Sphingolipids and acid ceramidase as therapeutic targets in cancer therapy

[Display omitted] Sphingolipids have been shown to play a key part in cancer cell growth and death and have increasingly become the subject of novel anti-cancer therapies. Acid ceramidase, a sphingolipid enzyme, has an important role in the regulation of apoptosis. In this review we aim to assess th...

Full description

Saved in:
Bibliographic Details
Published inCritical reviews in oncology/hematology Vol. 138; pp. 104 - 111
Main Authors Govindarajah, N., Clifford, R., Bowden, D., Sutton, P.A., Parsons, J.L., Vimalachandran, D.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Sphingolipids have been shown to play a key part in cancer cell growth and death and have increasingly become the subject of novel anti-cancer therapies. Acid ceramidase, a sphingolipid enzyme, has an important role in the regulation of apoptosis. In this review we aim to assess the current evidence supporting the role of sphingolipids in cancer and the potential role that acid ceramidase may play in cancer treatment. A literature search was performed for published full text articles using the PubMed, Cochrane and Scopus databases using the search criteria string “acid ceramidase”, “sphingolipid”, “cancer”. Additional papers were detected by scanning the references of relevant papers. A summary of the evidence for each cancer subgroup was then formed. Given the nature of the data extracted, no meta-analysis was performed. Over expression of acid ceramidase has been demonstrated in a number of human cancers. In vitro data demonstrate that manipulation of acid ceramidase may present a useful therapeutic target. In the clinical setting, a number of drugs have been investigated with the ability to target acid ceramidase, with the most promising of those being small molecular inhibitors, such as LCL521. The role of the sphingolipid pathway in cancer is becoming very clearly established by promoting ceramide accumulation in response to cancer or cellular stress. Acid ceramidase is over expressed in a variety of cancers and has a role as a potential target for inhibition by novel specific inhibitors or off-target effects of traditional anti-cancer agents. Further work is required to develop acid ceramidase inhibitors safe for progression to clinical trials.
AbstractList Sphingolipids have been shown to play a key part in cancer cell growth and death and have increasingly become the subject of novel anti-cancer therapies. Acid ceramidase, a sphingolipid enzyme, has an important role in the regulation of apoptosis. In this review we aim to assess the current evidence supporting the role of sphingolipids in cancer and the potential role that acid ceramidase may play in cancer treatment.BACKGROUNDSphingolipids have been shown to play a key part in cancer cell growth and death and have increasingly become the subject of novel anti-cancer therapies. Acid ceramidase, a sphingolipid enzyme, has an important role in the regulation of apoptosis. In this review we aim to assess the current evidence supporting the role of sphingolipids in cancer and the potential role that acid ceramidase may play in cancer treatment.A literature search was performed for published full text articles using the PubMed, Cochrane and Scopus databases using the search criteria string "acid ceramidase", "sphingolipid", "cancer". Additional papers were detected by scanning the references of relevant papers. A summary of the evidence for each cancer subgroup was then formed. Given the nature of the data extracted, no meta-analysis was performed.METHODSA literature search was performed for published full text articles using the PubMed, Cochrane and Scopus databases using the search criteria string "acid ceramidase", "sphingolipid", "cancer". Additional papers were detected by scanning the references of relevant papers. A summary of the evidence for each cancer subgroup was then formed. Given the nature of the data extracted, no meta-analysis was performed.Over expression of acid ceramidase has been demonstrated in a number of human cancers. In vitro data demonstrate that manipulation of acid ceramidase may present a useful therapeutic target. In the clinical setting, a number of drugs have been investigated with the ability to target acid ceramidase, with the most promising of those being small molecular inhibitors, such as LCL521.RESULTSOver expression of acid ceramidase has been demonstrated in a number of human cancers. In vitro data demonstrate that manipulation of acid ceramidase may present a useful therapeutic target. In the clinical setting, a number of drugs have been investigated with the ability to target acid ceramidase, with the most promising of those being small molecular inhibitors, such as LCL521.The role of the sphingolipid pathway in cancer is becoming very clearly established by promoting ceramide accumulation in response to cancer or cellular stress. Acid ceramidase is over expressed in a variety of cancers and has a role as a potential target for inhibition by novel specific inhibitors or off-target effects of traditional anti-cancer agents. Further work is required to develop acid ceramidase inhibitors safe for progression to clinical trials.CONCLUSIONThe role of the sphingolipid pathway in cancer is becoming very clearly established by promoting ceramide accumulation in response to cancer or cellular stress. Acid ceramidase is over expressed in a variety of cancers and has a role as a potential target for inhibition by novel specific inhibitors or off-target effects of traditional anti-cancer agents. Further work is required to develop acid ceramidase inhibitors safe for progression to clinical trials.
[Display omitted] Sphingolipids have been shown to play a key part in cancer cell growth and death and have increasingly become the subject of novel anti-cancer therapies. Acid ceramidase, a sphingolipid enzyme, has an important role in the regulation of apoptosis. In this review we aim to assess the current evidence supporting the role of sphingolipids in cancer and the potential role that acid ceramidase may play in cancer treatment. A literature search was performed for published full text articles using the PubMed, Cochrane and Scopus databases using the search criteria string “acid ceramidase”, “sphingolipid”, “cancer”. Additional papers were detected by scanning the references of relevant papers. A summary of the evidence for each cancer subgroup was then formed. Given the nature of the data extracted, no meta-analysis was performed. Over expression of acid ceramidase has been demonstrated in a number of human cancers. In vitro data demonstrate that manipulation of acid ceramidase may present a useful therapeutic target. In the clinical setting, a number of drugs have been investigated with the ability to target acid ceramidase, with the most promising of those being small molecular inhibitors, such as LCL521. The role of the sphingolipid pathway in cancer is becoming very clearly established by promoting ceramide accumulation in response to cancer or cellular stress. Acid ceramidase is over expressed in a variety of cancers and has a role as a potential target for inhibition by novel specific inhibitors or off-target effects of traditional anti-cancer agents. Further work is required to develop acid ceramidase inhibitors safe for progression to clinical trials.
Sphingolipids have been shown to play a key part in cancer cell growth and death and have increasingly become the subject of novel anti-cancer therapies. Acid ceramidase, a sphingolipid enzyme, has an important role in the regulation of apoptosis. In this review we aim to assess the current evidence supporting the role of sphingolipids in cancer and the potential role that acid ceramidase may play in cancer treatment. A literature search was performed for published full text articles using the PubMed, Cochrane and Scopus databases using the search criteria string "acid ceramidase", "sphingolipid", "cancer". Additional papers were detected by scanning the references of relevant papers. A summary of the evidence for each cancer subgroup was then formed. Given the nature of the data extracted, no meta-analysis was performed. Over expression of acid ceramidase has been demonstrated in a number of human cancers. In vitro data demonstrate that manipulation of acid ceramidase may present a useful therapeutic target. In the clinical setting, a number of drugs have been investigated with the ability to target acid ceramidase, with the most promising of those being small molecular inhibitors, such as LCL521. The role of the sphingolipid pathway in cancer is becoming very clearly established by promoting ceramide accumulation in response to cancer or cellular stress. Acid ceramidase is over expressed in a variety of cancers and has a role as a potential target for inhibition by novel specific inhibitors or off-target effects of traditional anti-cancer agents. Further work is required to develop acid ceramidase inhibitors safe for progression to clinical trials.
Author Vimalachandran, D.
Bowden, D.
Govindarajah, N.
Sutton, P.A.
Clifford, R.
Parsons, J.L.
Author_xml – sequence: 1
  givenname: N.
  surname: Govindarajah
  fullname: Govindarajah, N.
  organization: Institute of Translational Medicine, The University of Liverpool, Liverpool, United Kingdom
– sequence: 2
  givenname: R.
  surname: Clifford
  fullname: Clifford, R.
  organization: Institute of Translational Medicine, The University of Liverpool, Liverpool, United Kingdom
– sequence: 3
  givenname: D.
  orcidid: 0000-0002-1129-832X
  surname: Bowden
  fullname: Bowden, D.
  organization: Institute of Translational Medicine, The University of Liverpool, Liverpool, United Kingdom
– sequence: 4
  givenname: P.A.
  surname: Sutton
  fullname: Sutton, P.A.
  organization: Institute of Translational Medicine, The University of Liverpool, Liverpool, United Kingdom
– sequence: 5
  givenname: J.L.
  surname: Parsons
  fullname: Parsons, J.L.
  organization: Institute of Translational Medicine, The University of Liverpool, Liverpool, United Kingdom
– sequence: 6
  givenname: D.
  surname: Vimalachandran
  fullname: Vimalachandran, D.
  email: dale.vimalachandran@nhs.net
  organization: Institute of Translational Medicine, The University of Liverpool, Liverpool, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31092365$$D View this record in MEDLINE/PubMed
BookMark eNqNkE1v1DAQQC1URD__AsqRS1J_ZJ3kgoAKCqgSB-BsTcaTdpasE2xvpf33pNqtkHrak235zbP8zsVJmAIJUShZKans9brCyDnS4xSw0lJ1lTSVVO0rcabapitlbdXJspe1LNtat6fiPKW1lLKubfNGnBolO23s6kx8_zk_cLifRp7ZpwKCLwDZF0gRNuwhUQGpyA_LcaZtZiwyxHvKqeBQIISFO9zuLsXrAcZEV4f1Qvz-8vnXzdfy7sftt5uPdyXWXZNL7EAPje1pRdgNstEafV2rGpE0wKCGlemt6qGD1ugBPHq0ZoCVJfSSTG8uxLu9d47T3y2l7DackMYRAk3b5LQ2WmpprF3Qtwd022_IuznyBuLOPf9_Ad7vAYxTSpEGh5wh8xRyBB6dku4puFu7_8HdU3AnjVuCL4L2heD5jSNGP-1HaYn1yBRdQqalqOdImJ2f-BjJhxcSHDkwwviHdscp_gHuC7mt
CitedBy_id crossref_primary_10_1016_j_ajpath_2020_04_001
crossref_primary_10_1016_j_psj_2020_08_052
crossref_primary_10_1111_cpr_13700
crossref_primary_10_1002_adtp_202300275
crossref_primary_10_1186_s13046_025_03307_9
crossref_primary_10_1186_s40170_020_00237_2
crossref_primary_10_3390_cancers14092051
crossref_primary_10_1124_molpharm_123_000786
crossref_primary_10_1155_2022_6711085
crossref_primary_10_1016_j_prostaglandins_2020_106484
crossref_primary_10_1016_j_leukres_2021_106585
crossref_primary_10_3390_ijms232315317
crossref_primary_10_1016_j_suronc_2020_02_006
crossref_primary_10_3389_fonc_2022_820173
crossref_primary_10_3390_ijms22031209
crossref_primary_10_3390_md21040206
crossref_primary_10_3390_biom11070945
crossref_primary_10_1134_S1022795422010070
crossref_primary_10_3390_cells9122693
crossref_primary_10_3390_jof6040312
crossref_primary_10_3390_cancers15245866
crossref_primary_10_1016_j_cellsig_2024_111099
crossref_primary_10_3390_cancers14092183
crossref_primary_10_1111_cas_15123
crossref_primary_10_3389_fonc_2022_991051
crossref_primary_10_1002_ardp_202300245
crossref_primary_10_3390_ijms23169105
crossref_primary_10_7554_eLife_83073
Cites_doi 10.1002/ijc.30171
10.1042/bj3350465
10.1158/1078-0432.CCR-07-0932
10.1016/S0009-3084(99)00085-7
10.1074/jbc.274.15.10654
10.1016/j.bbalip.2008.06.002
10.1038/mt.2008.281
10.1016/j.bbalip.2013.12.013
10.1016/j.pharmthera.2018.10.011
10.1016/j.bbrc.2018.06.085
10.1194/jlr.M032375
10.1126/science.8456305
10.1016/0005-2760(75)90176-9
10.1242/jcs.111.21.3209
10.1016/j.bbalip.2005.04.001
10.1074/jbc.M115.666909
10.1074/jbc.271.21.12646
10.1016/j.cellsig.2017.03.002
10.1038/pcan.2010.47
10.1016/j.yexcr.2007.02.009
10.1097/PGP.0b013e3182673982
10.1038/sj.mt.6300167
10.3892/ijo.2013.2132
10.1016/j.bbamem.2015.07.013
10.1158/1078-0432.CCR-11-0930
10.1007/s10549-011-1768-8
10.1172/JCI64791
10.1038/s41598-017-07606-w
10.1016/j.bbalip.2015.05.001
10.1093/jjco/hyi147
10.1074/jbc.M303310200
10.1074/jbc.M100314200
10.1038/srep01035
10.5732/cjc.012.10236
10.1038/381800a0
10.1002/bjs.1800830313
10.1158/0008-5472.CAN-10-2493
10.1074/jbc.M113.494740
10.1126/science.279.5356.1552
10.1016/j.cellsig.2010.04.006
10.1158/1078-0432.CCR-12-0339
10.1038/nrc1411
10.1038/nrc.2017.96
10.3892/or.2017.5855
10.1016/j.chroma.2016.12.033
10.1002/cbic.200600533
10.1038/sj.onc.1209568
10.1038/nrm.2017.107
10.1111/j.1349-7006.1991.tb01873.x
10.1016/j.ejca.2015.10.056
10.1006/geno.1999.5940
10.18632/oncotarget.13079
10.2217/fon.10.116
10.1007/s11626-015-9932-9
10.1166/jnn.2009.1096
10.1016/j.febslet.2006.08.052
10.1002/pros.21321
10.1021/bi002836k
10.1096/fj.09-135087
10.1158/0008-5472.CAN-10-2043
10.1158/1535-7163.MCT-11-0365
10.18632/oncotarget.15800
10.1038/sj.onc.1209834
10.1016/j.molonc.2014.07.016
10.1097/CAD.0000000000000566
10.2174/156800912801784811
10.1016/0092-8674(95)90429-8
10.18632/oncotarget.22637
10.1074/jbc.270.19.11098
10.1074/jbc.M706115200
10.1080/15257771003730193
10.1006/bbrc.2001.5045
10.1016/j.cell.2012.01.038
10.1016/j.jprot.2018.02.030
10.1038/nchembio.1889
10.1007/s10616-017-0154-8
ContentType Journal Article
Copyright 2019
Copyright © 2019. Published by Elsevier B.V.
Copyright_xml – notice: 2019
– notice: Copyright © 2019. Published by Elsevier B.V.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.critrevonc.2019.03.018
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0461
EndPage 111
ExternalDocumentID 31092365
10_1016_j_critrevonc_2019_03_018
S1040842818305079
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4CK
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABLJU
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HED
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OC~
OO-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SEL
SES
SEW
SSH
SSZ
T5K
UDS
W2D
WUQ
Z5R
~G-
AACTN
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
AAYXX
AGRNS
CITATION
NPM
7X8
ID FETCH-LOGICAL-c497t-c9a2f76be5ec9f0722cd4414cce2aaf1f53b61ba9a832fadcdc63fa56ecd0e3b3
IEDL.DBID .~1
ISSN 1040-8428
1879-0461
IngestDate Fri Jul 11 09:01:58 EDT 2025
Wed Feb 19 02:34:55 EST 2025
Thu Apr 24 22:52:37 EDT 2025
Tue Jul 01 04:00:00 EDT 2025
Fri Feb 23 02:14:34 EST 2024
Tue Aug 26 16:33:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Acid ceramidase
Sphingolipids
Cancer
Language English
License Copyright © 2019. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-c9a2f76be5ec9f0722cd4414cce2aaf1f53b61ba9a832fadcdc63fa56ecd0e3b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1129-832X
PMID 31092365
PQID 2232020366
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2232020366
pubmed_primary_31092365
crossref_citationtrail_10_1016_j_critrevonc_2019_03_018
crossref_primary_10_1016_j_critrevonc_2019_03_018
elsevier_sciencedirect_doi_10_1016_j_critrevonc_2019_03_018
elsevier_clinicalkey_doi_10_1016_j_critrevonc_2019_03_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Critical reviews in oncology/hematology
PublicationTitleAlternate Crit Rev Oncol Hematol
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chipuk, McStay, Bharti, Kuwana, Clarke, Siskind (bib0080) 2012; 148
Baspinar, Ozyurt, Kus, Kutlay, Ozkurt, Erkasap (bib0015) 2017; 118
Mao, Obeid (bib0235) 2008; 1781
Ramírez de Molina, de la Cueva, Machado-Pinilla, Rodriguez-Fanjul, Gomez del Pulgar, Cebrian (bib0325) 2012; 12
FARBER (bib0120) 1952; 84
Hannun, Obeid (bib0160) 2018; 19
Perry, Ridgway (bib0310) 2005; 1734
Takeda, Tashima, Takahashi, Uchiyama, Okazaki (bib0380) 1999; 274
Levade, Andrieu-Abadie, Ségui, Augé, Chatelut, Jaffrézou (bib0215) 1999; 102
Zorniak, Clark, Leeper, Tipping, Francis, Kozak (bib0435) 2012; 18
Yamamoto, Arii, Sugahara, Tobe (bib0405) 1996; 83
Draper, Xia, Smith, Zhuang, Wang, Smith (bib0105) 2011; 10
Ogretmen (bib0285) 2018; 18
Ogretmen, Hannun (bib0290) 2004; 4
Separovic, Breen, Boppana, Van Buren, Joseph, Kraveka (bib0365) 2013; 43
Cheng, Bai, Beckham, Marrison, Yount, Young (bib0075) 2013; 123
Bernardo, Hurwitz, Zenk, Desnick, Ferlinz, Schuchman (bib0030) 1995; 270
Giovannetti, Leon, Bertini, Macchia, Minutolo, Funel, Alecci, Giancola, Danesi, Peters (bib0135) 2010; 29
Young, Van Brocklyn (bib0415) 2007; 313
Bedia, Casas, Garcia, Levade, Fabriàs (bib0020) 2007; 8
Vethakanraj, Sesurajan, Padmanaban, Jayaprakasam, Murali, Sekar (bib0400) 2018; 29
Morimoto, Koh (bib0265) 2003; 49
Chang, Anishkin, Patwardhan, Beverly, Siskind, Colombini (bib0070) 2015; 1848
Abuhusain, Matin, Qiao, Shen, Kain, Day (bib0005) 2013; 288
Doan, Nguyen, Montoure, Al-Gizawiy, Mueller, Kurpad (bib0095) 2017; 8
Siskind, Feinstein, Yu, Davis, Jones, Choi (bib0370) 2008; 283
Mesicek, Lee, Feldman, Jiang, Skobeleva, Berdyshev (bib0245) 2010; 22
Cuvillier, Pirianov, Kleuser, Vanek, Coso, Gutkind (bib0085) 1996; 381
Qiu, Shen, Chen, Yang, Guo, Feng, Chen (bib0320) 2014; 33
Flowers, Fabriás, Delgado, Casas, Abad, Cabot (bib0125) 2012; 133
Bonnaud, Niaudet, Legoux, Corre, Delpon, Saulquin (bib0045) 2010; 70
Sugita, Willians, Dulaney, Moser (bib0375) 1975; 398
Grassmé, Schwarz, Gulbins (bib0150) 2001; 284
Blom, Li, Dichlberger, Bäck, Kim, Loizides-Mangold (bib0040) 2015; 11
Sakamoto, Hamada, Rahman, Kodaira, Ito, Nakazato (bib0350) 2005; 35
Mahdy, Cheng, Li, Elojeimy, Meacham, Turner (bib0230) 2009; 17
Bose, Verheij, Haimovitz-Friedman, Scotto, Fuks, Kolesnick (bib0050) 1995; 82
Gatt (bib0130) 1963; 238
Turner, Cheng, Beckham, Keane, Norris, Liu (bib0395) 2011; 14
Korbelik, Banáth, Zhang, Saw, Szulc, Bielawska (bib0190) 2016; 139
Lucci, Han, Liu, Giuliano, Cabot (bib0225) 1999; 15
Doan, Alhajala, Al-Gizawiy, Mueller, Rand, Connelly (bib0090) 2017; 8
Zeppernick, Ahmadi, Campos, Dictus, Helmke, Becker (bib0425) 2008; 14
Lee, Van Brocklyn, Thangada, Liu, Hand, Menzeleev, Spiegel (bib0210) 1998; 279
Bielawska, Greenberg, Perry, Jayadev, Shayman, McKay (bib0035) 1996; 271
Bowden, Sutton, Wall, Jithesh, Jenkins, Palmer (bib0055) 2018; 15
Elojeimy, Liu, McKillop, El-Zawahry, Holman, Cheng (bib0115) 2007; 15
Morales, París, Villanueva, Llacuna, García-Ruiz, Fernández-Checa (bib0260) 2007; 26
Lai, Realini, La Ferla, Passalacqua, Matteoli, Ganesan (bib0205) 2017; 7
Camacho, Meca-Cortés, Abad, García, Rubio, Díaz, Celià-Terrassa, Cingolani, Bermudo, Fernández, Blanco, Delgado, Casas, Fabriàs, Thomson (bib0065) 2013; 54
Doan, Nguyen, Al-Gizawiy, Mueller, Sabbadini, Rand (bib0100) 2017; 38
Saddoughi, Garrett-Mayer, Chaudhary, O’Brien, Afrin, Day (bib0345) 2011; 17
Bedia, Casas, Andrieu-Abadie, Fabriàs, Levade (bib0025) 2011; 286
Ponnusamy, Meyers-Needham, Senkal, Saddoughi, Sentelle, Selvam (bib0315) 2010; 6
Zheng, Li, Ren, Liu, Pang, Chen, Kang, Du (bib0430) 2019; 195
Miyazaki, Tabata (bib0250) 2009; 9
Kubota, Fujita, Kodaira, Yamamoto, Josui, Arisawa (bib0195) 1991; 82
Kus, Kabadere, Uyar, Kutlu (bib0200) 2015; 51
Sänger, Ruckhäberle, Györffy, Engels, Heinrich, Fehm (bib0355) 2015; 9
Okino, He, Gatt, Sandhoff, Ito, Schuchman (bib0300) 2003; 278
Bai, Mao, Jenkins, Szulc, Bielawska, Hannun (bib0010) 2017; 12
Hu, Yang, Zimmerman, Liu, Yang, Kannan (bib0175) 2011; 71
Mathias, Peña, Kolesnick (bib0240) 1998; 335
Patmanathan, Wang, Yap, Herr, Paterson (bib0305) 2017; 34
Roh, Park, Kim, Jang (bib0340) 2016; 52
Yu RK (bib0420) 2009
Yildiz-Ozer, Oztopcu-Vatan, Kus (bib0410) 2018; 70
Gouazé-Andersson, Flowers, Karimi, Fabriás, Delgado, Casas (bib0145) 2011; 71
Hannun, Luberto, Argraves (bib0165) 2001; 40
Truman, García-Barros, Obeid, Hannun (bib0390) 2014; 1841
Holman, Turner, El-Zawahry, Elojeimy, Liu, Bielawski (bib0170) 2008; 61
Goldkorn, Balaban, Shannon, Chea, Matsukuma, Gilchrist, Wang, Chan (bib0140) 1998; 111
Hanker, Karn, Holtrich, Gätje, Rody, Heinrich (bib0155) 2013; 32
Ogretmen (bib0280) 2006; 580
Li, Park, He, Levy, Chen, Arai (bib0220) 1999; 62
Realini, Solorzano, Pagliuca, Pizzirani, Armirotti, Luciani (bib0330) 2013; 3
Klobučar, Grbčić, Pavelić, Jonjić, Visentin, Sedić (bib0180) 2018; 503
Ogretmen, Schady, Usta, Wood, Kraveka, Luberto (bib0295) 2001; 276
Korbelik, Banáth, Zhang, Saw, Szulc, Bielawska (bib0185) 2016; 139
Camacho, Meca-Cortés, Abad, García, Rubio, Díaz (bib0060) 2013; 54
Tan, Liu, Fox, Barth, Sharma, Turner (bib0385) 2016; 7
Dumitru, Gulbins (bib0110) 2006; 25
Obeid, Linardic, Karolak, Hannun (bib0275) 1993; 259
Senkal, Ponnusamy, Bielawski, Hannun, Ogretmen (bib0360) 2010; 24
Realini, Palese, Pizzirani, Pontis, Basit, Bach (bib0335) 2016; 291
Mühle, Kornhuber (bib0270) 2017; 20
Morad, Cabot (bib0255) 2015; 1851
Gatt (10.1016/j.critrevonc.2019.03.018_bib0130) 1963; 238
Lucci (10.1016/j.critrevonc.2019.03.018_bib0225) 1999; 15
Dumitru (10.1016/j.critrevonc.2019.03.018_bib0110) 2006; 25
Li (10.1016/j.critrevonc.2019.03.018_bib0220) 1999; 62
Perry (10.1016/j.critrevonc.2019.03.018_bib0310) 2005; 1734
Doan (10.1016/j.critrevonc.2019.03.018_bib0100) 2017; 38
Morimoto (10.1016/j.critrevonc.2019.03.018_bib0265) 2003; 49
Ogretmen (10.1016/j.critrevonc.2019.03.018_bib0280) 2006; 580
Vethakanraj (10.1016/j.critrevonc.2019.03.018_bib0400) 2018; 29
Cuvillier (10.1016/j.critrevonc.2019.03.018_bib0085) 1996; 381
Saddoughi (10.1016/j.critrevonc.2019.03.018_bib0345) 2011; 17
Qiu (10.1016/j.critrevonc.2019.03.018_bib0320) 2014; 33
Yu RK (10.1016/j.critrevonc.2019.03.018_bib0420) 2009
Klobučar (10.1016/j.critrevonc.2019.03.018_bib0180) 2018; 503
Takeda (10.1016/j.critrevonc.2019.03.018_bib0380) 1999; 274
Realini (10.1016/j.critrevonc.2019.03.018_bib0330) 2013; 3
Yamamoto (10.1016/j.critrevonc.2019.03.018_bib0405) 1996; 83
Doan (10.1016/j.critrevonc.2019.03.018_bib0090) 2017; 8
Chipuk (10.1016/j.critrevonc.2019.03.018_bib0080) 2012; 148
Hu (10.1016/j.critrevonc.2019.03.018_bib0175) 2011; 71
Separovic (10.1016/j.critrevonc.2019.03.018_bib0365) 2013; 43
Bose (10.1016/j.critrevonc.2019.03.018_bib0050) 1995; 82
Levade (10.1016/j.critrevonc.2019.03.018_bib0215) 1999; 102
Korbelik (10.1016/j.critrevonc.2019.03.018_bib0185) 2016; 139
Bowden (10.1016/j.critrevonc.2019.03.018_bib0055) 2018; 15
Doan (10.1016/j.critrevonc.2019.03.018_bib0095) 2017; 8
Ogretmen (10.1016/j.critrevonc.2019.03.018_bib0295) 2001; 276
Yildiz-Ozer (10.1016/j.critrevonc.2019.03.018_bib0410) 2018; 70
Turner (10.1016/j.critrevonc.2019.03.018_bib0395) 2011; 14
Hannun (10.1016/j.critrevonc.2019.03.018_bib0160) 2018; 19
Bedia (10.1016/j.critrevonc.2019.03.018_bib0025) 2011; 286
Sugita (10.1016/j.critrevonc.2019.03.018_bib0375) 1975; 398
Blom (10.1016/j.critrevonc.2019.03.018_bib0040) 2015; 11
Mathias (10.1016/j.critrevonc.2019.03.018_bib0240) 1998; 335
Korbelik (10.1016/j.critrevonc.2019.03.018_bib0190) 2016; 139
Tan (10.1016/j.critrevonc.2019.03.018_bib0385) 2016; 7
Mao (10.1016/j.critrevonc.2019.03.018_bib0235) 2008; 1781
Ramírez de Molina (10.1016/j.critrevonc.2019.03.018_bib0325) 2012; 12
Bonnaud (10.1016/j.critrevonc.2019.03.018_bib0045) 2010; 70
FARBER (10.1016/j.critrevonc.2019.03.018_bib0120) 1952; 84
Camacho (10.1016/j.critrevonc.2019.03.018_bib0065) 2013; 54
Abuhusain (10.1016/j.critrevonc.2019.03.018_bib0005) 2013; 288
Sakamoto (10.1016/j.critrevonc.2019.03.018_bib0350) 2005; 35
Elojeimy (10.1016/j.critrevonc.2019.03.018_bib0115) 2007; 15
Gouazé-Andersson (10.1016/j.critrevonc.2019.03.018_bib0145) 2011; 71
Miyazaki (10.1016/j.critrevonc.2019.03.018_bib0250) 2009; 9
Morad (10.1016/j.critrevonc.2019.03.018_bib0255) 2015; 1851
Realini (10.1016/j.critrevonc.2019.03.018_bib0335) 2016; 291
Siskind (10.1016/j.critrevonc.2019.03.018_bib0370) 2008; 283
Lee (10.1016/j.critrevonc.2019.03.018_bib0210) 1998; 279
Flowers (10.1016/j.critrevonc.2019.03.018_bib0125) 2012; 133
Zheng (10.1016/j.critrevonc.2019.03.018_bib0430) 2019; 195
Mahdy (10.1016/j.critrevonc.2019.03.018_bib0230) 2009; 17
Bielawska (10.1016/j.critrevonc.2019.03.018_bib0035) 1996; 271
Morales (10.1016/j.critrevonc.2019.03.018_bib0260) 2007; 26
Draper (10.1016/j.critrevonc.2019.03.018_bib0105) 2011; 10
Ponnusamy (10.1016/j.critrevonc.2019.03.018_bib0315) 2010; 6
Ogretmen (10.1016/j.critrevonc.2019.03.018_bib0290) 2004; 4
Cheng (10.1016/j.critrevonc.2019.03.018_bib0075) 2013; 123
Lai (10.1016/j.critrevonc.2019.03.018_bib0205) 2017; 7
Hannun (10.1016/j.critrevonc.2019.03.018_bib0165) 2001; 40
Zeppernick (10.1016/j.critrevonc.2019.03.018_bib0425) 2008; 14
Mühle (10.1016/j.critrevonc.2019.03.018_bib0270) 2017; 20
Zorniak (10.1016/j.critrevonc.2019.03.018_bib0435) 2012; 18
Bai (10.1016/j.critrevonc.2019.03.018_bib0010) 2017; 12
Roh (10.1016/j.critrevonc.2019.03.018_bib0340) 2016; 52
Ogretmen (10.1016/j.critrevonc.2019.03.018_bib0285) 2018; 18
Camacho (10.1016/j.critrevonc.2019.03.018_bib0060) 2013; 54
Giovannetti (10.1016/j.critrevonc.2019.03.018_bib0135) 2010; 29
Grassmé (10.1016/j.critrevonc.2019.03.018_bib0150) 2001; 284
Kus (10.1016/j.critrevonc.2019.03.018_bib0200) 2015; 51
Baspinar (10.1016/j.critrevonc.2019.03.018_bib0015) 2017; 118
Okino (10.1016/j.critrevonc.2019.03.018_bib0300) 2003; 278
Goldkorn (10.1016/j.critrevonc.2019.03.018_bib0140) 1998; 111
Kubota (10.1016/j.critrevonc.2019.03.018_bib0195) 1991; 82
Senkal (10.1016/j.critrevonc.2019.03.018_bib0360) 2010; 24
Hanker (10.1016/j.critrevonc.2019.03.018_bib0155) 2013; 32
Truman (10.1016/j.critrevonc.2019.03.018_bib0390) 2014; 1841
Sänger (10.1016/j.critrevonc.2019.03.018_bib0355) 2015; 9
Obeid (10.1016/j.critrevonc.2019.03.018_bib0275) 1993; 259
Patmanathan (10.1016/j.critrevonc.2019.03.018_bib0305) 2017; 34
Bedia (10.1016/j.critrevonc.2019.03.018_bib0020) 2007; 8
Young (10.1016/j.critrevonc.2019.03.018_bib0415) 2007; 313
Bernardo (10.1016/j.critrevonc.2019.03.018_bib0030) 1995; 270
Chang (10.1016/j.critrevonc.2019.03.018_bib0070) 2015; 1848
Holman (10.1016/j.critrevonc.2019.03.018_bib0170) 2008; 61
Mesicek (10.1016/j.critrevonc.2019.03.018_bib0245) 2010; 22
References_xml – volume: 284
  start-page: 1016
  year: 2001
  end-page: 1030
  ident: bib0150
  article-title: Molecular mechanisms of ceramide-mediated CD95 clustering
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 10
  start-page: 2052
  year: 2011
  end-page: 2061
  ident: bib0105
  article-title: Discovery and evaluation of inhibitors of human ceramidase
  publication-title: Mol. Cancer Ther.
– volume: 580
  start-page: 5467
  year: 2006
  end-page: 5476
  ident: bib0280
  article-title: Sphingolipids in cancer: regulation of pathogenesis and therapy
  publication-title: FEBS Lett.
– volume: 286
  year: 2011
  ident: bib0025
  article-title: Acid ceramidase expression modulates the sensitivity of A375 melanoma cells to dacarbazine
  publication-title: J. Biol. Chem.
– volume: 288
  start-page: 37355
  year: 2013
  end-page: 37364
  ident: bib0005
  article-title: A metabolic shift favoring sphingosine 1-phosphate at the expense of ceramide controls glioblastoma angiogenesis
  publication-title: J. Biol. Chem.
– volume: 12
  start-page: 617
  year: 2012
  end-page: 624
  ident: bib0325
  article-title: Acid ceramidase as a chemotherapeutic target to overcome resistance to the antitumoral effect of choline kinase α inhibition
  publication-title: Curr. Cancer Drug Targets
– volume: 14
  start-page: 123
  year: 2008
  end-page: 129
  ident: bib0425
  article-title: Stem cell marker CD133 affects clinical outcome in glioma patients
  publication-title: Clin. Cancer Res.
– volume: 18
  start-page: 33
  year: 2018
  end-page: 50
  ident: bib0285
  article-title: Sphingolipid metabolism in cancer signalling and therapy
  publication-title: Nat. Rev. Cancer
– volume: 32
  start-page: 249
  year: 2013
  end-page: 257
  ident: bib0155
  article-title: Acid ceramidase (AC)--a key enzyme of sphingolipid metabolism--correlates with better prognosis in epithelial ovarian cancer
  publication-title: Int. J. Gynecol. Pathol.
– volume: 139
  start-page: 1372
  year: 2016
  end-page: 1378
  ident: bib0185
  article-title: Interaction of acid ceramidase inhibitor LCL521 with tumor response to photodynamic therapy and photodynamic therapy-generated vaccine
  publication-title: Int. J. Cancer
– volume: 25
  start-page: 5612
  year: 2006
  end-page: 5625
  ident: bib0110
  article-title: TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis
  publication-title: Oncogene
– volume: 29
  start-page: 419
  year: 2010
  end-page: 426
  ident: bib0135
  article-title: Study of apoptosis induction and deoxycytidine kinase/cytidine deaminase modulation in the synergistic interaction of a novel ceramide analog and gemcitabine in pancreatic cancer cells
  publication-title: Nucleosides Nucleotides Nucleic Acids
– volume: 139
  start-page: 1372
  year: 2016
  end-page: 1378
  ident: bib0190
  article-title: Interaction of acid ceramidase inhibitor LCL521 with tumor response to photodynamic therapy and photodynamic therapy-generated vaccine
  publication-title: Int. J. Cancer
– volume: 8
  start-page: 642
  year: 2007
  end-page: 648
  ident: bib0020
  article-title: Synthesis of a novel ceramide analogue and its use in a high‐throughput fluorogenic assay for ceramidases
  publication-title: ChemBioChem
– volume: 278
  start-page: 29948
  year: 2003
  end-page: 29953
  ident: bib0300
  article-title: The reverse activity of human acid ceramidase
  publication-title: J. Biol. Chem.
– volume: 15
  start-page: 53
  year: 2018
  end-page: 60
  ident: bib0055
  article-title: Proteomic profiling of rectal cancer reveals acid ceramidase is implicated in radiation response
  publication-title: J. Proteomics
– volume: 54
  start-page: 1207
  year: 2013
  end-page: 1220
  ident: bib0060
  article-title: Acid ceramidase as a therapeutic target in metastatic prostate cancer
  publication-title: J. Lipid Res.
– volume: 1841
  start-page: 1174
  year: 2014
  end-page: 1188
  ident: bib0390
  article-title: Evolving concepts in cancer therapy through targeting sphingolipid metabolism
  publication-title: Biochim. Biophys. Acta
– volume: 259
  start-page: 1769
  year: 1993
  end-page: 1771
  ident: bib0275
  article-title: Programmed cell death induced by ceramide
  publication-title: Science
– volume: 17
  start-page: 6097
  year: 2011
  end-page: 6105
  ident: bib0345
  article-title: Results of a phase II trial of gemcitabine plus doxorubicin in patients with recurrent head and neck cancers: serum C₁₈-ceramide as a novel biomarker for monitoring response
  publication-title: Clin. Cancer Res.
– volume: 503
  start-page: 843
  year: 2018
  end-page: 848
  ident: bib0180
  article-title: Acid ceramidase inhibition sensitizes human colon cancer cells to oxaliplatin through downregulation of transglutaminase 2 and β1 integrin/FAK-mediated signalling
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 70
  start-page: 9905
  year: 2010
  end-page: 9915
  ident: bib0045
  article-title: Sphingosine-1-phosphate activates the AKT pathway to protect small intestines from radiation-induced endothelial apoptosis
  publication-title: Cancer Res.
– volume: 71
  start-page: 1064
  year: 2011
  end-page: 1073
  ident: bib0145
  article-title: Inhibition of acid ceramidase by a 2-substituted aminoethanol amide synergistically sensitizes prostate cancer cells to N-(4-hydroxyphenyl) retinamide
  publication-title: Prostate
– volume: 26
  start-page: 905
  year: 2007
  end-page: 916
  ident: bib0260
  article-title: Pharmacological inhibition or small interfering RNA targeting acid ceramidase sensitizes hepatoma cells to chemotherapy and reduces tumor growth in vivo
  publication-title: Oncogene
– volume: 4
  start-page: 604
  year: 2004
  end-page: 616
  ident: bib0290
  article-title: Biologically active sphingolipids in cancer pathogenesis and treatment
  publication-title: Nat. Rev. Cancer
– volume: 71
  start-page: 2882
  year: 2011
  end-page: 2891
  ident: bib0175
  article-title: IRF8 regulates acid ceramidase expression to mediate apoptosis and suppresses myelogeneous leukemia
  publication-title: Cancer Res.
– volume: 118
  start-page: 391
  year: 2017
  end-page: 393
  ident: bib0015
  article-title: Effects of ceranib-2 on cell survival and TNF-alpha in colon cancer cell line
  publication-title: Bratisl Lek Listy.
– volume: 34
  start-page: 66
  year: 2017
  end-page: 75
  ident: bib0305
  article-title: Mechanisms of sphingosine 1-phosphate receptor signalling in cancer
  publication-title: Cell. Signal.
– volume: 195
  start-page: 85
  year: 2019
  end-page: 99
  ident: bib0430
  article-title: The sphingosine kinase-1/sphingosine-1-phosphate axis in cancer: potential target for anticancer therapy
  publication-title: Pharmacol. Ther.
– volume: 82
  start-page: 476
  year: 1991
  end-page: 482
  ident: bib0195
  article-title: Antitumor activity of fluoropyrimidines and thymidylate synthetase inhibition
  publication-title: Jpn. J. Cancer Res.
– volume: 398
  start-page: 125
  year: 1975
  end-page: 131
  ident: bib0375
  article-title: Ceramidase and ceramide synthesis in human kidney and cerebellum. Description of a new alkaline ceramidase
  publication-title: Biochim. Biophys. Acta
– volume: 271
  start-page: 12646
  year: 1996
  end-page: 12654
  ident: bib0035
  article-title: (1S,2R)-D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol as an inhibitor of ceramidase
  publication-title: J. Biol. Chem.
– volume: 8
  start-page: 24753
  year: 2017
  end-page: 24761
  ident: bib0095
  article-title: Acid ceramidase is a novel drug target for pediatric brain tumors
  publication-title: Oncotarget
– volume: 15
  start-page: 1259
  year: 2007
  end-page: 1263
  ident: bib0115
  article-title: Role of acid ceramidase in resistance to FasL: therapeutic approaches based on acid ceramidase inhibitors and FasL gene therapy
  publication-title: Mol. Ther.
– volume: 84
  start-page: 499
  year: 1952
  end-page: 500
  ident: bib0120
  article-title: A lipid metabolic disorder: disseminated lipogranulomatosis; a syndrome with similarity to, and important difference from, Niemann-Pick and Hand-Schüller-Christian disease
  publication-title: AMA Am. J. Dis. Child.
– volume: 33
  start-page: 115
  year: 2014
  end-page: 122
  ident: bib0320
  article-title: Enhanced MGMT expressioncontributes to temozolomide resistance in glioma stem-like cells
  publication-title: Chin. J. Cancer
– volume: 1848
  start-page: 2374
  year: 2015
  end-page: 2384
  ident: bib0070
  article-title: Ceramide channels: destabilization by Bcl-xL and role in apoptosis
  publication-title: Biochim. Biophys. Acta
– volume: 291
  start-page: 2422
  year: 2016
  end-page: 2434
  ident: bib0335
  article-title: Acid ceramidase in melanoma: expression, localization, and effects of pharmacological inhibition
  publication-title: J. Biol. Chem.
– volume: 238
  year: 1963
  ident: bib0130
  article-title: Enzymic hydrolysis and synthesis of ceramides
  publication-title: J. Biol. Chem.
– volume: 335
  start-page: 465
  year: 1998
  end-page: 480
  ident: bib0240
  article-title: Signal transduction of stress via ceramide
  publication-title: Biochem. J.
– volume: 313
  start-page: 1615
  year: 2007
  end-page: 1627
  ident: bib0415
  article-title: Roles of sphingosine-1-phosphate (S1P) receptors in malignant behavior of glioma cells. Differential effects of S1P2 on cell migration and invasiveness
  publication-title: Exp. Cell Res.
– volume: 54
  start-page: 1207
  year: 2013
  end-page: 1220
  ident: bib0065
  article-title: Acid ceramidase as a therapeutic target in metastatic prostate cancer
  publication-title: J. Lipid Res.
– volume: 62
  start-page: 223
  year: 1999
  end-page: 231
  ident: bib0220
  article-title: The human acid ceramidase gene (ASAH): structure, chromosomal location, mutation analysis, and expression
  publication-title: Genomics
– volume: 29
  start-page: 50
  year: 2018
  end-page: 60
  ident: bib0400
  article-title: Anticancer effect of acid ceramidase inhibitor ceranib-2 in human breast cancer cell lines MCF-7, MDA MB-231 by the activation of SAPK/JNK, p38 MAPK apoptotic pathways, inhibition of the Akt pathway, downregulation of ERα
  publication-title: Anticancer Drugs
– volume: 1851
  start-page: 1134
  year: 2015
  end-page: 1145
  ident: bib0255
  article-title: Tamoxifen regulation of sphingolipid metabolism--therapeutic implications
  publication-title: Biochim. Biophys. Acta
– volume: 148
  start-page: 988
  year: 2012
  end-page: 1000
  ident: bib0080
  article-title: Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis
  publication-title: Cell
– volume: 274
  start-page: 10654
  year: 1999
  end-page: 10660
  ident: bib0380
  article-title: Ceramide generation in nitric oxide-induced apoptosis. Activation of magnesium-dependent neutral sphingomyelinase via caspase-3
  publication-title: J. Biol. Chem.
– volume: 6
  start-page: 1603
  year: 2010
  end-page: 1624
  ident: bib0315
  article-title: Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance
  publication-title: Future Oncol.
– volume: 3
  start-page: 1035
  year: 2013
  ident: bib0330
  article-title: Discovery of highly potent acid ceramidase inhibitors with in vitro tumor chemosensitizing activity
  publication-title: Sci. Rep.
– volume: 123
  start-page: 4344
  year: 2013
  end-page: 4358
  ident: bib0075
  article-title: Radiation-induced acid ceramidase confers prostate cancer resistance and tumor relapse
  publication-title: J. Clin. Invest.
– volume: 82
  start-page: 405
  year: 1995
  end-page: 414
  ident: bib0050
  article-title: Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals
  publication-title: Cell
– volume: 49
  start-page: 77
  year: 2003
  end-page: 83
  ident: bib0265
  article-title: Postoperative adjuvant use of carmofur for early breast cancer
  publication-title: Osaka City Med. J.
– volume: 7
  start-page: 7411
  year: 2017
  ident: bib0205
  article-title: Complete Acid Ceramidase ablation prevents cancer-initiating cell formation in melanoma cells
  publication-title: Sci. Rep.
– volume: 52
  start-page: 163
  year: 2016
  end-page: 172
  ident: bib0340
  article-title: Targeting acid ceramidase sensitises head and neck cancer to cisplatin
  publication-title: Eur. J. Cancer
– volume: 1734
  start-page: 220
  year: 2005
  end-page: 234
  ident: bib0310
  article-title: Molecular mechanisms and regulation of ceramide transport
  publication-title: Biochim. Biophys. Acta
– volume: 111
  start-page: 3209
  year: 1998
  end-page: 3220
  ident: bib0140
  article-title: H2O2 acts on cellular membranes to generate ceramide signaling and initiate apoptosis in tracheobronchial epithelial cells
  publication-title: J. Cell. Sci.
– volume: 11
  start-page: 799
  year: 2015
  end-page: 806
  ident: bib0040
  article-title: LAPTM4B facilitates late endosomal ceramide export to control cell death pathways
  publication-title: Nat. Chem. Biol.
– volume: 381
  start-page: 800
  year: 1996
  end-page: 803
  ident: bib0085
  article-title: Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate
  publication-title: Nature
– volume: 24
  start-page: 296
  year: 2010
  end-page: 308
  ident: bib0360
  article-title: Antiapoptotic roles of ceramide-synthase-6-generated C16-ceramide via selective regulation of the ATF6/CHOP arm of ER-stress-response pathways
  publication-title: FASEB J.
– volume: 1781
  start-page: 424
  year: 2008
  end-page: 434
  ident: bib0235
  article-title: Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate
  publication-title: Biochim. Biophys. Acta
– volume: 70
  start-page: 387
  year: 2018
  end-page: 396
  ident: bib0410
  article-title: The investigation of ceranib-2 on apoptosis and drug interaction with carboplatin in human non small cell lung cancer cells in vitro
  publication-title: Cytotechnology
– volume: 83
  start-page: 336
  year: 1996
  end-page: 340
  ident: bib0405
  article-title: Adjuvant oral chemotherapy to prevent recurrence after curative resection for hepatocellular carcinoma
  publication-title: Br. J. Surg.
– volume: 15
  start-page: 541
  year: 1999
  end-page: 546
  ident: bib0225
  article-title: Modification of ceramide metabolism increases cancer cell sensitivity to cytotoxics
  publication-title: Int. J. Oncol.
– year: 2009
  ident: bib0420
  article-title: Herbert Edmund Carter 1910–2007 – a Biographical Memoir
– volume: 17
  start-page: 430
  year: 2009
  end-page: 438
  ident: bib0230
  article-title: Acid ceramidase upregulation in prostate cancer cells confers resistance to radiation: AC inhibition, a potential radiosensitizer
  publication-title: Mol. Ther.
– volume: 12
  year: 2017
  ident: bib0010
  article-title: Anticancer actions of lysosomally targeted inhibitor, LCL521, of acid ceramidase
  publication-title: PLoS One
– volume: 276
  start-page: 24901
  year: 2001
  end-page: 24910
  ident: bib0295
  article-title: Role of ceramide in mediating the inhibition of telomerase activity in A549 human lung adenocarcinoma cells
  publication-title: J. Biol. Chem.
– volume: 102
  start-page: 167
  year: 1999
  end-page: 178
  ident: bib0215
  article-title: Sphingomyelin-degrading pathways in human cells role in cell signalling
  publication-title: Chem. Phys. Lipids
– volume: 8
  start-page: 112662
  year: 2017
  end-page: 112674
  ident: bib0090
  article-title: Acid ceramidase and its inhibitors: a de novo drug target and a new class of drugs for killing glioblastoma cancer stem cells with high efficiency
  publication-title: Oncotarget
– volume: 38
  start-page: 1932
  year: 2017
  end-page: 1940
  ident: bib0100
  article-title: Acid ceramidase confers radioresistance to glioblastoma cells
  publication-title: Oncol. Rep.
– volume: 19
  start-page: 175
  year: 2018
  end-page: 191
  ident: bib0160
  article-title: Sphingolipids and their metabolism in physiology and disease
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 18
  start-page: 3628
  year: 2012
  end-page: 3636
  ident: bib0435
  article-title: Differential expression of 2’,3’-cyclic-nucleotide 3’-phosphodiesterase and neural lineage markers correlate with glioblastoma xenograft infiltration and patient survival
  publication-title: Clin. Cancer Res.
– volume: 279
  start-page: 1552
  year: 1998
  end-page: 1555
  ident: bib0210
  article-title: Hla T. phingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1
  publication-title: Science.
– volume: 40
  start-page: 4893
  year: 2001
  end-page: 4903
  ident: bib0165
  article-title: Enzymes of sphingolipid metabolism: from modular to integrative signaling
  publication-title: Biochemistry
– volume: 61
  start-page: 231
  year: 2008
  end-page: 242
  ident: bib0170
  article-title: Lysosomotropic acid ceramidase inhibitor induces apoptosis in prostate cancer cells
  publication-title: Cancer Chemother. Pharmacol.
– volume: 35
  start-page: 536
  year: 2005
  end-page: 544
  ident: bib0350
  article-title: An individual patient data meta-analysis of adjuvant therapy with carmofur in patients with curatively resected colon cancer
  publication-title: Jpn. J. Clin. Oncol.
– volume: 43
  start-page: 2064
  year: 2013
  end-page: 2072
  ident: bib0365
  article-title: Increased killing of SCCVII squamous cell carcinoma cells after the combination of Pc 4 photodynamic therapy and dasatinib is associated with enhanced caspase-3 activity and ceramide synthase 1 upregulation
  publication-title: Int. J. Oncol.
– volume: 7
  start-page: 83208
  year: 2016
  end-page: 83222
  ident: bib0385
  article-title: Acid ceramidase is upregulated in AML and represents a novel therapeutic target
  publication-title: Oncotarget
– volume: 22
  start-page: 1300
  year: 2010
  end-page: 1307
  ident: bib0245
  article-title: Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells
  publication-title: Cell. Signal.
– volume: 270
  start-page: 11098
  year: 1995
  end-page: 11102
  ident: bib0030
  article-title: Purification, characterization, and biosynthesis of human acid ceramidase
  publication-title: J. Biol. Chem.
– volume: 20
  start-page: 137
  year: 2017
  end-page: 144
  ident: bib0270
  article-title: Assay to measure sphingomyelinase and ceramidase activities efficiently and safely
  publication-title: J. Chromatogr. A
– volume: 9
  start-page: 58
  year: 2015
  end-page: 67
  ident: bib0355
  article-title: Acid ceramidase is associated with an improved prognosis in both DCIS and invasive breast cancer
  publication-title: Mol. Oncol.
– volume: 283
  start-page: 6622
  year: 2008
  end-page: 6630
  ident: bib0370
  article-title: Anti-apoptotic Bcl-2 family proteins disassemble ceramide channels
  publication-title: J. Biol. Chem.
– volume: 51
  start-page: 1056
  year: 2015
  end-page: 1063
  ident: bib0200
  article-title: Induction of apoptosis in prostate cancer cells by the novel ceramidase inhibitor ceranib-2
  publication-title: In Vitro Cell. Dev. Biol. Anim.
– volume: 133
  start-page: 447
  year: 2012
  end-page: 458
  ident: bib0125
  article-title: C6-ceramide and targeted inhibition of acid ceramidase induce synergistic decreases in breast cancer cell growth
  publication-title: Breast Cancer Res. Treat.
– volume: 14
  start-page: 30
  year: 2011
  end-page: 37
  ident: bib0395
  article-title: Autophagy is increased in prostate cancer cells overexpressing acid ceramidase and enhances resistance to C6 ceramide
  publication-title: Prostate Cancer Prostatic Dis.
– volume: 9
  start-page: 4797
  year: 2009
  end-page: 4804
  ident: bib0250
  article-title: Anti-tumor activity of carmofur water-solubilized by lactic acid oligomer-grafted pullulan nanogels
  publication-title: J. Nanosci. Nanotechnol.
– volume: 139
  start-page: 1372
  issue: September (6)
  year: 2016
  ident: 10.1016/j.critrevonc.2019.03.018_bib0190
  article-title: Interaction of acid ceramidase inhibitor LCL521 with tumor response to photodynamic therapy and photodynamic therapy-generated vaccine
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.30171
– volume: 335
  start-page: 465
  issue: November (Pt 3)
  year: 1998
  ident: 10.1016/j.critrevonc.2019.03.018_bib0240
  article-title: Signal transduction of stress via ceramide
  publication-title: Biochem. J.
  doi: 10.1042/bj3350465
– volume: 14
  start-page: 123
  issue: January (1)
  year: 2008
  ident: 10.1016/j.critrevonc.2019.03.018_bib0425
  article-title: Stem cell marker CD133 affects clinical outcome in glioma patients
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-07-0932
– volume: 102
  start-page: 167
  issue: November (1-2)
  year: 1999
  ident: 10.1016/j.critrevonc.2019.03.018_bib0215
  article-title: Sphingomyelin-degrading pathways in human cells role in cell signalling
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/S0009-3084(99)00085-7
– volume: 274
  start-page: 10654
  issue: April (15)
  year: 1999
  ident: 10.1016/j.critrevonc.2019.03.018_bib0380
  article-title: Ceramide generation in nitric oxide-induced apoptosis. Activation of magnesium-dependent neutral sphingomyelinase via caspase-3
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.15.10654
– volume: 1781
  start-page: 424
  issue: September (9)
  year: 2008
  ident: 10.1016/j.critrevonc.2019.03.018_bib0235
  article-title: Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbalip.2008.06.002
– volume: 17
  start-page: 430
  issue: March (3)
  year: 2009
  ident: 10.1016/j.critrevonc.2019.03.018_bib0230
  article-title: Acid ceramidase upregulation in prostate cancer cells confers resistance to radiation: AC inhibition, a potential radiosensitizer
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2008.281
– volume: 1841
  start-page: 1174
  issue: August (8)
  year: 2014
  ident: 10.1016/j.critrevonc.2019.03.018_bib0390
  article-title: Evolving concepts in cancer therapy through targeting sphingolipid metabolism
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbalip.2013.12.013
– volume: 195
  start-page: 85
  issue: March
  year: 2019
  ident: 10.1016/j.critrevonc.2019.03.018_bib0430
  article-title: The sphingosine kinase-1/sphingosine-1-phosphate axis in cancer: potential target for anticancer therapy
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2018.10.011
– volume: 503
  start-page: 843
  issue: September (2)
  year: 2018
  ident: 10.1016/j.critrevonc.2019.03.018_bib0180
  article-title: Acid ceramidase inhibition sensitizes human colon cancer cells to oxaliplatin through downregulation of transglutaminase 2 and β1 integrin/FAK-mediated signalling
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2018.06.085
– volume: 54
  start-page: 1207
  issue: May (5)
  year: 2013
  ident: 10.1016/j.critrevonc.2019.03.018_bib0065
  article-title: Acid ceramidase as a therapeutic target in metastatic prostate cancer
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M032375
– volume: 259
  start-page: 1769
  issue: March (5102)
  year: 1993
  ident: 10.1016/j.critrevonc.2019.03.018_bib0275
  article-title: Programmed cell death induced by ceramide
  publication-title: Science
  doi: 10.1126/science.8456305
– volume: 398
  start-page: 125
  issue: July (1)
  year: 1975
  ident: 10.1016/j.critrevonc.2019.03.018_bib0375
  article-title: Ceramidase and ceramide synthesis in human kidney and cerebellum. Description of a new alkaline ceramidase
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2760(75)90176-9
– volume: 111
  start-page: 3209
  issue: November (Pt 21)
  year: 1998
  ident: 10.1016/j.critrevonc.2019.03.018_bib0140
  article-title: H2O2 acts on cellular membranes to generate ceramide signaling and initiate apoptosis in tracheobronchial epithelial cells
  publication-title: J. Cell. Sci.
  doi: 10.1242/jcs.111.21.3209
– volume: 1734
  start-page: 220
  issue: June (3)
  year: 2005
  ident: 10.1016/j.critrevonc.2019.03.018_bib0310
  article-title: Molecular mechanisms and regulation of ceramide transport
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbalip.2005.04.001
– volume: 291
  start-page: 2422
  issue: January (5)
  year: 2016
  ident: 10.1016/j.critrevonc.2019.03.018_bib0335
  article-title: Acid ceramidase in melanoma: expression, localization, and effects of pharmacological inhibition
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.666909
– volume: 271
  start-page: 12646
  issue: May (21)
  year: 1996
  ident: 10.1016/j.critrevonc.2019.03.018_bib0035
  article-title: (1S,2R)-D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol as an inhibitor of ceramidase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.21.12646
– volume: 34
  start-page: 66
  issue: June
  year: 2017
  ident: 10.1016/j.critrevonc.2019.03.018_bib0305
  article-title: Mechanisms of sphingosine 1-phosphate receptor signalling in cancer
  publication-title: Cell. Signal.
  doi: 10.1016/j.cellsig.2017.03.002
– volume: 14
  start-page: 30
  issue: March (1)
  year: 2011
  ident: 10.1016/j.critrevonc.2019.03.018_bib0395
  article-title: Autophagy is increased in prostate cancer cells overexpressing acid ceramidase and enhances resistance to C6 ceramide
  publication-title: Prostate Cancer Prostatic Dis.
  doi: 10.1038/pcan.2010.47
– volume: 313
  start-page: 1615
  issue: May (8)
  year: 2007
  ident: 10.1016/j.critrevonc.2019.03.018_bib0415
  article-title: Roles of sphingosine-1-phosphate (S1P) receptors in malignant behavior of glioma cells. Differential effects of S1P2 on cell migration and invasiveness
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2007.02.009
– volume: 32
  start-page: 249
  issue: May (3)
  year: 2013
  ident: 10.1016/j.critrevonc.2019.03.018_bib0155
  article-title: Acid ceramidase (AC)--a key enzyme of sphingolipid metabolism--correlates with better prognosis in epithelial ovarian cancer
  publication-title: Int. J. Gynecol. Pathol.
  doi: 10.1097/PGP.0b013e3182673982
– volume: 15
  start-page: 1259
  issue: July (7)
  year: 2007
  ident: 10.1016/j.critrevonc.2019.03.018_bib0115
  article-title: Role of acid ceramidase in resistance to FasL: therapeutic approaches based on acid ceramidase inhibitors and FasL gene therapy
  publication-title: Mol. Ther.
  doi: 10.1038/sj.mt.6300167
– volume: 43
  start-page: 2064
  issue: December (6)
  year: 2013
  ident: 10.1016/j.critrevonc.2019.03.018_bib0365
  article-title: Increased killing of SCCVII squamous cell carcinoma cells after the combination of Pc 4 photodynamic therapy and dasatinib is associated with enhanced caspase-3 activity and ceramide synthase 1 upregulation
  publication-title: Int. J. Oncol.
  doi: 10.3892/ijo.2013.2132
– volume: 1848
  start-page: 2374
  issue: October (10 Pt A)
  year: 2015
  ident: 10.1016/j.critrevonc.2019.03.018_bib0070
  article-title: Ceramide channels: destabilization by Bcl-xL and role in apoptosis
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2015.07.013
– volume: 17
  start-page: 6097
  issue: September (18)
  year: 2011
  ident: 10.1016/j.critrevonc.2019.03.018_bib0345
  article-title: Results of a phase II trial of gemcitabine plus doxorubicin in patients with recurrent head and neck cancers: serum C₁₈-ceramide as a novel biomarker for monitoring response
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-11-0930
– volume: 133
  start-page: 447
  issue: June (2)
  year: 2012
  ident: 10.1016/j.critrevonc.2019.03.018_bib0125
  article-title: C6-ceramide and targeted inhibition of acid ceramidase induce synergistic decreases in breast cancer cell growth
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1007/s10549-011-1768-8
– volume: 123
  start-page: 4344
  issue: October (10)
  year: 2013
  ident: 10.1016/j.critrevonc.2019.03.018_bib0075
  article-title: Radiation-induced acid ceramidase confers prostate cancer resistance and tumor relapse
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI64791
– volume: 286
  issue: August (32)
  year: 2011
  ident: 10.1016/j.critrevonc.2019.03.018_bib0025
  article-title: Acid ceramidase expression modulates the sensitivity of A375 melanoma cells to dacarbazine
  publication-title: J. Biol. Chem.
– volume: 7
  start-page: 7411
  issue: August (1)
  year: 2017
  ident: 10.1016/j.critrevonc.2019.03.018_bib0205
  article-title: Complete Acid Ceramidase ablation prevents cancer-initiating cell formation in melanoma cells
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-07606-w
– volume: 1851
  start-page: 1134
  issue: September (9)
  year: 2015
  ident: 10.1016/j.critrevonc.2019.03.018_bib0255
  article-title: Tamoxifen regulation of sphingolipid metabolism--therapeutic implications
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbalip.2015.05.001
– year: 2009
  ident: 10.1016/j.critrevonc.2019.03.018_bib0420
– volume: 35
  start-page: 536
  issue: September (9)
  year: 2005
  ident: 10.1016/j.critrevonc.2019.03.018_bib0350
  article-title: An individual patient data meta-analysis of adjuvant therapy with carmofur in patients with curatively resected colon cancer
  publication-title: Jpn. J. Clin. Oncol.
  doi: 10.1093/jjco/hyi147
– volume: 278
  start-page: 29948
  issue: August (32)
  year: 2003
  ident: 10.1016/j.critrevonc.2019.03.018_bib0300
  article-title: The reverse activity of human acid ceramidase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M303310200
– volume: 276
  start-page: 24901
  issue: July (27)
  year: 2001
  ident: 10.1016/j.critrevonc.2019.03.018_bib0295
  article-title: Role of ceramide in mediating the inhibition of telomerase activity in A549 human lung adenocarcinoma cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M100314200
– volume: 3
  start-page: 1035
  year: 2013
  ident: 10.1016/j.critrevonc.2019.03.018_bib0330
  article-title: Discovery of highly potent acid ceramidase inhibitors with in vitro tumor chemosensitizing activity
  publication-title: Sci. Rep.
  doi: 10.1038/srep01035
– volume: 49
  start-page: 77
  issue: December (2)
  year: 2003
  ident: 10.1016/j.critrevonc.2019.03.018_bib0265
  article-title: Postoperative adjuvant use of carmofur for early breast cancer
  publication-title: Osaka City Med. J.
– volume: 33
  start-page: 115
  year: 2014
  ident: 10.1016/j.critrevonc.2019.03.018_bib0320
  article-title: Enhanced MGMT expressioncontributes to temozolomide resistance in glioma stem-like cells
  publication-title: Chin. J. Cancer
  doi: 10.5732/cjc.012.10236
– volume: 381
  start-page: 800
  issue: June (6585)
  year: 1996
  ident: 10.1016/j.critrevonc.2019.03.018_bib0085
  article-title: Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate
  publication-title: Nature
  doi: 10.1038/381800a0
– volume: 83
  start-page: 336
  issue: March (3)
  year: 1996
  ident: 10.1016/j.critrevonc.2019.03.018_bib0405
  article-title: Adjuvant oral chemotherapy to prevent recurrence after curative resection for hepatocellular carcinoma
  publication-title: Br. J. Surg.
  doi: 10.1002/bjs.1800830313
– volume: 61
  start-page: 231
  issue: February (2)
  year: 2008
  ident: 10.1016/j.critrevonc.2019.03.018_bib0170
  article-title: Lysosomotropic acid ceramidase inhibitor induces apoptosis in prostate cancer cells
  publication-title: Cancer Chemother. Pharmacol.
– volume: 71
  start-page: 2882
  issue: April (8)
  year: 2011
  ident: 10.1016/j.critrevonc.2019.03.018_bib0175
  article-title: IRF8 regulates acid ceramidase expression to mediate apoptosis and suppresses myelogeneous leukemia
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-2493
– volume: 12
  issue: June (6)
  year: 2017
  ident: 10.1016/j.critrevonc.2019.03.018_bib0010
  article-title: Anticancer actions of lysosomally targeted inhibitor, LCL521, of acid ceramidase
  publication-title: PLoS One
– volume: 288
  start-page: 37355
  issue: December (52)
  year: 2013
  ident: 10.1016/j.critrevonc.2019.03.018_bib0005
  article-title: A metabolic shift favoring sphingosine 1-phosphate at the expense of ceramide controls glioblastoma angiogenesis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.494740
– volume: 279
  start-page: 1552
  issue: March (5356)
  year: 1998
  ident: 10.1016/j.critrevonc.2019.03.018_bib0210
  article-title: Hla T. phingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1
  publication-title: Science.
  doi: 10.1126/science.279.5356.1552
– volume: 22
  start-page: 1300
  issue: September (9)
  year: 2010
  ident: 10.1016/j.critrevonc.2019.03.018_bib0245
  article-title: Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells
  publication-title: Cell. Signal.
  doi: 10.1016/j.cellsig.2010.04.006
– volume: 18
  start-page: 3628
  issue: July (13)
  year: 2012
  ident: 10.1016/j.critrevonc.2019.03.018_bib0435
  article-title: Differential expression of 2’,3’-cyclic-nucleotide 3’-phosphodiesterase and neural lineage markers correlate with glioblastoma xenograft infiltration and patient survival
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-12-0339
– volume: 4
  start-page: 604
  issue: August (8)
  year: 2004
  ident: 10.1016/j.critrevonc.2019.03.018_bib0290
  article-title: Biologically active sphingolipids in cancer pathogenesis and treatment
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1411
– volume: 238
  issue: September
  year: 1963
  ident: 10.1016/j.critrevonc.2019.03.018_bib0130
  article-title: Enzymic hydrolysis and synthesis of ceramides
  publication-title: J. Biol. Chem.
– volume: 18
  start-page: 33
  issue: January (1)
  year: 2018
  ident: 10.1016/j.critrevonc.2019.03.018_bib0285
  article-title: Sphingolipid metabolism in cancer signalling and therapy
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2017.96
– volume: 38
  start-page: 1932
  issue: October (4)
  year: 2017
  ident: 10.1016/j.critrevonc.2019.03.018_bib0100
  article-title: Acid ceramidase confers radioresistance to glioblastoma cells
  publication-title: Oncol. Rep.
  doi: 10.3892/or.2017.5855
– volume: 118
  start-page: 391
  issue: 7
  year: 2017
  ident: 10.1016/j.critrevonc.2019.03.018_bib0015
  article-title: Effects of ceranib-2 on cell survival and TNF-alpha in colon cancer cell line
  publication-title: Bratisl Lek Listy.
– volume: 20
  start-page: 137
  issue: January 1481
  year: 2017
  ident: 10.1016/j.critrevonc.2019.03.018_bib0270
  article-title: Assay to measure sphingomyelinase and ceramidase activities efficiently and safely
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2016.12.033
– volume: 8
  start-page: 642
  year: 2007
  ident: 10.1016/j.critrevonc.2019.03.018_bib0020
  article-title: Synthesis of a novel ceramide analogue and its use in a high‐throughput fluorogenic assay for ceramidases
  publication-title: ChemBioChem
  doi: 10.1002/cbic.200600533
– volume: 84
  start-page: 499
  issue: October (4)
  year: 1952
  ident: 10.1016/j.critrevonc.2019.03.018_bib0120
  article-title: A lipid metabolic disorder: disseminated lipogranulomatosis; a syndrome with similarity to, and important difference from, Niemann-Pick and Hand-Schüller-Christian disease
  publication-title: AMA Am. J. Dis. Child.
– volume: 25
  start-page: 5612
  issue: September (41)
  year: 2006
  ident: 10.1016/j.critrevonc.2019.03.018_bib0110
  article-title: TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1209568
– volume: 19
  start-page: 175
  issue: March (3)
  year: 2018
  ident: 10.1016/j.critrevonc.2019.03.018_bib0160
  article-title: Sphingolipids and their metabolism in physiology and disease
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.107
– volume: 82
  start-page: 476
  issue: April (4)
  year: 1991
  ident: 10.1016/j.critrevonc.2019.03.018_bib0195
  article-title: Antitumor activity of fluoropyrimidines and thymidylate synthetase inhibition
  publication-title: Jpn. J. Cancer Res.
  doi: 10.1111/j.1349-7006.1991.tb01873.x
– volume: 52
  start-page: 163
  issue: January
  year: 2016
  ident: 10.1016/j.critrevonc.2019.03.018_bib0340
  article-title: Targeting acid ceramidase sensitises head and neck cancer to cisplatin
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2015.10.056
– volume: 62
  start-page: 223
  issue: December (2)
  year: 1999
  ident: 10.1016/j.critrevonc.2019.03.018_bib0220
  article-title: The human acid ceramidase gene (ASAH): structure, chromosomal location, mutation analysis, and expression
  publication-title: Genomics
  doi: 10.1006/geno.1999.5940
– volume: 7
  start-page: 83208
  issue: December (50)
  year: 2016
  ident: 10.1016/j.critrevonc.2019.03.018_bib0385
  article-title: Acid ceramidase is upregulated in AML and represents a novel therapeutic target
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.13079
– volume: 6
  start-page: 1603
  issue: October (10)
  year: 2010
  ident: 10.1016/j.critrevonc.2019.03.018_bib0315
  article-title: Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance
  publication-title: Future Oncol.
  doi: 10.2217/fon.10.116
– volume: 51
  start-page: 1056
  issue: November (10)
  year: 2015
  ident: 10.1016/j.critrevonc.2019.03.018_bib0200
  article-title: Induction of apoptosis in prostate cancer cells by the novel ceramidase inhibitor ceranib-2
  publication-title: In Vitro Cell. Dev. Biol. Anim.
  doi: 10.1007/s11626-015-9932-9
– volume: 9
  start-page: 4797
  issue: August (8)
  year: 2009
  ident: 10.1016/j.critrevonc.2019.03.018_bib0250
  article-title: Anti-tumor activity of carmofur water-solubilized by lactic acid oligomer-grafted pullulan nanogels
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2009.1096
– volume: 580
  start-page: 5467
  issue: October (23)
  year: 2006
  ident: 10.1016/j.critrevonc.2019.03.018_bib0280
  article-title: Sphingolipids in cancer: regulation of pathogenesis and therapy
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2006.08.052
– volume: 71
  start-page: 1064
  issue: July (10)
  year: 2011
  ident: 10.1016/j.critrevonc.2019.03.018_bib0145
  article-title: Inhibition of acid ceramidase by a 2-substituted aminoethanol amide synergistically sensitizes prostate cancer cells to N-(4-hydroxyphenyl) retinamide
  publication-title: Prostate
  doi: 10.1002/pros.21321
– volume: 40
  start-page: 4893
  issue: April (16)
  year: 2001
  ident: 10.1016/j.critrevonc.2019.03.018_bib0165
  article-title: Enzymes of sphingolipid metabolism: from modular to integrative signaling
  publication-title: Biochemistry
  doi: 10.1021/bi002836k
– volume: 24
  start-page: 296
  issue: January (1)
  year: 2010
  ident: 10.1016/j.critrevonc.2019.03.018_bib0360
  article-title: Antiapoptotic roles of ceramide-synthase-6-generated C16-ceramide via selective regulation of the ATF6/CHOP arm of ER-stress-response pathways
  publication-title: FASEB J.
  doi: 10.1096/fj.09-135087
– volume: 70
  start-page: 9905
  issue: December (23)
  year: 2010
  ident: 10.1016/j.critrevonc.2019.03.018_bib0045
  article-title: Sphingosine-1-phosphate activates the AKT pathway to protect small intestines from radiation-induced endothelial apoptosis
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-2043
– volume: 10
  start-page: 2052
  issue: November (11)
  year: 2011
  ident: 10.1016/j.critrevonc.2019.03.018_bib0105
  article-title: Discovery and evaluation of inhibitors of human ceramidase
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-11-0365
– volume: 8
  start-page: 24753
  issue: April (15)
  year: 2017
  ident: 10.1016/j.critrevonc.2019.03.018_bib0095
  article-title: Acid ceramidase is a novel drug target for pediatric brain tumors
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.15800
– volume: 139
  start-page: 1372
  issue: September (6)
  year: 2016
  ident: 10.1016/j.critrevonc.2019.03.018_bib0185
  article-title: Interaction of acid ceramidase inhibitor LCL521 with tumor response to photodynamic therapy and photodynamic therapy-generated vaccine
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.30171
– volume: 26
  start-page: 905
  issue: February (6)
  year: 2007
  ident: 10.1016/j.critrevonc.2019.03.018_bib0260
  article-title: Pharmacological inhibition or small interfering RNA targeting acid ceramidase sensitizes hepatoma cells to chemotherapy and reduces tumor growth in vivo
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1209834
– volume: 54
  start-page: 1207
  issue: May (5)
  year: 2013
  ident: 10.1016/j.critrevonc.2019.03.018_bib0060
  article-title: Acid ceramidase as a therapeutic target in metastatic prostate cancer
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M032375
– volume: 9
  start-page: 58
  issue: January (1)
  year: 2015
  ident: 10.1016/j.critrevonc.2019.03.018_bib0355
  article-title: Acid ceramidase is associated with an improved prognosis in both DCIS and invasive breast cancer
  publication-title: Mol. Oncol.
  doi: 10.1016/j.molonc.2014.07.016
– volume: 29
  start-page: 50
  issue: January (1)
  year: 2018
  ident: 10.1016/j.critrevonc.2019.03.018_bib0400
  article-title: Anticancer effect of acid ceramidase inhibitor ceranib-2 in human breast cancer cell lines MCF-7, MDA MB-231 by the activation of SAPK/JNK, p38 MAPK apoptotic pathways, inhibition of the Akt pathway, downregulation of ERα
  publication-title: Anticancer Drugs
  doi: 10.1097/CAD.0000000000000566
– volume: 12
  start-page: 617
  issue: July (6)
  year: 2012
  ident: 10.1016/j.critrevonc.2019.03.018_bib0325
  article-title: Acid ceramidase as a chemotherapeutic target to overcome resistance to the antitumoral effect of choline kinase α inhibition
  publication-title: Curr. Cancer Drug Targets
  doi: 10.2174/156800912801784811
– volume: 82
  start-page: 405
  issue: August (3)
  year: 1995
  ident: 10.1016/j.critrevonc.2019.03.018_bib0050
  article-title: Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90429-8
– volume: 8
  start-page: 112662
  issue: November (68)
  year: 2017
  ident: 10.1016/j.critrevonc.2019.03.018_bib0090
  article-title: Acid ceramidase and its inhibitors: a de novo drug target and a new class of drugs for killing glioblastoma cancer stem cells with high efficiency
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.22637
– volume: 270
  start-page: 11098
  issue: May (19)
  year: 1995
  ident: 10.1016/j.critrevonc.2019.03.018_bib0030
  article-title: Purification, characterization, and biosynthesis of human acid ceramidase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.19.11098
– volume: 283
  start-page: 6622
  issue: March (11)
  year: 2008
  ident: 10.1016/j.critrevonc.2019.03.018_bib0370
  article-title: Anti-apoptotic Bcl-2 family proteins disassemble ceramide channels
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M706115200
– volume: 29
  start-page: 419
  issue: June (4-6)
  year: 2010
  ident: 10.1016/j.critrevonc.2019.03.018_bib0135
  article-title: Study of apoptosis induction and deoxycytidine kinase/cytidine deaminase modulation in the synergistic interaction of a novel ceramide analog and gemcitabine in pancreatic cancer cells
  publication-title: Nucleosides Nucleotides Nucleic Acids
  doi: 10.1080/15257771003730193
– volume: 284
  start-page: 1016
  issue: June (4)
  year: 2001
  ident: 10.1016/j.critrevonc.2019.03.018_bib0150
  article-title: Molecular mechanisms of ceramide-mediated CD95 clustering
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.2001.5045
– volume: 148
  start-page: 988
  issue: March (5)
  year: 2012
  ident: 10.1016/j.critrevonc.2019.03.018_bib0080
  article-title: Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis
  publication-title: Cell
  doi: 10.1016/j.cell.2012.01.038
– volume: 15
  start-page: 53
  issue: May 179
  year: 2018
  ident: 10.1016/j.critrevonc.2019.03.018_bib0055
  article-title: Proteomic profiling of rectal cancer reveals acid ceramidase is implicated in radiation response
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2018.02.030
– volume: 15
  start-page: 541
  issue: September (3)
  year: 1999
  ident: 10.1016/j.critrevonc.2019.03.018_bib0225
  article-title: Modification of ceramide metabolism increases cancer cell sensitivity to cytotoxics
  publication-title: Int. J. Oncol.
– volume: 11
  start-page: 799
  issue: October (10)
  year: 2015
  ident: 10.1016/j.critrevonc.2019.03.018_bib0040
  article-title: LAPTM4B facilitates late endosomal ceramide export to control cell death pathways
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1889
– volume: 70
  start-page: 387
  issue: February (1)
  year: 2018
  ident: 10.1016/j.critrevonc.2019.03.018_bib0410
  article-title: The investigation of ceranib-2 on apoptosis and drug interaction with carboplatin in human non small cell lung cancer cells in vitro
  publication-title: Cytotechnology
  doi: 10.1007/s10616-017-0154-8
SSID ssj0004467
Score 2.4289744
SecondaryResourceType review_article
Snippet [Display omitted] Sphingolipids have been shown to play a key part in cancer cell growth and death and have increasingly become the subject of novel...
Sphingolipids have been shown to play a key part in cancer cell growth and death and have increasingly become the subject of novel anti-cancer therapies. Acid...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104
SubjectTerms Acid ceramidase
Cancer
Sphingolipids
Title Sphingolipids and acid ceramidase as therapeutic targets in cancer therapy
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1040842818305079
https://dx.doi.org/10.1016/j.critrevonc.2019.03.018
https://www.ncbi.nlm.nih.gov/pubmed/31092365
https://www.proquest.com/docview/2232020366
Volume 138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iIF7Et_VRInhdu8_ExZMUpSrtpQreQnaSwIpuSx-CF3-7mSbbKigUPO5j2N3Zmckk-eYbQs41MrioNAtyw3SQQgFBwSAOoogzrQqlmMFq5G6PdZ7S--fseYW061oYhFX62O9i-ixa-zMtr83WsCxbfTuRCC9TZDOyNhtyLOJLU45WfvG5gHnY6Q53jARhgHd7NI_DeFnHnIz0-6BCMsPI0Z1i-4_fh6i_UtDZUHS7RTZ9Dkmv3WtukxVd7ZD1rt8l3yX3_SGuKw1ey2GpxlRWikooFQU9km-lsuMWlWP6rfKKOjz4mJYVBTSDkb_6sUeebm8e253A90wIIM35JIBcxoazQmcachPyOAZlM54UsPGXNJHJkoJFhcyldWUjFShgiZEZ06BCnRTJPlmtBpU-JJRLO7sxkY6MxoUi6-gmVuElmFxb9UloEF6rSYAnFMe-Fq-iRo69iIWCBSpYhImwCm6QaC45dKQaS8jk9Z8QddGoDXPCRv4lZK_msj-Ma0nps_rHC-t7uKEiKz2YjoVNreLZTi5rkANnEfPvQcbVOGHZ0b-efUw28Mhh007I6mQ01ac2C5oUzZmZN8na9d1Dp_cF2SsLJg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90gvoifjs_I_ha1s90xachyvzYXlTwLaSXBCrajW0K_vfm1nQqKAx8bXqkvdxdLrm73wGcaUJwUXHiZYZrL8YcvZxj6AVByrXKleKGqpF7fd59jG-ekqcFuKhrYSit0tn-yqZPrbV70nLcbA2LonVvDxJ-OyY0IyuzfpotwhKhUyUNWOpc33b7X-WR8bSRLL3vEYFL6KnSvKxuTkb6fVASnmFQIZ5SB5Dfd6m_vNDpbnS1DmvOjWSd6ks3YEGXm7Dcc4HyLbi5H9LV0uClGBZqzGSpmMRCMdQj-Voou3UxOWbfiq9YlRI-ZkXJkCRh5EY_tuHx6vLhouu5tgkexlk68TCToUl5rhONmfHTMERlnZ4YqfeXNIFJopwHucyk1WYjFSrkkZEJ16h8HeXRDjTKQan3gKXSHnBMoAOj6a7I6roJld9Gk2nLPolNSGs2CXSY4tTa4kXUyWPP4ovBghgs_EhYBjchmFEOK1yNOWiyeiVEXTdqLZ2wxn8O2vMZ7Q_5mpP6tF54YdWPYiqy1IO3sbDeVTgN5vIm7FYSMfsfAl0NI57s_2vuE1jpPvTuxN11__YAVmmkSlU7hMZk9KaPrFM0yY-d0H8C7h8N1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sphingolipids+and+acid+ceramidase+as+therapeutic+targets+in+cancer+therapy&rft.jtitle=Critical+reviews+in+oncology%2Fhematology&rft.au=Govindarajah%2C+N.&rft.au=Clifford%2C+R.&rft.au=Bowden%2C+D.&rft.au=Sutton%2C+P.A.&rft.date=2019-06-01&rft.issn=1040-8428&rft.volume=138&rft.spage=104&rft.epage=111&rft_id=info:doi/10.1016%2Fj.critrevonc.2019.03.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_critrevonc_2019_03_018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-8428&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-8428&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-8428&client=summon