tone phase coding of interaural time difference for sound source localization with spiking neural networks
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process
  doi: 10.1109/TASLP.2021.3100684
– volume: 121
  start-page: 387
  year: 2020
  ident: B45
  article-title: A biologically plausible supervised learning method for spiking neural networks using the symmetric stdp rule
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2019.09.007
– volume: 28
  start-page: 30
  year: 2015
  ident: B40
  article-title: Spiketemp: an enhanced rank-order-based learning approach for spiking neural networks with adaptive structure
  publication-title: IEEE Trans. Neural Netw. Learn. Syst
  doi: 10.1109/TNNLS.2015.2501322
– volume: 34
  start-page: 446
  ident: B41
  article-title: A tandem learning rule for effective training and rapid inference of deep spiking neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst
  doi: 10.1109/TNNLS.2021.3095724
SSID ssj0062842
Score 2.3633597
Snippet Spiking neural networks are usually considered as the third generation of neural networks, which hold the potential of ultra-low power consumption on...
Spiking Neural Networks are usually considered as the third generation of neural networks, which hold the potential of ultra-low power consumption on...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1253830
SubjectTerms Algorithms
Back propagation
Firing pattern
Information processing
Learning
Methods
Neural networks
Neurons
Neuroscience
Power consumption
SpikeProp
spiking neural networks
Sports training
supervised learning
synaptic delays
Synaptic plasticity
Synaptic strength
synaptic weights
Weightlifting
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1wQUD4CLTIS4oJM49iO42OLqCokOHWl3iLHHouVirtqtkL775lxsqsuQnDhFiVO4ozHmfecyRvG3tkmSBlDEJ2CRiCkjsKBNcJCShKcUbr8W_X1W3ux0F-uzNW9Ul-UEzbJA0-GOyGNo2RkbENCKmeGDmQdBgdRp9DZUIgPxrwtmZrewS2-dJvpFxmkYO4k5WUmbe5GfcSAjqSs3gtDRa3_TxDz90zJe6Hn_DF7NGNGfjr19Ql7APkpOzzNyJd_bPh7XrI4y_L4IVtczjUfeEkVFNceMTUfV0taEuekXolXylPu98hpFZavEEDjlfm4yX5FGz_LcunIfY6cRCQ34zO2OP98-elCzKUTRNDOrgVo6fygTAQPvvYIMhA5eYd0tx6M9W3CqD0MdtDJtnUAaWlYTBulCjo6pdVzdpBvMrxkvLVQtw6BTlRRRyrM4ayDkIxJEJRLFZNbS_Zh1hWn8hbXPfILsn5frN-T9fvZ-hX7sDtnNalq_LX1GQ3QriUpYpcd6Cf97Cf9v_ykYkfb4e3naYp3caTXZpE1Vuzt7jBOMPpq4jPc3FGbRjlJX6cr9mLyhl1PsHdNZ4yqWLfnJ3td3T-Sl9-LiLesERc0Sr_6Hw_3mj1Eg1E6kWj0ETtY397BMYKl9fCmzItf3OYUiQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Proquest Central Journals
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA96ffFF1PqxWiWC-CKxm02y2TxJKy1FsIj0oG_Lbj70oM2t3Sty_70z2dzhifRt2WSzYZJMfjOZ_IaQd7qynDtrWSN8xQBSO2a8Vkz7ELg3Ssh0t-rreX02l18u1WV2uI05rHKjE5OidkuLPvLDyiC1lgaA_2n4xTBrFJ6u5hQa98keqOCmmZG945Pzb983urgG5ZvOO2u8GwTgfLo2A2aZOQxxEZGvuxIfYZMHQ63c2ZoSg___YOe_0ZN_bUenj8jDjCPp0TTwj8k9H5-Q_aMINvT1mr6nKbIzucz3yfwi54GgKXyQXXWAs-k4LNBNTpHRElqKUzz4SNEzSwcA1dAyHdexG_Dhd3KhjrSLjiKx5Hp8SuanJxefz1hOp8CsNHrFvOSm64VyvvNd2QHwADTVGTCBy17prg6wk_e97mXQdWk91zhUqnZcWOmMkOIZmcVl9C8IrbUvawPgxwknHSbrMNp4G5QK3goTCsI3kmxt5hrHlBdXLdgcKP02Sb9F6bdZ-gX5sP1mmJg27qx9jAO0rYks2enF8uZHmxddi_xYQXFX21DKWvWN56XtjXcy2EZbXpCDzfC2eenCX7YTrSBvt8Ww6PAkpYt-eYt1KmE4nlgX5Pk0G7Y9gd5VjVKiIM3OPNnp6m5JXPxMxN68BKxQCfny7n69Ig9AFBg8xCp5QGarm1v_GqDRqn-T5_8fzYoO8w
