Rare earth elements sorption to iron oxyhydroxide: Model development and application to groundwater
Iron oxyhydroxides are among the most important colloids that control rare earth elements (REE) concentrations and transport in natural hydrosystems. In this study, REE surface complexation to iron oxyhydroxides (Fe(OH)3(a)) was described by using the Donnan diffuse layer model and a two-site (i.e....
Saved in:
Published in | Applied geochemistry Vol. 87; pp. 158 - 166 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2017
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Iron oxyhydroxides are among the most important colloids that control rare earth elements (REE) concentrations and transport in natural hydrosystems. In this study, REE surface complexation to iron oxyhydroxides (Fe(OH)3(a)) was described by using the Donnan diffuse layer model and a two-site (i.e. ≡FesOH and ≡FewOH) model. The specific surface area and pH of zero charge were fixed as 100000 m2/mol and 8.0, respectively. The surface site density for weak and strong binding sites were fixed at 0.1 moL/mol Fe (≡FewOH) and 0.001 moL/mol Fe (≡FesOH) respectively. The two site types were used with pKa1int = 7.29 and pKa2int = 8.93. Using linear free energy relationship, the estimated equilibrium surface complexation constants (log K) increased from light REE (LREE) to heavy REE (HREE). Results of REE modeling calculation using the determined log K revealed a good fit of experimental data, showing an order of sorption on iron oxyhydroxides: HREE > MREE > LREE and preferential sorption of HREE at a lower pH. However, sorption edges only showed a slight change with ionic strength (0.1–0.7 moL/L) for the whole REE series. The generalized model was subsequently used to evaluate the impact of iron oxyhydroxides on REE speciation in groundwater. Application of the model to “model groundwater” showed that iron oxyhydroxide complexes of REE were significant in near neutral and weakly alkaline pH. This study contributes to putting forward a comprehensive database which would be useful for the application of surface complexation model to describe REE sorption by amorphous ferric hydroxides in nature.
[Display omitted]
•Modeling study of the REE sorption onto iron oxyhydroxide is proposed.•Binding was described using two sites Donnan diffuse layer.•Heavy REE show a greater affinity for iron oxyhydroxide than light REE and middle REE.•Modeling suggests a preferential accumulation of Ce on solid phase than its neighboring La and Pr.•The proposed model is able to predict the impact of iron oxyhydroxide on REE in nature. |
---|---|
AbstractList | Iron oxyhydroxides are among the most important colloids that control rare earth elements (REE) concentrations and transport in natural hydrosystems. In this study, REE surface complexation to iron oxyhydroxides (Fe(OH)3(a)) was described by using the Donnan diffuse layer model and a two-site (i.e. ≡FeˢOH and ≡FeʷOH) model. The specific surface area and pH of zero charge were fixed as 100000 m²/mol and 8.0, respectively. The surface site density for weak and strong binding sites were fixed at 0.1 moL/mol Fe (≡FeʷOH) and 0.001 moL/mol Fe (≡FeˢOH) respectively. The two site types were used with pKa1ⁱⁿᵗ = 7.29 and pKa2ⁱⁿᵗ = 8.93. Using linear free energy relationship, the estimated equilibrium surface complexation constants (log K) increased from light REE (LREE) to heavy REE (HREE). Results of REE modeling calculation using the determined log K revealed a good fit of experimental data, showing an order of sorption on iron oxyhydroxides: HREE > MREE > LREE and preferential sorption of HREE at a lower pH. However, sorption edges only showed a slight change with ionic strength (0.1–0.7 moL/L) for the whole REE series. The generalized model was subsequently used to evaluate the impact of iron oxyhydroxides on REE speciation in groundwater. Application of the model to “model groundwater” showed that iron oxyhydroxide complexes of REE were significant in near neutral and weakly alkaline pH. This study contributes to putting forward a comprehensive database which would be useful for the application of surface complexation model to describe REE sorption by amorphous ferric hydroxides in nature. Iron oxyhydroxides are among the most important colloids that control rare earth elements (REE) concentrations and transport in natural hydrosystems. In this study, REE surface complexation to iron oxyhydroxides (Fe(OH)3(a)) was described by using the Donnan diffuse layer model and a two-site (i.e. ≡FesOH and ≡FewOH) model. The specific surface area and pH of zero charge were fixed as 100000 m2/mol and 8.0, respectively. The surface site density for weak and strong binding sites were fixed at 0.1 moL/mol Fe (≡FewOH) and 0.001 moL/mol Fe (≡FesOH) respectively. The two site types were used with pKa1int = 7.29 and pKa2int = 8.93. Using linear free energy relationship, the estimated equilibrium surface complexation constants (log K) increased from light REE (LREE) to heavy REE (HREE). Results of REE modeling calculation using the determined log K revealed a good fit of experimental data, showing an order of sorption on iron oxyhydroxides: HREE > MREE > LREE and preferential sorption of HREE at a lower pH. However, sorption edges only showed a slight change with ionic strength (0.1–0.7 moL/L) for the whole REE series. The generalized model was subsequently used to evaluate the impact of iron oxyhydroxides on REE speciation in groundwater. Application of the model to “model groundwater” showed that iron oxyhydroxide complexes of REE were significant in near neutral and weakly alkaline pH. This study contributes to putting forward a comprehensive database which would be useful for the application of surface complexation model to describe REE sorption by amorphous ferric hydroxides in nature. [Display omitted] •Modeling study of the REE sorption onto iron oxyhydroxide is proposed.•Binding was described using two sites Donnan diffuse layer.•Heavy REE show a greater affinity for iron oxyhydroxide than light REE and middle REE.•Modeling suggests a preferential accumulation of Ce on solid phase than its neighboring La and Pr.•The proposed model is able to predict the impact of iron oxyhydroxide on REE in nature. |
Author | Pourret, Olivier Liu, Haiyan Guo, Huaming Bonhoure, Jessica |
Author_xml | – sequence: 1 givenname: Haiyan surname: Liu fullname: Liu, Haiyan organization: State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China – sequence: 2 givenname: Olivier surname: Pourret fullname: Pourret, Olivier email: olivier.pourret@unilasalle.fr organization: UniLaSalle, AGHYLE, 60026 Beauvais Cedex, France – sequence: 3 givenname: Huaming surname: Guo fullname: Guo, Huaming organization: State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China – sequence: 4 givenname: Jessica surname: Bonhoure fullname: Bonhoure, Jessica organization: UniLaSalle, AGHYLE, 60026 Beauvais Cedex, France |
BackLink | https://hal.science/hal-02136360$$DView record in HAL |
BookMark | eNqFkcFuEzEQhi1UJNLCM-AjHDYd25t4F4lDVAFFCkJCcLYce9w4ctaL7aTN2-NtKAculUYz0vj_RuP5L8nFEAck5C2DOQO2vN7N9XiH0WxxP-fAZO3OgcMLMmOd5E3PRHtBZtB1ouE9l6_IZc47AFhI4DNifuiEFHUqW4oB9ziUTHNMY_FxoCVSn2qND6ftyab44C1-oN-ixUAtHjHEcSKoHizV4xi80U_cXYqHwd7rguk1eel0yPjmb70ivz5_-nlz26y_f_l6s1o3pu1laSznTrQowYKUkgm9YBvXtrbtFw4758zCtVZuAMHZ1vYcNs66XnQS-xpgxBV5f5671UGNye91OqmovbpdrdXUA87EUizhyKr23Vk7pvj7gLmovc8GQ9ADxkNWvF5oyWoWVfrxLDUp5pzQKePL4z9L0j4oBmoyQu3UPyPUZMT0UI2ovPyPf9rteXJ1JrFe7egxqWw8DgatT2iKstE_O-MPhJar8w |
CitedBy_id | crossref_primary_10_1016_j_apgeochem_2019_104499 crossref_primary_10_1016_j_chemgeo_2018_05_012 crossref_primary_10_1021_acsearthspacechem_1c00159 crossref_primary_10_1016_j_scitotenv_2021_145595 crossref_primary_10_1016_j_earscirev_2022_103992 crossref_primary_10_1016_j_gexplo_2019_01_002 crossref_primary_10_1007_s42860_023_00251_7 crossref_primary_10_1016_j_coal_2019_04_007 crossref_primary_10_1134_S0016702923090021 crossref_primary_10_1016_j_chemosphere_2024_143164 crossref_primary_10_1016_j_oregeorev_2021_104172 crossref_primary_10_1016_j_jhydrol_2025_132704 crossref_primary_10_1016_j_chemgeo_2020_119503 crossref_primary_10_2138_am_2023_9217 crossref_primary_10_1016_j_gexplo_2023_107360 crossref_primary_10_1016_j_chemosphere_2019_124341 crossref_primary_10_1021_acsearthspacechem_4c00032 crossref_primary_10_3724_EE_1672_9250_2024_52_066 crossref_primary_10_3390_w15040633 crossref_primary_10_1134_S0024490224700597 crossref_primary_10_1051_e3sconf_202126602002 crossref_primary_10_1016_j_chemgeo_2023_121547 crossref_primary_10_1016_j_apgeochem_2021_105089 crossref_primary_10_1016_j_chemosphere_2021_130131 crossref_primary_10_1016_j_apgeochem_2021_105004 crossref_primary_10_1016_j_gexplo_2019_106450 crossref_primary_10_1002_cjce_25570 crossref_primary_10_1016_j_chemgeo_2018_06_029 crossref_primary_10_1111_gbi_12434 crossref_primary_10_1007_s10653_024_02316_5 crossref_primary_10_1016_j_chemgeo_2020_119771 crossref_primary_10_3390_min10070602 crossref_primary_10_1016_j_envpol_2023_122384 crossref_primary_10_3390_min9090504 crossref_primary_10_1016_j_chemer_2019_125545 crossref_primary_10_1016_j_geothermics_2023_102826 crossref_primary_10_2139_ssrn_4131081 crossref_primary_10_1016_j_jenvman_2021_114228 crossref_primary_10_1016_j_chemgeo_2018_04_003 crossref_primary_10_1016_j_gca_2019_05_016 crossref_primary_10_1007_s11356_024_31958_2 crossref_primary_10_1016_j_apgeochem_2020_104800 crossref_primary_10_1021_acs_est_1c02958 crossref_primary_10_1016_j_apgeochem_2022_105379 crossref_primary_10_1071_EN23049 crossref_primary_10_1016_j_scitotenv_2019_05_395 crossref_primary_10_1016_j_scitotenv_2024_174735 crossref_primary_10_1016_j_chemosphere_2020_126801 crossref_primary_10_2343_geochemj_GJ22009 crossref_primary_10_1016_j_scitotenv_2021_150241 crossref_primary_10_1016_j_jsames_2021_103702 crossref_primary_10_1021_acs_est_4c00974 crossref_primary_10_1016_j_chemosphere_2023_140475 crossref_primary_10_3390_ijerph15122837 crossref_primary_10_3390_min12111350 crossref_primary_10_1021_acs_est_0c06113 crossref_primary_10_1016_j_scitotenv_2023_166517 crossref_primary_10_1039_D3EM00572K crossref_primary_10_3389_frwa_2021_778344 crossref_primary_10_1016_j_chemgeo_2023_121769 crossref_primary_10_3390_ijerph16132263 crossref_primary_10_1016_j_apgeochem_2019_104466 crossref_primary_10_1016_j_apgeochem_2024_106121 crossref_primary_10_3390_min13101249 crossref_primary_10_31857_S0024497X24040049 crossref_primary_10_1016_j_apgeochem_2019_104461 crossref_primary_10_1007_s10452_023_10048_4 crossref_primary_10_1016_j_scitotenv_2020_141435 crossref_primary_10_1016_j_chemgeo_2020_119954 crossref_primary_10_1016_j_precamres_2024_107573 crossref_primary_10_3390_min12111380 crossref_primary_10_1016_j_apgeochem_2022_105514 crossref_primary_10_1016_j_cocis_2024_101859 crossref_primary_10_1016_j_chemosphere_2022_135413 crossref_primary_10_1016_j_clay_2022_106468 crossref_primary_10_1016_j_geothermics_2020_101810 crossref_primary_10_1007_s11356_018_3357_4 crossref_primary_10_3390_min12040417 crossref_primary_10_1016_j_chemgeo_2024_122208 crossref_primary_10_1016_j_gca_2022_12_027 crossref_primary_10_1016_j_scitotenv_2022_154706 crossref_primary_10_1016_j_scitotenv_2019_05_490 crossref_primary_10_1016_j_chemosphere_2018_02_054 |
Cites_doi | 10.1016/S0016-7037(00)00494-4 10.1016/j.watres.2004.04.056 10.1107/S0567739476001551 10.1023/A:1009664626181 10.1021/es4053895 10.1021/es00046a006 10.1016/0012-821X(96)00016-7 10.1021/es0618191 10.1023/A:1012292417793 10.1016/S0016-7037(99)00027-7 10.1016/0009-2541(90)90080-Q 10.1016/j.marchem.2010.09.003 10.1007/s004100050159 10.1016/0009-2541(92)90015-W 10.1016/S0883-2927(03)00115-X 10.1016/j.gca.2003.12.003 10.2138/rmg.2009.70.6 10.2343/geochemj.33.181 10.1016/S0016-7037(03)00495-2 10.1016/j.chemgeo.2007.05.018 10.1016/0021-9797(76)90057-6 10.1016/0016-7037(90)90432-K 10.1021/cr970105t 10.1016/0012-821X(96)00127-6 10.1016/j.jseaes.2015.11.021 10.1007/s10498-009-9069-0 10.1016/j.gca.2004.05.025 10.1016/0016-7037(92)90050-S 10.1016/j.jcis.2012.11.054 10.1016/j.gca.2005.06.021 10.1016/0301-9268(95)00087-9 10.1385/BTER:104:1:001 10.1016/j.chemgeo.2009.11.010 10.1016/0016-7037(80)90144-1 10.1016/j.jcis.2008.10.048 10.1021/es903888t 10.1016/0016-7037(92)90293-R 10.1016/0016-7037(95)00303-7 10.5491/SHAW.2013.4.1.12 10.1016/S0016-7037(00)00578-0 10.1016/j.gca.2012.10.045 10.1029/JZ068i014p04209 10.1016/S0277-5387(99)00332-0 10.1016/S0016-7037(99)00014-9 10.1016/j.apgeochem.2004.01.016 10.1016/j.gca.2006.06.014 10.1038/s41598-017-06380-z 10.1016/S0016-7037(02)01413-8 10.1016/S1573-4285(06)80060-8 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7S9 L.6 1XC VOOES |
DOI | 10.1016/j.apgeochem.2017.10.020 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1872-9134 |
EndPage | 166 |
ExternalDocumentID | oai_HAL_hal_02136360v1 10_1016_j_apgeochem_2017_10_020 S0883292717303268 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYOK ABEFU ABFNM ABJNI ABLST ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 VH1 WUQ XPP ZCA ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 1XC VOOES |
ID | FETCH-LOGICAL-c497t-d22f34e70d077713a51bf44d495fe8ffc5f4d7b0e0fd4d920bfdf9387e97e90c3 |
IEDL.DBID | .~1 |
ISSN | 0883-2927 |
IngestDate | Fri May 09 12:20:21 EDT 2025 Fri Jul 11 10:27:45 EDT 2025 Thu Apr 24 23:13:05 EDT 2025 Tue Jul 01 01:59:36 EDT 2025 Fri Feb 23 02:30:12 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Sorption Rare earth elements Groundwater Iron oxyhydroxides Surface complexation modeling |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c497t-d22f34e70d077713a51bf44d495fe8ffc5f4d7b0e0fd4d920bfdf9387e97e90c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6181-6079 |
OpenAccessLink | https://hal.science/hal-02136360 |
PQID | 2000612003 |
PQPubID | 24069 |
PageCount | 9 |
ParticipantIDs | hal_primary_oai_HAL_hal_02136360v1 proquest_miscellaneous_2000612003 crossref_citationtrail_10_1016_j_apgeochem_2017_10_020 crossref_primary_10_1016_j_apgeochem_2017_10_020 elsevier_sciencedirect_doi_10_1016_j_apgeochem_2017_10_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-01 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied geochemistry |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Liu, Guo, Xing, Zhan, Li, Shao, N, L, Li (bib30) 2016; 117 Tang, Johannesson (bib56) 2005; 69 Dia, Gruau, Olivié-Lauquet, Riou, Molénat, Curmi (bib11) 2000; 64 Bau, Dulski (bib3) 1996; 143 Nordstrom, Plummer, Langmuir, Busenberg, May, Jones, Parkhurst (bib39) 1990 Bethke (bib6) 2007 Koeppenkastrop, De Carlo (bib28) 1993; 27 Gruau, Dia, Olivie-Lauquet, Davranche, Pinay (bib16) 2004; 38 Bau (bib4) 1996; 123 Schott, Pokrovsky, Oelkers (bib54) 2009; 70 Rim, Koo, Park (bib49) 2013; 4 Klungness, Byrne (bib26) 2000; 19 Luo, Millero (bib33) 2004; 68 Shannon (bib50) 1976; 32 Koeppenkastrop, De Carlo (bib27) 1992; 95 Atwood (bib1) 2013 Gaillardet, Viers, Dupré (bib14) 2014 Irber (bib21) 1999; 63 Livingstone (bib31) 1963 Elderfield, Upstill-Goddard, Sholkovitz (bib13) 1990; 54 Kawabe, Ohta, Miura (bib25) 1999; 33 Pourret, Gruau, Dia, Davranche, Molenat (bib44) 2010; 16 Schijf, Marshall (bib53) 2011; 123 Davies (bib8) 1962 Jambor, Dutrizac (bib22) 1998; 98 Pourret, Tuduri (bib46) 2017; 7 Bau (bib5) 1999; 63 Dzombak, Morel (bib12) 1990 Johannesson (bib24) 2005; vol. 51 Verplanck, Furlong, Gray, Phillips, Wolf, Esposito (bib59) 2010; 44 Nakada, Takahashi, Tanimizu (bib37) 2013; 103 Goldberg, Koide, Schmitt, Smith (bib15) 1963; 68 Henderson (bib18) 1984 Hummel, Berner, Curti, Pearson, Thoenen (bib20) 2002 Luo, Byrne (bib34) 2004; 68 Parkhurst, Appelo (bib41) 2013; 6 Pourret, Martinez (bib43) 2009; 330 Tonkin, Balistrieri, Murray (bib57) 2004; 19 Guo, Zhang, Wang, Shen (bib17) 2010; 270 Lee, Byrne (bib29) 1992; 56 Johannesson, Stetzenbach, Hodge, Lyons (bib23) 1996; 139 Quinn, Byrne, Schijf (bib48) 2007; 41 Tang, Johannesson (bib55) 2003; 67 Noack, Dzombak, Karamalidis (bib38) 2014; 48 Schindler, Fürst, Dick, Wolf (bib51) 1976; 55 Mathur, Dzombak (bib35) 2006 Luo, Byrne (bib32) 2001; 30 De Carlo, Wen, Irving (bib10) 1998; 3 Ohta, Kawabe (bib40) 2001; 65 Davranche, Gruau, Dia, Le Coz-Bouhnik, Marsac, Pédrot, Pourret (bib9) 2017 Wood (bib60) 1990; 82 Pourret, Davranche (bib45) 2013; 395 Quinn, Byrne, Schijf (bib47) 2006; 70 Bau, Dulski (bib2) 1996; 79 Zhu, Xu, Shao, Zhang, Wu, Yang, Feng, Feng (bib61) 2005; 104 Verplanck, Nordstrom, Taylor, Kimball (bib58) 2004; 19 Schijf, Byrne (bib52) 2004; 68 Byrne, Li (bib7) 1995; 59 Pourret, Davranche, Gruau, Dia (bib42) 2007; 243 Henmi, Wells, Childs, Parfitt (bib19) 1980; 44 Millero (bib36) 1992; 56 Pourret (10.1016/j.apgeochem.2017.10.020_bib44) 2010; 16 Schott (10.1016/j.apgeochem.2017.10.020_bib54) 2009; 70 Elderfield (10.1016/j.apgeochem.2017.10.020_bib13) 1990; 54 Kawabe (10.1016/j.apgeochem.2017.10.020_bib25) 1999; 33 Schindler (10.1016/j.apgeochem.2017.10.020_bib51) 1976; 55 Verplanck (10.1016/j.apgeochem.2017.10.020_bib59) 2010; 44 Pourret (10.1016/j.apgeochem.2017.10.020_bib43) 2009; 330 Quinn (10.1016/j.apgeochem.2017.10.020_bib47) 2006; 70 Johannesson (10.1016/j.apgeochem.2017.10.020_bib23) 1996; 139 Johannesson (10.1016/j.apgeochem.2017.10.020_bib24) 2005; vol. 51 Livingstone (10.1016/j.apgeochem.2017.10.020_bib31) 1963 Davranche (10.1016/j.apgeochem.2017.10.020_bib9) 2017 Klungness (10.1016/j.apgeochem.2017.10.020_bib26) 2000; 19 Bau (10.1016/j.apgeochem.2017.10.020_bib3) 1996; 143 Parkhurst (10.1016/j.apgeochem.2017.10.020_bib41) 2013; 6 Bau (10.1016/j.apgeochem.2017.10.020_bib5) 1999; 63 Koeppenkastrop (10.1016/j.apgeochem.2017.10.020_bib28) 1993; 27 Bethke (10.1016/j.apgeochem.2017.10.020_bib6) 2007 Rim (10.1016/j.apgeochem.2017.10.020_bib49) 2013; 4 Atwood (10.1016/j.apgeochem.2017.10.020_bib1) 2013 Gaillardet (10.1016/j.apgeochem.2017.10.020_bib14) 2014 Irber (10.1016/j.apgeochem.2017.10.020_bib21) 1999; 63 Mathur (10.1016/j.apgeochem.2017.10.020_bib35) 2006 Verplanck (10.1016/j.apgeochem.2017.10.020_bib58) 2004; 19 De Carlo (10.1016/j.apgeochem.2017.10.020_bib10) 1998; 3 Ohta (10.1016/j.apgeochem.2017.10.020_bib40) 2001; 65 Bau (10.1016/j.apgeochem.2017.10.020_bib2) 1996; 79 Luo (10.1016/j.apgeochem.2017.10.020_bib34) 2004; 68 Tang (10.1016/j.apgeochem.2017.10.020_bib55) 2003; 67 Henmi (10.1016/j.apgeochem.2017.10.020_bib19) 1980; 44 Jambor (10.1016/j.apgeochem.2017.10.020_bib22) 1998; 98 Hummel (10.1016/j.apgeochem.2017.10.020_bib20) 2002 Shannon (10.1016/j.apgeochem.2017.10.020_bib50) 1976; 32 Pourret (10.1016/j.apgeochem.2017.10.020_bib46) 2017; 7 Goldberg (10.1016/j.apgeochem.2017.10.020_bib15) 1963; 68 Schijf (10.1016/j.apgeochem.2017.10.020_bib52) 2004; 68 Noack (10.1016/j.apgeochem.2017.10.020_bib38) 2014; 48 Millero (10.1016/j.apgeochem.2017.10.020_bib36) 1992; 56 Dia (10.1016/j.apgeochem.2017.10.020_bib11) 2000; 64 Guo (10.1016/j.apgeochem.2017.10.020_bib17) 2010; 270 Liu (10.1016/j.apgeochem.2017.10.020_bib30) 2016; 117 Dzombak (10.1016/j.apgeochem.2017.10.020_bib12) 1990 Lee (10.1016/j.apgeochem.2017.10.020_bib29) 1992; 56 Luo (10.1016/j.apgeochem.2017.10.020_bib33) 2004; 68 Byrne (10.1016/j.apgeochem.2017.10.020_bib7) 1995; 59 Tonkin (10.1016/j.apgeochem.2017.10.020_bib57) 2004; 19 Davies (10.1016/j.apgeochem.2017.10.020_bib8) 1962 Luo (10.1016/j.apgeochem.2017.10.020_bib32) 2001; 30 Wood (10.1016/j.apgeochem.2017.10.020_bib60) 1990; 82 Nakada (10.1016/j.apgeochem.2017.10.020_bib37) 2013; 103 Pourret (10.1016/j.apgeochem.2017.10.020_bib42) 2007; 243 Zhu (10.1016/j.apgeochem.2017.10.020_bib61) 2005; 104 Koeppenkastrop (10.1016/j.apgeochem.2017.10.020_bib27) 1992; 95 Nordstrom (10.1016/j.apgeochem.2017.10.020_bib39) 1990 Henderson (10.1016/j.apgeochem.2017.10.020_bib18) 1984 Tang (10.1016/j.apgeochem.2017.10.020_bib56) 2005; 69 Gruau (10.1016/j.apgeochem.2017.10.020_bib16) 2004; 38 Bau (10.1016/j.apgeochem.2017.10.020_bib4) 1996; 123 Quinn (10.1016/j.apgeochem.2017.10.020_bib48) 2007; 41 Pourret (10.1016/j.apgeochem.2017.10.020_bib45) 2013; 395 Schijf (10.1016/j.apgeochem.2017.10.020_bib53) 2011; 123 |
References_xml | – volume: 33 start-page: 181 year: 1999 end-page: 197 ident: bib25 article-title: Distribution coefficients of REE between Fe oxyhydroxide precipitates and NaCl solutions affected by REE-carbonate complexation publication-title: Geochem. J. – volume: 65 start-page: 695 year: 2001 end-page: 703 ident: bib40 article-title: REE (III) adsorption onto Mn dioxide (δ-MnO publication-title: Geochimica Cosmochimica Acta – volume: 63 start-page: 67 year: 1999 end-page: 77 ident: bib5 article-title: Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect publication-title: Geochimica Cosmochimica Acta – volume: 3 start-page: 357 year: 1998 end-page: 389 ident: bib10 article-title: The influence of redox reactions on the uptake of dissolved Ce by suspended Fe and Mn oxide particles publication-title: Aquat. Geochem. – volume: 63 start-page: 489 year: 1999 end-page: 508 ident: bib21 article-title: The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu∗, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites publication-title: Geochimica Cosmochimica Acta – volume: 123 start-page: 323 year: 1996 end-page: 333 ident: bib4 article-title: Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect publication-title: Contributions Mineralogy Petrology – volume: 30 start-page: 837 year: 2001 end-page: 845 ident: bib32 article-title: Yttrium and rare earth element complexation by chloride ions at 25 C publication-title: J. Solut. Chem. – volume: 19 start-page: 1339 year: 2004 end-page: 1354 ident: bib58 article-title: Rare earth element partitioning between iron oxyhydroxides and acid mine waters publication-title: Appl. Geochem. – volume: 70 start-page: 207 year: 2009 end-page: 258 ident: bib54 article-title: The link between mineral dissolution/precipitation kinetics and solution chemistry publication-title: Rev. mineralogy Geochem. – volume: vol. 51 year: 2005 ident: bib24 article-title: Rare Earth Elements in Groundwater Flow Systems – volume: 38 start-page: 3576 year: 2004 end-page: 3586 ident: bib16 article-title: Controls on the distribution of rare earth elements in shallow groundwaters publication-title: Water Res. – volume: 55 start-page: 469 year: 1976 end-page: 475 ident: bib51 article-title: Ligand properties of surface silanol groups. I. Surface complex formation with Fe publication-title: J. Colloid Interface Sci. – volume: 67 start-page: 2321 year: 2003 end-page: 2339 ident: bib55 article-title: Speciation of rare earth elements in natural terrestrial waters: assessing the role of dissolved organic matter from the modeling approach publication-title: Geochimica Cosmochimica Acta – volume: 139 start-page: 305 year: 1996 end-page: 319 ident: bib23 article-title: Rare earth element complexation behavior in circumneutral pH groundwaters: assessing the role of carbonate and phosphate ions publication-title: Earth Planet. Sci. Lett. – volume: 68 start-page: 4301 year: 2004 end-page: 4308 ident: bib33 article-title: Effects of temperature and ionic strength on the stabilities of the first and second fluoride complexes of yttrium and the rare earth elements publication-title: Geochimica cosmochimica acta – volume: 103 start-page: 49 year: 2013 end-page: 62 ident: bib37 article-title: Isotopic and speciation study on cerium during its solid–water distribution with implication for Ce stable isotope as a paleo-redox proxy publication-title: Geochimica Cosmochimica Acta – year: 1990 ident: bib12 article-title: Surface Complexation Modeling: Hydrous Ferric Oxide – start-page: 443 year: 2006 end-page: 468 ident: bib35 article-title: Chapter 16-surface complexation modeling: goethite publication-title: Interface Science and Technology. 11 – start-page: 135 year: 2017 end-page: 162 ident: bib9 article-title: Chapter 7. Rare earth elements in wetlands publication-title: Trace Elements in Waterlogged Soils and Sediments – year: 1963 ident: bib31 article-title: Chemical Composition of Rivers and Lakes – volume: 6 start-page: 497 year: 2013 ident: bib41 article-title: Description of input and examples for PHREEQC version 3-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations publication-title: U. S. Geol. Surv. Tech. methods, book – volume: 98 start-page: 2549 year: 1998 end-page: 2586 ident: bib22 article-title: Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide publication-title: Chem. Rev. – volume: 270 start-page: 117 year: 2010 end-page: 125 ident: bib17 article-title: Geochemical controls on arsenic and rare earth elements approximately along a groundwater flow path in the shallow aquifer of the Hetao Basin, Inner Mongolia publication-title: Chem. Geol. – volume: 54 start-page: 971 year: 1990 end-page: 991 ident: bib13 article-title: The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters publication-title: Geochimica Cosmochimica Acta – year: 1984 ident: bib18 article-title: Rare Earth Element Geochemistry – volume: 70 start-page: 4151 year: 2006 end-page: 4165 ident: bib47 article-title: Sorption of yttrium and rare earth elements by amorphous ferric hydroxide: influence of solution complexation with carbonate publication-title: Geochimica Cosmochimica Acta – volume: 44 start-page: 3876 year: 2010 end-page: 3882 ident: bib59 article-title: Evaluating the behavior of gadolinium and other rare earth elements through large metropolitan sewage treatment plants publication-title: Environ. Sci. Technol. – volume: 82 start-page: 159 year: 1990 end-page: 186 ident: bib60 article-title: The aqueous geochemistry of the rare-earth elements and yttrium: 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters publication-title: Chem. Geol. – volume: 68 start-page: 2825 year: 2004 end-page: 2837 ident: bib52 article-title: Determination of SO publication-title: Geochimica cosmochimica acta – volume: 104 start-page: 1 year: 2005 end-page: 7 ident: bib61 article-title: Investigation on liver function among population in high background of rare earth area in South China publication-title: Biol. trace Elem. Res. – volume: 79 start-page: 37 year: 1996 end-page: 55 ident: bib2 article-title: Distribution of yttrium and rare-earth elements in the penge and kuruman iron-formations, transvaal supergroup, South Africa publication-title: Precambrian Res. – volume: 16 start-page: 31 year: 2010 ident: bib44 article-title: Colloidal control on the distribution of rare earth elements in shallow groundwaters publication-title: Aquat. Geochem. – volume: 123 start-page: 32 year: 2011 end-page: 43 ident: bib53 article-title: YREE sorption on hydrous ferric oxide in 0.5 M NaCl solutions: a model extension publication-title: Mar. Chem. – volume: 395 start-page: 18 year: 2013 end-page: 23 ident: bib45 article-title: Rare earth element sorption onto hydrous manganese oxide: a modeling study publication-title: J. Colloid Interface Sci. – volume: 95 start-page: 251 year: 1992 end-page: 263 ident: bib27 article-title: Sorption of rare-earth elements from seawater onto synthetic mineral particles: an experimental approach publication-title: Chem. Geol. – volume: 19 start-page: 99 year: 2000 end-page: 107 ident: bib26 article-title: Comparative hydrolysis behavior of the rare earths and yttrium: the influence of temperature and ionic strength publication-title: Polyhedron – volume: 44 start-page: 365 year: 1980 end-page: 372 ident: bib19 article-title: Poorly-ordered iron-rich precipitates from springs and streams on andesitic volcanoes publication-title: Geochimica Cosmochimica Acta – volume: 48 start-page: 4317 year: 2014 end-page: 4326 ident: bib38 article-title: Rare earth element distributions and trends in natural waters with a focus on groundwater publication-title: Environ. Sci. Technol. – volume: 143 start-page: 245 year: 1996 end-page: 255 ident: bib3 article-title: Anthropogenic origin of positive gadolinium anomalies in river waters publication-title: Earth Planet. Sci. Lett. – volume: 4 start-page: 12 year: 2013 end-page: 26 ident: bib49 article-title: Toxicological evaluations of rare earths and their health impacts to workers: a literature review publication-title: Saf. health A. T. work – year: 2007 ident: bib6 article-title: Geochemical and Biogeochemical Reaction Modeling – volume: 243 start-page: 128 year: 2007 end-page: 141 ident: bib42 article-title: Rare earth elements complexation with humic acid publication-title: Chem. Geol. – volume: 69 start-page: 5247 year: 2005 end-page: 5261 ident: bib56 article-title: Adsorption of rare earth elements onto Carrizo sand: experimental investigations and modeling with surface complexation publication-title: Geochimica Cosmochimica Acta – year: 2002 ident: bib20 article-title: Nagra/PSI Chemical Thermodynamic Data Base 01/01 – year: 1990 ident: bib39 article-title: Revised Chemical Equilibrium Data for Major Water-mineral Reactions and Their Limitations – volume: 64 start-page: 4131 year: 2000 end-page: 4151 ident: bib11 article-title: The distribution of rare earth elements in groundwaters: assessing the role of source-rock composition, redox changes and colloidal particles publication-title: Geochimica Cosmochimica Acta – volume: 68 start-page: 691 year: 2004 end-page: 699 ident: bib34 article-title: Carbonate complexation of yttrium and the rare earth elements in natural rivers publication-title: Geochimica Cosmochimica Acta – volume: 32 start-page: 751 year: 1976 end-page: 767 ident: bib50 article-title: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides publication-title: Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. general Crystallogr. – volume: 68 start-page: 4209 year: 1963 end-page: 4217 ident: bib15 article-title: Rare-Earth distributions in the marine environment publication-title: J. Geophys. Res. – volume: 59 start-page: 4575 year: 1995 end-page: 4589 ident: bib7 article-title: Comparative complexation behavior of the rare earths publication-title: Geochimica Cosmochimica Acta – volume: 117 start-page: 33 year: 2016 end-page: 51 ident: bib30 article-title: Geochemical behaviors of rare earth elements in groundwater along a flow path in the North China Plain publication-title: J. Asian Earth Sci. – volume: 41 start-page: 541 year: 2007 end-page: 546 ident: bib48 article-title: Sorption of yttrium and rare earth elements by amorphous ferric hydroxide: influence of temperature publication-title: Environ. Sci. Technol. – volume: 56 start-page: 1127 year: 1992 end-page: 1137 ident: bib29 article-title: Examination of comparative rare earth element complexation behavior using linear free-energy relationships publication-title: Geochimica Cosmochimica Acta – volume: 27 start-page: 1796 year: 1993 end-page: 1802 ident: bib28 article-title: Uptake of rare earth elements from solution by metal oxides publication-title: Environ. Sci. Technol. – volume: 56 start-page: 3123 year: 1992 end-page: 3132 ident: bib36 article-title: Stability constants for the formation of rare earth inorganic complexes as a function of ionic strength publication-title: Geochimica Cosmochimica Acta – start-page: 1 year: 2013 end-page: 19 ident: bib1 article-title: The Rare Earth Elements: Fundamentals and Applications – start-page: 195 year: 2014 end-page: 235 ident: bib14 article-title: 7.7-Trace Elements in River Waters publication-title: Treatise on Geochemistry – volume: 330 start-page: 45 year: 2009 end-page: 50 ident: bib43 article-title: Modeling lanthanide series binding sites on humic acid publication-title: J. colloid interface Sci. – volume: 7 year: 2017 ident: bib46 article-title: Continental shelves as potential resource of rare earth elements publication-title: Sci. Rep. – volume: 19 start-page: 29 year: 2004 end-page: 53 ident: bib57 article-title: Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model publication-title: Appl. Geochem. – year: 1962 ident: bib8 article-title: Ion Association – volume: 64 start-page: 4131 issue: 24 year: 2000 ident: 10.1016/j.apgeochem.2017.10.020_bib11 article-title: The distribution of rare earth elements in groundwaters: assessing the role of source-rock composition, redox changes and colloidal particles publication-title: Geochimica Cosmochimica Acta doi: 10.1016/S0016-7037(00)00494-4 – volume: 38 start-page: 3576 issue: 16 year: 2004 ident: 10.1016/j.apgeochem.2017.10.020_bib16 article-title: Controls on the distribution of rare earth elements in shallow groundwaters publication-title: Water Res. doi: 10.1016/j.watres.2004.04.056 – volume: 32 start-page: 751 issue: 5 year: 1976 ident: 10.1016/j.apgeochem.2017.10.020_bib50 article-title: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides publication-title: Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. general Crystallogr. doi: 10.1107/S0567739476001551 – volume: 3 start-page: 357 year: 1998 ident: 10.1016/j.apgeochem.2017.10.020_bib10 article-title: The influence of redox reactions on the uptake of dissolved Ce by suspended Fe and Mn oxide particles publication-title: Aquat. Geochem. doi: 10.1023/A:1009664626181 – volume: 48 start-page: 4317 year: 2014 ident: 10.1016/j.apgeochem.2017.10.020_bib38 article-title: Rare earth element distributions and trends in natural waters with a focus on groundwater publication-title: Environ. Sci. Technol. doi: 10.1021/es4053895 – volume: 27 start-page: 1796 issue: 9 year: 1993 ident: 10.1016/j.apgeochem.2017.10.020_bib28 article-title: Uptake of rare earth elements from solution by metal oxides publication-title: Environ. Sci. Technol. doi: 10.1021/es00046a006 – start-page: 1 year: 2013 ident: 10.1016/j.apgeochem.2017.10.020_bib1 – volume: 139 start-page: 305 issue: 1–2 year: 1996 ident: 10.1016/j.apgeochem.2017.10.020_bib23 article-title: Rare earth element complexation behavior in circumneutral pH groundwaters: assessing the role of carbonate and phosphate ions publication-title: Earth Planet. Sci. Lett. doi: 10.1016/0012-821X(96)00016-7 – volume: 41 start-page: 541 issue: 2 year: 2007 ident: 10.1016/j.apgeochem.2017.10.020_bib48 article-title: Sorption of yttrium and rare earth elements by amorphous ferric hydroxide: influence of temperature publication-title: Environ. Sci. Technol. doi: 10.1021/es0618191 – volume: 30 start-page: 837 issue: 9 year: 2001 ident: 10.1016/j.apgeochem.2017.10.020_bib32 article-title: Yttrium and rare earth element complexation by chloride ions at 25 C publication-title: J. Solut. Chem. doi: 10.1023/A:1012292417793 – volume: 63 start-page: 489 issue: 3 year: 1999 ident: 10.1016/j.apgeochem.2017.10.020_bib21 article-title: The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu∗, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites publication-title: Geochimica Cosmochimica Acta doi: 10.1016/S0016-7037(99)00027-7 – year: 1990 ident: 10.1016/j.apgeochem.2017.10.020_bib12 – volume: vol. 51 year: 2005 ident: 10.1016/j.apgeochem.2017.10.020_bib24 – volume: 82 start-page: 159 year: 1990 ident: 10.1016/j.apgeochem.2017.10.020_bib60 article-title: The aqueous geochemistry of the rare-earth elements and yttrium: 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters publication-title: Chem. Geol. doi: 10.1016/0009-2541(90)90080-Q – volume: 123 start-page: 32 issue: 1 year: 2011 ident: 10.1016/j.apgeochem.2017.10.020_bib53 article-title: YREE sorption on hydrous ferric oxide in 0.5 M NaCl solutions: a model extension publication-title: Mar. Chem. doi: 10.1016/j.marchem.2010.09.003 – volume: 123 start-page: 323 issue: 3 year: 1996 ident: 10.1016/j.apgeochem.2017.10.020_bib4 article-title: Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect publication-title: Contributions Mineralogy Petrology doi: 10.1007/s004100050159 – volume: 95 start-page: 251 issue: 3–4 year: 1992 ident: 10.1016/j.apgeochem.2017.10.020_bib27 article-title: Sorption of rare-earth elements from seawater onto synthetic mineral particles: an experimental approach publication-title: Chem. Geol. doi: 10.1016/0009-2541(92)90015-W – volume: 19 start-page: 29 issue: 1 year: 2004 ident: 10.1016/j.apgeochem.2017.10.020_bib57 article-title: Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model publication-title: Appl. Geochem. doi: 10.1016/S0883-2927(03)00115-X – volume: 68 start-page: 2825 issue: 13 year: 2004 ident: 10.1016/j.apgeochem.2017.10.020_bib52 article-title: Determination of SO4 β1 for yttrium and the rare earth elements at I=0.66 m and t=25 ºC-implications for YREE solution speciation in sulfate-rich waters publication-title: Geochimica cosmochimica acta doi: 10.1016/j.gca.2003.12.003 – volume: 70 start-page: 207 issue: 1 year: 2009 ident: 10.1016/j.apgeochem.2017.10.020_bib54 article-title: The link between mineral dissolution/precipitation kinetics and solution chemistry publication-title: Rev. mineralogy Geochem. doi: 10.2138/rmg.2009.70.6 – volume: 33 start-page: 181 issue: 3 year: 1999 ident: 10.1016/j.apgeochem.2017.10.020_bib25 article-title: Distribution coefficients of REE between Fe oxyhydroxide precipitates and NaCl solutions affected by REE-carbonate complexation publication-title: Geochem. J. doi: 10.2343/geochemj.33.181 – volume: 68 start-page: 691 year: 2004 ident: 10.1016/j.apgeochem.2017.10.020_bib34 article-title: Carbonate complexation of yttrium and the rare earth elements in natural rivers publication-title: Geochimica Cosmochimica Acta doi: 10.1016/S0016-7037(03)00495-2 – volume: 243 start-page: 128 year: 2007 ident: 10.1016/j.apgeochem.2017.10.020_bib42 article-title: Rare earth elements complexation with humic acid publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2007.05.018 – volume: 55 start-page: 469 issue: 2 year: 1976 ident: 10.1016/j.apgeochem.2017.10.020_bib51 article-title: Ligand properties of surface silanol groups. I. Surface complex formation with Fe3+, Cu2+, Cd2+, and Pb2+ publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(76)90057-6 – volume: 54 start-page: 971 issue: 4 year: 1990 ident: 10.1016/j.apgeochem.2017.10.020_bib13 article-title: The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters publication-title: Geochimica Cosmochimica Acta doi: 10.1016/0016-7037(90)90432-K – volume: 98 start-page: 2549 issue: 7 year: 1998 ident: 10.1016/j.apgeochem.2017.10.020_bib22 article-title: Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide publication-title: Chem. Rev. doi: 10.1021/cr970105t – volume: 143 start-page: 245 year: 1996 ident: 10.1016/j.apgeochem.2017.10.020_bib3 article-title: Anthropogenic origin of positive gadolinium anomalies in river waters publication-title: Earth Planet. Sci. Lett. doi: 10.1016/0012-821X(96)00127-6 – volume: 117 start-page: 33 year: 2016 ident: 10.1016/j.apgeochem.2017.10.020_bib30 article-title: Geochemical behaviors of rare earth elements in groundwater along a flow path in the North China Plain publication-title: J. Asian Earth Sci. doi: 10.1016/j.jseaes.2015.11.021 – volume: 16 start-page: 31 issue: 1 year: 2010 ident: 10.1016/j.apgeochem.2017.10.020_bib44 article-title: Colloidal control on the distribution of rare earth elements in shallow groundwaters publication-title: Aquat. Geochem. doi: 10.1007/s10498-009-9069-0 – volume: 68 start-page: 4301 issue: 21 year: 2004 ident: 10.1016/j.apgeochem.2017.10.020_bib33 article-title: Effects of temperature and ionic strength on the stabilities of the first and second fluoride complexes of yttrium and the rare earth elements publication-title: Geochimica cosmochimica acta doi: 10.1016/j.gca.2004.05.025 – year: 2007 ident: 10.1016/j.apgeochem.2017.10.020_bib6 – start-page: 135 year: 2017 ident: 10.1016/j.apgeochem.2017.10.020_bib9 article-title: Chapter 7. Rare earth elements in wetlands – volume: 56 start-page: 1127 year: 1992 ident: 10.1016/j.apgeochem.2017.10.020_bib29 article-title: Examination of comparative rare earth element complexation behavior using linear free-energy relationships publication-title: Geochimica Cosmochimica Acta doi: 10.1016/0016-7037(92)90050-S – volume: 395 start-page: 18 year: 2013 ident: 10.1016/j.apgeochem.2017.10.020_bib45 article-title: Rare earth element sorption onto hydrous manganese oxide: a modeling study publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2012.11.054 – volume: 69 start-page: 5247 issue: 22 year: 2005 ident: 10.1016/j.apgeochem.2017.10.020_bib56 article-title: Adsorption of rare earth elements onto Carrizo sand: experimental investigations and modeling with surface complexation publication-title: Geochimica Cosmochimica Acta doi: 10.1016/j.gca.2005.06.021 – year: 1984 ident: 10.1016/j.apgeochem.2017.10.020_bib18 – volume: 79 start-page: 37 issue: 1–2 year: 1996 ident: 10.1016/j.apgeochem.2017.10.020_bib2 article-title: Distribution of yttrium and rare-earth elements in the penge and kuruman iron-formations, transvaal supergroup, South Africa publication-title: Precambrian Res. doi: 10.1016/0301-9268(95)00087-9 – volume: 104 start-page: 1 issue: 1 year: 2005 ident: 10.1016/j.apgeochem.2017.10.020_bib61 article-title: Investigation on liver function among population in high background of rare earth area in South China publication-title: Biol. trace Elem. Res. doi: 10.1385/BTER:104:1:001 – volume: 270 start-page: 117 year: 2010 ident: 10.1016/j.apgeochem.2017.10.020_bib17 article-title: Geochemical controls on arsenic and rare earth elements approximately along a groundwater flow path in the shallow aquifer of the Hetao Basin, Inner Mongolia publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2009.11.010 – volume: 44 start-page: 365 issue: 2 year: 1980 ident: 10.1016/j.apgeochem.2017.10.020_bib19 article-title: Poorly-ordered iron-rich precipitates from springs and streams on andesitic volcanoes publication-title: Geochimica Cosmochimica Acta doi: 10.1016/0016-7037(80)90144-1 – volume: 330 start-page: 45 issue: 1 year: 2009 ident: 10.1016/j.apgeochem.2017.10.020_bib43 article-title: Modeling lanthanide series binding sites on humic acid publication-title: J. colloid interface Sci. doi: 10.1016/j.jcis.2008.10.048 – volume: 44 start-page: 3876 issue: 10 year: 2010 ident: 10.1016/j.apgeochem.2017.10.020_bib59 article-title: Evaluating the behavior of gadolinium and other rare earth elements through large metropolitan sewage treatment plants publication-title: Environ. Sci. Technol. doi: 10.1021/es903888t – volume: 56 start-page: 3123 year: 1992 ident: 10.1016/j.apgeochem.2017.10.020_bib36 article-title: Stability constants for the formation of rare earth inorganic complexes as a function of ionic strength publication-title: Geochimica Cosmochimica Acta doi: 10.1016/0016-7037(92)90293-R – volume: 59 start-page: 4575 issue: 22 year: 1995 ident: 10.1016/j.apgeochem.2017.10.020_bib7 article-title: Comparative complexation behavior of the rare earths publication-title: Geochimica Cosmochimica Acta doi: 10.1016/0016-7037(95)00303-7 – volume: 4 start-page: 12 issue: 1 year: 2013 ident: 10.1016/j.apgeochem.2017.10.020_bib49 article-title: Toxicological evaluations of rare earths and their health impacts to workers: a literature review publication-title: Saf. health A. T. work doi: 10.5491/SHAW.2013.4.1.12 – volume: 65 start-page: 695 issue: 5 year: 2001 ident: 10.1016/j.apgeochem.2017.10.020_bib40 article-title: REE (III) adsorption onto Mn dioxide (δ-MnO2) and Fe oxyhydroxide: Ce (III) oxidation by δ-MnO2 publication-title: Geochimica Cosmochimica Acta doi: 10.1016/S0016-7037(00)00578-0 – volume: 103 start-page: 49 year: 2013 ident: 10.1016/j.apgeochem.2017.10.020_bib37 article-title: Isotopic and speciation study on cerium during its solid–water distribution with implication for Ce stable isotope as a paleo-redox proxy publication-title: Geochimica Cosmochimica Acta doi: 10.1016/j.gca.2012.10.045 – year: 1963 ident: 10.1016/j.apgeochem.2017.10.020_bib31 – year: 1962 ident: 10.1016/j.apgeochem.2017.10.020_bib8 – volume: 68 start-page: 4209 issue: 14 year: 1963 ident: 10.1016/j.apgeochem.2017.10.020_bib15 article-title: Rare-Earth distributions in the marine environment publication-title: J. Geophys. Res. doi: 10.1029/JZ068i014p04209 – volume: 19 start-page: 99 year: 2000 ident: 10.1016/j.apgeochem.2017.10.020_bib26 article-title: Comparative hydrolysis behavior of the rare earths and yttrium: the influence of temperature and ionic strength publication-title: Polyhedron doi: 10.1016/S0277-5387(99)00332-0 – volume: 63 start-page: 67 issue: 1 year: 1999 ident: 10.1016/j.apgeochem.2017.10.020_bib5 article-title: Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect publication-title: Geochimica Cosmochimica Acta doi: 10.1016/S0016-7037(99)00014-9 – year: 1990 ident: 10.1016/j.apgeochem.2017.10.020_bib39 – volume: 19 start-page: 1339 year: 2004 ident: 10.1016/j.apgeochem.2017.10.020_bib58 article-title: Rare earth element partitioning between iron oxyhydroxides and acid mine waters publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2004.01.016 – volume: 70 start-page: 4151 issue: 16 year: 2006 ident: 10.1016/j.apgeochem.2017.10.020_bib47 article-title: Sorption of yttrium and rare earth elements by amorphous ferric hydroxide: influence of solution complexation with carbonate publication-title: Geochimica Cosmochimica Acta doi: 10.1016/j.gca.2006.06.014 – volume: 7 year: 2017 ident: 10.1016/j.apgeochem.2017.10.020_bib46 article-title: Continental shelves as potential resource of rare earth elements publication-title: Sci. Rep. doi: 10.1038/s41598-017-06380-z – start-page: 195 year: 2014 ident: 10.1016/j.apgeochem.2017.10.020_bib14 article-title: 7.7-Trace Elements in River Waters – volume: 6 start-page: 497 year: 2013 ident: 10.1016/j.apgeochem.2017.10.020_bib41 article-title: Description of input and examples for PHREEQC version 3-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations publication-title: U. S. Geol. Surv. Tech. methods, book – volume: 67 start-page: 2321 issue: 13 year: 2003 ident: 10.1016/j.apgeochem.2017.10.020_bib55 article-title: Speciation of rare earth elements in natural terrestrial waters: assessing the role of dissolved organic matter from the modeling approach publication-title: Geochimica Cosmochimica Acta doi: 10.1016/S0016-7037(02)01413-8 – year: 2002 ident: 10.1016/j.apgeochem.2017.10.020_bib20 – start-page: 443 year: 2006 ident: 10.1016/j.apgeochem.2017.10.020_bib35 article-title: Chapter 16-surface complexation modeling: goethite doi: 10.1016/S1573-4285(06)80060-8 |
SSID | ssj0005702 |
Score | 2.4922218 |
Snippet | Iron oxyhydroxides are among the most important colloids that control rare earth elements (REE) concentrations and transport in natural hydrosystems. In this... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 158 |
SubjectTerms | binding sites colloids Earth Sciences ferric hydroxide Geochemistry Gibbs free energy Groundwater ionic strength iron Iron oxyhydroxides Rare earth elements Sciences of the Universe Sorption surface area Surface complexation modeling |
Title | Rare earth elements sorption to iron oxyhydroxide: Model development and application to groundwater |
URI | https://dx.doi.org/10.1016/j.apgeochem.2017.10.020 https://www.proquest.com/docview/2000612003 https://hal.science/hal-02136360 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELaAFRKX1fISZRdk0F5D3dipG24VAsouy4FdJG6W4wctqpIqDY9e-O3M5FEeQuKwUi5xPLE1Mx6P5W9mCPnZ9TyRkWOBAQsciJ7jQZx4G-jI9TznkfNl1ZI_F93Blfh1HV0vkKMmFgZhlbXtr2x6aa3rlnbNzfZkNGr_hfXBwzjEa2QGTggG_AohUcsPnl7BPGSJO8TOAfZ-g_HSkxuHhakwJL0jDxDmhYW_P96hFocIlXxnsctt6OQb-Vr7j7RfTXGVLLh0jSyflvV5Z-vEXOrcUdDeYkhdhQyf0mmWl4aBFhnFqDaaPc6GM5tnjyPrDimWQxtT-4Ieojq19NXNNtJh9EdqH8AzzTfI1cnxv6NBUNdRCIyIZRHYMPRcOMkskxIOpTrqJF4IC2cjDxLxJvLCyoQ55q2wcchAWD7mPelieJjhm2QpzVK3RWhitegy7n3HJPBvE7Oe1-AGxDrh3IiwRboN75Spk4xjrYuxatBkt2rOdIVMxw_A9BZhc8JJlWfjc5LDRjjqjcoo2A0-J94Hcc6HwiTbg_65wjbwejhmUbvvtMheI20Fqw6vUnTqsrupCivfEEzi9v_M4jtZwbcKHvODLBX5ndsBJ6dIdkst3iVf-me_BxfPRp_-2Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbaIgSXiqe6lIdBcEzXazvrpBKHCihbuu0BWqk34_jBLqqSVTal3Qt_ij_ITB5Li5B6QJVysjXOaMaeGcvfzBDyehhEpmLPIgsWOJKJF1GaBReZ2CdBiNiHumvJweFwdCw_ncQnK-RXlwuDsMrW9jc2vbbW7Ui_lWZ_Np32v8D5EDzl-IzMIAhJWmTlvl-cw71t_nbvPSj5Dee7H47ejaK2tUBkZaqqyHEehPSKOaYU3NNMPMiClA6uCwGYDDYO0qmMeRacdClnwH9IRaJ8Ch-zAtZdJbckmAtsm7D18xKuRNVAR-QuQvaugMrM7JvHTliYAz9QW4grw07j_3aJqxPEZv7lImq_t3uPrLcBK91pZHKfrPj8Abn9sW4IvHhI7GdTegoiqSbUN1D0OZ0XZW2JaFVQTKOjxcVisnBlcTF1fpti_7VT6v7AlajJHb30lI50mG6Su3MIhctH5PhGpPuYrOVF7jcIzZyRQyZCGNgM1rYpS4KBuCM1mRBW8h4ZdrLTtq1qjs01TnUHX_uul0LXKHScAKH3CFsSzprCHteTbHfK0Vf2qAb3cz3xK1Dn8ldY1Xu0M9Y4BmGWwLJtPwY98rLTtoZjjm83JvfF2VzzJhgFG_zkf7h4Qe6Mjg7Gerx3uL9J7uJMg815Staq8sw_gwiryp7XO5qSrzd9hH4DcwQ7sA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rare+earth+elements+sorption+to+iron+oxyhydroxide%3A+Model+development+and+application+to+groundwater&rft.jtitle=Applied+geochemistry&rft.au=Liu%2C+Haiyan&rft.au=Pourret%2C+Olivier&rft.au=Guo%2C+Huaming&rft.au=Bonhoure%2C+Jessica&rft.date=2017-12-01&rft.issn=0883-2927&rft.volume=87+p.158-166&rft.spage=158&rft.epage=166&rft_id=info:doi/10.1016%2Fj.apgeochem.2017.10.020&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-2927&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-2927&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-2927&client=summon |