Sphingolipids and acid ceramidase as therapeutic targets in cancer therapy
[Display omitted] Sphingolipids have been shown to play a key part in cancer cell growth and death and have increasingly become the subject of novel anti-cancer therapies. Acid ceramidase, a sphingolipid enzyme, has an important role in the regulation of apoptosis. In this review we aim to assess th...
Saved in:
Published in | Critical reviews in oncology/hematology Vol. 138; pp. 104 - 111 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Sphingolipids have been shown to play a key part in cancer cell growth and death and have increasingly become the subject of novel anti-cancer therapies. Acid ceramidase, a sphingolipid enzyme, has an important role in the regulation of apoptosis. In this review we aim to assess the current evidence supporting the role of sphingolipids in cancer and the potential role that acid ceramidase may play in cancer treatment.
A literature search was performed for published full text articles using the PubMed, Cochrane and Scopus databases using the search criteria string “acid ceramidase”, “sphingolipid”, “cancer”. Additional papers were detected by scanning the references of relevant papers. A summary of the evidence for each cancer subgroup was then formed. Given the nature of the data extracted, no meta-analysis was performed.
Over expression of acid ceramidase has been demonstrated in a number of human cancers. In vitro data demonstrate that manipulation of acid ceramidase may present a useful therapeutic target. In the clinical setting, a number of drugs have been investigated with the ability to target acid ceramidase, with the most promising of those being small molecular inhibitors, such as LCL521.
The role of the sphingolipid pathway in cancer is becoming very clearly established by promoting ceramide accumulation in response to cancer or cellular stress. Acid ceramidase is over expressed in a variety of cancers and has a role as a potential target for inhibition by novel specific inhibitors or off-target effects of traditional anti-cancer agents. Further work is required to develop acid ceramidase inhibitors safe for progression to clinical trials. |
---|---|
AbstractList | Sphingolipids have been shown to play a key part in cancer cell growth and death and have increasingly become the subject of novel anti-cancer therapies. Acid ceramidase, a sphingolipid enzyme, has an important role in the regulation of apoptosis. In this review we aim to assess the current evidence supporting the role of sphingolipids in cancer and the potential role that acid ceramidase may play in cancer treatment.BACKGROUNDSphingolipids have been shown to play a key part in cancer cell growth and death and have increasingly become the subject of novel anti-cancer therapies. Acid ceramidase, a sphingolipid enzyme, has an important role in the regulation of apoptosis. In this review we aim to assess the current evidence supporting the role of sphingolipids in cancer and the potential role that acid ceramidase may play in cancer treatment.A literature search was performed for published full text articles using the PubMed, Cochrane and Scopus databases using the search criteria string "acid ceramidase", "sphingolipid", "cancer". Additional papers were detected by scanning the references of relevant papers. A summary of the evidence for each cancer subgroup was then formed. Given the nature of the data extracted, no meta-analysis was performed.METHODSA literature search was performed for published full text articles using the PubMed, Cochrane and Scopus databases using the search criteria string "acid ceramidase", "sphingolipid", "cancer". Additional papers were detected by scanning the references of relevant papers. A summary of the evidence for each cancer subgroup was then formed. Given the nature of the data extracted, no meta-analysis was performed.Over expression of acid ceramidase has been demonstrated in a number of human cancers. In vitro data demonstrate that manipulation of acid ceramidase may present a useful therapeutic target. In the clinical setting, a number of drugs have been investigated with the ability to target acid ceramidase, with the most promising of those being small molecular inhibitors, such as LCL521.RESULTSOver expression of acid ceramidase has been demonstrated in a number of human cancers. In vitro data demonstrate that manipulation of acid ceramidase may present a useful therapeutic target. In the clinical setting, a number of drugs have been investigated with the ability to target acid ceramidase, with the most promising of those being small molecular inhibitors, such as LCL521.The role of the sphingolipid pathway in cancer is becoming very clearly established by promoting ceramide accumulation in response to cancer or cellular stress. Acid ceramidase is over expressed in a variety of cancers and has a role as a potential target for inhibition by novel specific inhibitors or off-target effects of traditional anti-cancer agents. Further work is required to develop acid ceramidase inhibitors safe for progression to clinical trials.CONCLUSIONThe role of the sphingolipid pathway in cancer is becoming very clearly established by promoting ceramide accumulation in response to cancer or cellular stress. Acid ceramidase is over expressed in a variety of cancers and has a role as a potential target for inhibition by novel specific inhibitors or off-target effects of traditional anti-cancer agents. Further work is required to develop acid ceramidase inhibitors safe for progression to clinical trials. [Display omitted] Sphingolipids have been shown to play a key part in cancer cell growth and death and have increasingly become the subject of novel anti-cancer therapies. Acid ceramidase, a sphingolipid enzyme, has an important role in the regulation of apoptosis. In this review we aim to assess the current evidence supporting the role of sphingolipids in cancer and the potential role that acid ceramidase may play in cancer treatment. A literature search was performed for published full text articles using the PubMed, Cochrane and Scopus databases using the search criteria string “acid ceramidase”, “sphingolipid”, “cancer”. Additional papers were detected by scanning the references of relevant papers. A summary of the evidence for each cancer subgroup was then formed. Given the nature of the data extracted, no meta-analysis was performed. Over expression of acid ceramidase has been demonstrated in a number of human cancers. In vitro data demonstrate that manipulation of acid ceramidase may present a useful therapeutic target. In the clinical setting, a number of drugs have been investigated with the ability to target acid ceramidase, with the most promising of those being small molecular inhibitors, such as LCL521. The role of the sphingolipid pathway in cancer is becoming very clearly established by promoting ceramide accumulation in response to cancer or cellular stress. Acid ceramidase is over expressed in a variety of cancers and has a role as a potential target for inhibition by novel specific inhibitors or off-target effects of traditional anti-cancer agents. Further work is required to develop acid ceramidase inhibitors safe for progression to clinical trials. Sphingolipids have been shown to play a key part in cancer cell growth and death and have increasingly become the subject of novel anti-cancer therapies. Acid ceramidase, a sphingolipid enzyme, has an important role in the regulation of apoptosis. In this review we aim to assess the current evidence supporting the role of sphingolipids in cancer and the potential role that acid ceramidase may play in cancer treatment. A literature search was performed for published full text articles using the PubMed, Cochrane and Scopus databases using the search criteria string "acid ceramidase", "sphingolipid", "cancer". Additional papers were detected by scanning the references of relevant papers. A summary of the evidence for each cancer subgroup was then formed. Given the nature of the data extracted, no meta-analysis was performed. Over expression of acid ceramidase has been demonstrated in a number of human cancers. In vitro data demonstrate that manipulation of acid ceramidase may present a useful therapeutic target. In the clinical setting, a number of drugs have been investigated with the ability to target acid ceramidase, with the most promising of those being small molecular inhibitors, such as LCL521. The role of the sphingolipid pathway in cancer is becoming very clearly established by promoting ceramide accumulation in response to cancer or cellular stress. Acid ceramidase is over expressed in a variety of cancers and has a role as a potential target for inhibition by novel specific inhibitors or off-target effects of traditional anti-cancer agents. Further work is required to develop acid ceramidase inhibitors safe for progression to clinical trials. |
Author | Vimalachandran, D. Bowden, D. Govindarajah, N. Sutton, P.A. Clifford, R. Parsons, J.L. |
Author_xml | – sequence: 1 givenname: N. surname: Govindarajah fullname: Govindarajah, N. organization: Institute of Translational Medicine, The University of Liverpool, Liverpool, United Kingdom – sequence: 2 givenname: R. surname: Clifford fullname: Clifford, R. organization: Institute of Translational Medicine, The University of Liverpool, Liverpool, United Kingdom – sequence: 3 givenname: D. orcidid: 0000-0002-1129-832X surname: Bowden fullname: Bowden, D. organization: Institute of Translational Medicine, The University of Liverpool, Liverpool, United Kingdom – sequence: 4 givenname: P.A. surname: Sutton fullname: Sutton, P.A. organization: Institute of Translational Medicine, The University of Liverpool, Liverpool, United Kingdom – sequence: 5 givenname: J.L. surname: Parsons fullname: Parsons, J.L. organization: Institute of Translational Medicine, The University of Liverpool, Liverpool, United Kingdom – sequence: 6 givenname: D. surname: Vimalachandran fullname: Vimalachandran, D. email: dale.vimalachandran@nhs.net organization: Institute of Translational Medicine, The University of Liverpool, Liverpool, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31092365$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkE1v1DAQQC1URD__AsqRS1J_ZJ3kgoAKCqgSB-BsTcaTdpasE2xvpf33pNqtkHrak235zbP8zsVJmAIJUShZKans9brCyDnS4xSw0lJ1lTSVVO0rcabapitlbdXJspe1LNtat6fiPKW1lLKubfNGnBolO23s6kx8_zk_cLifRp7ZpwKCLwDZF0gRNuwhUQGpyA_LcaZtZiwyxHvKqeBQIISFO9zuLsXrAcZEV4f1Qvz-8vnXzdfy7sftt5uPdyXWXZNL7EAPje1pRdgNstEafV2rGpE0wKCGlemt6qGD1ugBPHq0ZoCVJfSSTG8uxLu9d47T3y2l7DackMYRAk3b5LQ2WmpprF3Qtwd022_IuznyBuLOPf9_Ad7vAYxTSpEGh5wh8xRyBB6dku4puFu7_8HdU3AnjVuCL4L2heD5jSNGP-1HaYn1yBRdQqalqOdImJ2f-BjJhxcSHDkwwviHdscp_gHuC7mt |
CitedBy_id | crossref_primary_10_1016_j_ajpath_2020_04_001 crossref_primary_10_1016_j_psj_2020_08_052 crossref_primary_10_1111_cpr_13700 crossref_primary_10_1002_adtp_202300275 crossref_primary_10_1186_s13046_025_03307_9 crossref_primary_10_1186_s40170_020_00237_2 crossref_primary_10_3390_cancers14092051 crossref_primary_10_1124_molpharm_123_000786 crossref_primary_10_1155_2022_6711085 crossref_primary_10_1016_j_prostaglandins_2020_106484 crossref_primary_10_1016_j_leukres_2021_106585 crossref_primary_10_3390_ijms232315317 crossref_primary_10_1016_j_suronc_2020_02_006 crossref_primary_10_3389_fonc_2022_820173 crossref_primary_10_3390_ijms22031209 crossref_primary_10_3390_md21040206 crossref_primary_10_3390_biom11070945 crossref_primary_10_1134_S1022795422010070 crossref_primary_10_3390_cells9122693 crossref_primary_10_3390_jof6040312 crossref_primary_10_3390_cancers15245866 crossref_primary_10_1016_j_cellsig_2024_111099 crossref_primary_10_3390_cancers14092183 crossref_primary_10_1111_cas_15123 crossref_primary_10_3389_fonc_2022_991051 crossref_primary_10_1002_ardp_202300245 crossref_primary_10_3390_ijms23169105 crossref_primary_10_7554_eLife_83073 |
Cites_doi | 10.1002/ijc.30171 10.1042/bj3350465 10.1158/1078-0432.CCR-07-0932 10.1016/S0009-3084(99)00085-7 10.1074/jbc.274.15.10654 10.1016/j.bbalip.2008.06.002 10.1038/mt.2008.281 10.1016/j.bbalip.2013.12.013 10.1016/j.pharmthera.2018.10.011 10.1016/j.bbrc.2018.06.085 10.1194/jlr.M032375 10.1126/science.8456305 10.1016/0005-2760(75)90176-9 10.1242/jcs.111.21.3209 10.1016/j.bbalip.2005.04.001 10.1074/jbc.M115.666909 10.1074/jbc.271.21.12646 10.1016/j.cellsig.2017.03.002 10.1038/pcan.2010.47 10.1016/j.yexcr.2007.02.009 10.1097/PGP.0b013e3182673982 10.1038/sj.mt.6300167 10.3892/ijo.2013.2132 10.1016/j.bbamem.2015.07.013 10.1158/1078-0432.CCR-11-0930 10.1007/s10549-011-1768-8 10.1172/JCI64791 10.1038/s41598-017-07606-w 10.1016/j.bbalip.2015.05.001 10.1093/jjco/hyi147 10.1074/jbc.M303310200 10.1074/jbc.M100314200 10.1038/srep01035 10.5732/cjc.012.10236 10.1038/381800a0 10.1002/bjs.1800830313 10.1158/0008-5472.CAN-10-2493 10.1074/jbc.M113.494740 10.1126/science.279.5356.1552 10.1016/j.cellsig.2010.04.006 10.1158/1078-0432.CCR-12-0339 10.1038/nrc1411 10.1038/nrc.2017.96 10.3892/or.2017.5855 10.1016/j.chroma.2016.12.033 10.1002/cbic.200600533 10.1038/sj.onc.1209568 10.1038/nrm.2017.107 10.1111/j.1349-7006.1991.tb01873.x 10.1016/j.ejca.2015.10.056 10.1006/geno.1999.5940 10.18632/oncotarget.13079 10.2217/fon.10.116 10.1007/s11626-015-9932-9 10.1166/jnn.2009.1096 10.1016/j.febslet.2006.08.052 10.1002/pros.21321 10.1021/bi002836k 10.1096/fj.09-135087 10.1158/0008-5472.CAN-10-2043 10.1158/1535-7163.MCT-11-0365 10.18632/oncotarget.15800 10.1038/sj.onc.1209834 10.1016/j.molonc.2014.07.016 10.1097/CAD.0000000000000566 10.2174/156800912801784811 10.1016/0092-8674(95)90429-8 10.18632/oncotarget.22637 10.1074/jbc.270.19.11098 10.1074/jbc.M706115200 10.1080/15257771003730193 10.1006/bbrc.2001.5045 10.1016/j.cell.2012.01.038 10.1016/j.jprot.2018.02.030 10.1038/nchembio.1889 10.1007/s10616-017-0154-8 |
ContentType | Journal Article |
Copyright | 2019 Copyright © 2019. Published by Elsevier B.V. |
Copyright_xml | – notice: 2019 – notice: Copyright © 2019. Published by Elsevier B.V. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.critrevonc.2019.03.018 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0461 |
EndPage | 111 |
ExternalDocumentID | 31092365 10_1016_j_critrevonc_2019_03_018 S1040842818305079 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4CK 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABLJU ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HED HMK HMO HVGLF HZ~ IHE J1W KOM M29 M41 MO0 N9A O-L O9- OAUVE OC~ OO- OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SEL SES SEW SSH SSZ T5K UDS W2D WUQ Z5R ~G- AACTN AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR RIG AAYXX AGRNS CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c497t-c9a2f76be5ec9f0722cd4414cce2aaf1f53b61ba9a832fadcdc63fa56ecd0e3b3 |
IEDL.DBID | .~1 |
ISSN | 1040-8428 1879-0461 |
IngestDate | Fri Jul 11 09:01:58 EDT 2025 Wed Feb 19 02:34:55 EST 2025 Thu Apr 24 22:52:37 EDT 2025 Tue Jul 01 04:00:00 EDT 2025 Fri Feb 23 02:14:34 EST 2024 Tue Aug 26 16:33:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Acid ceramidase Sphingolipids Cancer |
Language | English |
License | Copyright © 2019. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c497t-c9a2f76be5ec9f0722cd4414cce2aaf1f53b61ba9a832fadcdc63fa56ecd0e3b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1129-832X |
PMID | 31092365 |
PQID | 2232020366 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2232020366 pubmed_primary_31092365 crossref_citationtrail_10_1016_j_critrevonc_2019_03_018 crossref_primary_10_1016_j_critrevonc_2019_03_018 elsevier_sciencedirect_doi_10_1016_j_critrevonc_2019_03_018 elsevier_clinicalkey_doi_10_1016_j_critrevonc_2019_03_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Critical reviews in oncology/hematology |
PublicationTitleAlternate | Crit Rev Oncol Hematol |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Chipuk, McStay, Bharti, Kuwana, Clarke, Siskind (bib0080) 2012; 148 Baspinar, Ozyurt, Kus, Kutlay, Ozkurt, Erkasap (bib0015) 2017; 118 Mao, Obeid (bib0235) 2008; 1781 Ramírez de Molina, de la Cueva, Machado-Pinilla, Rodriguez-Fanjul, Gomez del Pulgar, Cebrian (bib0325) 2012; 12 FARBER (bib0120) 1952; 84 Hannun, Obeid (bib0160) 2018; 19 Perry, Ridgway (bib0310) 2005; 1734 Takeda, Tashima, Takahashi, Uchiyama, Okazaki (bib0380) 1999; 274 Levade, Andrieu-Abadie, Ségui, Augé, Chatelut, Jaffrézou (bib0215) 1999; 102 Zorniak, Clark, Leeper, Tipping, Francis, Kozak (bib0435) 2012; 18 Yamamoto, Arii, Sugahara, Tobe (bib0405) 1996; 83 Draper, Xia, Smith, Zhuang, Wang, Smith (bib0105) 2011; 10 Ogretmen (bib0285) 2018; 18 Ogretmen, Hannun (bib0290) 2004; 4 Separovic, Breen, Boppana, Van Buren, Joseph, Kraveka (bib0365) 2013; 43 Cheng, Bai, Beckham, Marrison, Yount, Young (bib0075) 2013; 123 Bernardo, Hurwitz, Zenk, Desnick, Ferlinz, Schuchman (bib0030) 1995; 270 Giovannetti, Leon, Bertini, Macchia, Minutolo, Funel, Alecci, Giancola, Danesi, Peters (bib0135) 2010; 29 Young, Van Brocklyn (bib0415) 2007; 313 Bedia, Casas, Garcia, Levade, Fabriàs (bib0020) 2007; 8 Vethakanraj, Sesurajan, Padmanaban, Jayaprakasam, Murali, Sekar (bib0400) 2018; 29 Morimoto, Koh (bib0265) 2003; 49 Chang, Anishkin, Patwardhan, Beverly, Siskind, Colombini (bib0070) 2015; 1848 Abuhusain, Matin, Qiao, Shen, Kain, Day (bib0005) 2013; 288 Doan, Nguyen, Montoure, Al-Gizawiy, Mueller, Kurpad (bib0095) 2017; 8 Siskind, Feinstein, Yu, Davis, Jones, Choi (bib0370) 2008; 283 Mesicek, Lee, Feldman, Jiang, Skobeleva, Berdyshev (bib0245) 2010; 22 Cuvillier, Pirianov, Kleuser, Vanek, Coso, Gutkind (bib0085) 1996; 381 Qiu, Shen, Chen, Yang, Guo, Feng, Chen (bib0320) 2014; 33 Flowers, Fabriás, Delgado, Casas, Abad, Cabot (bib0125) 2012; 133 Bonnaud, Niaudet, Legoux, Corre, Delpon, Saulquin (bib0045) 2010; 70 Sugita, Willians, Dulaney, Moser (bib0375) 1975; 398 Grassmé, Schwarz, Gulbins (bib0150) 2001; 284 Blom, Li, Dichlberger, Bäck, Kim, Loizides-Mangold (bib0040) 2015; 11 Sakamoto, Hamada, Rahman, Kodaira, Ito, Nakazato (bib0350) 2005; 35 Mahdy, Cheng, Li, Elojeimy, Meacham, Turner (bib0230) 2009; 17 Bose, Verheij, Haimovitz-Friedman, Scotto, Fuks, Kolesnick (bib0050) 1995; 82 Gatt (bib0130) 1963; 238 Turner, Cheng, Beckham, Keane, Norris, Liu (bib0395) 2011; 14 Korbelik, Banáth, Zhang, Saw, Szulc, Bielawska (bib0190) 2016; 139 Lucci, Han, Liu, Giuliano, Cabot (bib0225) 1999; 15 Doan, Alhajala, Al-Gizawiy, Mueller, Rand, Connelly (bib0090) 2017; 8 Zeppernick, Ahmadi, Campos, Dictus, Helmke, Becker (bib0425) 2008; 14 Lee, Van Brocklyn, Thangada, Liu, Hand, Menzeleev, Spiegel (bib0210) 1998; 279 Bielawska, Greenberg, Perry, Jayadev, Shayman, McKay (bib0035) 1996; 271 Bowden, Sutton, Wall, Jithesh, Jenkins, Palmer (bib0055) 2018; 15 Elojeimy, Liu, McKillop, El-Zawahry, Holman, Cheng (bib0115) 2007; 15 Morales, París, Villanueva, Llacuna, García-Ruiz, Fernández-Checa (bib0260) 2007; 26 Lai, Realini, La Ferla, Passalacqua, Matteoli, Ganesan (bib0205) 2017; 7 Camacho, Meca-Cortés, Abad, García, Rubio, Díaz, Celià-Terrassa, Cingolani, Bermudo, Fernández, Blanco, Delgado, Casas, Fabriàs, Thomson (bib0065) 2013; 54 Doan, Nguyen, Al-Gizawiy, Mueller, Sabbadini, Rand (bib0100) 2017; 38 Saddoughi, Garrett-Mayer, Chaudhary, O’Brien, Afrin, Day (bib0345) 2011; 17 Bedia, Casas, Andrieu-Abadie, Fabriàs, Levade (bib0025) 2011; 286 Ponnusamy, Meyers-Needham, Senkal, Saddoughi, Sentelle, Selvam (bib0315) 2010; 6 Zheng, Li, Ren, Liu, Pang, Chen, Kang, Du (bib0430) 2019; 195 Miyazaki, Tabata (bib0250) 2009; 9 Kubota, Fujita, Kodaira, Yamamoto, Josui, Arisawa (bib0195) 1991; 82 Kus, Kabadere, Uyar, Kutlu (bib0200) 2015; 51 Sänger, Ruckhäberle, Györffy, Engels, Heinrich, Fehm (bib0355) 2015; 9 Okino, He, Gatt, Sandhoff, Ito, Schuchman (bib0300) 2003; 278 Bai, Mao, Jenkins, Szulc, Bielawska, Hannun (bib0010) 2017; 12 Hu, Yang, Zimmerman, Liu, Yang, Kannan (bib0175) 2011; 71 Mathias, Peña, Kolesnick (bib0240) 1998; 335 Patmanathan, Wang, Yap, Herr, Paterson (bib0305) 2017; 34 Roh, Park, Kim, Jang (bib0340) 2016; 52 Yu RK (bib0420) 2009 Yildiz-Ozer, Oztopcu-Vatan, Kus (bib0410) 2018; 70 Gouazé-Andersson, Flowers, Karimi, Fabriás, Delgado, Casas (bib0145) 2011; 71 Hannun, Luberto, Argraves (bib0165) 2001; 40 Truman, García-Barros, Obeid, Hannun (bib0390) 2014; 1841 Holman, Turner, El-Zawahry, Elojeimy, Liu, Bielawski (bib0170) 2008; 61 Goldkorn, Balaban, Shannon, Chea, Matsukuma, Gilchrist, Wang, Chan (bib0140) 1998; 111 Hanker, Karn, Holtrich, Gätje, Rody, Heinrich (bib0155) 2013; 32 Ogretmen (bib0280) 2006; 580 Li, Park, He, Levy, Chen, Arai (bib0220) 1999; 62 Realini, Solorzano, Pagliuca, Pizzirani, Armirotti, Luciani (bib0330) 2013; 3 Klobučar, Grbčić, Pavelić, Jonjić, Visentin, Sedić (bib0180) 2018; 503 Ogretmen, Schady, Usta, Wood, Kraveka, Luberto (bib0295) 2001; 276 Korbelik, Banáth, Zhang, Saw, Szulc, Bielawska (bib0185) 2016; 139 Camacho, Meca-Cortés, Abad, García, Rubio, Díaz (bib0060) 2013; 54 Tan, Liu, Fox, Barth, Sharma, Turner (bib0385) 2016; 7 Dumitru, Gulbins (bib0110) 2006; 25 Obeid, Linardic, Karolak, Hannun (bib0275) 1993; 259 Senkal, Ponnusamy, Bielawski, Hannun, Ogretmen (bib0360) 2010; 24 Realini, Palese, Pizzirani, Pontis, Basit, Bach (bib0335) 2016; 291 Mühle, Kornhuber (bib0270) 2017; 20 Morad, Cabot (bib0255) 2015; 1851 Gatt (10.1016/j.critrevonc.2019.03.018_bib0130) 1963; 238 Lucci (10.1016/j.critrevonc.2019.03.018_bib0225) 1999; 15 Dumitru (10.1016/j.critrevonc.2019.03.018_bib0110) 2006; 25 Li (10.1016/j.critrevonc.2019.03.018_bib0220) 1999; 62 Perry (10.1016/j.critrevonc.2019.03.018_bib0310) 2005; 1734 Doan (10.1016/j.critrevonc.2019.03.018_bib0100) 2017; 38 Morimoto (10.1016/j.critrevonc.2019.03.018_bib0265) 2003; 49 Ogretmen (10.1016/j.critrevonc.2019.03.018_bib0280) 2006; 580 Vethakanraj (10.1016/j.critrevonc.2019.03.018_bib0400) 2018; 29 Cuvillier (10.1016/j.critrevonc.2019.03.018_bib0085) 1996; 381 Saddoughi (10.1016/j.critrevonc.2019.03.018_bib0345) 2011; 17 Qiu (10.1016/j.critrevonc.2019.03.018_bib0320) 2014; 33 Yu RK (10.1016/j.critrevonc.2019.03.018_bib0420) 2009 Klobučar (10.1016/j.critrevonc.2019.03.018_bib0180) 2018; 503 Takeda (10.1016/j.critrevonc.2019.03.018_bib0380) 1999; 274 Realini (10.1016/j.critrevonc.2019.03.018_bib0330) 2013; 3 Yamamoto (10.1016/j.critrevonc.2019.03.018_bib0405) 1996; 83 Doan (10.1016/j.critrevonc.2019.03.018_bib0090) 2017; 8 Chipuk (10.1016/j.critrevonc.2019.03.018_bib0080) 2012; 148 Hu (10.1016/j.critrevonc.2019.03.018_bib0175) 2011; 71 Separovic (10.1016/j.critrevonc.2019.03.018_bib0365) 2013; 43 Bose (10.1016/j.critrevonc.2019.03.018_bib0050) 1995; 82 Levade (10.1016/j.critrevonc.2019.03.018_bib0215) 1999; 102 Korbelik (10.1016/j.critrevonc.2019.03.018_bib0185) 2016; 139 Bowden (10.1016/j.critrevonc.2019.03.018_bib0055) 2018; 15 Doan (10.1016/j.critrevonc.2019.03.018_bib0095) 2017; 8 Ogretmen (10.1016/j.critrevonc.2019.03.018_bib0295) 2001; 276 Yildiz-Ozer (10.1016/j.critrevonc.2019.03.018_bib0410) 2018; 70 Turner (10.1016/j.critrevonc.2019.03.018_bib0395) 2011; 14 Hannun (10.1016/j.critrevonc.2019.03.018_bib0160) 2018; 19 Bedia (10.1016/j.critrevonc.2019.03.018_bib0025) 2011; 286 Sugita (10.1016/j.critrevonc.2019.03.018_bib0375) 1975; 398 Blom (10.1016/j.critrevonc.2019.03.018_bib0040) 2015; 11 Mathias (10.1016/j.critrevonc.2019.03.018_bib0240) 1998; 335 Korbelik (10.1016/j.critrevonc.2019.03.018_bib0190) 2016; 139 Tan (10.1016/j.critrevonc.2019.03.018_bib0385) 2016; 7 Mao (10.1016/j.critrevonc.2019.03.018_bib0235) 2008; 1781 Ramírez de Molina (10.1016/j.critrevonc.2019.03.018_bib0325) 2012; 12 Bonnaud (10.1016/j.critrevonc.2019.03.018_bib0045) 2010; 70 FARBER (10.1016/j.critrevonc.2019.03.018_bib0120) 1952; 84 Camacho (10.1016/j.critrevonc.2019.03.018_bib0065) 2013; 54 Abuhusain (10.1016/j.critrevonc.2019.03.018_bib0005) 2013; 288 Sakamoto (10.1016/j.critrevonc.2019.03.018_bib0350) 2005; 35 Elojeimy (10.1016/j.critrevonc.2019.03.018_bib0115) 2007; 15 Gouazé-Andersson (10.1016/j.critrevonc.2019.03.018_bib0145) 2011; 71 Miyazaki (10.1016/j.critrevonc.2019.03.018_bib0250) 2009; 9 Morad (10.1016/j.critrevonc.2019.03.018_bib0255) 2015; 1851 Realini (10.1016/j.critrevonc.2019.03.018_bib0335) 2016; 291 Siskind (10.1016/j.critrevonc.2019.03.018_bib0370) 2008; 283 Lee (10.1016/j.critrevonc.2019.03.018_bib0210) 1998; 279 Flowers (10.1016/j.critrevonc.2019.03.018_bib0125) 2012; 133 Zheng (10.1016/j.critrevonc.2019.03.018_bib0430) 2019; 195 Mahdy (10.1016/j.critrevonc.2019.03.018_bib0230) 2009; 17 Bielawska (10.1016/j.critrevonc.2019.03.018_bib0035) 1996; 271 Morales (10.1016/j.critrevonc.2019.03.018_bib0260) 2007; 26 Draper (10.1016/j.critrevonc.2019.03.018_bib0105) 2011; 10 Ponnusamy (10.1016/j.critrevonc.2019.03.018_bib0315) 2010; 6 Ogretmen (10.1016/j.critrevonc.2019.03.018_bib0290) 2004; 4 Cheng (10.1016/j.critrevonc.2019.03.018_bib0075) 2013; 123 Lai (10.1016/j.critrevonc.2019.03.018_bib0205) 2017; 7 Hannun (10.1016/j.critrevonc.2019.03.018_bib0165) 2001; 40 Zeppernick (10.1016/j.critrevonc.2019.03.018_bib0425) 2008; 14 Mühle (10.1016/j.critrevonc.2019.03.018_bib0270) 2017; 20 Zorniak (10.1016/j.critrevonc.2019.03.018_bib0435) 2012; 18 Bai (10.1016/j.critrevonc.2019.03.018_bib0010) 2017; 12 Roh (10.1016/j.critrevonc.2019.03.018_bib0340) 2016; 52 Ogretmen (10.1016/j.critrevonc.2019.03.018_bib0285) 2018; 18 Camacho (10.1016/j.critrevonc.2019.03.018_bib0060) 2013; 54 Giovannetti (10.1016/j.critrevonc.2019.03.018_bib0135) 2010; 29 Grassmé (10.1016/j.critrevonc.2019.03.018_bib0150) 2001; 284 Kus (10.1016/j.critrevonc.2019.03.018_bib0200) 2015; 51 Baspinar (10.1016/j.critrevonc.2019.03.018_bib0015) 2017; 118 Okino (10.1016/j.critrevonc.2019.03.018_bib0300) 2003; 278 Goldkorn (10.1016/j.critrevonc.2019.03.018_bib0140) 1998; 111 Kubota (10.1016/j.critrevonc.2019.03.018_bib0195) 1991; 82 Senkal (10.1016/j.critrevonc.2019.03.018_bib0360) 2010; 24 Hanker (10.1016/j.critrevonc.2019.03.018_bib0155) 2013; 32 Truman (10.1016/j.critrevonc.2019.03.018_bib0390) 2014; 1841 Sänger (10.1016/j.critrevonc.2019.03.018_bib0355) 2015; 9 Obeid (10.1016/j.critrevonc.2019.03.018_bib0275) 1993; 259 Patmanathan (10.1016/j.critrevonc.2019.03.018_bib0305) 2017; 34 Bedia (10.1016/j.critrevonc.2019.03.018_bib0020) 2007; 8 Young (10.1016/j.critrevonc.2019.03.018_bib0415) 2007; 313 Bernardo (10.1016/j.critrevonc.2019.03.018_bib0030) 1995; 270 Chang (10.1016/j.critrevonc.2019.03.018_bib0070) 2015; 1848 Holman (10.1016/j.critrevonc.2019.03.018_bib0170) 2008; 61 Mesicek (10.1016/j.critrevonc.2019.03.018_bib0245) 2010; 22 |
References_xml | – volume: 284 start-page: 1016 year: 2001 end-page: 1030 ident: bib0150 article-title: Molecular mechanisms of ceramide-mediated CD95 clustering publication-title: Biochem. Biophys. Res. Commun. – volume: 10 start-page: 2052 year: 2011 end-page: 2061 ident: bib0105 article-title: Discovery and evaluation of inhibitors of human ceramidase publication-title: Mol. Cancer Ther. – volume: 580 start-page: 5467 year: 2006 end-page: 5476 ident: bib0280 article-title: Sphingolipids in cancer: regulation of pathogenesis and therapy publication-title: FEBS Lett. – volume: 286 year: 2011 ident: bib0025 article-title: Acid ceramidase expression modulates the sensitivity of A375 melanoma cells to dacarbazine publication-title: J. Biol. Chem. – volume: 288 start-page: 37355 year: 2013 end-page: 37364 ident: bib0005 article-title: A metabolic shift favoring sphingosine 1-phosphate at the expense of ceramide controls glioblastoma angiogenesis publication-title: J. Biol. Chem. – volume: 12 start-page: 617 year: 2012 end-page: 624 ident: bib0325 article-title: Acid ceramidase as a chemotherapeutic target to overcome resistance to the antitumoral effect of choline kinase α inhibition publication-title: Curr. Cancer Drug Targets – volume: 14 start-page: 123 year: 2008 end-page: 129 ident: bib0425 article-title: Stem cell marker CD133 affects clinical outcome in glioma patients publication-title: Clin. Cancer Res. – volume: 18 start-page: 33 year: 2018 end-page: 50 ident: bib0285 article-title: Sphingolipid metabolism in cancer signalling and therapy publication-title: Nat. Rev. Cancer – volume: 32 start-page: 249 year: 2013 end-page: 257 ident: bib0155 article-title: Acid ceramidase (AC)--a key enzyme of sphingolipid metabolism--correlates with better prognosis in epithelial ovarian cancer publication-title: Int. J. Gynecol. Pathol. – volume: 139 start-page: 1372 year: 2016 end-page: 1378 ident: bib0185 article-title: Interaction of acid ceramidase inhibitor LCL521 with tumor response to photodynamic therapy and photodynamic therapy-generated vaccine publication-title: Int. J. Cancer – volume: 25 start-page: 5612 year: 2006 end-page: 5625 ident: bib0110 article-title: TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis publication-title: Oncogene – volume: 29 start-page: 419 year: 2010 end-page: 426 ident: bib0135 article-title: Study of apoptosis induction and deoxycytidine kinase/cytidine deaminase modulation in the synergistic interaction of a novel ceramide analog and gemcitabine in pancreatic cancer cells publication-title: Nucleosides Nucleotides Nucleic Acids – volume: 139 start-page: 1372 year: 2016 end-page: 1378 ident: bib0190 article-title: Interaction of acid ceramidase inhibitor LCL521 with tumor response to photodynamic therapy and photodynamic therapy-generated vaccine publication-title: Int. J. Cancer – volume: 8 start-page: 642 year: 2007 end-page: 648 ident: bib0020 article-title: Synthesis of a novel ceramide analogue and its use in a high‐throughput fluorogenic assay for ceramidases publication-title: ChemBioChem – volume: 278 start-page: 29948 year: 2003 end-page: 29953 ident: bib0300 article-title: The reverse activity of human acid ceramidase publication-title: J. Biol. Chem. – volume: 15 start-page: 53 year: 2018 end-page: 60 ident: bib0055 article-title: Proteomic profiling of rectal cancer reveals acid ceramidase is implicated in radiation response publication-title: J. Proteomics – volume: 54 start-page: 1207 year: 2013 end-page: 1220 ident: bib0060 article-title: Acid ceramidase as a therapeutic target in metastatic prostate cancer publication-title: J. Lipid Res. – volume: 1841 start-page: 1174 year: 2014 end-page: 1188 ident: bib0390 article-title: Evolving concepts in cancer therapy through targeting sphingolipid metabolism publication-title: Biochim. Biophys. Acta – volume: 259 start-page: 1769 year: 1993 end-page: 1771 ident: bib0275 article-title: Programmed cell death induced by ceramide publication-title: Science – volume: 17 start-page: 6097 year: 2011 end-page: 6105 ident: bib0345 article-title: Results of a phase II trial of gemcitabine plus doxorubicin in patients with recurrent head and neck cancers: serum C₁₈-ceramide as a novel biomarker for monitoring response publication-title: Clin. Cancer Res. – volume: 503 start-page: 843 year: 2018 end-page: 848 ident: bib0180 article-title: Acid ceramidase inhibition sensitizes human colon cancer cells to oxaliplatin through downregulation of transglutaminase 2 and β1 integrin/FAK-mediated signalling publication-title: Biochem. Biophys. Res. Commun. – volume: 70 start-page: 9905 year: 2010 end-page: 9915 ident: bib0045 article-title: Sphingosine-1-phosphate activates the AKT pathway to protect small intestines from radiation-induced endothelial apoptosis publication-title: Cancer Res. – volume: 71 start-page: 1064 year: 2011 end-page: 1073 ident: bib0145 article-title: Inhibition of acid ceramidase by a 2-substituted aminoethanol amide synergistically sensitizes prostate cancer cells to N-(4-hydroxyphenyl) retinamide publication-title: Prostate – volume: 26 start-page: 905 year: 2007 end-page: 916 ident: bib0260 article-title: Pharmacological inhibition or small interfering RNA targeting acid ceramidase sensitizes hepatoma cells to chemotherapy and reduces tumor growth in vivo publication-title: Oncogene – volume: 4 start-page: 604 year: 2004 end-page: 616 ident: bib0290 article-title: Biologically active sphingolipids in cancer pathogenesis and treatment publication-title: Nat. Rev. Cancer – volume: 71 start-page: 2882 year: 2011 end-page: 2891 ident: bib0175 article-title: IRF8 regulates acid ceramidase expression to mediate apoptosis and suppresses myelogeneous leukemia publication-title: Cancer Res. – volume: 118 start-page: 391 year: 2017 end-page: 393 ident: bib0015 article-title: Effects of ceranib-2 on cell survival and TNF-alpha in colon cancer cell line publication-title: Bratisl Lek Listy. – volume: 34 start-page: 66 year: 2017 end-page: 75 ident: bib0305 article-title: Mechanisms of sphingosine 1-phosphate receptor signalling in cancer publication-title: Cell. Signal. – volume: 195 start-page: 85 year: 2019 end-page: 99 ident: bib0430 article-title: The sphingosine kinase-1/sphingosine-1-phosphate axis in cancer: potential target for anticancer therapy publication-title: Pharmacol. Ther. – volume: 82 start-page: 476 year: 1991 end-page: 482 ident: bib0195 article-title: Antitumor activity of fluoropyrimidines and thymidylate synthetase inhibition publication-title: Jpn. J. Cancer Res. – volume: 398 start-page: 125 year: 1975 end-page: 131 ident: bib0375 article-title: Ceramidase and ceramide synthesis in human kidney and cerebellum. Description of a new alkaline ceramidase publication-title: Biochim. Biophys. Acta – volume: 271 start-page: 12646 year: 1996 end-page: 12654 ident: bib0035 article-title: (1S,2R)-D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol as an inhibitor of ceramidase publication-title: J. Biol. Chem. – volume: 8 start-page: 24753 year: 2017 end-page: 24761 ident: bib0095 article-title: Acid ceramidase is a novel drug target for pediatric brain tumors publication-title: Oncotarget – volume: 15 start-page: 1259 year: 2007 end-page: 1263 ident: bib0115 article-title: Role of acid ceramidase in resistance to FasL: therapeutic approaches based on acid ceramidase inhibitors and FasL gene therapy publication-title: Mol. Ther. – volume: 84 start-page: 499 year: 1952 end-page: 500 ident: bib0120 article-title: A lipid metabolic disorder: disseminated lipogranulomatosis; a syndrome with similarity to, and important difference from, Niemann-Pick and Hand-Schüller-Christian disease publication-title: AMA Am. J. Dis. Child. – volume: 33 start-page: 115 year: 2014 end-page: 122 ident: bib0320 article-title: Enhanced MGMT expressioncontributes to temozolomide resistance in glioma stem-like cells publication-title: Chin. J. Cancer – volume: 1848 start-page: 2374 year: 2015 end-page: 2384 ident: bib0070 article-title: Ceramide channels: destabilization by Bcl-xL and role in apoptosis publication-title: Biochim. Biophys. Acta – volume: 291 start-page: 2422 year: 2016 end-page: 2434 ident: bib0335 article-title: Acid ceramidase in melanoma: expression, localization, and effects of pharmacological inhibition publication-title: J. Biol. Chem. – volume: 238 year: 1963 ident: bib0130 article-title: Enzymic hydrolysis and synthesis of ceramides publication-title: J. Biol. Chem. – volume: 335 start-page: 465 year: 1998 end-page: 480 ident: bib0240 article-title: Signal transduction of stress via ceramide publication-title: Biochem. J. – volume: 313 start-page: 1615 year: 2007 end-page: 1627 ident: bib0415 article-title: Roles of sphingosine-1-phosphate (S1P) receptors in malignant behavior of glioma cells. Differential effects of S1P2 on cell migration and invasiveness publication-title: Exp. Cell Res. – volume: 54 start-page: 1207 year: 2013 end-page: 1220 ident: bib0065 article-title: Acid ceramidase as a therapeutic target in metastatic prostate cancer publication-title: J. Lipid Res. – volume: 62 start-page: 223 year: 1999 end-page: 231 ident: bib0220 article-title: The human acid ceramidase gene (ASAH): structure, chromosomal location, mutation analysis, and expression publication-title: Genomics – volume: 29 start-page: 50 year: 2018 end-page: 60 ident: bib0400 article-title: Anticancer effect of acid ceramidase inhibitor ceranib-2 in human breast cancer cell lines MCF-7, MDA MB-231 by the activation of SAPK/JNK, p38 MAPK apoptotic pathways, inhibition of the Akt pathway, downregulation of ERα publication-title: Anticancer Drugs – volume: 1851 start-page: 1134 year: 2015 end-page: 1145 ident: bib0255 article-title: Tamoxifen regulation of sphingolipid metabolism--therapeutic implications publication-title: Biochim. Biophys. Acta – volume: 148 start-page: 988 year: 2012 end-page: 1000 ident: bib0080 article-title: Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis publication-title: Cell – volume: 274 start-page: 10654 year: 1999 end-page: 10660 ident: bib0380 article-title: Ceramide generation in nitric oxide-induced apoptosis. Activation of magnesium-dependent neutral sphingomyelinase via caspase-3 publication-title: J. Biol. Chem. – volume: 6 start-page: 1603 year: 2010 end-page: 1624 ident: bib0315 article-title: Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance publication-title: Future Oncol. – volume: 3 start-page: 1035 year: 2013 ident: bib0330 article-title: Discovery of highly potent acid ceramidase inhibitors with in vitro tumor chemosensitizing activity publication-title: Sci. Rep. – volume: 123 start-page: 4344 year: 2013 end-page: 4358 ident: bib0075 article-title: Radiation-induced acid ceramidase confers prostate cancer resistance and tumor relapse publication-title: J. Clin. Invest. – volume: 82 start-page: 405 year: 1995 end-page: 414 ident: bib0050 article-title: Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals publication-title: Cell – volume: 49 start-page: 77 year: 2003 end-page: 83 ident: bib0265 article-title: Postoperative adjuvant use of carmofur for early breast cancer publication-title: Osaka City Med. J. – volume: 7 start-page: 7411 year: 2017 ident: bib0205 article-title: Complete Acid Ceramidase ablation prevents cancer-initiating cell formation in melanoma cells publication-title: Sci. Rep. – volume: 52 start-page: 163 year: 2016 end-page: 172 ident: bib0340 article-title: Targeting acid ceramidase sensitises head and neck cancer to cisplatin publication-title: Eur. J. Cancer – volume: 1734 start-page: 220 year: 2005 end-page: 234 ident: bib0310 article-title: Molecular mechanisms and regulation of ceramide transport publication-title: Biochim. Biophys. Acta – volume: 111 start-page: 3209 year: 1998 end-page: 3220 ident: bib0140 article-title: H2O2 acts on cellular membranes to generate ceramide signaling and initiate apoptosis in tracheobronchial epithelial cells publication-title: J. Cell. Sci. – volume: 11 start-page: 799 year: 2015 end-page: 806 ident: bib0040 article-title: LAPTM4B facilitates late endosomal ceramide export to control cell death pathways publication-title: Nat. Chem. Biol. – volume: 381 start-page: 800 year: 1996 end-page: 803 ident: bib0085 article-title: Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate publication-title: Nature – volume: 24 start-page: 296 year: 2010 end-page: 308 ident: bib0360 article-title: Antiapoptotic roles of ceramide-synthase-6-generated C16-ceramide via selective regulation of the ATF6/CHOP arm of ER-stress-response pathways publication-title: FASEB J. – volume: 1781 start-page: 424 year: 2008 end-page: 434 ident: bib0235 article-title: Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate publication-title: Biochim. Biophys. Acta – volume: 70 start-page: 387 year: 2018 end-page: 396 ident: bib0410 article-title: The investigation of ceranib-2 on apoptosis and drug interaction with carboplatin in human non small cell lung cancer cells in vitro publication-title: Cytotechnology – volume: 83 start-page: 336 year: 1996 end-page: 340 ident: bib0405 article-title: Adjuvant oral chemotherapy to prevent recurrence after curative resection for hepatocellular carcinoma publication-title: Br. J. Surg. – volume: 15 start-page: 541 year: 1999 end-page: 546 ident: bib0225 article-title: Modification of ceramide metabolism increases cancer cell sensitivity to cytotoxics publication-title: Int. J. Oncol. – year: 2009 ident: bib0420 article-title: Herbert Edmund Carter 1910–2007 – a Biographical Memoir – volume: 17 start-page: 430 year: 2009 end-page: 438 ident: bib0230 article-title: Acid ceramidase upregulation in prostate cancer cells confers resistance to radiation: AC inhibition, a potential radiosensitizer publication-title: Mol. Ther. – volume: 12 year: 2017 ident: bib0010 article-title: Anticancer actions of lysosomally targeted inhibitor, LCL521, of acid ceramidase publication-title: PLoS One – volume: 276 start-page: 24901 year: 2001 end-page: 24910 ident: bib0295 article-title: Role of ceramide in mediating the inhibition of telomerase activity in A549 human lung adenocarcinoma cells publication-title: J. Biol. Chem. – volume: 102 start-page: 167 year: 1999 end-page: 178 ident: bib0215 article-title: Sphingomyelin-degrading pathways in human cells role in cell signalling publication-title: Chem. Phys. Lipids – volume: 8 start-page: 112662 year: 2017 end-page: 112674 ident: bib0090 article-title: Acid ceramidase and its inhibitors: a de novo drug target and a new class of drugs for killing glioblastoma cancer stem cells with high efficiency publication-title: Oncotarget – volume: 38 start-page: 1932 year: 2017 end-page: 1940 ident: bib0100 article-title: Acid ceramidase confers radioresistance to glioblastoma cells publication-title: Oncol. Rep. – volume: 19 start-page: 175 year: 2018 end-page: 191 ident: bib0160 article-title: Sphingolipids and their metabolism in physiology and disease publication-title: Nat. Rev. Mol. Cell Biol. – volume: 18 start-page: 3628 year: 2012 end-page: 3636 ident: bib0435 article-title: Differential expression of 2’,3’-cyclic-nucleotide 3’-phosphodiesterase and neural lineage markers correlate with glioblastoma xenograft infiltration and patient survival publication-title: Clin. Cancer Res. – volume: 279 start-page: 1552 year: 1998 end-page: 1555 ident: bib0210 article-title: Hla T. phingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1 publication-title: Science. – volume: 40 start-page: 4893 year: 2001 end-page: 4903 ident: bib0165 article-title: Enzymes of sphingolipid metabolism: from modular to integrative signaling publication-title: Biochemistry – volume: 61 start-page: 231 year: 2008 end-page: 242 ident: bib0170 article-title: Lysosomotropic acid ceramidase inhibitor induces apoptosis in prostate cancer cells publication-title: Cancer Chemother. Pharmacol. – volume: 35 start-page: 536 year: 2005 end-page: 544 ident: bib0350 article-title: An individual patient data meta-analysis of adjuvant therapy with carmofur in patients with curatively resected colon cancer publication-title: Jpn. J. Clin. Oncol. – volume: 43 start-page: 2064 year: 2013 end-page: 2072 ident: bib0365 article-title: Increased killing of SCCVII squamous cell carcinoma cells after the combination of Pc 4 photodynamic therapy and dasatinib is associated with enhanced caspase-3 activity and ceramide synthase 1 upregulation publication-title: Int. J. Oncol. – volume: 7 start-page: 83208 year: 2016 end-page: 83222 ident: bib0385 article-title: Acid ceramidase is upregulated in AML and represents a novel therapeutic target publication-title: Oncotarget – volume: 22 start-page: 1300 year: 2010 end-page: 1307 ident: bib0245 article-title: Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells publication-title: Cell. Signal. – volume: 270 start-page: 11098 year: 1995 end-page: 11102 ident: bib0030 article-title: Purification, characterization, and biosynthesis of human acid ceramidase publication-title: J. Biol. Chem. – volume: 20 start-page: 137 year: 2017 end-page: 144 ident: bib0270 article-title: Assay to measure sphingomyelinase and ceramidase activities efficiently and safely publication-title: J. Chromatogr. A – volume: 9 start-page: 58 year: 2015 end-page: 67 ident: bib0355 article-title: Acid ceramidase is associated with an improved prognosis in both DCIS and invasive breast cancer publication-title: Mol. Oncol. – volume: 283 start-page: 6622 year: 2008 end-page: 6630 ident: bib0370 article-title: Anti-apoptotic Bcl-2 family proteins disassemble ceramide channels publication-title: J. Biol. Chem. – volume: 51 start-page: 1056 year: 2015 end-page: 1063 ident: bib0200 article-title: Induction of apoptosis in prostate cancer cells by the novel ceramidase inhibitor ceranib-2 publication-title: In Vitro Cell. Dev. Biol. Anim. – volume: 133 start-page: 447 year: 2012 end-page: 458 ident: bib0125 article-title: C6-ceramide and targeted inhibition of acid ceramidase induce synergistic decreases in breast cancer cell growth publication-title: Breast Cancer Res. Treat. – volume: 14 start-page: 30 year: 2011 end-page: 37 ident: bib0395 article-title: Autophagy is increased in prostate cancer cells overexpressing acid ceramidase and enhances resistance to C6 ceramide publication-title: Prostate Cancer Prostatic Dis. – volume: 9 start-page: 4797 year: 2009 end-page: 4804 ident: bib0250 article-title: Anti-tumor activity of carmofur water-solubilized by lactic acid oligomer-grafted pullulan nanogels publication-title: J. Nanosci. Nanotechnol. – volume: 139 start-page: 1372 issue: September (6) year: 2016 ident: 10.1016/j.critrevonc.2019.03.018_bib0190 article-title: Interaction of acid ceramidase inhibitor LCL521 with tumor response to photodynamic therapy and photodynamic therapy-generated vaccine publication-title: Int. J. Cancer doi: 10.1002/ijc.30171 – volume: 335 start-page: 465 issue: November (Pt 3) year: 1998 ident: 10.1016/j.critrevonc.2019.03.018_bib0240 article-title: Signal transduction of stress via ceramide publication-title: Biochem. J. doi: 10.1042/bj3350465 – volume: 14 start-page: 123 issue: January (1) year: 2008 ident: 10.1016/j.critrevonc.2019.03.018_bib0425 article-title: Stem cell marker CD133 affects clinical outcome in glioma patients publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-07-0932 – volume: 102 start-page: 167 issue: November (1-2) year: 1999 ident: 10.1016/j.critrevonc.2019.03.018_bib0215 article-title: Sphingomyelin-degrading pathways in human cells role in cell signalling publication-title: Chem. Phys. Lipids doi: 10.1016/S0009-3084(99)00085-7 – volume: 274 start-page: 10654 issue: April (15) year: 1999 ident: 10.1016/j.critrevonc.2019.03.018_bib0380 article-title: Ceramide generation in nitric oxide-induced apoptosis. Activation of magnesium-dependent neutral sphingomyelinase via caspase-3 publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.15.10654 – volume: 1781 start-page: 424 issue: September (9) year: 2008 ident: 10.1016/j.critrevonc.2019.03.018_bib0235 article-title: Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbalip.2008.06.002 – volume: 17 start-page: 430 issue: March (3) year: 2009 ident: 10.1016/j.critrevonc.2019.03.018_bib0230 article-title: Acid ceramidase upregulation in prostate cancer cells confers resistance to radiation: AC inhibition, a potential radiosensitizer publication-title: Mol. Ther. doi: 10.1038/mt.2008.281 – volume: 1841 start-page: 1174 issue: August (8) year: 2014 ident: 10.1016/j.critrevonc.2019.03.018_bib0390 article-title: Evolving concepts in cancer therapy through targeting sphingolipid metabolism publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbalip.2013.12.013 – volume: 195 start-page: 85 issue: March year: 2019 ident: 10.1016/j.critrevonc.2019.03.018_bib0430 article-title: The sphingosine kinase-1/sphingosine-1-phosphate axis in cancer: potential target for anticancer therapy publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2018.10.011 – volume: 503 start-page: 843 issue: September (2) year: 2018 ident: 10.1016/j.critrevonc.2019.03.018_bib0180 article-title: Acid ceramidase inhibition sensitizes human colon cancer cells to oxaliplatin through downregulation of transglutaminase 2 and β1 integrin/FAK-mediated signalling publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2018.06.085 – volume: 54 start-page: 1207 issue: May (5) year: 2013 ident: 10.1016/j.critrevonc.2019.03.018_bib0065 article-title: Acid ceramidase as a therapeutic target in metastatic prostate cancer publication-title: J. Lipid Res. doi: 10.1194/jlr.M032375 – volume: 259 start-page: 1769 issue: March (5102) year: 1993 ident: 10.1016/j.critrevonc.2019.03.018_bib0275 article-title: Programmed cell death induced by ceramide publication-title: Science doi: 10.1126/science.8456305 – volume: 398 start-page: 125 issue: July (1) year: 1975 ident: 10.1016/j.critrevonc.2019.03.018_bib0375 article-title: Ceramidase and ceramide synthesis in human kidney and cerebellum. Description of a new alkaline ceramidase publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2760(75)90176-9 – volume: 111 start-page: 3209 issue: November (Pt 21) year: 1998 ident: 10.1016/j.critrevonc.2019.03.018_bib0140 article-title: H2O2 acts on cellular membranes to generate ceramide signaling and initiate apoptosis in tracheobronchial epithelial cells publication-title: J. Cell. Sci. doi: 10.1242/jcs.111.21.3209 – volume: 1734 start-page: 220 issue: June (3) year: 2005 ident: 10.1016/j.critrevonc.2019.03.018_bib0310 article-title: Molecular mechanisms and regulation of ceramide transport publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbalip.2005.04.001 – volume: 291 start-page: 2422 issue: January (5) year: 2016 ident: 10.1016/j.critrevonc.2019.03.018_bib0335 article-title: Acid ceramidase in melanoma: expression, localization, and effects of pharmacological inhibition publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.666909 – volume: 271 start-page: 12646 issue: May (21) year: 1996 ident: 10.1016/j.critrevonc.2019.03.018_bib0035 article-title: (1S,2R)-D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol as an inhibitor of ceramidase publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.21.12646 – volume: 34 start-page: 66 issue: June year: 2017 ident: 10.1016/j.critrevonc.2019.03.018_bib0305 article-title: Mechanisms of sphingosine 1-phosphate receptor signalling in cancer publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2017.03.002 – volume: 14 start-page: 30 issue: March (1) year: 2011 ident: 10.1016/j.critrevonc.2019.03.018_bib0395 article-title: Autophagy is increased in prostate cancer cells overexpressing acid ceramidase and enhances resistance to C6 ceramide publication-title: Prostate Cancer Prostatic Dis. doi: 10.1038/pcan.2010.47 – volume: 313 start-page: 1615 issue: May (8) year: 2007 ident: 10.1016/j.critrevonc.2019.03.018_bib0415 article-title: Roles of sphingosine-1-phosphate (S1P) receptors in malignant behavior of glioma cells. Differential effects of S1P2 on cell migration and invasiveness publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2007.02.009 – volume: 32 start-page: 249 issue: May (3) year: 2013 ident: 10.1016/j.critrevonc.2019.03.018_bib0155 article-title: Acid ceramidase (AC)--a key enzyme of sphingolipid metabolism--correlates with better prognosis in epithelial ovarian cancer publication-title: Int. J. Gynecol. Pathol. doi: 10.1097/PGP.0b013e3182673982 – volume: 15 start-page: 1259 issue: July (7) year: 2007 ident: 10.1016/j.critrevonc.2019.03.018_bib0115 article-title: Role of acid ceramidase in resistance to FasL: therapeutic approaches based on acid ceramidase inhibitors and FasL gene therapy publication-title: Mol. Ther. doi: 10.1038/sj.mt.6300167 – volume: 43 start-page: 2064 issue: December (6) year: 2013 ident: 10.1016/j.critrevonc.2019.03.018_bib0365 article-title: Increased killing of SCCVII squamous cell carcinoma cells after the combination of Pc 4 photodynamic therapy and dasatinib is associated with enhanced caspase-3 activity and ceramide synthase 1 upregulation publication-title: Int. J. Oncol. doi: 10.3892/ijo.2013.2132 – volume: 1848 start-page: 2374 issue: October (10 Pt A) year: 2015 ident: 10.1016/j.critrevonc.2019.03.018_bib0070 article-title: Ceramide channels: destabilization by Bcl-xL and role in apoptosis publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2015.07.013 – volume: 17 start-page: 6097 issue: September (18) year: 2011 ident: 10.1016/j.critrevonc.2019.03.018_bib0345 article-title: Results of a phase II trial of gemcitabine plus doxorubicin in patients with recurrent head and neck cancers: serum C₁₈-ceramide as a novel biomarker for monitoring response publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-11-0930 – volume: 133 start-page: 447 issue: June (2) year: 2012 ident: 10.1016/j.critrevonc.2019.03.018_bib0125 article-title: C6-ceramide and targeted inhibition of acid ceramidase induce synergistic decreases in breast cancer cell growth publication-title: Breast Cancer Res. Treat. doi: 10.1007/s10549-011-1768-8 – volume: 123 start-page: 4344 issue: October (10) year: 2013 ident: 10.1016/j.critrevonc.2019.03.018_bib0075 article-title: Radiation-induced acid ceramidase confers prostate cancer resistance and tumor relapse publication-title: J. Clin. Invest. doi: 10.1172/JCI64791 – volume: 286 issue: August (32) year: 2011 ident: 10.1016/j.critrevonc.2019.03.018_bib0025 article-title: Acid ceramidase expression modulates the sensitivity of A375 melanoma cells to dacarbazine publication-title: J. Biol. Chem. – volume: 7 start-page: 7411 issue: August (1) year: 2017 ident: 10.1016/j.critrevonc.2019.03.018_bib0205 article-title: Complete Acid Ceramidase ablation prevents cancer-initiating cell formation in melanoma cells publication-title: Sci. Rep. doi: 10.1038/s41598-017-07606-w – volume: 1851 start-page: 1134 issue: September (9) year: 2015 ident: 10.1016/j.critrevonc.2019.03.018_bib0255 article-title: Tamoxifen regulation of sphingolipid metabolism--therapeutic implications publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbalip.2015.05.001 – year: 2009 ident: 10.1016/j.critrevonc.2019.03.018_bib0420 – volume: 35 start-page: 536 issue: September (9) year: 2005 ident: 10.1016/j.critrevonc.2019.03.018_bib0350 article-title: An individual patient data meta-analysis of adjuvant therapy with carmofur in patients with curatively resected colon cancer publication-title: Jpn. J. Clin. Oncol. doi: 10.1093/jjco/hyi147 – volume: 278 start-page: 29948 issue: August (32) year: 2003 ident: 10.1016/j.critrevonc.2019.03.018_bib0300 article-title: The reverse activity of human acid ceramidase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M303310200 – volume: 276 start-page: 24901 issue: July (27) year: 2001 ident: 10.1016/j.critrevonc.2019.03.018_bib0295 article-title: Role of ceramide in mediating the inhibition of telomerase activity in A549 human lung adenocarcinoma cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M100314200 – volume: 3 start-page: 1035 year: 2013 ident: 10.1016/j.critrevonc.2019.03.018_bib0330 article-title: Discovery of highly potent acid ceramidase inhibitors with in vitro tumor chemosensitizing activity publication-title: Sci. Rep. doi: 10.1038/srep01035 – volume: 49 start-page: 77 issue: December (2) year: 2003 ident: 10.1016/j.critrevonc.2019.03.018_bib0265 article-title: Postoperative adjuvant use of carmofur for early breast cancer publication-title: Osaka City Med. J. – volume: 33 start-page: 115 year: 2014 ident: 10.1016/j.critrevonc.2019.03.018_bib0320 article-title: Enhanced MGMT expressioncontributes to temozolomide resistance in glioma stem-like cells publication-title: Chin. J. Cancer doi: 10.5732/cjc.012.10236 – volume: 381 start-page: 800 issue: June (6585) year: 1996 ident: 10.1016/j.critrevonc.2019.03.018_bib0085 article-title: Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate publication-title: Nature doi: 10.1038/381800a0 – volume: 83 start-page: 336 issue: March (3) year: 1996 ident: 10.1016/j.critrevonc.2019.03.018_bib0405 article-title: Adjuvant oral chemotherapy to prevent recurrence after curative resection for hepatocellular carcinoma publication-title: Br. J. Surg. doi: 10.1002/bjs.1800830313 – volume: 61 start-page: 231 issue: February (2) year: 2008 ident: 10.1016/j.critrevonc.2019.03.018_bib0170 article-title: Lysosomotropic acid ceramidase inhibitor induces apoptosis in prostate cancer cells publication-title: Cancer Chemother. Pharmacol. – volume: 71 start-page: 2882 issue: April (8) year: 2011 ident: 10.1016/j.critrevonc.2019.03.018_bib0175 article-title: IRF8 regulates acid ceramidase expression to mediate apoptosis and suppresses myelogeneous leukemia publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-2493 – volume: 12 issue: June (6) year: 2017 ident: 10.1016/j.critrevonc.2019.03.018_bib0010 article-title: Anticancer actions of lysosomally targeted inhibitor, LCL521, of acid ceramidase publication-title: PLoS One – volume: 288 start-page: 37355 issue: December (52) year: 2013 ident: 10.1016/j.critrevonc.2019.03.018_bib0005 article-title: A metabolic shift favoring sphingosine 1-phosphate at the expense of ceramide controls glioblastoma angiogenesis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.494740 – volume: 279 start-page: 1552 issue: March (5356) year: 1998 ident: 10.1016/j.critrevonc.2019.03.018_bib0210 article-title: Hla T. phingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1 publication-title: Science. doi: 10.1126/science.279.5356.1552 – volume: 22 start-page: 1300 issue: September (9) year: 2010 ident: 10.1016/j.critrevonc.2019.03.018_bib0245 article-title: Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2010.04.006 – volume: 18 start-page: 3628 issue: July (13) year: 2012 ident: 10.1016/j.critrevonc.2019.03.018_bib0435 article-title: Differential expression of 2’,3’-cyclic-nucleotide 3’-phosphodiesterase and neural lineage markers correlate with glioblastoma xenograft infiltration and patient survival publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-12-0339 – volume: 4 start-page: 604 issue: August (8) year: 2004 ident: 10.1016/j.critrevonc.2019.03.018_bib0290 article-title: Biologically active sphingolipids in cancer pathogenesis and treatment publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1411 – volume: 238 issue: September year: 1963 ident: 10.1016/j.critrevonc.2019.03.018_bib0130 article-title: Enzymic hydrolysis and synthesis of ceramides publication-title: J. Biol. Chem. – volume: 18 start-page: 33 issue: January (1) year: 2018 ident: 10.1016/j.critrevonc.2019.03.018_bib0285 article-title: Sphingolipid metabolism in cancer signalling and therapy publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2017.96 – volume: 38 start-page: 1932 issue: October (4) year: 2017 ident: 10.1016/j.critrevonc.2019.03.018_bib0100 article-title: Acid ceramidase confers radioresistance to glioblastoma cells publication-title: Oncol. Rep. doi: 10.3892/or.2017.5855 – volume: 118 start-page: 391 issue: 7 year: 2017 ident: 10.1016/j.critrevonc.2019.03.018_bib0015 article-title: Effects of ceranib-2 on cell survival and TNF-alpha in colon cancer cell line publication-title: Bratisl Lek Listy. – volume: 20 start-page: 137 issue: January 1481 year: 2017 ident: 10.1016/j.critrevonc.2019.03.018_bib0270 article-title: Assay to measure sphingomyelinase and ceramidase activities efficiently and safely publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2016.12.033 – volume: 8 start-page: 642 year: 2007 ident: 10.1016/j.critrevonc.2019.03.018_bib0020 article-title: Synthesis of a novel ceramide analogue and its use in a high‐throughput fluorogenic assay for ceramidases publication-title: ChemBioChem doi: 10.1002/cbic.200600533 – volume: 84 start-page: 499 issue: October (4) year: 1952 ident: 10.1016/j.critrevonc.2019.03.018_bib0120 article-title: A lipid metabolic disorder: disseminated lipogranulomatosis; a syndrome with similarity to, and important difference from, Niemann-Pick and Hand-Schüller-Christian disease publication-title: AMA Am. J. Dis. Child. – volume: 25 start-page: 5612 issue: September (41) year: 2006 ident: 10.1016/j.critrevonc.2019.03.018_bib0110 article-title: TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis publication-title: Oncogene doi: 10.1038/sj.onc.1209568 – volume: 19 start-page: 175 issue: March (3) year: 2018 ident: 10.1016/j.critrevonc.2019.03.018_bib0160 article-title: Sphingolipids and their metabolism in physiology and disease publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.107 – volume: 82 start-page: 476 issue: April (4) year: 1991 ident: 10.1016/j.critrevonc.2019.03.018_bib0195 article-title: Antitumor activity of fluoropyrimidines and thymidylate synthetase inhibition publication-title: Jpn. J. Cancer Res. doi: 10.1111/j.1349-7006.1991.tb01873.x – volume: 52 start-page: 163 issue: January year: 2016 ident: 10.1016/j.critrevonc.2019.03.018_bib0340 article-title: Targeting acid ceramidase sensitises head and neck cancer to cisplatin publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2015.10.056 – volume: 62 start-page: 223 issue: December (2) year: 1999 ident: 10.1016/j.critrevonc.2019.03.018_bib0220 article-title: The human acid ceramidase gene (ASAH): structure, chromosomal location, mutation analysis, and expression publication-title: Genomics doi: 10.1006/geno.1999.5940 – volume: 7 start-page: 83208 issue: December (50) year: 2016 ident: 10.1016/j.critrevonc.2019.03.018_bib0385 article-title: Acid ceramidase is upregulated in AML and represents a novel therapeutic target publication-title: Oncotarget doi: 10.18632/oncotarget.13079 – volume: 6 start-page: 1603 issue: October (10) year: 2010 ident: 10.1016/j.critrevonc.2019.03.018_bib0315 article-title: Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance publication-title: Future Oncol. doi: 10.2217/fon.10.116 – volume: 51 start-page: 1056 issue: November (10) year: 2015 ident: 10.1016/j.critrevonc.2019.03.018_bib0200 article-title: Induction of apoptosis in prostate cancer cells by the novel ceramidase inhibitor ceranib-2 publication-title: In Vitro Cell. Dev. Biol. Anim. doi: 10.1007/s11626-015-9932-9 – volume: 9 start-page: 4797 issue: August (8) year: 2009 ident: 10.1016/j.critrevonc.2019.03.018_bib0250 article-title: Anti-tumor activity of carmofur water-solubilized by lactic acid oligomer-grafted pullulan nanogels publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2009.1096 – volume: 580 start-page: 5467 issue: October (23) year: 2006 ident: 10.1016/j.critrevonc.2019.03.018_bib0280 article-title: Sphingolipids in cancer: regulation of pathogenesis and therapy publication-title: FEBS Lett. doi: 10.1016/j.febslet.2006.08.052 – volume: 71 start-page: 1064 issue: July (10) year: 2011 ident: 10.1016/j.critrevonc.2019.03.018_bib0145 article-title: Inhibition of acid ceramidase by a 2-substituted aminoethanol amide synergistically sensitizes prostate cancer cells to N-(4-hydroxyphenyl) retinamide publication-title: Prostate doi: 10.1002/pros.21321 – volume: 40 start-page: 4893 issue: April (16) year: 2001 ident: 10.1016/j.critrevonc.2019.03.018_bib0165 article-title: Enzymes of sphingolipid metabolism: from modular to integrative signaling publication-title: Biochemistry doi: 10.1021/bi002836k – volume: 24 start-page: 296 issue: January (1) year: 2010 ident: 10.1016/j.critrevonc.2019.03.018_bib0360 article-title: Antiapoptotic roles of ceramide-synthase-6-generated C16-ceramide via selective regulation of the ATF6/CHOP arm of ER-stress-response pathways publication-title: FASEB J. doi: 10.1096/fj.09-135087 – volume: 70 start-page: 9905 issue: December (23) year: 2010 ident: 10.1016/j.critrevonc.2019.03.018_bib0045 article-title: Sphingosine-1-phosphate activates the AKT pathway to protect small intestines from radiation-induced endothelial apoptosis publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-2043 – volume: 10 start-page: 2052 issue: November (11) year: 2011 ident: 10.1016/j.critrevonc.2019.03.018_bib0105 article-title: Discovery and evaluation of inhibitors of human ceramidase publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-11-0365 – volume: 8 start-page: 24753 issue: April (15) year: 2017 ident: 10.1016/j.critrevonc.2019.03.018_bib0095 article-title: Acid ceramidase is a novel drug target for pediatric brain tumors publication-title: Oncotarget doi: 10.18632/oncotarget.15800 – volume: 139 start-page: 1372 issue: September (6) year: 2016 ident: 10.1016/j.critrevonc.2019.03.018_bib0185 article-title: Interaction of acid ceramidase inhibitor LCL521 with tumor response to photodynamic therapy and photodynamic therapy-generated vaccine publication-title: Int. J. Cancer doi: 10.1002/ijc.30171 – volume: 26 start-page: 905 issue: February (6) year: 2007 ident: 10.1016/j.critrevonc.2019.03.018_bib0260 article-title: Pharmacological inhibition or small interfering RNA targeting acid ceramidase sensitizes hepatoma cells to chemotherapy and reduces tumor growth in vivo publication-title: Oncogene doi: 10.1038/sj.onc.1209834 – volume: 54 start-page: 1207 issue: May (5) year: 2013 ident: 10.1016/j.critrevonc.2019.03.018_bib0060 article-title: Acid ceramidase as a therapeutic target in metastatic prostate cancer publication-title: J. Lipid Res. doi: 10.1194/jlr.M032375 – volume: 9 start-page: 58 issue: January (1) year: 2015 ident: 10.1016/j.critrevonc.2019.03.018_bib0355 article-title: Acid ceramidase is associated with an improved prognosis in both DCIS and invasive breast cancer publication-title: Mol. Oncol. doi: 10.1016/j.molonc.2014.07.016 – volume: 29 start-page: 50 issue: January (1) year: 2018 ident: 10.1016/j.critrevonc.2019.03.018_bib0400 article-title: Anticancer effect of acid ceramidase inhibitor ceranib-2 in human breast cancer cell lines MCF-7, MDA MB-231 by the activation of SAPK/JNK, p38 MAPK apoptotic pathways, inhibition of the Akt pathway, downregulation of ERα publication-title: Anticancer Drugs doi: 10.1097/CAD.0000000000000566 – volume: 12 start-page: 617 issue: July (6) year: 2012 ident: 10.1016/j.critrevonc.2019.03.018_bib0325 article-title: Acid ceramidase as a chemotherapeutic target to overcome resistance to the antitumoral effect of choline kinase α inhibition publication-title: Curr. Cancer Drug Targets doi: 10.2174/156800912801784811 – volume: 82 start-page: 405 issue: August (3) year: 1995 ident: 10.1016/j.critrevonc.2019.03.018_bib0050 article-title: Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals publication-title: Cell doi: 10.1016/0092-8674(95)90429-8 – volume: 8 start-page: 112662 issue: November (68) year: 2017 ident: 10.1016/j.critrevonc.2019.03.018_bib0090 article-title: Acid ceramidase and its inhibitors: a de novo drug target and a new class of drugs for killing glioblastoma cancer stem cells with high efficiency publication-title: Oncotarget doi: 10.18632/oncotarget.22637 – volume: 270 start-page: 11098 issue: May (19) year: 1995 ident: 10.1016/j.critrevonc.2019.03.018_bib0030 article-title: Purification, characterization, and biosynthesis of human acid ceramidase publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.19.11098 – volume: 283 start-page: 6622 issue: March (11) year: 2008 ident: 10.1016/j.critrevonc.2019.03.018_bib0370 article-title: Anti-apoptotic Bcl-2 family proteins disassemble ceramide channels publication-title: J. Biol. Chem. doi: 10.1074/jbc.M706115200 – volume: 29 start-page: 419 issue: June (4-6) year: 2010 ident: 10.1016/j.critrevonc.2019.03.018_bib0135 article-title: Study of apoptosis induction and deoxycytidine kinase/cytidine deaminase modulation in the synergistic interaction of a novel ceramide analog and gemcitabine in pancreatic cancer cells publication-title: Nucleosides Nucleotides Nucleic Acids doi: 10.1080/15257771003730193 – volume: 284 start-page: 1016 issue: June (4) year: 2001 ident: 10.1016/j.critrevonc.2019.03.018_bib0150 article-title: Molecular mechanisms of ceramide-mediated CD95 clustering publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.2001.5045 – volume: 148 start-page: 988 issue: March (5) year: 2012 ident: 10.1016/j.critrevonc.2019.03.018_bib0080 article-title: Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis publication-title: Cell doi: 10.1016/j.cell.2012.01.038 – volume: 15 start-page: 53 issue: May 179 year: 2018 ident: 10.1016/j.critrevonc.2019.03.018_bib0055 article-title: Proteomic profiling of rectal cancer reveals acid ceramidase is implicated in radiation response publication-title: J. Proteomics doi: 10.1016/j.jprot.2018.02.030 – volume: 15 start-page: 541 issue: September (3) year: 1999 ident: 10.1016/j.critrevonc.2019.03.018_bib0225 article-title: Modification of ceramide metabolism increases cancer cell sensitivity to cytotoxics publication-title: Int. J. Oncol. – volume: 11 start-page: 799 issue: October (10) year: 2015 ident: 10.1016/j.critrevonc.2019.03.018_bib0040 article-title: LAPTM4B facilitates late endosomal ceramide export to control cell death pathways publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1889 – volume: 70 start-page: 387 issue: February (1) year: 2018 ident: 10.1016/j.critrevonc.2019.03.018_bib0410 article-title: The investigation of ceranib-2 on apoptosis and drug interaction with carboplatin in human non small cell lung cancer cells in vitro publication-title: Cytotechnology doi: 10.1007/s10616-017-0154-8 |
SSID | ssj0004467 |
Score | 2.4289744 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
Sphingolipids have been shown to play a key part in cancer cell growth and death and have increasingly become the subject of novel... Sphingolipids have been shown to play a key part in cancer cell growth and death and have increasingly become the subject of novel anti-cancer therapies. Acid... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 104 |
SubjectTerms | Acid ceramidase Cancer Sphingolipids |
Title | Sphingolipids and acid ceramidase as therapeutic targets in cancer therapy |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1040842818305079 https://dx.doi.org/10.1016/j.critrevonc.2019.03.018 https://www.ncbi.nlm.nih.gov/pubmed/31092365 https://www.proquest.com/docview/2232020366 |
Volume | 138 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iIF7Et_VRInhdu8_ExZMUpSrtpQreQnaSwIpuSx-CF3-7mSbbKigUPO5j2N3Zmckk-eYbQs41MrioNAtyw3SQQgFBwSAOoogzrQqlmMFq5G6PdZ7S--fseYW061oYhFX62O9i-ixa-zMtr83WsCxbfTuRCC9TZDOyNhtyLOJLU45WfvG5gHnY6Q53jARhgHd7NI_DeFnHnIz0-6BCMsPI0Z1i-4_fh6i_UtDZUHS7RTZ9Dkmv3WtukxVd7ZD1rt8l3yX3_SGuKw1ey2GpxlRWikooFQU9km-lsuMWlWP6rfKKOjz4mJYVBTSDkb_6sUeebm8e253A90wIIM35JIBcxoazQmcachPyOAZlM54UsPGXNJHJkoJFhcyldWUjFShgiZEZ06BCnRTJPlmtBpU-JJRLO7sxkY6MxoUi6-gmVuElmFxb9UloEF6rSYAnFMe-Fq-iRo69iIWCBSpYhImwCm6QaC45dKQaS8jk9Z8QddGoDXPCRv4lZK_msj-Ma0nps_rHC-t7uKEiKz2YjoVNreLZTi5rkANnEfPvQcbVOGHZ0b-efUw28Mhh007I6mQ01ac2C5oUzZmZN8na9d1Dp_cF2SsLJg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90gvoifjs_I_ha1s90xachyvzYXlTwLaSXBCrajW0K_vfm1nQqKAx8bXqkvdxdLrm73wGcaUJwUXHiZYZrL8YcvZxj6AVByrXKleKGqpF7fd59jG-ekqcFuKhrYSit0tn-yqZPrbV70nLcbA2LonVvDxJ-OyY0IyuzfpotwhKhUyUNWOpc33b7X-WR8bSRLL3vEYFL6KnSvKxuTkb6fVASnmFQIZ5SB5Dfd6m_vNDpbnS1DmvOjWSd6ks3YEGXm7Dcc4HyLbi5H9LV0uClGBZqzGSpmMRCMdQj-Voou3UxOWbfiq9YlRI-ZkXJkCRh5EY_tuHx6vLhouu5tgkexlk68TCToUl5rhONmfHTMERlnZ4YqfeXNIFJopwHucyk1WYjFSrkkZEJ16h8HeXRDjTKQan3gKXSHnBMoAOj6a7I6roJld9Gk2nLPolNSGs2CXSY4tTa4kXUyWPP4ovBghgs_EhYBjchmFEOK1yNOWiyeiVEXTdqLZ2wxn8O2vMZ7Q_5mpP6tF54YdWPYiqy1IO3sbDeVTgN5vIm7FYSMfsfAl0NI57s_2vuE1jpPvTuxN11__YAVmmkSlU7hMZk9KaPrFM0yY-d0H8C7h8N1w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sphingolipids+and+acid+ceramidase+as+therapeutic+targets+in+cancer+therapy&rft.jtitle=Critical+reviews+in+oncology%2Fhematology&rft.au=Govindarajah%2C+N.&rft.au=Clifford%2C+R.&rft.au=Bowden%2C+D.&rft.au=Sutton%2C+P.A.&rft.date=2019-06-01&rft.issn=1040-8428&rft.volume=138&rft.spage=104&rft.epage=111&rft_id=info:doi/10.1016%2Fj.critrevonc.2019.03.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_critrevonc_2019_03_018 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-8428&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-8428&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-8428&client=summon |