  priority: 102
  providerName: ProQuest
Title Training multi-layer spiking neural networks with plastic synaptic weights and delays
URI https://www.ncbi.nlm.nih.gov/pubmed/38328553
https://www.proquest.com/docview/2917987287
https://www.proquest.com/docview/2923912964
https://pubmed.ncbi.nlm.nih.gov/PMC10847234
https://doaj.org/article/0971f51d6cf0465b8e10cb9ed4fc87c1
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_H3Ysvop4f1XOJIL5Iz6ZJms2DyJ3ceQh3iNzCvpU0H7qwZtftHrr_vTNpt7hyCr6UtklDmCSd30wmvyHkpSotY87afMx9mQOkdrn2SubKh8C8llyks1WXV9XFRHycyuke2aY76gXY3mraYT6pyWp-_PP75h0s-LdocYK-fRPiLCLzdsmPQV2DyQUm_AFoJoUZDS7FsKtQwa847X5WeFJI8ml3iOYvbewoqsTnfxsI_TOW8jfldH6P3O1RJT3ppsF9sufjA3J4EsGi_rahr2iK80wO9EMyue6zQtAUTJjPDaBu2i5n6DSnyG8JLcUuOryl6KelS4DY0DJtN9Es8eZHcqi21ERHkWZy0z4kk_Oz6_cXeZ9cIbdCq3XuBdOm4dJ5401hAIYAtjIaDOKikcpUAfR606hGBFUV1jOFAycrx7gVTnPBH5H9uIj-CaGV8kWlAQo57oTD1B1aaW-DlMFbrkNG2FaSte2ZxzEBxrwGCwSlXyfp1yj9upd-Rl4P3yw73o1_1j7FARpqImd2erFYfan7JVgjW1aQzFU2FKKSzdizwjbaOxHsWFmWkaPt8NbbeViXGhndFNiVGXkxFMMSxH0VE_3iBuuUXDPcv87I4242DD2B3pVjKXlGxjvzZKeruyVx9jXRfLMCkEPJxdP_EsUzcgceMbIoL8UR2V-vbvxzwE3rZkQOTs-uPn0eJb8DXD9M2SgtkF_LYxmY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXBJRHoICRgAsKjWM7jg8ItdBqS9sVQrtSb2niB6xUskuzVbV_it_IjJOsWIR66y2KHWc0Ho-_GY9nCHmtUsOYNSbOuUtjgNQ21k7JWDnvmdOSi3C36mSUDSfiy6k83SC_-7swGFbZ68SgqO3MoI98J9WYWksBwP84_xVj1Sg8Xe1LaLRiceSWV2CyNR8OP8P8vknTg_3xp2HcVRWIjdBqETvBdFlxaV3pyqSE_RdARanBEkwqqcrMw4ZWVaoSXmWJcUwhxTKzjBthNRccxr1FNgXPknRANvf2R1-_9bo_A2UfzlczvIsExkB7TQfMQL3j62mN-cFT_h5ABRiGydpWGCoG_A_m_hut-df2d3CP3O1wK91tBe0-2XD1A7K1W4PN_nNJ39IQSRpc9FtkMu7qTtAQrhifl4DraTOfolueYgZNGKlu488bip5gOgcQDyPTZlmXc3y4Ci7bhpa1pZjIctk8JJMbYfQjMqhntXtCaKZckmkAW5ZbYbE4iFbaGS-ld4ZrHxHWc7IwXW5zLLFxXoCNg9wvAvcL5H7RcT8i71bfzNvMHtf23sMJWvXErNzhxezie9Et8gLzcXnJbGZ8IjJZ5Y4lptLOCm9yZVhEtvvpLTpVAX9ZCXZEXq2aYZHjyU1Zu9kl9km5ZnhCHpHHrTSsKAHq0lxKHpF8TU7WSF1vqac_QiJxlgA2Sbl4ej1dL8nt4fjkuDg-HB09I3eALRi4FKdimwwWF5fuOcCyRfWiWwuUnN308vsDeLlLRg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJyFeEDA-AgOMBLyg0Di24_gBoY2t2hhUE1qlvWWJP6DScMvSaeq_xl_HXT4qitDe9hY1rnM63_l-dz7fEfJapYYxa0ycc5fGAKltrJ2SsXLeM6clF83dqq_j7GAiPp_K0w3yu78Lg2mV_Z7YbNR2ZjBGPkw1ltZSAPCHvkuLON4bfZz_irGDFJ609u00WhE5cssrcN_qD4d7sNZv0nS0f_LpIO46DMRGaLWInWC6rLi0rnRlUoItBoBRavAKk0qqMvNg3KpKVcKrLDGOKaReZpZxI6zmgsO8t8imQq9oQDZ398fH33o7kMHG35y1ZngvCRyD9soOuIR66MM0YK3wlL8HgAFOYrJmFpvuAf-DvP9mbv5lCkf3yN0Ow9KdVujukw0XHpCtnQD--88lfUubrNImXL9FJiddDwrapC7G5yVgfFrPpxiip1hNE2YKbS56TTEqTOcA6GFmWi9DOceHqyZ8W9MyWIpFLZf1QzK5EUY_IoMwC-4JoZlySaYBeFluhcVGIVppZ7yU3hmufURYz8nCdHXOsd3GeQH-DnK_aLhfIPeLjvsRebf6z7yt8nHt6F1coNVIrNDd_DC7-F50Cl9gbS4vmc2MT0Qmq9yxxFTaWeFNrgyLyHa_vEW3bcBXVkIekVer16DweIpTBje7xDEp1wxPyyPyuJWGFSVAXZpLySOSr8nJGqnrb8L0R1NUnCWAU1Iunl5P10tyG9Su-HI4PnpG7gBXMIcpTsU2GSwuLt1zQGiL6kWnCpSc3bT2_QHTN097
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Training+multi-layer+spiking+neural+networks+with+plastic+synaptic+weights+and+delays&rft.jtitle=Frontiers+in+neuroscience&rft.au=Wang%2C+Jing&rft.date=2024-01-24&rft.issn=1662-453X&rft.eissn=1662-453X&rft.volume=17&rft_id=info:doi/10.3389%2Ffnins.2023.1253830&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnins_2023_1253830
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon